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Strongly interacting matter undergoes a crossover phase transition at high temperatures T ∼ 1012 K and
zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot
and dense system of quarks and gluons displays critical phenomena when doped with more quarks than
antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a
critical point can only occur in the baryon dense regime of the theory, which defies a description from first
principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations
of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem
involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces
ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the
higher-order baryon susceptibilities and also for the location of the critical point, which is found to be
within the reach of heavy-ion collision experiments.
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I. INTRODUCTION

The rapid crossover transition found in lattice QCD
calculations [1] characterizes the change in the degrees of
freedomof the theory fromhadrons toanoveldeconfinedstate
composed of quarks and gluons. The extreme conditions
needed for this phenomenon took place in our Universe ∼20
microseconds after the big bang [2] and have been constantly
reproduced over the last decade in ultrarelativistic heavy-ion
collisions at the Relativistic Heavy Ion Collider (RHIC) and
the Large Hadron Collider (LHC). These experiments have
provided overwhelming evidence that at high temperatures
quarks and gluons form a new type of strongly interacting
liquid called the quark-gluon plasma (QGP) [3]. Since its
discovery in the early 2000 s (see, e.g., Ref. [4] for a review), it
has become clear that the femtoscopic version of the primor-
dial liquid recreated in these experiments possesses novel
many-body properties, including nearly inviscid flow behav-
ior characterized by a surprisingly small value [5] of its shear
viscosity to entropy density ratio (η=s),whichmakes theQGP
the smallest (and the hottest)most perfect fluid ever observed.

Despite the steady progress over the years in the
determination of the QGP’s equilibrium properties through
lattice simulations, most regions of the QCD phase diagram
remain vastly unexplored. In fact, ab initio calculations in
the baryon dense regime of QCD are hindered by the
fermion sign problem, a fundamental technical obstacle
inherent to any path integral representation of Fermi
systems at finite density [6]. By breaking the balance
between baryonic matter and antimatter at high temper-
atures in QCD, the crossover is expected to end at a critical
end point (CEP) and then evolve into a first-order phase
transition. The CEP is characterized by the divergence of
net-baryon number fluctuations. Understanding the emer-
gence of critical phenomena in the theory of strong
interactions has become a cardinal challenge not only
for theory but also for experiments. Depending on the
location of the CEP in the temperature (T) and baryon
chemical potential (μB) axes of the QCD phase diagram, its
effects may be probed using heavy-ion collisions [7]. An
experimentally driven search for the QCD critical point is
possible [8] by systematically decreasing the center-of-
mass energy/per nucleon (

ffiffiffi
s

p
) of colliding ion beams,

which enhances the amount of matter over antimatter
produced in these reactions. The first phase of such a
beam energy scan (BES) program took place at RHIC and
future runs with increased luminosity are scheduled for
2019–2020 after an upgrade of the machine. Fixed target
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experiments, reaching even larger baryon densities, will
become fully operational in the near future [9,10].
In the absence of first principle lattice results in the

baryon rich regime of QCD, effective approaches must be
used to guide the experimental search for the critical point
in heavy-ion collisions. To be deemed realistic, such
models must meet the following necessary requirements.
First, the effective approaches must reproduce the thermo-
dynamics of QCD in the crossover region at zero baryon
density, as determined by lattice QCD. The other (more
stringent) requirement is that for the temperatures probed in
heavy-ion collisions the system behaves as nearly perfect
liquid. In this work we show that a model constructed using
the holographic correspondence [11], a well-known tool
developed in string theory, fulfills these requirements
allowing one to determine the properties of the hot and
baryon rich QGP liquid with unprecedented precision.

II. RESULTS

Through the holographic correspondence, calculations in
strongly coupled non-Abelian gauge theories in four space-
time dimensions at finite temperature and density can be
performed using black hole solutions of classical theories of
gravity in higher spacetime dimensions. This approach has
been previously applied to study some important aspects of
the strongly coupled quark-gluon plasma [12] and also a
variety of problems in condensed matter physics [13]. One of
its main successes is the explicit derivation of nearly perfect
fluid behavior at strong coupling, quantified by η=s ¼ 1=4π
[14] (in natural units where c ¼ ℏ ¼ kB ¼ 1), which is
broadly compatible with recently extracted bounds for this
quantity in heavy-ion collisions [15].
In the holographic approach used in this work, conformal

invariance in the plasma is dynamically broken by a real
scalar field in the bulk, which roughly takes into account
effects from the QCD running coupling, and an additional
Uð1Þ gauge field is introduced in the dual gravity model to
simulate the baryon charge and its corresponding chemical
potential μB. A similar approach was used in [16], but
contrary to that case, our construction provides a self-
consistent gravitational setup with no extra free parameters
besides the ones already featured in the gravity action. We
numerically solve the corresponding five-dimensional holo-
graphic equations of motion for the metric, the scalar field,
and the gauge field to construct over two million charged
black hole solutions (see the Appendixes), each one of them
corresponding to a point in the T-μB phase diagram of the
dual strongly coupled plasma. The parameters of the dual
gravitational theory are fixed in order to reproduce two
crucial quantities obtained through lattice simulations of
QCD with 2þ 1 flavors with physical quark masses at zero
baryon density: the entropy density [17] and the second-
order baryon susceptibility [18] χ2, which measures the
equilibrium response of the baryonic density to a change in
the chemical potential. After imposing these constraints at

zero baryon density, the model correctly predicts many other
thermodynamic quantities compared to lattice QCD at
μB ¼ 0. Additionally, predictions can also be made for
the behavior of thermodynamic and transport quantities at
finite μB. This procedure, which we call black hole engineer-
ing, is uniquely suited to investigate the baryon rich regime
of QCD since it not only quantitatively reproduces the
relevant results from the theory of strong interactions at finite
temperature, but it also naturally incorporates the nearly
perfect fluid property of the plasma (see the Appendixes).
In the vicinity of the critical point, the higher-order baryon

number susceptibilities defined as χnðT; μBÞ ¼ ∂nðP=T4Þ=
∂ðμB=TÞn, where P ¼ PðT; μBÞ is the pressure of the
system, diverge with different powers of the correlation
length ξ [19]. To investigate the onset of critical behavior,
after determining the pressure via holography, numerical
derivatives are taken to determine the second, fourth, sixth,
and eight order baryon number susceptibilities shown in
Fig. 1. One can see that χ2ðT; μBÞ begins to develop a peak
for large chemical potentials, which will then evolve into a
divergence at the critical point. The figure also shows the
available lattice results for χ2, χ4 [18] and χ6=χ2 [20] as a
function of T. Our predictions for χ4ðTÞ and χ6ðTÞ=χ2ðTÞ
have a remarkable agreement with lattice QCD results. As
for χ8ðTÞ, our prediction exhibits the features expected from
universality arguments [21] and can be readily compared to
lattice QCD results once they become available.
Using the higher-order susceptibilities one may recon-

struct the system’s pressure and baryon density ρB ¼ χ1T3

as a Taylor series in powers of μB=T as follows:

PðT; μBÞ − PðT; μB ¼ 0Þ
T4

¼
X∞
n¼1

1

ð2n!Þ χ2nðTÞ
�
μB
T

�
2n
;

ð1Þ

ρBðT; μBÞ
T3

¼
X∞
n¼1

1

ð2n − 1Þ! χ2nðTÞ
�
μB
T

�
2n−1

: ð2Þ

In Fig. 2 the pressure difference in (1), calculated in the
holographic model with no truncations, is compared to
the lattice QCD results from Ref. [20]. Additionally, the
reconstructed holographic pressure truncated at order
Oðμ6BÞ and Oðμ8BÞ is also shown [the bands reflect the
numerical uncertainties in the calculations of χ6ðTÞ and
χ8ðTÞ, see Methods]. Our analysis not only confirms the
applicability of the Oðμ6BÞ truncation done in [20] for
μB=T ≤ 2 but it also predicts that the inclusion of χ8ðTÞ
into the expansion extends the domain of applicability of
the Taylor series to at least μB=T ∼ 2.5 (further discussion
can be found in the Appendixes).
By carefully inspecting the behavior of χ2 and ρB, using

the best set of parameters for the holographic model (see
the Appendixes), we find a critical point in the phase
diagram at TCEP ¼ 89 MeV and μCEPB ¼ 724 MeV, which
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should be compared to the original holographic study in
Ref. [16] that found ðTCEP; μCEPB Þ ¼ ð143; 783Þ MeV
using previous lattice results for which the transition
temperature was ∼190 MeV, instead of the more precise
current value ≃155 MeV [22]. A more detailed investiga-
tion of the effects from uncertainties in the lattice results
used in the determination of the parameters of our model
(see the Appendixes) shows that TCEP may change by at
most 13% and μCEPB by at most 5%. Figure 3 (left) shows χ2
in the T-μB plane and its rapid increase near the critical

point. The critical point is located along the line μB=T ∼ 8.1
in the phase diagram, which is beyond the reach of current
lattice QCD calculations where μB=T ≲ 2 [20]. We show in
the Appendixes that the location of this critical point cannot
be reliably obtained via an analysis of the radius of
convergence of the series in powers of μB=T constructed
using only the results for χnðTÞ with n ¼ 2, 4, 6, 8.
Since the transition is a smooth crossover at small values

of μB, there is no unique definition of the transition
temperature. In practice, this quantity is usually identified
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FIG. 1. Baryon number susceptibilities ( χn) as functions of the temperature (T) for different values of the baryon chemical potential
(μB) computed using holographic black hole engineering. χ2 (upper left panel) and χ4 (lower left panel) are shown for values of the
chemical potential in a range between 0 and 600 MeV; χ6=χ2 (upper right panel) and χ8 (lower right panel) are shown at μB ¼ 0. The
lattice results are from Refs. [18,20]. We remind the reader that, while χ2ðTÞ at μB ¼ 0 is used to fix the parameters of the holographic
framework, all other quantities are predictions of our approach. The error band on our predictions for χ6=χ2 and χ8 denotes the
uncertainty in the numerical calculation of the higher-order derivatives (see Methods).

