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We propose a generalization of the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation fromRn to an
arbitrary Riemannian manifold. Its form is obtained by extending the relation of the WDVVequation with
N ¼ 4 supersymmetric n-dimensional mechanics from flat to curved space. The resulting “curved WDVV
equation” is written in terms of a third-rank Codazzi tensor. For every flat-space WDVV solution subject to
a simple constraint, we provide a curved-space solution on any isotropic space, in terms of the rotationally
invariant conformal factor of the metric.
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I. WDVV EQUATION IN CURVED SPACE

A celebrated mathematical structure common to several
areas in geometry and mathematical physics is the (gen-
eralized) Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)
equation [1,2]

Fð0Þ
kipδ

pqFð0Þ
qjm−Fð0Þ

kjpδ
pqFð0Þ

qim¼ 0 with Fð0Þ
ijk ¼ ∂i∂j∂kFð0Þ

ð1:1Þ

for a real-valued function Fð0ÞðxÞ of n real variables x ¼
ðxiÞ ¼ ðx1; x2;…; xnÞ which can be taken as coordinates of
Euclidean spaceRn. There is considerable mathematics and
physics literature on solutions to this equation. In this short
paper, we propose a generalization of this equation to any
Riemannian manifold M given by a metric,

ds2 ¼ gikðxÞdxidxk: ð1:2Þ

In order to motivate the form of the purported “curved
WDVV equation,” let us reformulate the flat-space version
by defining n n × n matrices F̂ð0Þ

i and a matrix-valued
one-form F̂ð0Þ via

ðF̂ð0Þ
i Þlp ¼ δlkFð0Þ

kip and F̂ð0Þ ¼ dxiF̂ð0Þ
i ; ð1:3Þ

respectively [3]. In these terms, theWDVVequation (1.1) is
equivalent to the flatness or nilpotency condition

ðd� F̂ð0ÞÞ2 ¼ 0 ⇔ F̂ ∧ F̂ ¼ 0 ⇔ ½F̂ð0Þ
i ; F̂ð0Þ

j � ¼ 0; ð1:4Þ
where both signs are allowed.

This form suggests a natural geometric generalization to
curved space, by simply covariantizing with respect to
diffeomorphisms,

ðdþ Γ̂� F̂Þ2 ¼ 0⇔ ðdþ Γ̂ÞF̂¼ 0 and F̂∧ F̂þ R̂¼ 0

⇔∇½iF̂j� ¼ 0 and ½F̂i; F̂j�þ R̂ij ¼ 0;

ð1:5Þ

where

ðdþ Γ̂Þlp ¼ dxið∇iÞlp ¼ dxiðδlp∂i þ Γl
piÞ

and ðR̂Þlm ¼ dxi ∧ dxjðR̂ijÞlm ¼ dxi ∧ dxjRl
mij ð1:6Þ

contain the Levi-Cività connection Γ̂, the general coordi-
nate-covariant derivative ∇i, and the Riemann curvature
tensor R̂ij. In components with all indices down, Eq. (1.5)
reads

∇iFkjp −∇jFkip ¼ 0 ð1:7aÞ

FkipgpqFqjm − FkjpgpqFqim ¼ −Rkmij; ð1:7bÞ

where, as usual and with glkgkm ¼ δlm,

Γl
pi¼

1

2
glkð∂pgikþ∂igpk−∂kgpiÞ;

Rl
pij¼ ∂iΓl

pj−∂jΓl
piþΓl

miΓm
pj−Γl

mjΓm
pi;

∇iFjkp ¼ ∂iFjkp−Γm
ijFmkp−Γm

ikFjmp−Γm
ipFjkm: ð1:8Þ

In general, Fkip is no longer the third flat derivative of some
function (prepotential) F, but we keep the total symmetry in
all three indices,

Fkip ¼ Fikp ¼ Fpik: ð1:9Þ
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Then, Eq. (1.7a) qualifies ðFkipÞ as a so-called third-rank
Codazzi tensor [4], while (1.7b) is our curved-space proposal
for the WDVV equation. Note that it is no longer homo-
geneous in F but depends on the Riemann tensor of the
manifold. With a more natural index position, it takes the
form

