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The authors of [Phys. Rev. D 94, 014502 (2016)] reported about a careful analysis of the impact of lattice
artifacts on the SUð3Þ gauge-field propagators. In particular, they found that the low-momentum behavior
of the renormalized propagators depends on the lattice bare coupling and interpreted this as the result of its
being affected by discretization artifacts. We discuss here a different interpretation for these results.
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I. INTRODUCTION

The understanding of the IR dynamics of QCD has been
very much boosted in the past years by the endeavors in
obtaining a very detailed picture for the fundamental Green’s
functions of the theory in both lattice [1–8] and continuum
QCD [9–30]. Namely, a consensus has been reached about
both the fact that the gluon propagator takes a nonzero finite
value at vanishingmomentum (corresponding to a dynamical
generation of an effective gluon mass [31–34]) and the fact
that the ghost propagator essentially behaves, at asymptoti-
cally low momenta, as its tree-level expression dictates.
These findings have recently contributed, for instance, to
establish a striking connection between gauge and matter
sectors in defining an interaction kernel for a symmetry-
preserving truncation of Schwinger-Dyson equations (SDEs)
able to reproduce the observable properties of hadrons [35];
aswell as to the construction of a process-independent strong
running coupling which agrees very well with the Bjorken
sum-rule effective charge [36].
Very recently, the authors of [1] have performed a

thorough study of the effect of lattice artifacts on pure
Yang-Mills SUð3Þ gluon and ghost propagators in Landau
gauge, as a result of which they claimed that they both
depend on the lattice spacing, a, in the infrared domain,
while finite volume effects appear to be very mild when
lattice volumes are larger than ð6.5 fmÞ4, in physical units.
Specifically, the authors concluded that the zero-momen-
tum gluon propagator dropped roughly by a factor of 10%
when the lattice spacing increases from 0.06 fm (β ¼ 6.3)
up to 0.18 fm (β ¼ 5.7). This is attributed in [1] to a
discretization artifact but, in our view, the latter cannot fully
explain their findings.
Standard discretization artifacts,mainly owing their origin

to the breaking of the Oð4Þ rotational symmetry and taking
place at the length scale a, can hardly be felt by gluonmodes

with characteristic wavelengths of 1=p ≫ a, corresponding
to deep infrared momenta. Furthermore, one should expect
for them, controlled by powers of ap, not to be stronger at
low infrared than at large UV momenta (otherwise, the very
precise matching for the lattice estimates of the Taylor
running coupling from many different simulations found
in [37–39]would not have been possible). On the other hand,
the Gribov ambiguity has been recently argued [40] to
induce, seen through an alternative lattice implementation
of Landau gauge, a different kind of discretization effect,
affecting the gluon and ghost fields specially at low
momenta. Other than by discretization artifacts, as will be
discussed below, the findings of [1] can be also accounted by
deviations in the lattice scale setting. In this note, we will
preliminary check with the gluon propagator lattice data of
ref. [41,42], exploited there for different purposes, whether
similar lattice spacing effects are also present at lowmomenta
and, if so, whether they can be removed, or smoothed, by
assuming small lattice scale deviations. In ref. [40], the
Taylor coupling has been seen to be enough affected by the
gauge-fixing, albeit it is not clear at what extent it impacts on
the gluon propagator, as the ghost propagator (also involved
in the coupling definition) is known to be more sensitive to
the Gribov ambiguity. Here, we will only focus on the gluon
propagator, conjecture that it receives no important contri-
bution from the gauge-fixing discretization artifact andmake
thus the low-momentum lattice spacing effects to be wiped
out by a lattice scale resetting. Our conjecture can be only
supported, a posteriori, by the practical success of this
removal of lattice spacing effects, as well as by a further
scrutiny of the data analyzed by the authors of [1].

II. LATTICE SCALE DEVIATIONS

Let us focus on the Landau-gauge gluon propagator,
defined as
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Dab
μνðpÞ ¼ hAa

μðpÞAb
νð−pÞi ¼ δab

�
δμν −

pμpν

p2

�
Dðp2Þ

ð2:1Þ

where Aa
μ is the gauge field in momentum space, latin

(greek) indices correspond to color (Lorentz) degrees of
freedom, h·i expresses the integration over the gauge fields,
which is replaced by the average over gauge field con-
figurations in lattice QCD, andDðp2Þ is the so-called gluon
propagator which, as explained in [1], is to be renormalized
on the lattice by applying the MOM prescription,

DRðp2; ζ2Þjp2¼ζ2 ¼ Z−1
3 ðζ2ÞDðζ2Þ ¼ 1

ζ2
; ð2:2Þ

where ζ2 is the renormalization point, fixed at 4 GeV in
Ref. [1]. The details of the computation of the gluon
propagator on the lattice can be found in the literature, for
instance in some previous works of the authors of [1], as
[43], or in previous works of some of us such as [8].
In a very recent lattice analysis of the three-gluon vertex

