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The tunnelling of virtual matter-antimatter pairs from the quantum vacuum in multidimensions is
studied. We consider electric backgrounds as a linear combination of a spatial Sauter field and,
interchangeably, certain weaker time dependent fields without poles in the complex plane such as the
sinusoidal and Gaussian cases. Based on recent geometric considerations within the worldline formalism,
we employ the relevant critical points in order to analytically estimate a characteristic threshold for the
temporal inhomogeneity. We set appropriate initial conditions and apply additional symmetry constraints in
order to determine the classical periodic paths in spacetime. Using these worldline instantons, we compute
the corresponding leading order exponential factors showing large dynamical enhancement in general. We
work out the main differences caused by the analytic structure of such composite backgrounds and also
discuss the case with a strong temporal variation of Sauter type.
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I. INTRODUCTION

Virtual matter-antimatter pairs can tunnel from the
quantum vacuum in the presence of a static electric back-
ground [1–3]. The field strength ES ¼ m2 denotes the
critical Schwinger limit for a particle1 with massmwhich is
extremely large explaining why this nonperturbative effect
could not yet be realized in the laboratory. However, field
strengths of the order E ∼ 10−3ES, and even beyond, are
expected to be achievable at upcoming strong field facili-
ties. Recently, there is also a remarkable interest in
analogue condensed matter systems which may lead to a
better understanding of this mechanism [4–13].
Going beyond the static limit the tunnelling rate highly

depends on the background structure such that inhomoge-
neities in spacetime are capable of triggering a drastic
enhancement even far below ES [14–23]. Notably, in a
static magnetic background the process cannot occur
[24–26], since the underlying divergent, but alternating
expansion of the one-loop Euler-Heisenberg (EH) effective
Lagrangian is Borel summable and has no imaginary part
[26]. In electromagnetic plane wave backgrounds the latter
vanishes simply due to symmetry reasons [2]. In most
cases, preferably for purely electric backgrounds, studies
rely on numerical techniques [27–29]. Analytic results have
been so far obtained only for certain special cases; see e.g.
[30–41]. However, a deeper understanding of the impact of
more complex backgrounds is highly desirable. Such

setups may particularly be interesting in the notion of
Liouville integrability [42] where constants of motion
would directly be related to the underlying background
structure. However, the latter may not obey the Maxwell
equations in vacuum and can lead to complicated sym-
metries which makes their identification even more
exhausting.
Beyond one-dimensional backgrounds, already purely

electric, the identification of the particles is in general highly
demanding and hence diagonalizing techniques, such as
Bogoliubov-like transformations as well as Wentzel-
Kramers-Brillouin techniques, are difficult to enforce. In
the present work, our focus is on certain multidimensional
(1þ 1) electric backgrounds giving a semiclassical treat-
ment via the worldline formalism in quantum field theory
[43,44]. This approach permits in general a direct multidi-
mensional treatment, since the imaginary part of the EH
effective action is evaluated on classical periodic paths in
spacetime [19,23,34,36,39,40,45–48]. Hence, the challenge
is to find such so-called worldline instantons; see e.g.
[49,50] for applications in other contexts.
Similar structures arise in trace formulas [51,52] relating

the state density in systems with integrable as well as
chaotic, nonintegrable classical limit to the properties of
periodic orbits [53–55] serving as topological equivalences
in quantum field theory [56,57]. Reformulating the prob-
lem with the Gutzwiller formula [58] results in a weighted
topological sum [59] evaluated on grouped orbits where the
fluctuation prefactors can be collected in a single deter-
minant specified by the associated monodromy matrix [60].
Interestingly, such orbits may become multiple periodic
in spatiotemporal backgrounds [61]. Assuming that the
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Hamiltonian defines an integrable dynamical system, the
latter attribute may indicate the existence of an additional
constant of motion reflected by continuous, smooth tra-
jectories in the Poincaré sections [59,62], which may
provide, together with the Maslov index [63], valuable
information [61]. Those aspects clearly reinforce the
complications regarding the identification of symmetries
governed by such multidimensional systems.
This paper is organized as follows: in Sec. II we briefly

