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Exact solution of the Schwarzian theory
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The explicit evaluation of the partition function in the Schwarzian theory is presented.
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The Schwarzian theory [1] is the basic element of various
physical models including the SYK model and the two-
dimensional dilaton gravity (see, e.g., [2-5], and references

converges for 0 < @ < z. Therefore, let us evaluate the
integral (5) first.
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The functional integral for the partition function
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diverges [1]. However, as we will see later on [Eq. (17)], the
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The next step is the choice of the function F. Let it be
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To find F(¢) from the previous equation, note that for

u(t) = flo(2)),
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F(u) = exp {SS:; %u(O)} (12)

Thus for the regularized partition function we have
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Under the substitution
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the measure u,(dg) turns into the Wiener measure [6,7]

W, (dE) = exp {—Ziﬂ]éz(t)dt}d.f. (15)
0

In this case,
&) =Ing(r) —Ing(0),  &eC([0,1]), (16)

and £(0) = &(1) = 0.
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Now Z,(g) is written as
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The singularity at @« = z is canceled out in the ratio
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To evaluate the integral
[ o S e 19)
eXps 5 (Ws ,
o [oexp{&(n)tdn
£(0)=¢(1)=0
we use the following equation:
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The proof of the more general formula will be given in the
forthcoming paper (also, see [7]). For the integral (19)

B+1)=-1.

Thus the final result is
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It is interesting to compare the one-loop results for Z(g)
in [1] with the Eq. (21). Note that the power of the constant
¢ in the denominator is determined by the number of gauge
fixing conditions. The one-loop result for the orbit
Diff(S')/U(1) [Eq. (3.45) in [1]] has the same form as
our exact result (21).

Unlike its compact subgroup U(1), the group SL(2,R)
is noncompact. Therefore, integrating over the quotient
space Diff! ([0, 1])/SL(2, R) we get the finite result for the
partition function in the Schwarzian theory.
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EXACT SOLUTION OF THE SCHWARZIAN THEORY

We define the Schwarzian partition function as a limit

Zuawla) = lim 20 22)

Here, Z,(g) is given by the Eq. (5) and Eq. (17), and V,(g)
is the regularized volume of the group SL(2,R)

/ exp {W/gbz(t)dt}dm,. (23)

SL(2.R) 0

Valg) =

Note that the functional measure in the Eq. (5) and the Haar
measure duy on the group SL(2,R) in the Eq. (23) are
regularized in the same manner.

To perform the integration over the group SL(2,R) in
the Eq. (23) we choose the representation [8]
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The integral
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does not depend on 6. And the regularized volume of the
group has the form
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Thus we can evaluate the Schwarzian partition function

1 b1
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Note that the one-loop result in [1,2] has the same form
as the exact partition function (28) obtained by the direct
functional integration.
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In this case, the Haar measure is [8]
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