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In the context of the interaction between the electromagnetic field and a dielectric dispersive lossless
medium, we present a nonlinear version of the relativistically covariant Hopfield model, which is suitable
for the description of a dielectric Kerr perturbation propagating in a dielectric medium. The nonlinearity
is introduced in the Lagrangian through a self-interacting term proportional to the fourth power of the
polarization field. We find an exact solution for the nonlinear equations describing a propagating
perturbation in the dielectric medium. Furthermore, the presence of an analogue Hawking effect, as well as
the thermal properties of the model, are discussed, confirming and improving the results achieved in the
scalar case.
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I. INTRODUCTION

The spurring suggestion that Hawking radiation [1,2]
could be produced in a nongravitational physical context
[3], has triggered the investigation of a plethora of physical
systems able to mimic the basic kinematics at the root of the
thermal pair production associated with a black hole [4,5].
Among these, a very interesting option is represented by
electromagnetic analogous systems in dielectrics, in which
an electromagnetic pulse is made propagate and interact
within a dispersive nonlinear material. Due to the Kerr
effect [6,7] the pulse generates a refractive index perturba-
tion, whose properties can be adjusted to give rise to
(black and white hole) horizons for the electromagnetic
field, as first discovered in [8] and then discussed in several
papers [9–18].
In order to study this system in the presence of

dispersion, as well as the analogue Hawking radiation that
it could produce, a model which describes the quantum
interaction between the electromagnetic field and the matter
field is needed. An interesting starting candidate for this
purpose is the Hopfield model [19,20]. We recall that the
Hopfiel model describes matter simply as a set of resonant
oscillators, nonetheless it can faithfully reproduce the
dispersive behavior of the electromagnetic field thanks
to the interaction with the dipole field [21], indeed yielding
the correct (Sellmeier) dispersion relations. As far as we are
interested in frequencies far from the absorption region,
we do not take into account absorption in our discussion,
which would require a much more involved approach.

To analyse the effects generated by the presence of an
inhomogeneous perturbation propagating in the medium,
one has to deal with different inertial frames. To this aim a
relativistically covariant version of the model was devel-
oped in [22]. In the current paper, we base our analysis on a
further refinement of the relativistically covariant Hopfield
model, dubbed the Hopfield-Kerr model, in which a self-
interacting polarization term is added to the Lagrangian to
describe the intrinsic nonlinear effects of the dielectric
medium. This work represents an improvement with
respect to [23], in which a perturbative analysis of photon
production was made through the quantization in the lab
frame in a simple fixed gauge, and to [16], in which a
nonperturbative deduction of thermality was accomplished
in a simplified scalar model. See also [24,25] for an exact
quantization of the covariant Hopfield model. We even-
tually stress that the Hopfield-Kerr model is a more
rigorous and fundamental reference model with respect
to the ones existing in the literature concerning dielectric
black holes, particularly because it automatically includes
optical dispersion and the nonlinear effects of the medium.
The main goal of this paper is the description of the

thermal behavior of the Hopfield-Kerr model, in order to
complement and generalize the results found in [16,18].
The scheme of the paper is as follows. In Sec. II, we

study the quantum fluctuations living on a generic back-
ground solution of the nonlinear equations of motion,
finding out that our model gives rise to a negative Kerr
effect on the physical spectrum. Besides, in Sec. II B, an
exact solitonic solution for the equations of motion of the
Hopfield-Kerr model is reported. In Sec. III, the analysis
concerning the thermal behavior of the model is undertaken
following the seminal procedure introduced by Corley [26].
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The results found for the temperature are in full agreement
with [16] and an identification of the long-wavelength
modes is presented. The paper is also provided with some
appendices. In Appendix A, we talk over the different
possible configurations available in the near-horizon analy-
sis of the equations of motion. In Appendix B, we show the
relation between the microscopic parameters of the model
and the physical ones. In Appendix C, we derive approxi-
mated solutions of the physical dispersion relation in the
linear region, while in Appendix D coalescence of branch
points in the limit as k0 → 0 is also discussed.
As regards the notation, we use natural units throughout

the paper, except when explicitly expressed, as well as the
mostly minus signature. We shall use bold font, e.g. x or k,
for the spacetime four-vectors, whose components are xμ or
kμ, whereas the spatial components will be indicated as x⃗ or
k⃗. We shall use ω ≔ vμkμ for the frame-invariant laboratory
frequency, and we will use k2, for example, meaning the
scalar k2 ¼ k · k.