make the connection to the worldline approach. We discuss
general properties of the resulting instanton equations for
electric backgrounds composed of a spatial Sauter field
and, interchangeably, certain time dependent fields without
poles in the complex plane such as the sinusoidal and
Gaussian types. Both spatial as well as temporal fields we
assume to be pointing in the same direction. Section III is
the main part of this paper, studying the case where the
spatial dependence dominates in strength. Compared to
[23] we extend the reflection picture for the present
multidimensional case and simplify the underlying system
of differential equations applying the corresponding critical
points. This allows us to accomplish certain analytical
predictions for the impact of such backgrounds based on
nonperturbative computations. We show that the results
substantially differ from the case with two linearly com-
bined Sauter fields [39]. For an appropriate initial value
problem, we accomplish numerical techniques via addi-
tional symmetry constraints and calculate the correspond-
ing worldline instantons. Using these instantons we
compute the leading order exponential factors. In Sec. IV
we discuss the case of a double Sauter background with a
dominant time dependent part. We calculate the corre-
sponding worldline instantons and briefly comment on
some essential differences compared to previous findings in
[39]. In Sec. V we finish with a brief conclusion. The
Appendix includes some extensive discussion on the
critical Keldysh parameter.
Throughout this paper we work with natural units c ¼ 1

and ℏ ¼ 1.

II. TUNNELLING INSTANTONS

A. Stationary points

The tunnelling probability in the presence of a classical
electromagnetic gauge field (background) is

P ¼ 1 − e−2Γv ð1Þ

where the decay rate Γv is determined by the imaginary part
of the EH effective action [2,45]. We use the worldline
formalism [43,44] and focus on the weakly coupled regime
neglecting contributions from the dynamical gauge field
[45]. Furthermore, we restrict ourselves on the leading
order term in Γv, the pair creation rate [64], which we
denote as Γ. The semiclassical result for Γ reads

Γ≃ e−W0 ð2Þ

whereW0, the stationary worldline action, is obtained after
evaluating the action

W ¼ maþ i
I

du_x ·AðxμÞ; ð3Þ

here for spin zero particles with Aμ being the background
vector potential and a a constant, on the periodic Euclidean
instanton path, i.e. xμð0Þ ¼ xμð1Þ, determined by

mẍμ ¼ iaF μν _xν: ð4Þ

Note that the quantum fluctuation prefactor in (2) is set to
unity; see e.g. [46,65] for detailed studies. The invariant
obeys a2 ¼ _x2 because of the antisymmetric field tensor
F μν. We assume the electric background to be oriented in
the x̂3 direction where the spatial part is represented by the
scalar potential A4ðx3Þ and the temporal part by a vector
potential A3ðtÞ. Due to simplifying reasons, both parts are
described by even functions in t and x3, respectively. After
the rotation in the complex plane (t → ix4), we get

A3ðx4Þ ¼ −i
Eω

ω
T ðωx4Þ; A4ðx3Þ ¼ i

Ek

k
Sðkx3Þ; ð5Þ

where T and S, consequently, become odd functions in the
corresponding spacetime coordinates. Here, Ek, Eω denote
the field strengths and k, ω the wave number and frequency,
respectively. Inserting the latter expressions into (4), we
end up with the following system of differential equations:

ẍ4 ¼ þ aEk

m

�
ϵ
∂4T ðωx4Þ

ω
þ ∂3Sðkx3Þ

k

�
_x3;

ẍ3 ¼ −
aEk

m

�
ϵ
∂4T ðωx4Þ

ω
þ ∂3Sðkx3Þ

k

�
_x4;

ẍ1 ¼ ẍ2 ¼ 0; ð6Þ

where ϵ ≔ Eω=Ek has been defined for the sake of
convenience. Next, we specify the spatial part to be a
bell-shaped Sauter field described by

SSauterðkx3Þ ¼ tanhðkx3Þ ð7Þ

and introduce, due to conventional reasons, the following
dimensionless quantities,

γk ¼
mk
Ek

; γω ¼ mω

Ek
; ð8Þ

which are usually referred to as the spatial and temporal
Keldysh parameter, respectively.
For the temporal dependence we choose between two

different profiles described by
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T sinusoidðωx4Þ ¼ sinhðωx4Þ;
T Gaussianðωx4Þ ¼

ffiffiffi
π

p
erfiðωx4Þ=2: ð9Þ

A temporal Sauter field, i.e. T Sauterðωx4Þ ¼ tanðωx4Þ, has
been both analytically and numerically investigated in the
limit ϵ ≪ 1 leading to an enormous enhancement due to
instanton reflections at poles in the complex plane [39].
This enhancement is not restricted to this specific case and
is expected to apply in general for any time dependent field
with a distinct pole structure in the instanton plane; see e.g.
[23]. Now, we extend such considerations for poleless
fields as introduced in (9). Laser fields have an oscillatory
structure leading to substantial interference effects in phase
space [17,66,67]. Such setups motivate investigations for
time dependent backgrounds entailing an oscillatory sub-
cycle structure. For the field examples introduced above, a
spatially inhomogeneous field is closely related to a
temporal one by the analytic continuation γω → iγk. This
correspondence is automatically included in the worldline
instanton approach [36,46]. In the remaining part the
dimensional quantities x3, x4 and a are given in units
of ½m=Ek�.