Fk
ipFp

jm − Fk
jpFp

im ¼ −Rk
mij: ð1:10Þ

II. N = 4 SUPERSYMMETRIC
MULTIDIMENSIONAL MECHANICS

Our proposal (1.10) can in fact be “derived” from the
relation of the WDVV equation with N ¼ 4 supersym-
metric classical (and also quantum) mechanics for n non-
relativistic identical particles on a real line. The phase space
of this system is given by n commuting coordinates xi and
momenta pk as well as 4n anticommuting variables

ψ ia and ψ̄k
b ¼ ðψkbÞ† with a; b ¼ 1; 2 ð2:1Þ

and canonical Poisson brackets between x and p as well as
between ψ and ψ̄ . The starting point then is an ansatz for
the N ¼ 4 supercharges,

Qa ¼ piψ
ia þ iFð0Þ

ijkðxÞψ ibψ j
bψ̄

ka

and Q̄a ¼ piψ̄
i
a þ iFð0Þ

ijkðxÞψ̄ i
bψ̄

jbψk
a; ð2:2Þ

with real structure functions Fð0Þ
ink symmetric in the first two

indices. Imposing the supersymmetry algebra

fQa;Qbg ¼ 0 ¼ fQ̄a; Q̄bg

and fQa; Q̄bg ¼ i
2
δabH ð2:3Þ

defines the Hamiltonian

H ¼ δijpipj − 2ð∂iF
ð0Þ
kjp þ ∂jF

ð0Þ
kipÞψ iaψ̄ j

aψ
kbψ̄p

b ð2:4Þ

and constrains the functions Fð0Þ
kipðxÞ to be symmetric in all

three indices and to obey the flat WDVVequations (1.1), as
was first demonstrated by Wyllard [5] and put into the
WDVV context by Bellucci et al. [6]. In addition, a further
condition,

∂iF
ð0Þ
kjp − ∂jF

ð0Þ
kip ¼ 0; ð2:5Þ

is resolved by the existence of the prepotential Fð0Þ in (1.1).
Hence, the four-fermion coefficient in brackets in the
Hamiltonian (2.4) equals 2∂i∂j∂k∂pFð0Þ.
In this context, the curved-space generalization deforms

the canonical Poisson brackets to

fxi;pjg¼δij; fψ ia;ψ̄ j
bg¼

i
2
δabgij; fpi;ψajg¼Γj

ikψ
ka;

fpi;ψ̄ j
ag¼Γj

ikψ̄
k
a; fpi;pjg¼−2iRijkmψ

kaψ̄m
a; ð2:6Þ

which unambiguously follows from the first two brackets
by employing the Jacobi identities. We now use exactly the
same ansatz (2.2) for the supercharges, except that we drop
the (0) superscript on the structure functions,

Qa ¼ piψ
ia þ iFijkðxÞψ ibψ j

bψ̄
ka

and Q̄a ¼ piψ̄
i
a þ iFijkðxÞψ̄ i

bψ̄
jbψk

a: ð2:7Þ

Demanding again the supersymmetry algebra (2.3) once
more forces the Fkip to be totally symmetric and, using the
deformed Poisson brackets (2.6), leads precisely to our
curved equations (1.7). The corresponding Hamiltonian
acquires the form

H¼ gijpipj−2ð∇iFkjpþ∇jFkipþ2RkpijÞψ iaψ̄ j
aψ

kbψ̄p
b:

ð2:8Þ

Remark: If our manifold M is of constant curvature,
i.e. maximally symmetric, then a third-rank Codazzi tensor
is determined by a single prepotential [4],

Fijk¼
1

3
ð∇i∇j∇kFþ∇j∇i∇kFþ∇k∇i∇jFÞ

þ 4R
3nðn−1Þðgjk∇iFþgik∇jFþgij∇kFÞ

¼∇i∇j∇kFþ R
nðn−1Þð2gjk∂iFþgik∂jFþgij∂kFÞ

with R¼Rl
jlmgjm¼ const: ð2:9Þ

Having solved (1.7a) in terms of FðxÞ, the curved WDVV
equation (1.7b) yields a rather complicated equation for this
prepotential, which we have not investigated further.
Instead, we have found large classes of solutions on
isotropic (not necessarily homogeneous) spaces, which
we shall display in the remainder of this paper.