and running coupling [41], we have also computed the
gluon propagator for different lattice bare couplings. In
particular, we obtained the results displayed in Fig. 1, for
β ¼ 5.6 and β ¼ 5.8 from quenched simulations with the
Wilson action in 484 lattices. Details of the lattice set-ups
can be found in Table I. Both our physical volumes, namely
ð7.1 fmÞ4 and ð11.3 fmÞ4, are larger than ð6.5 fmÞ4, above
which the authors of [1] found a negligible impact from
finite volume effects. The statistical errors have been
estimated by applying the jackknife method. The propa-
gators are displayed as a function of the lattice momenta
pμ ¼ 2π=ðNaÞnμ, with nμ ¼ 0; 1;…N=4, instead of the
tree-level improved p̂μ ¼ 2=a sin ðapμ=2Þ. We have
applied the Hð4Þ-extrapolation [45], which has been
proven to be a very efficient prescription to cure the data
from the hypercubic artifacts [45–47]. In addition, we
have also employed such a kinematical cut that ap ≤ π=2,
thus lessening the impact of any remaining discretization
artifacts. As a consequence of this, the largest accessible
momentum for the simulation at β ¼ 5.6 is not much above
the momentum, ζ ¼ 1.3 GeV, which we take here for the
renormalization point. Indeed, imposing the renormaliza-
tion condition at ζ ¼ 4 GeV, for which aζ ∼ 1.5π at β ¼
5.6 and ∼π at β ¼ 5.8, might imply to incorporate sizable
discretization artifacts and, as the propagators are thus
required to take there the same value, 1=ζ2, propagate these
artifacts down to low IR momenta.
The latter is a possible source, partially at least, for the

lattice spacing effect reported in [1]. However, our propa-
gators displayed in the upper panel of Fig. 1, renormalized at
ζ ¼ 1.3 GeV, show the same effect: the data obtained with a
larger value of the lattice spacing (lower β) appear to deviate
upwards when the momentum decreases. Alternatively, we

argue this effectmayalso result froma systematic uncertainty
in the lattice scale setting. Indeed, if one admits a small
deviation in the lattice scale,aðδÞ ¼ að1þ δÞ, such thataðδÞ is
a better estimate for the lattice spacing; any dimensionless
lattice result, obtained at a physical momentum p with the
scale a, would correspond to a new physical momentum
p=ð1þ δÞ with the scale aðδÞ. Thus, one can write

ðaðδÞÞ−2DðδÞðp2=ð1þ δÞ2Þ ¼ a−2Dðp2Þ; ð2:3Þ
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FIG. 1. Upper panel.- Lattice gluon propagator results for the
set-ups given in Table I. Lower panel.- The same gluon
propagator results after applying to the data at β ¼ 5.8 the
“recalibration” described in the text through Eqs. (2.4), (2.5),
with δ ¼ −0.05 for the deviation parameter.

TABLE I. Lattice setups specifying the bare lattice coupling
β ¼ 6=g20, the number of lattice sites in any of the directions, N,
the lattice spacing, a, and the number of gauge-field configura-
tions exploited. The lattice scales have been taken from [44],
where statistical errors of 0.3-0.6% are obtained from the scale
setting.

β N a [fm] Configurations

5.6 48 0.236 1920
5.8 48 0.147 960

PH. BOUCAUD et al. PHYSICAL REVIEW D 96, 098501 (2017)

098501-2



where D and DðδÞ stand for the bare gluon propagator
resulting from setting the scale with, respectively, a and
aðδÞ. After replacing p=ð1þ δÞ → p, the recalibrated gluon
propagator can be then recast as

DðδÞðp2Þ ¼ ð1þ δÞ2Dðð1þ δÞ2p2Þ; ð2:4Þ

and, after renormalization at p2 ¼ ζ2, one would get

DðδÞ
R ðp2; ζ2Þ ¼ Dðð1þ δÞ2p2Þ

ζ2Dðð1þ δÞ2ζ2Þ : ð2:5Þ

Therefore, the systematic deviation in the scale setting
expressed by δ would result in a nontrivial transformation
of the data that might well account for the low-momentum
discrepancies shown by the upper panel of Fig. 1.
In order to check the validity of this conjecture, we just

consider the results obtained at β ¼ 5.6 as non-deviated and
estimate the deviation parameter δ at β ¼ 5.8 required to get
rid of the low-momentumdiscrepancies andget the data from
both simulations lying on top of each other. This can be
strikingly seen in the lower panel of Fig. 1, to be left with
which one needs to apply δ ¼ −0.05. Properly interpreted,
the latter means that all the discrepancies can be explained if
we accept a 5% of deviation in the ratio between the lattice
spacings at β ¼ 5.8 and at β ¼ 5.6, with respect to the values
quoted in Table I. These values have been obtained in [44] by
using the Sommer parameter, r0, and are compatible with
those from [1] set by the string tension in [48]. In both cases,
the scale setting procedures refer to the force between
external static charges. The relative accuracy of r0=a result-
ing from the thorough statistical analysis of [44] is of the
order 0.3–0.6%, but a larger cut-off-dependent systematical
uncertainty can be sensibly conceived. The 5% of deviation
for the ratio of lattice spacings can very well result from a
combination of deviations of around 2–3% in the lattice
space setting for both simulations. The same might be
enough to explain the effects at low-momentum reported

in [1]. Other scale setting prescriptions as the more precise
ones grounded on theWilson flow [49–51] couldpresumably
result on reduced systematic uncertainties. The comparison
of the running of renormalized propagators can anyhow be
of much help to check these uncertainties and refine the
scale setting.

III. CONCLUSIONS

We suggest that the lattice spacing effects discussed by
the authors of [1], taking place in the low-momentum
domain of the quenched gluon propagators, can also result
from a small systematic deviations in the lattice scale
setting based on the definition of the force between external
static charges. We have made the conjecture that neither
gauge-fixing induced nor other possible discretization
artifacts have a visible impact on the gluon propagator.
Since the lattice scale resetting that we have here applied
results in a nontrivial modification of the propagator’s low-
momentum behaviour, the good agreement of the latter
obtained from lattice ensembles with different lattice
spacings supports that conjecture. However, albeit discre-
tization artifacts might have impact on the low-momentum
gluon propagator, lattice scale deviations will undoubtedly
affect it and should be properly considered. A further and
detailed study of data for the ghost propagator and the
Taylor coupling, along the line of this note, would be very
welcome as it would help to pinpoint the extent of the
gauge-fixing discretization artifacts in the low-momentum
running of the gauge field propagators.
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