B. Symmetries

For backgrounds composed of fields as introduced in (7)
and (9) the closed instanton paths preserve (discrete)
reflection symmetry,2

x3 → −x3; x4 → −x4; ð10Þ

i.e. isomorphic with C2. In this case one can set the starting
point on the solution path satisfying, for instance, x3ð0Þ ≠ 0
and x4ð0Þ ¼ 0. Afterwards, from (10) we get _x3ð0Þ ¼ 0 and
therefore _x4ð0Þ ¼ a, which is a direct consequence of the
instanton periodicity. We may conclude

x3ð0Þ ¼ x3ð1Þ ¼ −x3ð1=2Þ ≠ 0;

x3ð1=4Þ ¼ x3ð3=4Þ ¼ 0;

x4ð0Þ ¼ x4ð1=2Þ ¼ x4ð1Þ ¼ 0;

x4ð1=4Þ ¼ −x4ð1=4Þ ≠ 0: ð11Þ

As we see, such relations lead to useful constraints
improving numerical methods in order to find the correct
instanton solutions; see Sec. III C.

III. STRONG SPATIAL DEPENDENCE

A. Analytical approximations

We suppose a dominant spatial dependence, ϵ ≪ 1, such
that the terms proportional to ϵ in (6) can be neglected,

except the cases where the contribution from T counter-
balances the smallness of ϵ. For T Sauter this happens at the
pole xref4 ¼ π=ð2γωÞwhich serves as a reflection point [39].
For the sinusoidal and Gaussian fields the situation is not so
obvious. However, if the Keldysh parameter of the weak
field is much larger than the critical threshold, whose
presence is characteristic for the dynamically assisted
mechanism [14,15,23,39], a similar criterion applies even
for poleless fields [23]. Those effective reflection points
apply for backgrounds depending on space and time as in
(5) as well. For k → 0 we find the largest contribution from
SSauter. This follows due to its Euclidean structure that
remains bounded from above. Therefore, we fix k ¼ 0 and
determine the critical point xref4 for which the spatial
contribution becomes negligible compared to the weak
temporal one. Since in this static limit the maximal
contribution from the spatial part is reached, xref4 may also
apply for k > 0. The effective reflection points read as

sinusoidal xref4 ðγω; ϵÞ ≈
arcsinhðγω=ϵÞ

γω
;

Gaussian xref4 ðγω; ϵÞ ≈
lnð1=ϵÞð1þ ξÞ

γω
; ð12Þ

revealing an additional ϵ dependence which has interesting
consequences for the tunnelling rate. The detailed deriva-
tion of ξ has been accomplished in [23].
Following this reflection picture, one can analytically

integrate the approximated instanton equations to get

_x4 ≈ a
SSauterðkx3Þ

γk
þ aR;

_x3 ≈ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
SSauterðkx3Þ

γk
þR

�
2

s
ð13Þ

after applying the relation a2 ¼ _x23 þ _x24, cf. [39]. Here, R
represents a dimensionless reflection constant which deter-
mines the velocity _x4ð�1=4Þ where x3 ¼ 0. Using

1=4 ¼ R xturn3

0 dx3
1
_x3
, which is justified due to the underlying

instanton symmetry (10), and inserting the second expres-
sion of (13) into the latter integral, the invariant a satisfies

a ≈ 4

Z
xturn
3

0

dx3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðSSauterðkx3Þ
γk

þRÞ2
q ð14Þ

where the upper integration limit, the spatial turning point
xturn3 , is determined by

SSauterðkxturn3 Þ þ γkR ¼ γk: ð15Þ

The constant R can be computed using xref4 ¼ R xturn3

0 dx3
_x4
_x3

and inserting (13) which gives the following implicit
condition:

2Let us recall that the static field instanton in the two-
dimensional plane is maximally symmetric with C∞.
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xref4 ¼!
Z

xturn
3

0

dx3
SSauterðkx3Þ þ γkRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2k − ðSSauterðkx3Þ þ γkRÞ2
q : ð16Þ