FIG. 2. The μB-dependent contribution to the pressure (left) and the baryon density (right) as functions of T for different values of
μB=T. The solid curves correspond to the full holographic result computed using black hole engineering. The bands denote the
holographic results reconstructed through a power series expansion up to different orders in μB=T, using the quantities displayed
in Fig. 1. The points correspond to the reconstructed Taylor series up to Oðμ6BÞ for the pressure and Oðμ5BÞ for ρB computed
on the lattice [20].
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with the inflection point (steepest rise) or maximum/
minimum of some quantity which would be sensitive to
a change in the relevant degrees of freedom of the system
from hadrons to quarks and gluons [18]. Here we choose
two such quantities: the inflection point of χ2 and the
minimum in the speed of sound squared c2s (see Methods).
The phase transition lines thus obtained are shown in the
upper plane of the left plot in Fig. 3, together with the
contour lines for χ2. Even though these quantities define
different transition temperatures at μB ¼ 0, they converge
at the critical point, as expected. Finally, the right panel of
Fig. 3 shows our critical point (including systematic
uncertainties) and the regions of the QCD phase diagram
where the presence of a critical point has been already
excluded using different approaches [20,23]. Regions
where T > 155 MeV are also unlikely to display a CEP
due to the known behavior of the curvature of transition
lines at low μB [24].
In the followingwediscuss the consequences of our results

to the ongoing experimental search for theQCDcritical point
using heavy-ion collisions. We begin by providing our
estimate for the heavy-ion collision center-of-mass energy
that could probe the values of TCEP and μCEPB found here.
Experimentally measured mean particle yields in heavy-ion
collisions have long been used, in the context of statistical
hadronizationmodels (SHM) [25], to extract the dependence
of the pair (T, μB) of the matter created with the collision
energy

ffiffiffi
s

p
at the point where hadrons reach chemical

equilibrium (i.e., chemical freeze-out) [26]. Another way
to estimate this

ffiffiffi
s

p
dependence comes from themeasurement

of moments of the measured net-particle distributions.
In fact, the mean over the variance of the distribution is
equivalent to the ratio of susceptibilities χ1=χ2 and a
comparison between theory and experiment for this and
other similar ratios may also be used to determine how
(T, μB) varies with

ffiffiffi
s

p
[27,28]. Both methods were used

here to gauge the uncertainties in such a mapping and the
details of this analysis can be found in the Methods section.
The chemical freeze-out points, displayed in red in the upper
plane of Fig. 3, were extracted through a comparison of
holographically computed baryon number susceptibilities
and experimental data for net-proton fluctuations from [8]
(see Fig. 5 in theMethods section) and they were found to lie
along the transition line defined by the minimum of c2s whenffiffiffi
s

p
≥ 27 GeV. By consistently extrapolating this behavior

towards smaller collision energies, taking into account
different sources of systematic uncertainties, we find that
the critical point of the model could be probed using heavy-
ion experiments with center-of-mass energy in the rangeffiffiffi
s

p ¼ 2.5–4.1 GeV (see Methods). These collision energies
arebelow thecurrent plans for the2ndphase of theRHICBES
operating in collider mode (where the minimum isffiffiffi
s

p ¼ 7.7 GeV) but they are within the reach of the
HADES experiment [29], the planned Fixed Target program
also at RHIC [9], and the future Compressed BaryonicMatter
experiment at FAIR [10].
While universality arguments dictate the sign of χ4=χ2

sufficiently close to the critical region [30], if the QCD
critical point follows our prediction and is located at
moderately large values of μB and low temperatures,

FIG. 3. The left plot shows the behavior of the baryon susceptibility χ2 in the T-μB plane determined from black hole engineering. As
the chemical potential increases χ2ðT; μBÞ develops a peak, which turns into a divergence at the critical point located at TCEP ¼ 89 MeV
and μCEPB ¼ 724 MeV (see the Appendixes). The upper plane in the left plot shows the phase diagram obtained through our method,
with our chemical freeze-out points in red. The dashed line corresponds to the location of the inflection point of χ2 in the T-μB plane, one
of the quantities chosen to characterize the phase transition line. The dotted line gives the location of the minimum of the speed of sound
squared, c2s , in the phase diagram. The right panel shows the regions in the QCD phase diagram where the presence of a critical point has
been excluded by current lattice QCD constraints [20] and a finite-size scaling analysis [23]. Temperatures above 155 MeV are also
unlikely due to constraints from the curvature of transition lines [24]. The location of the critical point in the phase diagram that we
found in this work, taking into account our systematic uncertainties (see the Appendixes), is also shown.
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depending on the trajectory followed in the phase diagram
this ratio can already display some nontrivial behavior for
values of

ffiffiffi
s

p
larger than those associated with the critical

point. Using the aforementioned methods to establish how
T and μB depend on

ffiffiffi
s

p
at freeze-out, and our results for the

susceptibilities across the phase diagram, we show a
calculation for the ratio χ4=χ2 normalized by its value atffiffiffi
s

p ¼ 200 GeV (to minimize its dependence on corrections
from particle decays, acceptance cuts, and the fact that
experimentally only net protons are measured) in Fig. 4 for
the values of

ffiffiffi
s

p
within the RHIC BES. The points are

computed on the transition line, T ¼ TðμBÞ, defined by the
minimum of c2s (with error bars described in detail in the
Methods section). As mentioned above, this transition
line agrees with the chemical freeze-out points extracted
here from the moments of net-proton fluctuations forffiffiffi
s

p
≥ 27 GeV. One can see that χ4=χ2 monotonically

increases in this case even though one is still outside the
critical region located at

ffiffiffi
s

p ¼ 2.5–4.1 GeV. By using
other choices for the chemical freeze-out line at low

ffiffiffi
s

p
(still outside the critical region), nonmonotonic behavior
for χ4=χ2 with

ffiffiffi
s

p
can be found that does not follow from

the universality arguments of [30]. This should be kept in
mind when comparing model calculations to upcoming
experimental data from RHIC and other facilities.

Overall, the main result of our analysis is the prediction
of the existence and location of a critical point on the phase
diagram of QCD, situated in the allowed region of the
phase diagram in Fig. 3 (right), which may be investigated
by the next generation of heavy-ion experiments designed
to probe the novel properties of the hot and baryon rich
quark-gluon plasma using center-of-mass collision energies
in the range

ffiffiffi
s

p ¼ 2.5–4.1 GeV.

III. METHODS

A. Numerical calculation of higher-order baryon
number susceptibilities

The higher-order baryon susceptibilities may also be
computed through the derivatives of the baryon density,
which is proportional to the first baryonic susceptibility (χ1),
with respect to μB=T for fixed T. The baryon density is
calculated using N ¼ 2 × 106 holographic black hole sol-
utions (see the Appendixes). The original data set for χ1 is
not equally spaced in the (T, μB) plane and an additional
procedure has to be used to determine χ1 on a regular grid.
This is done by interpolating χ1 and then computing its value
on an equally spaced grid. The high precision derivatives
themselves are calculated within a smaller range of temper-
atures and chemical potentials in the interval T ¼
½65–450� MeV and μB ¼ ½0 − 600� MeV. A master grid
is created in the (T, μB) plane, which is divided into square
nodes of width ΔT ¼ 5 MeV and ΔμB ¼ 20 MeV. Each
node is individually interpolated using the points inside the
node and its neighbor nodes using thin-plate splines. The
thin-plate splines interpolation was chosen over nearest
neighbor, polynomial, cubic spline, and biharmonic inter-
polations because it provided the best surface interpolation
for the baryonic susceptibilities. The neighbor node points
are used to eliminate boundary effects in the interpolation.
On the master grid, we create extra nodes outside its
boundary and impose several constraints. For the μB ¼ 0
axis we reflect the points depending on the symmetry of the
given susceptibility [even (odd) susceptibilities have even
(odd) parity when reflected along the μB ¼ 0 axis]. For the
T ¼ 65 MeV axis, the extra nodes are set to zero, while for
the other two axes, (μB ¼ 600 MeV and T ¼ 450 MeV),
the nodes are set to have a constant derivative equal to the
value of the one at the corresponding boundary of the master
grid. Using this interpolation scheme, (χ1) is obtained via the
master grid using an equally spaced grid of points with
separation 0.25 MeV in (T) and (μB).
The next order susceptibility, in this case (χ2), is also

obtained from the interpolation scheme; however this
susceptibility, which is the derivative with respect to
(μB) of the interpolated points for χ1, contains noise
associated with the interpolation. The noise makes it
impossible to calculate the next derivative (χ3) starting
from this raw data set for χ2 and a filtering procedure must
be employed. In this paper the noise is removed by using a

FIG. 4. Ratio between baryon number susceptibilities, χ4=χ2,
for 0%–5% most central Au-Au collisions (normalized by its
value at

ffiffiffi
s

p ¼ 200 GeV) as a function of the center-of-mass
collision energy

ffiffiffi
s

p
computed via black hole engineering. The

points are computed along the transition line given by the
minimum of c2s (with error bars described in Methods), which
agrees with the chemical freeze-out line extracted from the
moments of net-proton fluctuations for

ffiffiffi
s

p
≥ 27 GeV. The ratio

χ4=χ2 considerably increases along this particular trajectory,
even though the values of

ffiffiffi
s

p
involved are not in the region

corresponding to the critical point of the model
(

ffiffiffi
s

p ¼ 2.5–4.1 GeV). We note that this is only one possible
trajectory where the freeze-out line passes through the CEP.
Alternatively, the freeze-out line could pass below the CEP,
which would change the behavior of χ4=χ2 with

ffiffiffi
s

p
.
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Savitzky-Golay (SG) filter, a low-pass filter well adapted
for smoothing out noisy data. Once the filter has been
applied to the signal, a smooth χ2 is available to seed the
master grid, which will then repeat the procedure to
calculate the next susceptibility.
The SG filter preserves the original shape and features of

the signal better than other common types of filters. This
method performs a least squares fit of the (NT) and (NμB )
number of neighbors of each data point to a polynomial of
degree k and takes the calculated central point of the fitted
polynomial curve as the new smoothed data point. The
baryonic susceptibilities have a well-defined structure
without any abrupt changes and, for that reason, we choose
the input parameter k ¼ 3. This polynomial allows us to
remove rapidly varying structures that are created by
numerical noise. On the other hand, the input parameters
NT , NμB are chosen according to the degree of non-
smoothness of each susceptibility, using values that are
as small as possible to avoid the generation of numerical
artifacts.
We varied the input parameters of the SG filter to test the

robustness of our numerical procedure for the calculation of
the higher-order susceptibilities. We verified that the results
are robust enough to determine the T and μB dependence of
the susceptibilities up to χ4. In fact, the behavior of the
susceptibilities in the (T, μB) plane does not change for a
large number of input parameters though an attenuation of
the peaks found in the susceptibilities occurs for very
strong filters, especially at large (μB). Therefore, we only
consider filter parameters that do not change the peaks of
the susceptibilities by more than 5%. On the other hand, the
baryonic susceptibilities χ6ðTÞ and χ8ðTÞ at μB ¼ 0 were
computed directly from χ4ðT; μBÞ using finite differences.
This calculation gives the results shown in Fig. 1, which
possess an uncertainty band associated with the variation of
the width of the finite difference procedure and the effects
coming from varying the SG-filter parameters.