II. THE RELATIVISTIC HOPFIELD-KERR
MODEL AND AN EXACT SOLUTION

Let us consider the relativistic Hopfield model with a
single polarization field with resonance frequency ω0, as
presented in [22]. The Lagrangian density is

L ¼ −
1

16π
FμνFμν −

1

2χω2
0

ðvρ∂ρPμÞðvσ∂σPμÞ þ 1

2χ
PμPμ

−
g
2
ðvμPν − vνPμÞFμν þ B∂μAμ þ ξ

2
B2: ð1Þ

We now add a nonlinear self interaction (Kerr non-
linearity) modifying the Lagrangian to

LKerr ¼ −
1

16π
FμνFμν −

1

2χω2
0

ðvρ∂ρPμÞðvσ∂σPμÞ

þ 1

2χ
PμPμ −

g
2
ðvμPν − vνPμÞFμν þ B∂μAμ

þ ξ

2
B2 − σμνσρPμPνPσPρ: ð2Þ

The totally symmetric rank-four tensor σ has the prop-
erty that the contraction of any of its indices with v
produces a vanishing result.1 We now assume homogeneity
and isotropy of the tensor, which means that it is constant
and invariant under the action of the little group Gv: the
subset of the proper Lorentz transformations leaving v
invariant. Since v is timelike, this is a compact group
isomorphic to SOð3Þ. From the representation theory it
follows immediately that the space of rank four tensors

invariant under Gv is a three-dimensional vector space of
the form

σμνσρ ¼ σ1dμνdσρ þ σ2dμσdνρ þ σ3dμρdνσ; ð3Þ

where

dμν ¼ vμvν − ημν: ð4Þ

Since σ is totally symmetric, one must have σ1 ¼ σ2 ¼
σ3 ≕ σ=4!. Hence, taking into account the constraint
vμPμ ¼ 0,

σμνσρPμPνPσPρ ¼ σ

8
ðP2Þ2; ð5Þ

where P2 ≔ P · P ¼ PμPμ. The equations of motion then
take the form

1

4π
ðημν□ − ∂μ∂νÞAν þ gðημνvρ∂ρ − vμ∂νÞPν − ∂μB ¼ 0;

ð6Þ

gðημνvρ∂ρ−vν∂μÞAν−
1

χω2
0

ðω2
0þðvρ∂ρÞ2ÞPμþ

σ

2
P2Pμ¼0;

ð7Þ

∂μAμ þ ξB ¼ 0; ð8Þ

together with the defining constraint vμPμ ¼ 0.

A. Linearized quantum theory

We are now interested in studying the equations of
motion for the fluctuations lying on a given background
solution of the Hopfield-Kerr equations of motion. This can
be done through a linearization of the Lagrangian. If we
define the quantum fluctuations of the fields with respect to
a background solution to be Â, P̂ and B̂, so that

A ¼ A0 þ Â; P ¼ P0 þ P̂; B ¼ B̂; ð9Þ

where ðA0;P0; B0 ¼ 0Þ represent the generic background
solution, the Lagrangian density can be written as

LKerr ¼ −
1

16π
F̂μνF̂

μν −
1

2χω2
0

ðvρ∂ρP̂μÞðvσ∂σP̂
μÞ

þ 1

2χ
P̂μP̂

μ −
g
2
ðvμP̂ν − vνP̂μÞF̂μν þ B̂∂μÂ

μ

þ ξ

2
B̂2 −

σ

4
ðP2

0P̂
2 þ 2ðP0 · P̂Þ2Þ

−
σ

2
P̂2ðP̂ · P0Þ −

σ

8
P̂2P̂2: ð10Þ

1Remember that v · v ¼ vμvμ ¼ 1.
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It is convenient to consider a background solution which,
for the polarization field, takes the form

P0ðxÞ ¼ ζP0ðxÞ; ð11Þ

where ζ satisfies

ζ ≔
�
0

ζ⃗

�
; v⃗ · ζ⃗ ¼ 0; ζ⃗2 ¼ 1: ð12Þ

The linearization is undertaken by dropping out the last two
terms in LKerr:

Llin ¼ −
1

16π
F̂μνF̂

μν −
1

2χω2
0

ðvρ∂ρP̂μÞðvσ∂σP̂
μÞ

þ 1

2χ
P̂μP̂

μ −
g
2
ðvμP̂ν − vνP̂μÞF̂μν þ B̂∂μÂ

μ

þ ξ

2
B̂2 þ σ

4
P2
0ðP̂2 − 2ðζ · P̂Þ2Þ: ð13Þ

There are three polarizations for P̂ (which satisfies
P̂ · v ¼ 0): one parallel and two perpendicular to ζ. We
can treat these modes separately and write

ðP̂2 − 2ðζ · P̂Þ2Þ ¼
�
3P̂2; if P̂ ∥ ζ
P̂2; if P̂⊥ ζ

: ð14Þ

This seems to suggest that the shift from the linear Hopfield
Lagrangian to the Hopfield-Kerr linearized Lagrangian
could be equivalently achieved via the simple modification:

1

χ
↦

1

χ
þ δχðxÞ; ð15Þ

while keeping χω2
0 fixed. This is implemented by introduc-

ing a modified space-dependent2 susceptibility and resonant
frequency:

χ̆ðxÞ ≔ χ

1þ χδχðxÞ ; ð16Þ

ω̆2
0ðxÞ ≔ ω2

0ð1þ χδχðxÞÞ; ð17Þ

where, in general, δχðxÞ depends on the polarization:

δχðxÞ ¼
(

3
2
σP2

0; if P̂ ∥ ζ
1
2
σP2

0; if P̂⊥ ζ
: ð18Þ

Notice that, independently from the specific solution, δχðxÞ
is always positive.

Now we are interested in analysing how the refractive
index changes due to the propagating perturbation.
For the transverse modes, the dispersion relation in the

lab frame3 (see Eq. (46) for the DR in a general frame; for a
visual representation, see Fig. 1) is

k⃗2 ¼ ω2

�
1 −

4πg2χω2
0

ω2 − ω2
0

�
; ð19Þ

whose gradient gives

k⃗ ¼ gradk⃗ωω

�
1þ 4πg2χω4

0

ðω2 − ω2
0Þ2
�
; ð20Þ

so that the phase and group velocity in the lab frame are

νf ¼ jν⃗fj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − ω2

0

ω2 − ω̄2

s
; ð21Þ

FIG. 1. The thick black lines represent the dispersion relations
[see Eq. (46)] as seen in the lab frame, shown for positive
frequencies and wave-numbers. The grey lines represent the axes
of a frame boosted with velocity v. There are two positive
branches for the transverse dispersion relation (curved thick
lines): 0 ≤ ω < ω0 and ω̄ ≤ ω < ∞. From the expression of the
group velocity we see that for any given value of νg, there are
always two corresponding positive values ω1 and ω2, one for each
positive branch. These points determine the superluminal and
subluminal regions, with respect to the given group velocity.

2From now on we will use the accent ˘ to denote a spacetime
dependence on the given parameter. 3In the lab frame, it holds ω ¼ k0.
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νg ¼ jν⃗gj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4πg2χω2

0

ω2−ω2
0

r

1þ 4πg2χω4
0

ðω2−ω2
0
Þ2

¼ jω2 − ω2
0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̄2 − ω2Þðω2

0 − ω2Þ
p

ω4 − 2ω2
0ω

2 þ ω̄2ω2
0

; ð22Þ

where we have defined ω̄ ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πg2χ

p
.

The phase refractive index is

nf ¼
1

νf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πg2χω2
0

ω2 − ω2
0

s
: ð23Þ

In the presence of a background solution, the new index
becomes

n̆f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πg2χ̆ω̆2
0

ω2 − ω̆2
0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πg2χω2
0

ω2 − ω2
0ð1þ χδχðxÞÞ

s
:

ð24Þ

From here we see that δnf ¼ n̆f − nf is negative for both
ω < ω0 and ω > ω̄; i.e., the perturbation induces a
decrease in the phase refractive index on both branches
(see the following discussion).
For the group velocity,4 we get

ng¼

8>><
>>:

ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2−ω̄2Þðω2−ω2

0
Þ

p − ω2
0

ω2−ω2
0

ffiffiffiffiffiffiffiffiffiffi
ω2−ω̄2

ω2−ω2
0

q
; ω> ω̄;

− ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω̄2−ω2Þðω2

0
−ω2Þ

p þ ω2
0

ω2
0
−ω2

ffiffiffiffiffiffiffiffiffiffi
ω̄2−ω2

ω2
0
−ω2

q
; ω<ω0:

ð25Þ

Varying χ and ω2
0 as above, the invariance of χω2

0 implies
the invariance of ω̄2 − ω2

0 as well. By taking the derivative
of Eq. (25) with respect to ω2

0, keeping ω̄2 − ω2
0 fixed, one

easily finds that such derivative is negative in both
branches. Since δχðxÞ is positive we again get the same
result as for the phase refractive index.
This means that the relativistic linearized Hopfield-Kerr

model realizes a negative Kerr effect5 on both branches of
the transverse spectrum (we assume the coupling constant g
to be positive), both for the phase refractive index and for
the group refractive index.
The aforementioned behavior could be amended by

assuming σ < 0, thus obtaining the expected positive
Kerr effect. The evident drawback is that the energy in
the latter case would be unbounded from below. Still, we
can stress that the original potential for the polarization
field could also be corrected by a sixth-order perturbation

with the right sign in order to obtain again an energy
bounded from below. This point of view is shared by the
classical anharmonic model for centrosymmetric media,
as discussed e.g. in [27], where the potential energy
associated with the restoring force acting on an electron
involves a negative quartic term, which would be respon-
sible for an energy unbounded from below. In that case,
one assumes that the electronic displacement is small in
such a way that higher-order terms (which are implicitly
assumed) are safely negligible. We limit ourselves to
consider our ansatz for a quartic polarization term as the
lowest-order correction to the polarization field. We can
notice also that the original behavior can be reproduced
in metamaterials, with the only requirement that the
Kerr index be negative. Much more interestingly, this
behavior is the one required for the so-called “black hole
lasers” [28–30].
It is to say that, for simplicity, we called this phenome-

non a Kerr effect. Notice however that for small δχðxÞ
the variation of the refractive index is proportional to P2

0

rather than to the intensity of the electromagnetic signal.
Nevertheless, for the solitonic solution we are to introduce
in the next subsection, Eq. (39), we have that P2

0 ∝ B⃗2 and
we can talk about Kerr effect in a proper way.

B. An exact solitonic solution

It would be interesting to find a particular background
solution of the nonlinear equations of motion, able to
describe the propagation of a laser pulse in a nonlinear
dielectric medium. We expect the profile of the laser pulse
to evolve in time very slowly with respect to the pair-
creation process we are interested in. Hence we can
concentrate our attention on static solutions in the comov-
ing frame, of the form

Pμ ¼ ζμfðα⃗ · x⃗Þ; ð26Þ

where α⃗ is a constant vector and ζ is as reported in Eq. (12).
We will also impose B ¼ 0, so that ∂μAμ ¼ 0, and set
z ≔ α⃗ · x⃗. This way, the equations of motion take the form

1

4π
□Aμ þ gζμv⃗ · α⃗f0ðzÞ − gvμα⃗ · ζ⃗f0ðzÞ ¼ 0; ð27Þ

gvρ∂ρAμ−
1

χ
ζμfðzÞ−

1

χω2
0

ðα⃗ · v⃗Þ2ζμf00ðzÞþ
σ

2
ζ2ζμf3ðzÞ¼0:

ð28Þ

The second equation suggests to take Aμ ¼ ζμhðzÞ, while
the first one suggests to take α⃗ · ζ⃗ ¼ 0, which corresponds
to B ¼ 0. Then we have

−
1

4π
α⃗2h00ðzÞ þ gv⃗ · α⃗f0ðzÞ ¼ 0; ð29Þ

4ng ¼ 1
νg
.