In case of reflection one has R ≠ 0. However, setting
R ¼ 0 and replacing xref4 on the lhs by the appropriate
critical point3 denoted as xcrit4 at which the weak field
contribution starts to become dominating, we can straight-
forwardly compute γcritω . Such critical points can be obtained
via perturbations around the following intersection points,

sinusoidal xint4 ðγω; ϵÞ ¼
arccoshð1=ϵÞ

γω
;

Gaussian xint4 ðγω; ϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=ϵÞp
γω

ð17Þ

such that

xcrit4 ¼ xint4 ð1 − ΔÞ ð18Þ
with the corresponding correction Δ explicitly computed up
to orderOðΔ2Þ; see Appendix in [23]. For fields with a pole
structure both xref4 and xcrit4 are identical in the limit ϵ ≪ 1,
i.e. Δ ¼ 0. For the sinusoidal and Gaussian fields which
have no poles present, those two points are not equal, i.e.
Δ > 0. Generally, the values for the effective reflection
points are much larger. According to (17), we find that the
threshold depends on ϵ. This attribute has already been
discussed in the purely temporal case [19,23,39], but needs
some further modifications for the present spatiotemporal
setup; see Appendix. Namely, the effective field strength
ratio for γk > 0 is

~ϵ ¼ ϵcosh2

0
@arcsinh

0
@ γkffiffiffiffiffiffiffiffiffiffiffiffi

1 − γ2k

q
1
A
1
A: ð19Þ

Here, one may only consider the spatial Sauter field where
the rhs follows from maxfx3g determined by the corre-
sponding exact instanton solution; see Appendix. With
these modifications and applying the integral result from
[39], the critical temporal Keldysh parameter can be
generalized to

γcritω ¼ γωxint4 ð1 − ΔÞ
γk

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q
arcsinðγkÞ

ð20Þ

with xint4 ≡ xint4 ðγω; ~ϵÞ, Δ≡ Δð~ϵÞ and ~ϵ≡ ~ϵðγk; ϵÞ. Inserting
the pole for the Sauter field, i.e. xint4 ¼ π=ð2γωÞ and Δ ¼ 0,
leads to the threshold in [39]. The resulting instantons for all
three weak fields are plotted in Fig. 1 where for the poleless

cases we have used ϵ ∈ f10−3; 10−4; 10−5g. For γk ¼ 0 the
critical threshold γcritω increases as soon as ϵ → 0. In this
limit, the Gaussian field leads to a much smaller γcritω

compared to the sinusoidal case, being in accordance with
previous findings in a purely temporal background [23]. For
γk → 1 the threshold for ϵ ≪ 1 behaves as γcritω → 0 which
reflects delocalization effects. For γk ≥ 1 the width of the
spatial field falls down below the Compton wavelength.
Consequently, without additional assistance, i.e. γω ¼ 0, the
delocalized virtual pair cannot absorb sufficient energy to
become a real pair. However, it is expected that the threshold
at γk ¼ 1 [36,68,69] will be shifted to larger values for
increasing time variations approaching the Compton scale
[70]. This would result in additional energetic multiphoton
contributions leading to substantial support. A similar effect
also applies for ϵ → 1, cf. e.g. [40,48,71]. On the other hand,
if ϵ > 1 and γω → 0, there is no critical value present for γk.
In this case the tunnelling can entirely be driven by the strong
time dependent term even if the electrostatic energy provided
by the weaker spatial term alone is incapable of producing
the pair. More details on this are discussed in IV.
Coming back to the present case, the remaining

quantities can be computed according to the following
prescription:

xref4 & ð16Þ& ð15Þ ⇝ R;

R& ð15Þ& ð14Þ ⇝ a;

R& ð15Þ ⇝ xturn3 : ð21Þ

Let us recall that due to restrictions regarding the derivation
of xref4 stressed above, see [23] for details, we expect the
predictions in (21) to be valid if

γω ≫ γcritω ð22Þ

which is the condition for dynamical assistance [14].

FIG. 1. Critical temporal Keldysh parameter γcritω from (20)
plotted versus γk. The values for ϵ are listed in the plot legend.