B. Details about the chemical freeze-out analysis

In relativistic heavy-ion collisions it is generally
assumed that the particle yields are fixed at chemical
freeze-out and, therefore, information on the chemical
equilibrium temperature(s) and μB can be extracted by
comparing particle yields computed using theoretical mod-
els to experimental data. Statistical hadronization models
allow one to calculate such particle yields using a relatively
simple framework called the hadron resonance gas (HRG)
model, where hadrons are assumed to be noninteracting
pointlike particles. This type of model has been quite
successful for many years [25] and expressions for T and
μB as functions of the collision energy

ffiffiffi
s

p
are well known

[26]. However, these purely hadronic models contain no
information about the QGP phase nor any possible effects
from critical phenomena, so one would expect that eventual

difficulties in describing experimental data could appear at
large enough baryon densities (close to the critical point).
More recently, new experimental observables have been

devised that focus on the event-by-event fluctuations of
conserved charges [27,28]. For instance, by measuring the
distribution of net protons one can obtain a reasonable
proxy for the distribution of net baryons. Then, the
moments of this distribution may be directly compared
to first principle lattice QCD calculations to extract the
freeze-out line [31,32]. In Ref. [33], at a set energy

ffiffiffi
s

p
the

M=σ2 (mean over the variance) of the net-proton distribu-
tion and the M=σ2 of the net-electric charge distribution
(which includes pions, protons, and kaons) are compared to
lattice QCD results for the baryonic χ1=χ2ðT; μBÞ and
electric charge χ1=χ2ðT; μBÞ, respectively. Then, one has
two equations and two unknowns and can extract the
corresponding (T, μB) pair at a specific

ffiffiffi
s

p
, which gives the

chemical freeze-out line. Note that ratios are always used to
form volume-independent quantities. In the low μB region,
Ref. [32] finds a good description for the extracted (T, μB)
between the hadron resonance gas model and lattice QCD.
As mentioned in the main text, the higher-order suscep-

tibilities are more sensitive to criticality and, thus, one
would not expect the hadron resonance gas model (or any
other model involving only hadronic degrees of freedom) to
adequately describe higher-order susceptibilities as one
approaches the critical region. Generally, the analysis based
on susceptibilities produces a slightly lower temperature
than SHM calculations [34]. Within our own model we
only have one conserved charge-baryon number, so we can
use χ1=χ2ðT; μBÞ and χ3=χ2ðT; μBÞ to extract (T, μB) as
functions of

ffiffiffi
s

p
comparing to experimental data of M=σ2

and Sσ (skewness times standard deviation) of the net-
proton distribution. We compare our results for χ1=χ2 at
freeze-out to the mean over the variance (M=σ2) of net
protons and χ3=χ2 to the skewness times the variance (Sσ)
of net protons measured by STAR [8] in Fig. 5. This could
not be done in the hadron resonance gas model where
χ1=χ2 ∼ χ3=χ2 ∼ 1 and, in fact, hadronic models are known
to miss the

ffiffiffi
s

p
dependence of higher-order susceptibilities

[8]. One can see that our results can be reasonably matched
to STAR data.
When comparing χ1=χ2ðT; μBÞ to M=σ2 and

χ3=χ2ðT; μBÞ to Sσ, one produces two different bands in
(T, μB) after the inclusion of the experimental error. We
then look for the point where either the bands overlap (or
their nearest point) to extract the corresponding freeze-out
pair (T, μB) at a certain

ffiffiffi
s

p
and our error bars are extracted

from the width of the two bands at that point. We remark
that we are aware of the limitations of our model, which
does not include strangeness or electric charge chemical
potentials, or the acceptance cuts which match the exper-
imental setup. For these reasons, when extracting the
chemical freeze-out points we limit our analysis to the
large collision energies

ffiffiffi
s

p
≥ 27 GeV where such effects
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are expected to be small. In the end, we find chemical
freeze-out temperatures and chemical potentials which are
compatible to the ones obtained from the analysis of
fluctuations in the HRG model [34] and lattice QCD [32].
In Fig. 6 (left) we show μBð

ffiffiffi
s

p Þ (purple squares)
extracted using the susceptibilities calculated within the
HRG model [34]; Tð ffiffiffi

s
p Þ for the same model is shown on

the right panel. Our results using black hole engineering
and χ1=χ2 and χ3=χ2 to extract μB as a function of

ffiffiffi
s

p
lead

to the red triangles shown in Fig. 6, which are compatible
with the results from the statistical hadronization models
[26] (SHM1) and [35] (SHM2). Thus, in order to estimate
μBð

ffiffiffi
s

p Þ at lower energies we use the two parametrizations,
SHM1 and SHM2, mentioned above. In Fig. 6 (right)
Tð ffiffiffi

s
p Þ from SHM1 is shown in solid black.
Another method to determine the phase transition from

the QGP to the hadron gas phase involves looking at
inflection points or extrema of thermodynamic quantities.

Thus, we also consider the minimum of c2s , which allows us
to determine a different curve T ¼ TðμBÞ in the phase
diagram. Using the two SHM parametrizations for μBð

ffiffiffi
s

p Þ
one obtains the solid and dashed blue Tð ffiffiffi

s
p Þ curves, which

are shown in Fig. 6 (right). We note that our freeze-out
points for

ffiffiffi
s

p
≥ 27 GeV lie along this c2s transition line. In

our calculations of the normalized ratio χ4=χ2 of net-baryon
number shown in Fig. 4 we included both the different
transition lines defined by the minimum of c2s and the
inflection point of χ2 and also the difference between the
two different SHM parametrizations for μBð

ffiffiffi
s

p Þ into our
error bars. Furthermore, in Fig. 6 one can find the vertical
colored bands we used to estimate the values of

ffiffiffi
s

p
corresponding to TCEP and μCEPB of the critical point,
which include the combined effect from uncertainties
coming from the parametrizations Tð ffiffiffi

s
p Þ and μBð

ffiffiffi
s

p Þ
and also the other sources of uncertainty associated with
the holographic calculations discussed in the Appendixes.

FIG. 5. Collision energy dependence of χ1=χ2 and χ3=χ2 along the chemical freeze-out line computed using our black hole
engineering model (red triangles) compared to the 0%–5% net-proton distribution Au-Au data from the STAR experiment [8] forffiffiffi
s

p
≥ 27 GeV.

FIG. 6. Collision energy dependence of the baryon chemical potential (left) and temperature (right) at chemical freeze-out. The solid
black line denotes the freeze-out line for μBð

ffiffiffi
s

p Þ and Tð ffiffiffi
s

p Þ defined using the statistical hadronization model calculations of [26]
(SHM1). The dashed grey curve corresponds to the parametrization for μBð

ffiffiffi
s

p Þ from [35] (SHM2). The solid and dashed blue lines
illustrate how the trajectory in the phase diagram that follows the minimum of c2s changes with

ffiffiffi
s

p
using the parametrizations SHM1 and

SHM2 for μBð
ffiffiffi
s

p Þ. The purple squares represent hadron resonance gas comparisons to net-proton and net-electric charge fluctuations
from [34]. The red triangles represent the chemical freeze-out points extracted in this work, via a comparison between the χ1=χ2 and
χ3=χ2 computed using black hole engineering and the corresponding net-proton experimental data from STAR [8] (see Fig. 5). The
bands are used to find the value of

ffiffiffi
s

p
corresponding to TCEP and μCEPB of the critical point including the combined effect from

uncertainties coming from the parametrizations Tð ffiffiffi
s

p Þ and μBð
ffiffiffi
s

p Þ and other sources from the holographic calculations.
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The latter generate the dashed horizontal lines in Fig. 6
while the vertical colored bands are obtained by finding the
values of

ffiffiffi
s

p
in both plots where these horizontal lines

cross the Tð ffiffiffi
s

p Þ and μBð
ffiffiffi
s

p Þ curves from statistical models
and from our curve corresponding to the minimum of c2s .
The final range for the values of

ffiffiffi
s

p
corresponding to the

critical point region mentioned in the main text,
ffiffiffi
s

p ¼
2.5–4.1 GeV, is obtained by combining the colored sys-
tematic uncertainty bands in Fig. 6 (right).
In the Appendixes we give the details of the work

presented in the main text and also provide some additional
discussion about the topics covered. This is done in three
main sections. In Appendix A we discuss in detail the
holographic model we used, how the equations of motion
are solved, and also how its parameters are fixed. We show
the comparison to lattice thermodynamic data at zero
chemical potential, extend the analysis to nonzero chemical
potential, and discuss how to estimate the uncertainties in
the location of the critical point in our holographic model.
In Appendix B we give additional details about the
comparison of our model calculations at finite chemical
potential to the available lattice calculations. In Appendix C
an analysis of the radius of convergence of the Taylor series
for the thermodynamic quantities in powers of μB=T is
performed.
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APPENDIX A: HOLOGRAPHIC BLACK
HOLE ENGINEERING