5By negative Kerr effect we mean a decrease in the refractive
index of the medium in response to the passage of an electro-
magnetic pulse.
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gv⃗ · α⃗h0ðzÞ − 1

χ
fðzÞ − 1

χω2
0

ðα⃗ · v⃗Þ2f00ðzÞ þ σ

2
ζ2f3ðzÞ ¼ 0:

ð30Þ

Focusing on the particular solution α⃗ ¼ αv⃗, we can
integrate the first equation, yielding6

h0ðzÞ ¼ 4π
g
α
fðzÞ; ð31Þ

and insert it into the second one, obtaining

4πg2v⃗2χfðzÞ − fðzÞ − α2

ω2
0

ðv⃗2Þ2f00ðzÞ þ σ

2
χζ2f3ðzÞ ¼ 0:

ð32Þ

This can be integrated and rewritten in the form

αv⃗2
f0ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4πg2v⃗2χ−1Þf2ðzÞþ σ
4
χζ2f4ðzÞ−K

q ¼�ω0; ð33Þ

where K is an integration constant.
If we now assume that the condition 4πg2v⃗2χ > 1 holds,

we can also assumeK ¼ 0, so that the integral considerably
simplifies. Indeed, in this case, we can write

αv⃗2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ − 1

p f0ðzÞ=f2ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

f2ðzÞ −
σχjζ2j

4ð4πg2v⃗2χ−1Þ

q ¼ �ω0; ð34Þ

which can be integrated to

fðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ − 1

σχjζ2j

s
sech

�
ω0

αv⃗2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ − 1

q
ðz − z0Þ

�
:

ð35Þ

Thus we have found that the Hopfield-Kerr model admits
an exact solitonic solution, which, in the comoving frame
and for the polarization field, takes the form

PðxÞ¼2ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ−1

σχ

s
sech

�
ω0

v⃗2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ−1

q
v⃗ ·ðx⃗− x⃗0Þ

�
;

ð36Þ

where ζ is as defined in Eq. (12).
It is interesting to underline that the electric field

associated with this solution in the comoving frame is
zero, whereas the magnetic field is

B⃗ðx⃗Þ ¼ 8πg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ − 1

σχ

s

× sech

�
ω0

v⃗2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2v⃗2χ − 1

q
v⃗ · ðx⃗ − x⃗0Þ

�
ζ⃗ × v⃗: ð37Þ

This fact is important for a correct interpretation of the
refractive index modification induced by this solitonic
solution as a Kerr effect, as outlined at the end of the
previous subsection.
Note that for standard transparent materials the Sellmeier

coefficient 4πg2χ is typically smaller than 1. This means
that the solitonic solution, Eq. (36), is acceptable only as
long as jv⃗j is large enough. If we define ν⃗ to be the velocity
of the comoving frame with respect to the dielectric frame,
i.e. v⃗2 ¼ γ2ν⃗2, we have as a condition for the existence of
the solitonic solution

jν⃗j > νc ≔
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4πg2χ
p : ð38Þ

It is not obvious whether and why we should expect the
existence of the solitonic solution only for velocities (of
the solitonic envelope) larger than the critical value νc. It
may be related to the influence of the soliton on the
refractive index.
From now on we will only consider positive velocities

parallel to the z-axis, in particular we will set7 v ¼
ðγ; 0; 0;−γvÞ, where v will be the absolute value of the
chosen frame’s velocity with respect to the dielectric frame.
In turn, this implies that the background solution will only
depend on the spatial variable z.
For later convenience, according to the foregoing con-

ventions, we rewrite the solitonic solution, Eq. (36), in the
form

P0ðzÞ ≔ ζτsechðβzÞ; ð39Þ

where we have defined

τ ≔ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2γ2v2χ − 1

σχ

s
; ð40Þ

β ≔
ω0

γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πg2γ2v2χ − 1

q
; ð41Þ

6We set the integration constant to zero.

7vT ¼ ðv0; 0; 0; v3ÞT ¼ Λv

0
B@

1

0

0

0

1
CA⇒ v3 ¼ −γv and v0 ¼ γ,

where v > 0 is the boost velocity.
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where τ corresponds to the amplitude of the soliton and
where β is inversely proportional to the width of the solitonic
envelope. This means that in the limit ν → νþc the solitonic
solution flattens on the real line and fades away.

III. ON THE THERMALITY OF THE
HOPFIELD-KERR MODEL

We are now interested in the thermal properties of the
Hopfield-Kerr model, independently from the particular
background solution adopted. Anyway, in order to simplify
the calculations, we restrict ourselves to background
solutions propagating only along the z-axis.
The technique used to infer thermality for our model is

based on the seminal work [26], as well as on the refined
method proposed in [31]. The basic idea is not very
different from the staple technique used to solve the
Schroedinger equation in a smooth space-dependent poten-
tial, which exhibits a turning point [32].
On the one hand, we consider the equations of motion far