3The critical temporal Keldysh paramter we assume to be
determined by the critical point xcrit4 where both fields start to
contribute equally, i.e. S ¼ ϵT .
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B. Comparison with numerical results

In this part we compare the predictions in (21) with
directly obtained numerical results. For solving the system
(4), having closed periodic paths as solutions, we transform
an appropriate boundary value problem via constructing a
convenient multivariate function of an initial condition set
by a and xturn3 which we treat via the shooting technique;
see also [72]. The idea is to reduce the whole task to the
problem of finding the root of the multivariate function.
This can be easily carried out, for instance, with standard
computational tools for which we first estimate the required
starting point ðastart; xstart3 Þ by hand. Taking into account the
instanton symmetry (10), we set _x3ð0Þ ¼ 0 and x4ð0Þ ¼ 0.
Using the relation for the constant a, we end up with the
following initial conditions:

x3ð0Þ ¼ x̌3; _x3ð0Þ ¼ 0;

x4ð0Þ ¼ 0; _x4ð0Þ ¼ ǎ: ð23Þ

The function, whose root we have to determine, can then be
defined, for instance, as

Ω1ðǎ; x̌3Þ ≔
�
x3ð1Þ − x̌3
x4ð1Þ

�
∈ R2: ð24Þ

Note that Ω1 basically includes only information about the
path’s periodicity. Having done this, we can evolute the
solution for the pair ðǎ; x̌3Þ solving the system (4) with
initial conditions (23) until a numerical root of Ω1 is found,
which then provides a solution, i.e.

ða; xturn3 Þ ∈ fðǎ; x̌3ÞjΩ1ðǎ; x̌3Þ ¼ 0g: ð25Þ

The result, however, is very sensitive to the initial starting
point which has to be preset for the root finder very
carefully. One should note that restricting the solution via
Ω1 may lead to closed paths, but cannot be accepted as a
correct solution simply due to violation of (10).
Modifications in order to avoid such inconsistencies are
discussed in Sec. III C. Nevertheless, apart from those
technicalities, we can adjust the starting points for any
setting by hand until an appropriate solution is found.
Proceeding in this way, the results are depicted in Figs. 2
and 3, respectively, fixing the parameters γk ¼ 0.5,
ϵ ¼ 10−4 and varying γω as given in the figure captions.
As one can clearly observe, the analytical approximations
approach the numerical results for sufficiently large tem-
poral inhomogeneities, i.e. γω ≫ γcritω , being in line with our
expectation (22). Furthermore, the critical threshold (20),
both with and without the replacement ϵ → ~ϵ, turns out to
be remarkably accurate. For γω < γcritω both a and xturn3

behave almost constant, reflecting the absence of substan-
tial contributions from the weak field.

C. Starting points and symmetry constraints

Finding the worldline instantons directly, that is, without
tweaking the starting point by hand, requires some refining
of the previous strategy. The starting point has to be set
accurately in order to find the correct root ofΩ1 which turns
out to be very difficult to control. However, once the correct
invariant and spatial turning point is determined, solving
the resulting system by incorporating the found root
supplies the closed instanton path. The previous compar-
isons show that we cannot benefit from (21) in particular
for values in the vicinity of γcritω . A possible approach can be
pursued as follows: for γω ≤ γcritω one simply assesses the
starting point as the one that is obtained only for the strong
spatial background term, here denoted as ða0; xturn0;3 Þ,
whereas for γω > γcritω one decides whether the prediction
via (21) is smaller or larger than ða0; xturn0;3 Þ. In the former
case the analytical approximation can be taken as the
corresponding starting point. These steps can be put
together as

FIG. 2. a (top) and xturn3 (bottom) for time dependent sinusoidal
field plotted versus γω ∈ f0; 1;…; 15g: values are computed via
numerical shooting (red dots), where starting points ðastart; xstart3 Þ
have been set by hand, and via the prescription in (21) (blue dots).
Remaining field parameters are given as γk ¼ 0.5 and ϵ ¼ 10−4.
The vertical, dashed, red line is located at γcritω from (20), whereas
the dashed green line has been obtained without replacing ϵ
by the modified parameter ~ϵ from (19).
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astart ¼
�
a0; a0 ≤ a

a; a0 > a
;

xstart3 ¼
�
x0;turn3 ; x0;turn3 ≤ xturn3

xturn3 ; x0;turn3 > xturn3

ð26Þ

where

a0 ¼
2πffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q ; xturn0;3 ¼ 1

γk
arcsinh

 
γkffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q
!
; ð27Þ

see Appendix. As a last step, we replace the previous
function by

Ω2ðǎ; x̌3Þ ≔
�

x3ð1=4Þ þ x3ð3=4Þ þ x4ð1=2Þ − x4ð1Þ
x4ð1=4Þ þ x4ð3=4Þ þ x3ð1=4Þ − x3ð3=4Þ

�

ð28Þ
for which we have explicitly imposed the constraints from
(11). The solution to the problem is then

ða; xturn3 Þ ∈ fðǎ; x̌3ÞjΩ2ðǎ; x̌3Þ ¼ 0g: ð29Þ
It turns out that searching for a numerical root of Ω2 is
much more robust and accurate for finding the correct

solution which leads to closed paths keeping the instanton
symmetry preserved.