The holographic gauge/gravity correspondence [11,36–38]
has been widely applied to obtain insight into the non-
perturbative behavior of different strongly correlated systems
including the theory of strong interactions—see [12,39] for

broad reviews—condensed matter systems [40–42], and also
quantum entanglement [43,44].
Arguably, the most striking and general prediction made

by holography is the small value obtained for the ratio
between the shear viscosity and the entropy density of a
strongly coupled quantum fluid described by a gravity dual
in the bulk containing at most two derivatives in the gravity
action (assuming spatial isotropy and translation invari-
ance). Under such conditions, the gauge/gravity correspon-
dence asserts that η=s ¼ 1=4π [14,45,46], which is at least
1 order of magnitude smaller than perturbative QCD
calculations for this ratio [47,48], being remarkably close
to recent estimates obtained from comparisons between
state-of-the-art hydrodynamic simulations of the quark-
gluon plasma and heavy-ion data [15]. Such a small value
for η=s is the defining property of the QGP produced by
colliding heavy nuclei at RHIC and LHC [4,5,49–54].
The fact that η=s in the strongly coupled regime of the

QGP appears to be in the ballpark of the holographic result
[14] greatly increased the interest in applications of holo-
graphic models to the study of real time phenomena in the
strongly coupled QGP, which are otherwise inaccessible to
weak coupling techniques and are also very challenging to
first principle lattice QCD simulations [55] both at zero and
nonzero baryon density [6,56]. On the other hand, most of
the holographic studies conducted in this regard [12,39]
have focused on studying properties of the so-calledN ¼ 4

super Yang-Mills plasma, which turns out to be fairly
different than the real-world QGP, especially in the cross-
over region [1,57] where the QGP is highly nonconformal
(see, for instance, the discussion in [58]).
More recently, bottom-up dilatonic gauge/gravity duals

have been engineered with the aim of providing a realistic
description of the physics of the nonconformal QGP [59].
These constructions are mainly based on the coupling
between the bulk metric field gμν and a real scalar field ϕ
(which may be thought of as the dilaton), with the latter
being responsible to break the conformal symmetry of the
theory in the infrared regime, emulating the effects of a
dynamically generated ΛQCD scale. This dynamical break-
ing of the conformal symmetry is controlled in the holo-
graphic model by the potential of the dilaton field, VðϕÞ,
which is a free function of the bottom-up construction that
may be dynamically fixed by solving the Einstein-dilaton
equations of motion with the constraint that the holographic
equation of state at finite temperature (T) and zero baryon
chemical potential (μB) matches the corresponding lattice
QCD result. Such a construction may then be employed
to make predictions for a variety of observables relevant
to characterize the physics of the QGP at zero baryon
density [60–69].
Effects due to a nonzero baryon chemical potential

(or any other kind of Abelian chemical potential, such
as the ones associated with the conservation of electric
charge and strangeness) may be taken into account by
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adding a Maxwell field Aμ to the Einstein-dilaton action in
the bulk, defining an Einstein-Maxwell-dilaton (EMD)
model [16]. In this case, another free function is added
to the model, corresponding to the coupling between the
Maxwell and dilaton fields, fðϕÞ. This coupling may be
fixed by matching the holographically determined second-
order baryon susceptibility to the corresponding lattice
result calculated at μB ¼ 0. In this way, following the work
of Ref. [16], the EMDmodel becomes completely specified
and may be used to provide predictions for many equilib-
rium and nonequilibrium observables at finite baryon
density [70–75]. More recently, an anisotropic version of
the EMD model at finite magnetic field (B) and zero
chemical potential has been developed and applied to
determine the behavior of many physical quantities for
the QGP across the (T, B) plane [76–78].
Among the previous successes of bottom-up EMD

holography applied to the QGP phenomenology, we
highlight the following:

(i) The EMD holographic model of Ref. [71] was
shown in Refs. [73,75,79] to produce the results
for the electric conductivity of the QGP which,
among the results from different model calculations
available in the literature (see, e.g., the comparisons
in Fig. 6 of [80] and in Fig. 4 of [81]), are the closest
(both qualitatively and quantitatively) to the lattice
QCD results with 2þ 1 flavors obtained in [82].
Indeed, as discussed in Ref. [75], there is room for
further improvements in the agreement between the
EMD predictions for the electric conductivity and
electric charge diffusion and the corresponding
lattice QCD results from [82], once the latter are
refined by taking the continuum limit and by also
considering physical quark masses (as in the case of
the lattice inputs used to fix the free parameters of
the EMD holographic model).

(ii) In Ref. [75] it was shown that the bulk viscosity of
the EMD holographic model of Ref. [71] is very
close, both qualitatively and quantitatively, to the
result recently obtained in [83] through a Bayesian
analysis of hydrodynamic simulations of the space-
time evolution of the QGP simultaneously matching
different heavy-ion experimental data.

(iii) The anisotropic EMD holographic model at finite
temperature and magnetic field of Ref. [77] was
shown to quantitatively describe the anisotropic
magnetized QCD equation of state and the magnetic
field dependence of the pseudocritical crossover
temperature obtained in state-of-the-art lattice QCD
simulations at nonzero magnetic fields in [84].

(iv) In Ref. [78], the same anisotropic EMD model of
Ref. [77] was shown to quantitatively describe the
renormalized Polyakov loop at finite magnetic field
and the heavy quark entropy obtained in lattice QCD
simulations in [85–87] for the QGP regime of the

QCD phase diagram (i.e., for temperatures above the
hadron gas regime).

Moreover, as shown before in Figs. 1 and 2 of the main
text, the EMD model at finite temperature and baryon
chemical potential constructed in the present work is able to
quantitatively match state-of-the-art lattice results for the
QCD equation of state with 2þ 1 flavors with physical
quark masses up to the highest values of baryon chemical
potential currently reached in lattice simulations [20].1 The
holographic equation of state at finite baryon density is not
a result of any fitting procedure to lattice QCD data (which
is only conducted at μB ¼ 0 to fix the free parameters of the
model, as aforementioned), but instead, it corresponds to a
true prediction of the EMD model. Therefore, the quanti-
tative agreement found in this work between the holo-
graphic equation of state and first principle lattice QCD
results at finite baryon density corresponds to a highly
nontrivial test of the phenomenological applicability of the
EMD model to describe QCD data far from the region of
the phase diagram where the free parameters of the bottom-
up EMD model were fixed.
On the other hand, as it is well known, one cannot

describe asymptotic freedom (setting in at very high
energies in QCD) using gravity duals, since such con-
structions typically display strongly coupled instead of
trivial ultraviolet fixed points. However, if there is a CEP in
the QCD phase diagram at finite temperature and baryon
density, as widely believed, it must be in the strongly
coupled regime of QCD, otherwise it would has already
been found in perturbative QCD calculations. Moreover,
there are different model calculations which obtain a
reduction in the shear viscosity times temperature to
enthalpy density ratio as one increases the baryon density
of the medium (see, e.g., [88] and also Refs. [71,75]),
indicating that the QGP becomes more strongly coupled
and closer to the perfect fluidity regime when it is doped
with a nonzero baryon chemical potential. Consequently,
the lack of asymptotic freedom in gravity duals is of no
practical relevance for the phenomenological plausibility of
the prediction we gave in the present work for the QCD
CEP location. Instead, the quantitative agreement found
between the holographic and lattice QCD equations of state
at finite baryon density gives us confidence in the phe-
nomenological reliability of such prediction.
The general form of the EMD action including finite μB

effects employed in the present work, which we shall define
in what follows, was first discussed in [16]. In that
reference, now outdated lattice results for the equation
of state and baryon susceptibility [89] were used in the
determination of the functions VðϕÞ and fðϕÞ, which must
then be revised to accommodate more precise lattice
results. In [71] a new version of the EMD model was

1Note that the lattice simulations of Ref. [20] reach baryon
chemical potentials up to μB ∼ 600 MeV.
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constructed which, contrary to the one originally devised in
[16], does not introduce any additional free parameters
in the holographic model besides the ones already featured
in the EMD action, making it a self-consistent gravitational
setup. Furthermore, this new model employed more recent
lattice QCD results for the equation of state [90] and the
dimensionless second-order baryon susceptibility (χ2) [91]
with 2þ 1 flavors with physical quark masses. The new
version of the EMD model parameters proposed in the
present work (to be discussed in details in what follows)
provides a much more precise description of state-of-the-art
lattice results for χ2 and s=T3 at μB ¼ 0, where we match to
the latest lattice QCD calculations from [17].2

1. EMD action and equations of motion

The bulk EMD action is given by

S ¼
Z
M5

d5xL

¼ 1

2κ25

Z
M5

d5x
ffiffiffiffiffiffi
−g

p �
R −

ð∂μϕÞ2
2

− VðϕÞ − fðϕÞF2
μν

4

�
;

ðA1Þ

where κ25 ≡ 8πG5 is the Newton’s constant in five space-
time dimensions. The bulk action (A1) is complemented by
some boundary terms which are, however, not necessary for
the calculations done in the present work. In a bottom-up
approach to the EMDmodel, one takes the dilaton potential
VðϕÞ and the Maxwell-dilaton coupling fðϕÞ as free
functions and there are also two free parameters, corre-
sponding to the gravitational constant κ25 and a character-
istic energy scale, which we denote by Λ, used to convert
physical observables calculated on the gravity side of the
holographic duality in terms of inverse powers of the anti–
de Sitter (AdS) radius L to physical units (expressed in
powers of MeV). By setting L ¼ 1 for simplicity, and
introducing the energy scale Λ, we are simply exchanging
the freedom to fix L by the freedom to fix Λ and, thus, the
number of free parameters of the model is not augmented.
In A 3 we show how to fix these free parameters by
matching lattice QCD results at μB ¼ 0.
According to the holographic dictionary at finite temper-

ature, thermal states of the 4-dimensional gauge theory
with finite chemical potential are associated with charged
black holes in the 5-dimensional bulk spacetime. We are
interested here in static charged black hole backgrounds
that are spatially isotropic and translationally invariant,
which can be described by the following ansatz for the
EMD fields [16]:

ds2 ¼ e2AðrÞ½−hðrÞdt2 þ dx⃗2� þ e2BðrÞdr2

hðrÞ ;

ϕ ¼ ϕðrÞ; A ¼ Aμdxμ ¼ ΦðrÞdt; ðA2Þ

with the radial location of the black hole horizon given by
the largest root of hðrHÞ ¼ 0. We employ coordinates
where the boundary of the asymptotically AdS5 spacetime
is at r → ∞.
The equations of motion obtained by extremizing the

action (A1) with respect to the EMD fields in the form
given by the ansatz (A2) are given by [16]