from the inhomogeneity, which are approximately linear.
We exploit the multicomponent WKB method (see [33]) to
show that the solutions of these equations are super-
positions of plane waves, which are linked to the solutions
of the asymptotic physical dispersion relation. Through this
general analysis it is also possible to gauge the asymptotic
behavior of these modes’ amplitudes, going first-order in
the WKB expansion. Since we are interested in matching
these asymptotic solutions with the ones valid near-
horizon, where the WKB approximation breaks down,
we have to push this WKB analysis as close to the horizon
as possible.
On the other hand we study the near-horizon sol-

utions, namely the solutions of the equations of motion
in which the potential has been linearized near the
horizon. These are obtained through a transformation of
the equations of motion to the Fourier space. Following
the foregoing argument, we are interested in consider-
ing these solutions as far to the horizon as possible, to
the limit of their validity range. If the variation of the
refractive index on the turning point is slow enough,
there always exists a so-called “linear region” in which
both the near-horizon analysis and the WKB analysis
hold, allowing the matching between their solutions to
be undertaken.
In this approximation, the near-horizon solutions corre-

sponding to the short-wavelength modes can be used to
estimate the temperature of the model, for in this case the
monotone branch mode decouples from the other modes,
giving rise to subdominant scattering phenomena with
respect to the Hawking emission (see Appendix C).
Moreover we show that a better identification of the two
long-wavelength modes with respect to the ones present
in the literature is feasible. Nevertheless we put off the
delicate issue of the grey-body factor computation to a
future work.

A. Far horizon WKB analysis

The linearized equations of motion of the Hopfield-Kerr
model, in the Feynman gauge (ξ ¼ 4π) and without writing
the equation for the field B̂, are

1

4π
□Âμ þ gðημνvρ∂ρ − vμ∂νÞP̂ν ¼ 0;

gðημνvρ∂ρ − vν∂μÞÂν −
1

χω2
0

ðvρ∂ρÞ2P̂μ −
1

χ̆ðzÞ P̂μ ¼ 0:

ð42Þ

In order to solve this PDE system, we firstly have to
separate variables, to get an ODE system, secondly we have
to implement the WKB method (see [16,33]). This can be
done by looking for solutions of the form

AðxÞ ¼ exp−
i
ℏ

�
k0t − kxx − kyy −

Z
kzðzÞdz

�

×

�
A0ðzÞ þ

ℏ
i
A1ðzÞ þOðℏ2Þ

�
;

PðxÞ ¼ exp−
i
ℏ

�
k0t − kxx − kyy −

Z
kzðzÞdz

�

×

�
P0ðzÞ þ

ℏ
i
P1ðzÞ þOðℏ2Þ

�
; ð43Þ

Now we proceed with the expansion of the equations of
motion in orders of ℏ.

1. Zeroth order

At this order, the equations of motion take the form:

Mð0Þ

�
A0

P0

�

≔

 
− k2

4π δμν −igðωδμν − vμkνÞ
−igðωδμν − kμvνÞ 1

χω2
0

ðω2 − ω̆2
0ðzÞÞδμν

!�
Aν
0

Pν
0

�

¼
�
0

0

�
; ð44Þ

where ω̆2
0ðzÞ is as in Eq. (17). From the compulsory

cancellation of the determinant we have

detMð0Þ ¼ −
ðk2Þ2
χ4ω8

0

ðω2 − ω̆2
0ðzÞÞ4

�
k2

4π
−

g2χω2
0ω

2

ω2 − ω̆2
0ðzÞ

�
2

×

�
1

4π
−

g2χω2
0

ω2 − ω̆2
0ðzÞ

�
¼ 0; ð45Þ

from which we deduce the new space-dependent dispersion
relations (DRs). They are very similar to the linear-
model DRs [24], but with the fundamental modifications
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ω0 ↦ ω̆0ðzÞ and χ ↦ χ̆ðzÞ. The DR we are interested in is
the transverse (or physical) one:

k2

4π
−

g2χω2
0ω

2

ω2 − ω̆2
0ðzÞ

¼ 0: ð46Þ

Since this is a quartic equation, its exact solutions are too
involved to be useful. Hence, we will limit to the solutions
of the physical DR approximated in the large-η limit,
where η is defined below in Eq. (65) (see also Appendix C).
Yet, remember we are interested in the linear region
behavior of the modes. In this region (as well as in the
near-horizon region), the space-dependent refractive index,
nðzÞ ≔ n̆fðzÞ, defined in Eq. (24), can be linearized near
the horizon, i.e. nðzÞ≃ 1