D. Worldline instantons

Following the strategy described in Sec. III C, we find the
corresponding instanton paths for any field parameters of
interest. The new results for a spatial Sauter field, super-
imposed with a time dependent sinusoidal and Gaussian
field, are shown in Figs. 5 and 6, respectively, fixing γk ¼
0.5 and varying only γω and ϵ where the corresponding
numerical values are listed in the figure captions. For
backgrounds with a weak temporal Sauter-like dependence,
instantons admit a lens shape with cusped turning sections
[23,39]; see Fig. 4. However, for poleless fields, reflections
turn out to be softened and the paths curve much more
smoothly. For γω ≫ 1 they tend to become increasingly lens
shapedbut still remain smoothly curved. This effect seems to
be much stronger for the Gaussian field, cf. Figs. 5 and 6.
Furthermore, due to the additional ϵ dependence, there
appear significant differences among the paths, independent
from the field profile. The described effects are much more
pronounced for the sinusoidal field.
The presence of poles for Sauter-like fields is basically

responsible for the ϵ independence and the seemingly
related cusps. This may explain why the leading order
exponential factor in P can be accurately approached
already at OðϵÞ in perturbation theory [73]. Since W0

does not feature any ϵ dependence, at least in the limit
ϵ ≪ 1, the same exponent has to apply at any higher order
in ϵ. Therefore, the first order contribution stemming from
the weak field should indeed be capable of approximating
W0. Note that we treat the background nonperturbatively.
For time dependent fields, such as of sinusoidal and

Gaussian type, poles are not present. In these cases, since
W0 does in general depend on ϵ, we may expect different
exponents in the perturbative expansion of P. Hence, the
effective reflection picture already elucidates the relevance
of higher orders in ϵ for poleless fields as highlighted in
[73]. Interestingly, super Gaussian fields of the form

FIG. 3. a (top) and xturn3 (bottom) for time dependent Gaussian
field plotted versus γω ∈ f0; 1;…; 15g. Remaining parameters
and colors are set as in Fig. 2.

FIG. 4. Worldline instantons for superimposed temporal Sauter
field with γω ∈ f0.001; 2.5; 5; 7.5; 10g (from blue, outer path, to
magenta, inner path). In the right panel the components x3
(dashed) and x4 (dotted) are separately plotted. Remaining field
parameters are chosen as γk ¼ 0.5 and ϵ ¼ 10−4.
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Eωe−ðωtÞ
4Nþ2

; N ∈ N ð30Þ

may reveal some striking properties. Namely, in a purely
temporal setup, the ϵ dependence of W0 becomes increas-
ingly suppressed for weak super Gaussians of the form
(30). For N → ∞ the action W0 is even expected to
converge to the Lorentzian limit, see e.g. [23], although
such setups crucially differ in Minkowski spacetime. These
aspects will be studied in [74].
Coming back to the worldline instantons in Figs. 5 and 6,

the advantage for treating the system with the help of Ω2

and rearranging the starting points is clearly reflected. The
root finding works very robustly and provides the correct
paths independently from the chosen field parameters
which was not possible with Ω1. Additional constraints
resulting from the underlying instanton symmetry improve
the root finding routine substantially.

E. Stationary actions

What still remains is the computation of the stationary
worldline action, W0. This can be directly performed
following the previous recipe in Sec. III C. First, we
numerically find the worldline instantons for a set of

parameters and take the data afterward to evaluate W on
these paths. For this, let us fix the field strength ratio as
ϵ ¼ 10−4. The spatial as well as Keldysh parameter is
varied in a convenient range. The results for W0 are
depicted in Figs. 7 and 8, respectively. In the top panels,
W0 has been plotted versus γω for different γk listed in the
corresponding captions. In both cases one finds thatW0↑ if
γk↑ as long as γω ≪ γcritω . If the weak field starts to assist,
i.e. γω > γcritω , we find W0↓ for γω↑. For γω ≫ γcritω the
different curves converge to a single curve which one
would obtain for γk ¼ 0. This is in agreement with our
expectation, since a static spatial field would provide the
largest contribution to the effective total field strength.
Interestingly, the critical threshold for the weak sinusoidal
field applies much later compared to the Gaussian case.
Moreover, for the former field all curves drop much slower
for temporal Keldysh parameters γω > γcritω . This is con-
sistent with recent observations in [23]. There, such
differences have been argued to be caused by the relatively
large effective reflection point. Indeed, this has been
presumed to be the key reason why a weak time dependent
sinusoidal field assists less than a Sauter pulse for which the
reflection point is much smaller and, even more important,
ϵ independent [14,19,23,39,65]. As a consequence, in the