ϕ00ðrÞ þ
�
h0ðrÞ
hðrÞ þ 4A0ðrÞ − B0ðrÞ

�
ϕ0ðrÞ − e2BðrÞ

hðrÞ
�∂VðϕÞ

∂ϕ
−
e−2½AðrÞþBðrÞ�Φ0ðrÞ2

2

∂fðϕÞ
∂ϕ

�
¼ 0; ðA3Þ

Φ00ðrÞ þ
�
2A0ðrÞ − B0ðrÞ þ d½ln ðfðϕÞÞ�

dϕ
ϕ0ðrÞ

�
Φ0ðrÞ ¼ 0;

ðA4Þ

A00ðrÞ − A0ðrÞB0ðrÞ þ ϕ0ðrÞ2
6

¼ 0; ðA5Þ

h00ðrÞ þ ½4A0ðrÞ − B0ðrÞ�h0ðrÞ − e−2AðrÞfðϕÞΦ0ðrÞ2 ¼ 0;

ðA6Þ

hðrÞ½24A0ðrÞ2 − ϕ0ðrÞ2� þ 6A0ðrÞh0ðrÞ þ 2e2BðrÞVðϕÞ
þ e−2AðrÞfðϕÞΦ0ðrÞ2 ¼ 0; ðA7Þ

where the last equation is a useful constraint obtained by
combining the independent components of Einstein’s
equations. Also, from the equations above, it is clear that
the background function BðrÞ has no dynamics. Indeed,
due to reparametrization invariance of the radial coordinate,
one has the freedom to fix BðrÞ in order to simplify
numerical calculations, as we are going to do in the next
section. We also remark that there are two conserved
charges in the radial direction, both associated with the
EMD equations of motions, the Gauss charge QG, and the
Noether charge QN [16],

QGðrÞ ¼ fðϕÞe2AðrÞ−BðrÞΦ0ðrÞ;
QNðrÞ ¼ e2AðrÞ−BðrÞ½e2AðrÞh0ðrÞ − fðϕÞΦðrÞΦ0ðrÞ�: ðA8Þ

The equation of motion (A4) for the gauge field ΦðrÞ may
be written as dQG=dr ¼ 0, while the equation of motion
(A6) for the blackening function hðrÞ may be written
as dQN=dr ¼ 0.

2Note also that the results for the QCD equation of state at
μB ¼ 0 obtained by the HotQCD Collaboration in [92] have now
finally converged to the results of the Wuppertal-Budapest
Collaboration [17].
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2. Numerical aspects and calculation of
thermodynamic quantities

In order to numerically solve the EMD equations of
motion and calculate physical observables we use two
different sets of coordinates, both of them defined in the
gauge where BðrÞ ¼ 0. We call coordinates with a tilde the
“standard coordinates,” while coordinates denoted without
a tilde will be called “numerical coordinates.” In the
standard coordinates the blackening function goes to unity
at the boundary, as usual, and one may calculate physical
quantities such as the temperature or the entropy density
using standard holographic formulas. On the other hand,
for numerically solving the EMD equations of motion one
needs to rescale these standard coordinates to specify
definite values for some of the Taylor coefficients obtained
by expanding the EMD fields near the black hole horizon,
which is necessary to initialize the numerical integration of
the equations of motion close to the horizon evolving them
up to boundary of the asymptotically AdS5 spacetime. This
type of rescaling defines the numerical coordinates, as
explained below.

a. Thermodynamical functions in the
standard coordinates

Let us first review the derivation of the holographic
formulas for the temperature (T), baryon chemical potential
(μB), entropy density (s), and baryon charge density (ρB) in
the standard coordinates (denoted with a tilde). As men-
tioned above, we work in the ~Bð~rÞ ¼ 0 gauge, in terms of
which the EMD fields (A2) take the form

d~s2 ¼ e2 ~Að~rÞ½− ~hð~rÞd~t2 þ d ~⃗x2� þ d~r2

~hð~rÞ ;

~ϕ ¼ ~ϕð~rÞ; ~A ¼ ~Aμd~xμ ¼ ~Φð~rÞd~t: ðA9Þ

Physical quantities in the gauge theory are usually obtained
from the far-from-the-horizon, near-boundary behavior of
the bulk fields. One may obtain the ultraviolet behavior
of these fields by first considering ~ϕð~r → ∞Þ → 0, Vð0Þ ¼
−12, fð0Þ ¼ const, ~hð~r → ∞Þ → 1, and then substituting
these results into the EMD equations of motion, solving
them close to the boundary ~r → ∞ in terms of ~Að~rÞ (with
the requirement that the background metric goes back to the
AdS5 geometry at the boundary) and ~Φð~rÞ. After this is
done, one may consider the backreaction of these fields into
the dynamics of the dilaton field, as one slowly starts to go
into the interior of the bulk, by plugging these results back
into the EMD equations of motion and solving them for
~ϕð~rÞ with the dilaton potential now truncated at quadratic
order. This backreacted process may be repeated to obtain
the following ultraviolet expansion of the EMD fields
close to the boundary in the standard coordinates, first
derived in [16]:

~Að~rÞ ¼ ~rþOðe−2ν~rÞ;
~hð~rÞ ¼ 1þOðe−4~rÞ;
~ϕð~rÞ ¼ e−ν~r þOðe−2ν~rÞ;
~Φð~rÞ ¼ ~Φfar

0 þ ~Φfar
2 e−2~r þOðe−ð2þνÞ~rÞ; ðA10Þ

where ν≡ d − Δ, d ¼ 4 being the number of spacetime
dimensions of the dual gauge theory. Δ ¼ ðdþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
Þ=2 is the scaling dimension of the gauge

theory operator dual to the bulk dilaton field and m is
the mass of the dilaton obtained by Taylor expanding the
dilaton potential close to the boundary. For the potential we
shall consider here (to be discussed in Sec. A 3) Δ < d and,
thus, the dilaton is dual to a relevant gauge theory operator
responsible for triggering a renormalization group flow
from an ultraviolet fixed point towards a nonconformal
state as one goes to the infrared regime of the quantum
gauge theory.
Now we are ready to obtain standard holographic

formulas for the thermodynamical variables. The temper-
ature in the gauge theory equals the Hawking’s temperature
of the black hole,

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g0~t ~tg

~r ~r 0
q

4π

������
~r¼~rH

Λ ¼ e ~Að~rHÞ

4π
j ~h0ð~rHÞjΛ; ðA11Þ

where we have introduced the energy scaleΛ (to be fixed in
Sec. A 3) to express T in physical units (correspondingly,
any gauge/gravity observable with energy dimension p will
be multiplied by Λp when expressed in physical units).
Note that such procedure, contrary to the one employed in
[16], naturally respects the fact that dimensionless combi-
nations of dimensionful observables should be independent
of the units used to measure them; this is clearly violated
when one introduces different energy scales to express
different dimensionful observables in powers of MeV as
done in [16], besides also artificially augmenting the
number of free parameters of the holographic model.
The entropy density in the gauge theory is holographically
associated with the area of the bulk black hole horizon by
means of the well-known Bekenstein-Hawking formula
[93,94],

s ¼ AH

4G5V
Λ3 ¼ 2π

κ25
e3 ~Að~rHÞΛ3: ðA12Þ

By following the holographic dictionary, one extracts the
baryon chemical potential in the gauge theory from the
boundary value of the bulk gauge field,

μB ¼ lim
~r→∞

~Φð~rÞΛ ¼ ~Φfar
0 Λ; ðA13Þ
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while the baryon charge density is obtained from the
boundary value of the radial momentum conjugate to the
bulk Maxwell field,

ρB ¼ lim
~r→∞

∂L
∂ð∂ ~r

~ΦÞΛ
3 ¼ QGð~r → ∞Þ

2κ25
Λ3 ¼ −

~Φfar
2

κ25
Λ3:

ðA14Þ

b. Thermodynamical functions
in the numerical coordinates

In order to numerically solve the EMD equations of
motion, we now shift to numerical coordinates defined by
the following procedure. We first consider near-horizon
Taylor expansions of the bulk EMD fields, XðrÞ ¼P∞

n¼0 Xnðr − rHÞn, where X ¼ fA; h;ϕ;Φg. Then, by
rescaling the holographic coordinate one may fix rH ¼ 0;
h0 ¼ 0 follows from the fact that the blackening function
has a simple zero at the black hole horizon; h1 ¼ 1 may be
fixed by rescaling the time coordinate while A0 ¼ 0may be
fixed by rescaling the spacetime coordinates parallel to the
boundary, ðt; x⃗Þ, by a common factor. Moreover, since dt
has infinite norm at the horizon, if ΦðrHÞ ¼ Φ0 ≠ 0 one
would obtain an ill defined Maxwell field at the black hole
horizon, which imposes Φ0 ¼ 0 for consistency. With the
near-horizon Taylor coefficients h0, h1, A0, and Φ0

determined as above, one may find the remaining Taylor
expansion coefficients as functions of two initial condi-
tions, (ϕ0, Φ1), by solving the EMD equations of motion
order by order in the aforementioned expansions.
One avoids the singular point of the differential equa-

tions at the horizon, rH ¼ 0, by starting the numerical
integration at a slightly shifted position, for instance,
at rstart ¼ 10−8. Additionally, second-order near-horizon
Taylor expansions may be employed, XðrstartÞ ¼ X0 þ
X1rstart þ X2r2start þOðr3startÞ, to numerically integrate the
EMD equations of motion from the shifted horizon rstart up
to the boundary, which may be numerically parametrized
by some ultraviolet cutoff, e.g., rmax ¼ 2, corresponding to
a value of the radial coordinate where the numerically
generated black hole backgrounds have already reached the
ultraviolet fixed point corresponding to the AdS5 space-
time. The six unknown second-order Taylor coefficients,
h2, A1, A2, ϕ1, ϕ2, and Φ2 may be then determined as
functions of the initial conditions (ϕ0, Φ1) by substituting
the second-order near-horizon expansions into the differ-
ential equations (A3)–(A7) and setting to zero each power
of rstart in the resulting algebraic system. The near-horizon
boundary conditions necessary to initialize the numerical
integration of the EMD equations of motion (A3)–(A6) are
then given by XðrstartÞ and X0ðrstartÞ.
We remark that for each possible value of the initial

condition ϕ0 there is a bound on the maximum value
allowed for the initial condition Φ1 above which the
numerical solutions fail to be asymptotically AdS5.