v − jκjz. Without loss of generality,
we have shifted the z variable in order for the horizon to be
displaced at z ¼ 0 and we have defined8 κ ≔ dn

dz ð0Þ, which
is negative on the black hole horizon. Still, since the WKB
analysis breaks down near the horizon, we are not allowed
to move too close to it. At any rate, for small enough jκj, a
linear region in which both the linearization and the
asymptotic WKB analysis are valid exists [see Eq. (78)].
The approximated solutions of the physical DR are
reported in Eqs. (C7) to (C9). The integral of such solutions
represents the behavior of the modes’ phases in the trans-
verse DR, which are reported in table I.
Since we are interested in the matching of such asymp-

totic solutions with the near-horizon ones, we are also
interested in the zeroth-order amplitudes of the fields.
Given that the zeroth-order equation leaves one solution
undetermined (Mð0Þ has to be considered on shell), in order
to obtain such amplitudes we have to go first order in the
expansion.

2. First order

The equations of motion restricted to the first order in
terms of ℏ take the form

Mð1Þ

�
A0

P0

�
þMð0Þ

�
A1

P1

�
¼ 0; ð47Þ

where (cf. with matrix (52) of [16])

Mð1Þ ¼
 
− i

4πδμν½ð∂zkzÞþ2kz∂z� −g½γvδμνþvμδν3�∂z

−g½γvδμνþvνδμ3�∂z − iγv
χω2

0

δμν½ð∂zωÞþ2ω∂z�

!
:

ð48Þ

In order to find the zeroth-order amplitude for the fields, we
follow the theory of the multicomponent WKBmethod (see
e.g. [33]).
As shown in [24], on the transverse branch, Mð0Þ admits

two linearly independent right null vector fields, which
are

ρ1 ¼
 

e1

igω χω2
0

ω2−ω̆2
0

e1

!
; ρ2 ¼

 
e2

igω χω2
0

ω2−ω̆2
0

e2

!
; ð49Þ

where ei, i ¼ 1, 2, are four-vectors satisfying ei·k ¼ 0 and
ei·v ¼ 0. There are obviously also two linearly independent
left null vector fields, which will be named λi, i ¼ 1, 2,
which are the transposes of the right null vector fields. The
zeroth-order amplitude can be developed over the basis
made by ρ1, ρ2 and other six linearly independent not-null
vector fields, i.e. ðA0

P0
Þ ¼P8

k¼1 ρkak. Yet, since Eq. (44)
must hold, we have that ak ¼ 0; ∀k ≠ 1, 2. Thus if we
insert this expression into the first order Eq. (47) and
project on the left null eigenvectors we have

λiMð1Þ

 X2
k¼1

ρkak

!
¼ 0; i ¼ 1; 2; ð50Þ

where ak ≔ akðzÞ, with k ¼ 1, 2, are the coefficients to
be found.
To compute them an explicit expression for ei ¼ eiðk0; k⃗Þ

is needed. It is not difficult to find two linearly independent
vectors satisfying the above mentioned orthogonality rela-
tions for ei, giving

e1 ¼

0
BBB@

0
ky
kx

1

0

1
CCCA; e2 ¼

0
BBB@

−v
− ðvk0þkzÞ

kx

0

1

1
CCCA: ð51Þ

Now, since this equation has to be solved on-shell, we turn to
the two-dimensional-approximated case (kx ¼ ky ¼ 0), for

TABLE I. Amplitude and phase factor of the WKB-approximated field solutions in the linear region (ℏ ¼ c ¼ 1).