FIG. 5. Worldline instantons for superimposed temporal sinu-
osidal field with γω ∈ f0.001; 5; 10; 15; 20; 25g (from blue, outer
path, to orange, inner path). In the right panel the components x3
(dashed) and x4 (dotted) are separately plotted. Remaining field
parameters are chosen as γk ¼ 0.5 and ϵ ∈ f10−1; 10−3; 10−4g
(from top to bottom).

FIG. 6. Worldline instantons for superimposed temporal Gaus-
sian field with γω ∈ f0.001; 5; 10; 15; 20; 25g (from blue, outer
path, to orange, inner path). In the right panel the components x3
(dashed) and x4 (dotted) are separately plotted. Remaining field
parameters are chosen as γk ¼ 0.5 and ϵ ∈ f10−1; 10−3; 10−4g
(from top to bottom).
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latter case, worldline instantons are reflected and squeezed
already for relatively small γω leading to the mentioned
faster decrease of W0. The effective reflection picture, as
discussed in [23], helps us to understand such differences in
a quite intuitive way in terms of instanton reflections.
In the bottom panels of Figs. 7 and 8, the separate curves

are combined in a contour plot whereW0 is plotted versus γk
and γω. The color maps on the rhs are scaled according to the
numerical values ofW0. The previously described trends are
again clearly reflected. However, in addition, we have now
included the analytically approximated critical threshold
γcritω from (20) aswell. The difference between the shown two
critical curves, one in green and the other in pink, is that the
former has been generated without incorporating the modi-
fied field strength parameter ~ϵ from (19) in (20). For γk↑ the
curve with ~ϵ included is much more accurate being in
agreement with the discussion in Sec. III A. To the right of
this critical curve, we find strong evidence for dynamical

assistance indicated by the strongly bent gray, solid contour
lines. Hence, the analytical approximations match very well
with the exact numerical results. Such remarkable agree-
ments suggest that the present approach serves as an efficient
way to get some analytical insights even in cases with such
complex backgrounds.

IV. STRONG TIME DEPENDENCE

In an electric background too localized in space, γk ≥ 1,
tunnelling of virtual dipole pairs is not possible for ϵ ≪ 1
and γω → 0. This corresponds to the nonexistence of a
periodic path in spacetime; see e.g. [36,68]. However, for the
present type of backgrounds this effect is absent if ϵ > 1.We
assume the background to be the linear combination of two
Sauter pulses. The numerical computation strategy is the
same as discussed in Sec. III C which works very robustly
even for the present purpose. The obtained worldline

FIG. 7. Top panel: W0½ES=Ek� plotted versus γω for the
temporal sinusoidal field for fixed γk ∈ f0.2; 0.4; 0.6; 0.8g (from
blue to red) and ϵ ¼ 10−4. Bottom panel: W0 is depicted as a
contour plot. The thick lines are the analytically predicted γcritω

from (20) with (pink) and without (green) the modified field
strength parameter ~ϵ, see (19), included.

FIG. 8. Top panel: W0½ES=Ek� plotted versus γω for the
temporal Gaussian field for fixed γk ∈ f0.2; 0.4; 0.6; 0.8g (from
blue to red) and ϵ ¼ 10−4. Bottom panel: W0 is depicted as a
contour plot. The thick lines are the analytically predicted γcritω

from (20) with (pink) and without (green) the modified field
strength parameter ~ϵ, see (19), included.
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instantons are depicted in the left panel of Fig. 9, whereas in
the right panel, both space and time components, x3 and x4,
are plotted separately. Chosen field parameters are given in
the figure caption. In case of γω↑ the instanton paths tend to
shrink smoothly, meaning no appearance of discontinuities
in the form of cusped turning sections.More importantly, for
γk↑ instantons are real [36], since the dominant contribution
comes from the stronger temporal dependence; see discus-
sion in Sec. III A. Thus, therewill be no additional instanton
reflections and, consequently, no dynamical assistance. For
γk ≫ 1 the spatial contribution becomes increasingly neg-
ligible. As soon as γk → 0, the strength of the spatial Sauter
field approaches its peak value andmaximally contributes to
the total effective field strength. This shrinks the instanton
paths even more.