This bound may be derived by noting that in the
BðrÞ ¼ 0 gauge the equation of motion (A5) gives A00ðrÞ ¼
−ϕ0ðrÞ2=6 ≤ 0, implying that AðrÞ is a concave function of
the holographic coordinate. As done in [16,71], we restrict
our calculations in the present work to positive values of the
initial condition ϕ0, which is enough to generate a holo-
graphic phase diagram in close agreement to what is
uncovered in state-of-the-art lattice QCD simulations.
Taking also into account that for asymptotically AdS5
geometries the background function AðrÞ must increase for
large values of r, it turns out that AðrÞ must be a
monotonically increasing function. This implies that the
derivative of AðrÞ at the horizon must be positive, A1 > 0.
By plugging the near-horizon expansions into the con-
straint (A7) and evaluating it at the black hole horizon
one obtains

A1 ¼ −
1

6
½2Vðϕ0Þ þ fðϕ0ÞΦ2

1�: ðA15Þ
We work with a negative-definite dilaton potential VðϕÞ
and a positive-definite Maxwell-dilaton coupling fðϕÞ and,
since for asymptotically AdS5 spacetimes one must have
A1 > 0, Eq. (A15) leads to the following bound [16]:

Φ1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2Vðϕ0Þ
fðϕ0Þ

s
≡Φmax

1 ðϕ0Þ: ðA16Þ

As mentioned before, physical quantities on the gauge
theory side of the correspondence are usually calculated
from the near boundary, far from the horizon behavior of
the bulk fields. In the numerical coordinates, the ultraviolet
behavior of these fields reads [16]

AðrÞ ¼ αðrÞ þOðe−2ναðrÞÞ;
hðrÞ ¼ hfar0 þOðe−4αðrÞÞ;
ϕðrÞ ¼ ϕAe−ναðrÞ þOðe−2ναðrÞÞ;
ΦðrÞ ¼ Φfar

0 þΦfar
2 e−2αðrÞ þOðe−ð2þνÞαðrÞÞ; ðA17Þ

where αðrÞ ¼ Afar
−1rþ Afar

0 . Evaluation of the constraint

(A7) at the boundary gives Afar
−1 ¼ 1=

ffiffiffiffiffiffiffi
hfar0

q
. By equating

the radially conserved Gauss charge in Eq. (A8) evaluated
at the horizon and at the boundary, one finds

Φfar
2 ¼ −

ffiffiffiffiffiffiffi
hfar0

q
2fð0Þ fðϕ0ÞΦ1: ðA18Þ

For the calculations carried out here, one just needs to
obtain the behavior of a few ultraviolet expansion coef-
ficients of the EMD fields close the boundary. These
coefficients are hfar0 , Φfar

0 , Φfar
2 , and ϕA. One may reliably

fix hfar0 ¼ hðrmaxÞ andΦfar
0 ¼ ΦðrmaxÞ, since the blackening

function and the Maxwell field quickly reach the
values corresponding to a conformal theory. With hfar0

now determined, Φfar
2 may be obtained from Eq. (A18).
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The ultraviolet coefficient ϕA is more complicated to fix in
a reliable way because it multiplies an exponentially
decreasing function. In the present work, we employ the
same procedure originally devised in [77], which is more
general and efficient than the one used in [71]. Both
procedures give the same results for the dilaton potential
and Maxwell-dilaton coupling used in [71]; however, for
the dilaton potential and Maxwell-dilaton coupling used
in the present work (to be discussed in Sec. A 3), the
procedure used in [71] can only reliably cover a very
narrow region of the plane of initial conditions (ϕ0, Φ1),
while the numerical procedure used in [77] to obtain ϕA
provides a reliable covering of a much wider region. The
reliability in the extraction of ϕA is checked by comparing
the numerical results for the dilaton field close to the
boundary with its analytical near-boundary expansion
given in Eq. (A17). We use the ultraviolet fitting profile
ϕUV
fit ðrÞ ¼ ϕAe−ναðrÞ, defined within the adaptive interval

r ∈ ½rIRðϕ0;Φ1Þ ¼ ϕ−1ð10−3Þ; rUVðϕ0;Φ1Þ ¼ ϕ−1ð10−5Þ�,
to fit the numerically generated dilaton field ϕðrÞ close the
boundary, with the ultraviolet coefficient ϕA emerging as
the outcome of this fitting procedure.
Finally, in order to directly evaluate the thermodynam-

ical functions in Eqs. (A11)–(A14) in terms of the numeri-
cally generated black hole backgrounds, one needs to relate
the standard and the numerical coordinates of the BðrÞ ¼ 0

gauge. This may be done by setting ~ϕð~rÞ ¼ ϕðrÞ, d~s2 ¼
ds2, ~Φð~rÞd~t ¼ ΦðrÞdt and by comparing the ultraviolet
asymptotics given in Eqs. (A10) and (A17), from which it
follows that [16]

~r ¼ rffiffiffiffiffiffiffi
hfar0

q þ Afar
0 − lnðϕ1=ν

A Þ; ~Að~rÞ ¼ AðrÞ − lnðϕ1=ν
A Þ;

ðA19Þ

~⃗x ¼ ϕ1=ν
A x⃗; ~t ¼ ϕ1=ν

A

ffiffiffiffiffiffiffi
hfar0

q
t; ~hð~rÞ ¼ hðrÞ

hfar0

;

ðA20Þ

~Φð~rÞ ¼ ΦðrÞ
ϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q ; ~Φfar
0 ¼ Φfar

0

ϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q ;

~Φfar
2 ¼ Φfar

2

ϕ3=ν
A

ffiffiffiffiffiffiffi
hfar0

q : ðA21Þ

With this one finally obtains

T ¼ 1

4πϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q Λ; ðA22Þ

μB ¼ Φfar
0

ϕ1=ν
A

ffiffiffiffiffiffiffi
hfar0

q Λ; ðA23Þ

s ¼ 2π

κ25ϕ
3=ν
A

Λ3; ðA24Þ

ρB ¼ −
Φfar

2

κ25ϕ
3=ν
A

ffiffiffiffiffiffiffi
hfar0

q Λ3: ðA25Þ

3. Fixing the free parameters of the EMD model
via black hole engineering

In order to dynamically fix the free parameters of the
bottom-up EMD model, we match the holographic entropy
density and the second-order baryon susceptibility to the
corresponding lattice QCD results with 2þ 1 flavors and
physical quark masses calculated at μB ¼ 0. We already
have in Eqs. (A22)–(A25) what is needed to deal with the
equation of state. Regarding the dimensionless baryon
susceptibility χ2, one may derive a simple integral expres-
sion for it at vanishing baryon density (the details of this
derivation may be found in [16,71]),

χ2ðμB ¼ 0Þ ¼ 1

16π2
s
T3

1

fð0Þ R∞
rH

dre−2AðrÞf−1ðϕðrÞÞ ;

ðA26Þ

which is to be evaluated using the neutral black hole
backgrounds defined at μB ¼ 0 obtained by setting the
initial condition Φ1 to zero. In numerical calculations, one
replaces in Eq. (A26) rH ↦ rstart and ∞ ↦ rmax.
Each pair of initial conditions (ϕ0, Φ1) generates a

5-dimensional black hole geometry that is asymptotically
AdS5 corresponding, through the holographic dictionary
given by Eqs. (A22)–(A25), to a thermodynamical state
with definite values of (T, μB, s, ρB) in the strongly coupled
gauge theory. Then, by spanning many different values of
(ϕ0, Φ1) one generates an ensemble of charged black hole
backgrounds, each one of them corresponding to a point in
the phase diagram of the holographic model.
The free parameters of the model are fixed at μB ¼ 0 by

lattice QCD inputs for the equation of state and second-
order baryon susceptibility such that the EMD results for
these observables at vanishing baryon density are not to be
taken as predictions of the model—they stem from a
simultaneous dynamical fitting procedure used to constrain
the free parameters of the bottom-up construction. In this
context, we say that this procedure corresponds to holo-
graphic black hole engineering [78], i.e., black hole
solutions are engineered to display the relevant properties
of the QGP found on the lattice at μB ¼ 0. On the other
hand, everything calculated in the holographic model at
nonzero μB, as well as other physical quantities calculated
at μB ¼ 0 which were not used to fix the free parameters of
the EMD setup such as transport coefficients, follow as
bonafide predictions of our model.
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In this paper, we simultaneously match the holographic
results for the entropy density (s=T3) and second-order
baryon susceptibility ( χ2) to state-of-the-art lattice QCD
results for these quantities computed using 2þ 1 flavors
and physical quark masses from Refs. [17,18,91]. The other
thermodynamic quantities follow directly using well-
known thermodynamic identities. The free parameters of
the EMD holographic model fixed in this way are given by

VðϕÞ ¼ −12 coshð0.63ϕÞ þ 0.65ϕ2 − 0.05ϕ4 þ 0.003ϕ6;

κ25 ¼ 8πG5 ¼ 8πð0.46Þ; Λ ¼ 1058.83 MeV;

fðϕÞ ¼ sechðc1ϕþ c2ϕ2Þ
1þ c3

þ c3
1þ c3

sechðc4ϕÞ; ðA27Þ

where c1 ¼ −0.27, c2 ¼ 0.4, c3 ¼ 1.7, and c4 ¼ 100, with
the corresponding results displayed in Fig. 7 (the excellent
agreement obtained for χ2 was already shown in Fig. 1 of
the main text). We note that VðϕÞ, κ25, andΛwere originally
fixed in [77]. We also remark that the effective mass of the
dilaton field obtained from VðϕÞ, m2 ≈ −3.46, satisfies the
Breitenlohner-Freedman bound for massive scalar fields
defined on asymptotically AdS5 spacetimes [95,96]. The
scaling dimension of the gauge theory operator dual to the
dilaton field is Δ ≈ 2.73, which corresponds to a relevant
deformation as anticipated in previous sections.
We close this section by remarking that the holo-

graphic pressure was calculated here by integrating the
entropy density with respect to the temperature by using
the following approximation (this is actually a pressure
difference),

PðT; μB ¼ 0Þ ≈
Z

T

T low

dT̄sðT̄; μB ¼ 0Þ; ðA28Þ

where we took T low ¼ 70 MeV. Clearly, this approxima-
tion will no longer be adequate to determine the pressure
when T → T low. However, for the values of T we used to
present the EMD results for the pressure in this work, this
approximation gives fairly stable results. We checked, for
instance, that the results obtained using T low ¼ 10 MeV are
to a very good approximation the same obtained using
T low ¼ 70 MeV in (A28). The reason why we employ
T low ¼ 70 MeV throughout the present work to calculate
the pressure is because, for the grid of initial conditions we
were able to numerically generate covering the region of
the critical point of the EMD phase diagram (to be
discussed in the next section), there are not too many
points with T < 70 MeV. Points at lower values of T may
be generated by changing the borders of the rectangle of
initial conditions in the (ϕ0, Φ1) plane but, in this case, we
were not able to adequately cover the region of the (T, μB)
plane where the critical point of the model is located.