III. PARTICULAR SOLUTIONS OF CURVED
WDVV EQUATION

A. Potential metric

Motivated by the results of Refs. [7,8] on N ¼ 4
n-dimensional supersymmetric mechanics, we consider
metrics given by a potential function,

gij ¼ ∂i∂jFðxÞ: ð3:1Þ

For a manifold admitting such a metric, one finds that
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Γijk ¼
1

2
∂i∂j∂kF

and Rijkm ¼ gpqðΓimpΓjkq − ΓikpΓjmqÞ: ð3:2Þ

It is then rather easy to see that the choice

Fijk ¼ �Γijk ð3:3Þ

solves both curvedWDVVequations (1.7) for any choice of
the potential F.

B. Isotropic

Suppose that the manifold M is isotropic, i.e. it has
1
2
nðn − 1Þ Killing vectors and admits an SOðnÞ-invariant

metric,

ds2 ¼ gikðrÞdxidxk for r2 ¼ δijxixj: ð3:4Þ

Such a space is a cone over Sn−1 and is conformally flat, so
we can find coordinates in which the metric takes the form

ds2 ¼ dr2 þ hðrÞ2dΩ2
n−1 or ds2 ¼ fðrÞ−2δikdxidxk;

ð3:5Þ

where dΩ2
n−1 is the metric on the round (n − 1)-sphere.

Let us make the following ansatz, inspired by Ref. [9],

Fijk ¼ aðrÞxixjxk þ bðrÞðδijxk þ δjkxi þ δkixjÞ
þ cfðrÞ−2Fð0Þ

ijkðxÞ; ð3:6Þ

including an arbitrary flat-space solution Fð0Þ (the f−2

prefactor arises from pulling down the first index of F). The
two functions aðrÞ and bðrÞ are to be determined depend-
ing on the constant c. One may check that the linear
equation (1.7a) is satisfied if

rðrf0 − fÞaþ 4f0bþ fb0 ¼ 0 and xiFð0Þ
ijk ¼ δjk; ð3:7Þ

where we fixed the scale of Fð0Þ. Here, the prime means
differentiation with respect to r.
The curved WDVV equation (1.7b) further imposes the

quadratic conditions

f2bðr2aþ bÞ þ ca ¼ −
1

rf3

�
f0

r

�0

and r2f2b2 þ 2cb ¼ r2f0

f4

�
f
r2

�0
: ð3:8Þ

Interestingly, these equations already imply the condition
(3.7), for any value of c, meaning that (1.7a) follows from
(1.7b) for our ansatz (3.6). The equations (3.8) may be
easily solved as

a ¼ 2cf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2f2 − 2rff0 þ r2ðf0Þ2

p
� ð2c2f2 − 3rff0 þ r2ðf0Þ2 þ r2ff00Þ

r4f3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2f2 − 2rff0 þ r2ðf0Þ2

p ;

b ¼ −
cf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2f2 − 2rff0 þ r2ðf0Þ2

p
r2f3

: ð3:9Þ

For c ¼ 1, it simplifies to

a ¼ 2fðfrÞ0 ∓ rðfðfrÞ0Þ0
r4f3ðfrÞ0

and b ¼ −
f ∓ r2ðfrÞ0

r2f3
: ð3:10Þ

Thus, for isotropic metrics, any flat-space WDVV solution
Fð0Þ may be lifted to a solution of the curved WDVV
equation via (3.6).

IV. CONCLUSION

We have employed the relation between n-dimensional
N ¼ 4 supersymmetric mechanics and theWDVVequation
to generalize the latter to curved spaces, i.e. to arbitrary
Riemannian manifolds. In this curved WDVVequation, the

third derivative of the prepotential, Fð0Þ
ijk ¼ ∂i∂j∂kFð0Þ, is

replaced by the third-rank Codazzi tensor Fijk, while the
WDVV equation itself acquires a nontrivial right-hand side
given by the Riemann curvature tensor. We have found

solutions of the curved WDVV equation for metrics with a
potential and on arbitrary isotropic spaces. The latter solution
is built on an arbitrary solution Fð0Þ of the flat WDVV

equation subject to xiFð0Þ
ijk ∼ δjk. Thus, any such flat solution

can be lifted to a curved solution on an isotropic space.
Here, we have worked with a restricted form of N ¼ 4

supersymmetric mechanics, with vanishing potential W.
So, the obvious reverse application to multidimensional
supersymmetric mechanics will extend the supercharges by
the potential terms (as it was done in Refs. [5,9,10] for the
flat case) and to find admissible potentials. This task will be
considered elsewhere.
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