V. CONCLUSION

We have investigated the tunnelling process of virtual
pairs from the quantum vacuum in the presence of certain
multidimensional (1þ 1) electric backgrounds which
depend on space as well as on time. Going beyond the
case of two linearly combined Sauter pulses [39] we have
considered a weak time dependence of sinusoidal and
Gaussian type, respectively, which do not have poles in the
complex plane. Using the worldline formalism, the result-
ing background has been treated nonperturbatively. The
underlying equations have been simplified by applying
certain effective critical points, recently presented in [23].
On this basis we could analytically predict a threshold γcritω

for the temporal inhomogeneity γω depending on both the
field strength ratio ϵ and the spatial inhomogeneity γk.
We have set appropriate initial conditions and applied

additional symmetry constraints present due to the assumed
background structure. These steps allowed us to find the
corresponding worldline instantons for any parameters of
interest. Using these closed paths in spacetime, the leading
order exponential factors for both backgrounds have been
computed, finding a large dynamical enhancement in
general. We have seen that below the predicted threshold
γcritω there is no substantial contribution from the weak term.

Furthermore, we have found that such backgrounds lead
in general to a smaller enhancement compared to the case
with a Sauter-like time variation. That is due to the fact that
for γk → 0, the limit where the spatial term maximally
contributes to the delocalization of the virtual pair, the
critical threshold γcritω becomes relatively large. This effect
is much more likely in the oscillatory sinusoidal case. On
the other hand, for γk → 1 the width of the spatial Sauter
pulse decreases towards the critical Compton region with
the consequence that γcritω → 0. In this case even arbitrarily
small time variations are not negligible. The tunnelling rate,
however, decreases due to a large exponential suppression
which slows down the enhancement even more compared
to the Sauter case.
Finally, we also discussed the 1þ 1-dimensional double

Sauter background for ϵ > 1 and studied the main
differences we have found for the instanton paths compared
to earlier studies with ϵ ≪ 1.
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APPENDIX: CRITICAL KELDYSH PARAMETER

The critical temporal Keldysh parameter γcritω in case of
γk > 0 requires a modification of the (effective) spatial field
strength. This modification goes back to the observation in
[23] where

γk↑ ⇒ Δ↑ ⇒ γcritω ↓ ðA1Þ
holds in general, cf. (18). The corresponding value can be
obtained by taking maxfx3g which minimizes the field
strength for a fixed γk. This maximum may be computed
only for the spatial Sauter field, since we are interested in
the critical threshold where the contribution of the temporal
field may still be assumed as negligible. Note that the
enormous enhancement applies for values above the thresh-
old γcritω . In this case the additional contribution will for sure
decrease maxfx3g which is, however, irrelevant for the
present purpose. For the spatial Sauter field the exact
instanton solution reads

x3ðuÞ ¼
1

γk
arcsinh

 
γkffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q cosð2πnuÞ
!
;

x4ðuÞ ¼
1

γk

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q arcsinðγk sinð2πnuÞÞ: ðA2Þ

Taking the leading worldline instanton with winding
number n ¼ 1 [36,45], the maximum of the spatial com-
ponent is reached at (rescaled) proper-time u ¼ 0,

FIG. 9. Worldline instantons for a spatial Sauter field combined
with a stronger temporal Sauter field. The field parameters are
γk ¼ 0.5, ϵ ¼ 10 and γω ∈ f0.001; 2; 5; 10; 15; 20g (blue, outer
path, to orange, inner path). The two components x3 (dashed) and
x4 (dotted) are separately plotted in the right panel. The values are
given in units of ½m=Ek�.
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x3;max ¼
1

γk
arcsinh

 
γkffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q
!
; ðA3Þ

which subsequently results in

min
fixedk;Ek

fEksech2ðkx3Þg ¼ Eksech2ðkx3;maxÞ

¼ Eksech2
 
arcsinh

 
γkffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q
!!

:

ðA4Þ

Hence, the effective field strength ratio for the general case
0 ≤ γk < 1 takes the form

~ϵ ¼ ϵcosh2
 
arcsinh

 
γkffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2k

q
!!

ðA5Þ

which, accordingly, has to be plugged into (20), replacing
the initial parameter ϵ.
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