4. Holographic thermodynamics
at finite baryon density

Using Eqs. (A22)–(A25) one is able to calculate several
thermodynamical quantities at finite temperature and

baryon density. The internal and free energy densities at
finite μB are given by, respectively,

ϵðs; ρBÞ ¼ Ts − Pþ μBρB; ðA29Þ

F ðT; μBÞ ¼ −PðT; μBÞ ¼ ϵðs; ρBÞ − Ts − μBρB: ðA30Þ
From the above equations one obtains the following
differential relations:

dϵðs; ρBÞ ¼ Tdsþ μBdρB; ðA31Þ

dF ðT; μBÞ ¼ −dPðT; μBÞ ¼ −sdT − ρBdμB; ðA32Þ
such that at fixed μB,

dPðT; fixedμBÞ ¼ sdT; ðA33Þ
and the speed of sound squared at a fixed value of μB is
given by

c2sðT; μBÞ ¼
dP
dϵ

����
μB

¼
�
T
s
∂sðT; μBÞ

∂T
����
μB

þ μB
s
∂ρBðT; μBÞ

∂T
����
μB

�
−1
:

ðA34Þ
This equation was used to obtain the transition line
corresponding to the minimum of c2s used in the main
text. For completeness, we remind the reader that the
expression for the trace anomaly at finite μB includes the
effect of the baryon density

IðT; μBÞ ¼ ϵðT; μBÞ − 3PðT; μBÞ
¼ TsðT; μBÞ þ μBρBðT; μBÞ − 4PðT; μBÞ: ðA35Þ

For the results presented in this paper, we numerically
generated an ensemble containing altogether 2 × 106

charged black holes with initial conditions spanning the
rectangle defined by ϕ0 ∈ ½0.3; 5� and Φ1 ∈ ½0; 0.48�
Φmax

1 ðϕ0Þ. This rectangle of initial conditions is broad
enough to reveal the location of the critical point of the
present EMD setup and also to provide the necessary
information for the calculation of the higher-order baryon
susceptibilities presented in the main text. Figure 8 shows
how an equally spaced (ϕ0, Φ1) grid is mapped into an
irregular grid in the (T, μB) plane generated by the black
hole solutions used in this work.
In Fig. 2 of the main text, we show a comparison

between the holographic EMD predictions for the equation
of state at finite baryon density and state-of-the-art lattice
QCD results obtained for μB=T ≃ 2 from Ref. [20]: there is
very good agreement between both calculations, which
gives us confidence that the present EMD model can
provide the first reliable estimate for the location of the
critical endpoint in the baryon rich regime of the QCD
phase diagram.
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In Fig. 8 (right) we locate the CEP of the EMD
model at ðTCEP; μCEPB Þ ¼ ð89; 724Þ MeV. This estimate
was obtained by determining the location of the numerical
divergence of the second-order baryon susceptibility and
checking that the baryon charge density acquires an infinite
slope at the CEP, as expected.
In order to better understand how the location (and

ultimately the presence) of the critical point depends on
how the baryon density effects are encoded in the param-
eters of the model, we varied the parameters of fðϕÞ in such

a way to estimate the effect of the (very small) error bars
coming from the lattice calculation of χ2 [91]. A particular
example of this time consuming study is illustrated by the
red and blue lines in Fig. 9, shown in comparison to the
lattice points and the solid black curve corresponding to
our best set of parameters discussed around Eq. (A27).
The curve that is below the lattice results (dashed red line)
was created setting c1 ¼ −0.189 keeping the other param-
eters fixed in (A27), while the upper curve (dot-dashed blue
line) was obtained changing c2 to 0.36 keeping the other

(a) (b)

(c)

(e)

(d)

FIG. 7. Thermodynamics at μB ¼ 0 from lattice QCD results [17] compared to our holographic model (we also plot in red the older
calculations from [90] for a comparison with the latest results from [17]): (a) entropy density, (b) speed of sound squared, (c) energy
density ϵ, (d) pressure P, (e) trace anomaly I ¼ ϵ − 3P.
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parameters fixed. This analysis, together with other many
tests, has led to the estimate quoted in the main text that a
variation of the parameters of the model can shift TCEP by
at most 13% and μCEPB by at most 5%, if one requires that
the χ2 computed holographically is still broadly consistent
with the very small uncertainty in the lattice calculations.
We close this section by mentioning that our prediction

for the QCD critical point in the phase diagram is located at
a smaller T and larger μB than other previous estimates
using different approaches ranging from lattice QCD-based
analyses [97,98], an experimentally driven finite-size scal-
ing analysis [99], and Dyson-Schwinger models [100,101].
See the reviews [102,103] for other relevant references (in
this regard, [104–106] are examples of recent studies of
QCD critical phenomena in effective models). Finally,
we would like to remark that we did not consider

nonequilibrium effects [107] in our analysis of critical
phenomena and their possible signatures in heavy-ion
collisions. This has been the subject of many interesting
studies, e.g., [108–110], and it certainly requires further
investigation on the holographic side (for recent studies of
near and far-from-equilibrium dynamics in a holographic
top-down model at finite density with a critical point
see [111,112]).

APPENDIX B: RECONSTRUCTION OF THE QCD
EQUATION OF STATE AT FINITE μB

Due to how well the black hole engineering approach
reproduces the higher-order susceptibilities at μB ¼ 0
calculated using lattice QCD (see Fig. 2 of the main text),
it uniquely allows us to investigate different methods that
use this information to reconstruct the QCD equation of
state at finite μB as well as to find out how many
susceptibilities χn are needed to accurately reconstruct
the equation of state out to a certain value of μB=T.
While the order of the expansion was already discussed
in the main text surrounding Fig. 2 for the pressure and ρB,
it is also important to study different ways within which the
series itself may be reconstructed. For instance, a Padé
approximant generates poles in the complex μB=T plane
and it may have the advantage of showing early indications
of a critical point. The Padé reconstructions for ρBðT; μBÞ
including terms up to Oðμ3BÞ and Oðμ4BÞ are given by

ρBðT;μBÞ¼
χ2ðμBT Þþ 10ðχ4Þ2−3χ2χ6

60χ4
ðμBT Þ3

1−χ6ðμBT Þ2=ð20χ4Þ
;

ρBðT;μBÞ¼
χ2ðμBT Þþ 70ðχ4Þ3−42χ2χ4χ6þ3ðχ2Þ2χ8

42ð10ðχ4Þ2−3χ2χ6Þ ðμBT Þ3

1þ −7χ4χ6þχ2χ8
14ð10ðχ4Þ2−3χ2χ6Þ ð

μB
T Þ2þ 21ðχ6Þ2−10χ4χ8

840ð10ðχ4Þ2−3χ2χ6Þ ð
μB
T Þ4

;

ðB1Þ

respectively.

FIG. 8. The plot shows how an equally spaced (ϕ0,Φ1) grid is mapped into an irregular grid in the (T, μB) plane generated by the black
hole solutions used in this work. The critical point is depicted in both plots.
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FIG. 9. Examples that illustrate how variations of the model
parameters, performed to assess the effects of the small error bars
in the lattice calculations [91], change the holographic result for
the second-order baryon susceptibility. The dashed red and dot-
dashed blue curves are generated by varying either c1 and c2 in
(A27). The solid black curve represents our best set of parameters
used in this work that gives a CEP at TCEP ¼ 89 MeV and
μCEPB ¼ 724 MeV.
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In Fig. 10 (top left) a comparison between the directly
calculated baryon density, ρB, and the reconstructed ρB
using either the usual Taylor series or (B1) are shown. At
large μB the Taylor series converges more quickly to the
actual ρB and gives a reasonable approximation up to
almost μB=T ∼ 3. Looking at the ratios of the reconstructed
ρB to the actual ρB one can see that up to μB=T ∼ 2 both
methods work reasonably well and the error is at most only
1%–2%. However, when μB=T ∼ 3 for the Taylor series
there is less than a 10% error while the Padé approximation
has a significant deviation at μB=T ∼ 3 with an error up to
40% in the low temperature region. In this case, the Taylor

series is more adequate to reconstruct the equation of state
and this will be used in the calculations below.
Next, the truncation order of the Taylor series needed to

reconstruct χ2ðT; μBÞ and χ4ðT; μBÞ is studied, motivated
by the fact that higher-order susceptibilities are more
strongly affected by the critical point (χ2 diverges at the
critical point and, therefore, any potential peak displayed
by χ2 is relevant for investigations about critical phenom-
ena in QCD). In Fig. 11 (left) the reconstructed χ2 is shown
across different values of μB=T where there is a reasonable
good description up to μB=T ∼ 2 using terms up to Oðμ6BÞ.
The slope of μB=T ∼ 2 at Oðμ4BÞ artificially stiffens due to

FIG. 10. The reconstructed baryon density via either a Taylor series or a Padé approximation. In this figure the result including terms
up to χ8 (top left) is compared to the full baryon density calculated in our holographic model and also on the lattice [20]. The other panels
show the ratio of the reconstructed baryon density from the Taylor expansion and Padé approximation calculated up to χ8
over ρB calculated directly from the black hole model defined using three different values of μB=T ¼ 1 (top right), 2 (bottom left), and 3
(bottom right).

FIG. 11. Comparison between the full holographic results for χ2 and χ4 and their reconstructed Taylor series: χ2 at μB=T ¼ 1, 2, and
2.5 (left) and χ4 at μB=T ¼ 1 (right) calculated directly from the black hole model compared to the Taylor expansion including terms up
to Oðμ4BÞ and Oðμ6BÞ for χ2 and up to Oðμ2BÞ and Oðμ4BÞ for χ4.
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the limited number of terms in the Taylor series, which can
lead to misleading conclusions. At larger μB=T the curva-
ture is distorted even at Oðμ6BÞ. Even though it is not
surprising that the validity of the Taylor series for χ2 is
limited to a smaller region of μB=T compared to ρB, this
highlights the need to extend the current lattice calculations
to even higher-order susceptibilities. As a matter of fact,
the series for χ4 has an even smaller range in μB=T and
already struggles to reproduce the directly calculated χ4 at
μB=T ¼ 1, as shown in Fig. 11 (right). Therefore, Fig. 11
shows that additional higher-order susceptibilities at
μB ¼ 0 beyond χ8 are needed to simultaneously obtain
reasonable descriptions of χ2ðT; μBÞ and χ4ðT; μBÞ using
Taylor expansions for μB=T > 1.
Interestingly enough, the reconstructed ratio χ4=χ2

(normalized by its value at
ffiffiffi
s

p ¼ 200 GeV), along the
transition lines defined near Fig. 6 of the Methods, works
very well using terms up to Oðμ4BÞ down to energies as low
as

ffiffiffi
s

p ¼ 14.5 GeV, as shown in Fig. 12. However, it is also
clear from Fig. 12 that a truncation at Oðμ2BÞ can only
reasonably reconstruct the ratio χ4=χ2 in an extremely
limited range, which is not enough to cover all the values offfiffiffi
s

p
probed in the Beam Energy Scan at RHIC. While the

inclusion of terms up toOðμ4BÞ can be used to determine the
χ4=χ2 ratio at energies as low as

ffiffiffi
s

p ¼ 14.5 GeV, Fig. 12
clearly demonstrates that lattice QCD calculations will
need to determine this ratio at least up toOðμ6BÞ or higher to
describe large values of χ4=χ2 at low

ffiffiffi
s

p
.

APPENDIX C: ANALYSIS OF THE RADIUS OF
CONVERGENCE OF THE TAYLOR SERIES

Since we know where the critical point of the black hole
engineering model is located in the phase diagram, one can

use this information to determine that the radius of
convergence of the Taylor series is μCEPB =TCEP ∼ 8.1,
assuming that the critical point is the first singularity
encountered increasing μB=T. This allows us to directly
check some methods to determine the radius of conver-
gence using the results from the low order baryon suscep-
tibilities. For instance, in the recent paper [113], estimates
for the radius of convergence were made using the
quantities,

ρfn;mðTÞ ¼
�m!

n! χnðTÞ
χmðTÞ

�
1=ðm−nÞ

ðC1Þ

and

ρχn;mðTÞ ¼
�ðm−2Þ!

ðn−2Þ! χnðTÞ
χmðTÞ

�1=ðm−nÞ
ðC2Þ

obtained from a power series expansion in μB=T of the
pressure and the baryon density. These estimates neces-
sarily coincide when n and/or m go to infinity, giving the
radius of convergence of the series for a given T. However,
considering that only a few terms of the series are known in
practice, the expectation is that a consistent determination
of the critical point appears when the estimators above
agree with each or show some sign of convergence.
As a reminder, our critical point is at ðTCEP ¼ 89;

μCEPB ¼ 724Þ MeV so one may investigate if, at T ¼
89 MeV, ρfn;m ∼ ρχn;m ∼ 8.1 for the largest values of n
and m. Even though a calculation of the susceptibilities
at T ¼ 89 MeV (and μB ¼ 0) is numerically challenging
due to the extremely small size of χ2 at low temperatures,
one can at least use an upper bound for the susceptibilities
(see Methods), which is shown in Fig. 13 (top, left) together
with the corresponding (extremely) rough estimate of
ρχn;m ∼ 13, which gives μestB ∼ 1157 MeV and ρfn;m ∼ 7.5,
which then gives μestB ∼ 668 MeV. While ρfn;m is closer to
the true value for the radius of convergence of our critical
point, we note that the lower bound of the higher-order
susceptibilities could not be included here due to numerical
difficulties. More importantly, one can clearly see that there
is a large variation in ρfn;m and ρχn;m even for large values of
(n, m), which shows that no convergence has been
observed yet.
The other difficulty that is inherent in these calculations

is that the critical temperature TCEP is still unknown on the
lattice. Thus, if one were to scan other temperatures, one
could actually receive false positives where ρfn;m ∼ ρχn;m ∼
constant for the largest values of n and m available. For
instance, in Fig. 13 we show ρχn;m and ρfn;m for all
combinations of (n, m) up to 8 at T ¼ 110, 126, and
135 MeV. The choice T ¼ 135 MeV was motivated by the
results shown in [113] at the same temperature and, in fact,

FIG. 12. Ratio between χ4 and χ2 (normalized by its value atffiffiffi
s

p ¼ 200 GeV) along the transition line trajectory (shown in
Fig. 6 of the main text). A comparison is shown between the full
result for this ratio computed using black hole engineering and
the corresponding reconstructed results using a Taylor series
including terms up to Oðμ2BÞ and Oðμ4BÞ.
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we find that in our model the ratios have both the same
order of magnitude and the same qualitative behavior found
in [113]. At T ¼ 110 MeV our model exhibits a somewhat
flat behavior that leads to the estimate ρfn;m ∼ 3 such that
μestB ∼ 339 MeV. The case where T ¼ 126 MeV is the most
interesting since both estimators are nearly flat and they
seem to begin to converge with ρfn;m ∼ 4 and ρχn;m ∼ 2.7,
which give μestB ¼ 504 MeV and μestB ¼ 341 MeV, res-
pectively. In the absence of previous knowledge of the
exact critical temperature, the four temperature radius of
convergence scan using (n, m) up to 8 shown in 13 would
lead to the wrong conclusion that TCEP is closer to
T ¼ 126 MeV than to its actual value of 89 MeV.

Another expression was recently employed in [20] to
study the radius of convergence using ratios of baryon
number susceptibilities defined as

rPn ðTÞ ¼
���� ð2nþ 2Þð2nþ 1Þχ2nðTÞ

χ2nþ2ðTÞ
����1=2 ðC3Þ

for the pressure series, while for the baryon density series
one writes

rχnðTÞ ¼
���� 2nð2nþ 1Þχ2nðTÞ

χ2nþ2ðTÞ
����1=2: ðC4Þ

FIG. 13. Estimates for the radius of convergence, ρfn;m and ρχn;m, defined using the Taylor series expansions for the pressure and the
baryon density, as recently studied in [113], including terms up to ðn;mÞ ¼ 8 for our black hole model with T ¼ 89, 110, 126, and
135 MeV. For the T ¼ 89 MeV case, which corresponds to the value of the critical temperature of the CEP of the model, only the upper
bounds of χ6 and χ8 are taken into account.

FIG. 14. Estimates for the radius of convergence, rPn and rχn,
used in [20], considering terms up to n ¼ 3 using our black hole
model (only the upper bounds of χ6 and χ8 are shown).

FIG. 15. χ2ðT; μB ¼ 416 MeVÞ at the smallest value of μB
where a maximum in χ2 is numerically found compared to the
Taylor series reconstructed χ2ðT; μB ¼ 416 MeVÞ including
terms of order Oðμ2BÞ, Oðμ4BÞ, and Oðμ6BÞ.
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Again, the radius of convergence of both series are the same
being formally determined by the limit n → ∞. The results
of such an analysis involving the higher-order baryon
susceptibilities of our model are shown in Fig. 14.
Again, due to the critical point being at a low value in
temperature we are only able to include the upper bound of
our χ6 and χ8. Up to n ¼ 3 one finds rPn ∼ 2.7rχn, however,
the results are certainly closer to each other than for n ¼ 2.
Additionally, rχn computed at n ¼ 2 is found to be very
close to the correct radius of convergence. However, this is
most likely just a coincidence since the inclusion of terms
up to n ¼ 3 changes the result dramatically.
Our results indicate that, unfortunately, higher-order

terms would be needed for this estimate of the radius of
convergence to be applicable (a similar conclusion was
found in other models [114]). However, we do find the
close convergence of rPn to rχn for n ¼ 3 to be promising.
One should note that the previously mentioned lattice QCD
results for the radius of convergence focused on values of T
significantly larger than our TCEP ¼ 89 MeV. Due to the
numerical difficulties faced by lattice QCD calculations at
low temperatures, if the QCD critical point is indeed
located at similar values of T as our TCEP, it would be a
challenge for lattice QCD practitioners to employ this
approach at low enough temperatures using high enough
orders of baryon susceptibilities to realistically locate the
critical point.
Perhaps a better indicator of the presence of a critical

point is the formation of a peak in χ2, which would
eventually evolve into a divergence at large enough μB.

By taking different slices of χ2ðT; μB ¼ constantÞ, one can
find the location of the maximum of χ2 with respect to T. In
our calculations a maximum in χ2 occurs first at μB ¼
416 MeV and T ¼ 164.5 MeV, which is shown in Fig. 15.
The advantage of looking for the development of a
maximum is that it can occur at higher temperatures that
are more easily calculated within lattice QCD.
Unfortunately, even with the inclusion of terms up to
Oðμ6BÞ it is not yet possible to reasonably reconstruct
χ2ðT; μB ¼ 416 MeVÞ. However, this may be possible
already with the addition of higher-order terms such as
Oðμ8BÞ or Oðμ10B Þ. Of course, one could question if a peak
could be formed in χ2ðT; μB ¼ constantÞ that either
remains constant across μB or eventually disappears (not
leading to a divergence). This possibility does not occur in
our calculations and, to the best of our knowledge, this is
not displayed in other effective models of QCD at finite
temperature and density.
Due to the divergence of χ2 at the critical point, the peak

of χ2 and its inflection point must eventually converge. In
Fig. 16 (left) we first determine the growth of χ2 at its peak,
which is shown to increase more and more quickly as μB
increases. We then compare the difference between the
position of the inflection point and the peak of χ2 in Fig. 16
(right). Indeed, we see that they converge quickly as one
approaches the critical point. Numerically, these quantities
are difficult to calculate precisely close to the critical point
but up to μB ¼ 625 MeV we already see a clear conver-
gence, expected to continue towards larger values of μB.
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