Counterpropagating Long-wavelength (Hawking) Short-wavelength

Modes A0ðzÞ P0ðzÞ A0ðzÞ P0ðzÞ A0ðzÞ P0ðzÞ
Amplitude const const const z−1 z−

3
4 z−

1
4

Phase factor −i k0
2v ð1þ v2Þz −i k0

2v ð3 − v2Þzþ k0
γ2v2jκj lnðzÞ �i 2

3
ηz

3
2 − i k0v z −

k0
2γ2v2jκj lnðzÞ

8The linking between the surface gravity and the derivative of
the refractive index is: κsg ¼ v2γ2n̆0ðz ¼ 0Þ ≕ v2γ2κ [10].
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which tractable DR roots are available (see Appendix C).
In this case, we very simply have

e2D1 ¼

0
BBB@

0

1

0

0

1
CCCA; e2D2 ¼

0
BBB@

0

0

1

0

1
CCCA: ð52Þ

At this point the explicit form of the differential equations
in Eq. (50) can be computed. Yet, due to the particular
(almost diagonal) structure of the matrix operator Mð1Þ,
these differential equations are decoupled equations for
the amplitudes a1ðzÞ and a2ðzÞ, which turn out to be
identical. The solutions in the linear region are summa-
rized in table I.

B. Near horizon analysis and matching

Let’s now concentrate on the field equations near the
horizon. Let’s start by considering the linearized equations
of motion, Eq. (42). In the Feynman gauge and under a
spatial Fourier transformation, we can explicitly express the
field Âμ in terms of the polarization field:

~Aμ ¼ −i
4πg
k2

ðημνω − vμkνÞ ~Pν: ð53Þ

Substituting into the second equation we obtain a single
differential equation for the polarization field:

−
4πg2

k2
ðημνω − vνkμÞðηνρω − vνkρÞ ~Pρ þ ω2

χω2
0

~Pμ

−
1

~χðkÞ �
~Pμ ¼ 0: ð54Þ

Bearing in mind Eqs. (15) to (18), we can linearize the
susceptibility very near the horizon:

1

χ̆ðzÞ ¼
1

χ̆ð0Þ þ jαjz ↦ 1

~χðkÞ ¼
�

1

χ̆ð0Þ þ ijαj∂kz

�
δðkÞ;

ð55Þ

where α ≔ d
dz

1
χ ð0Þ is positive on the BH horizon and such

that jαjz ≪ 1
χ. Moreover 1

χ̆ð0Þ ¼ 1
χ þ δχð0Þ (see Appendix B

for more details), while δðkÞ is the Dirac delta function.
The differential equation we obtain for the polarization

field is then:

− ijαj∂kz
~Pμ −

�
4πg2ω2

k2
þ 1

χ̆ð0Þ −
ω2

χω2
0

�
~Pμ

−
4πg2

k2
ðkμkρ − ωðvμkρ þ vρkμÞÞ ~Pρ ¼ 0: ð56Þ

Notice that k2 ¼ kμkμ ¼ ðk0Þ2 − ðkxÞ2 − ðkyÞ2 − ðkzÞ2,
thus this equation has two poles of order one in

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2−ðkxÞ2−ðkyÞ2

q
, which are regular singular points.

We can conclude that our equation is a Fuchsian differential
equation. This Fuchsian structure of the field equations
near the horizon is an important clue in favor of thermality,
since it is a recurrent behavior observed in different
frameworks [16,26,31].
From now on, in order to simplify our treatment, we will

use the two-dimensional-reduction approximation; i.e.,
we will fix kx ¼ ky ¼ 0. This means that the two poles
mentioned above reduce to �k0. For the four-dimensional
analysis, see Table III C.
Since we are only interested in the physical part of

the fields, we can project from the left, e.g., on the
(k-independent) transverse direction e1, given by Eq. (52).
Defining ~P ¼ eμ1 ~Pμ we obtain

−ijαj∂kz
~P −

�
4πg2ω2

k2
þ 1

χ̆ð0Þ −
ω2

χω2
0

�
~P ¼ 0; ð57Þ

whose solution is

~Pðk0; kzÞ ¼ fðk0; kzÞeigðk0;kzÞ; ð58Þ

where

fðk0; kzÞ ¼ C · ½iðkz þ k0Þ�ixþ½iðkz − k0Þ�ix− ; ð59Þ

gðk0; kzÞ ¼ −
ω3

3jαjχω2
0γv

: ð60Þ

C is an integration constant and we have defined for
simplicity

x� ≔ � 2πg2

jαj k0γ2ðv ∓ 1Þ2: ð61Þ

For later convenience, note that

xþ þ x− ¼ −
8πg2k0γ2v

jαj : ð62Þ

It is to say that, in Eq. (60), we have reabsorbed a term
proportional to k0 in the integration constant and that we
have neglected a term of the form ð1 − 4πg2χ̆ð0Þγ2v2Þ kz

χ̆ð0Þjαj,
on behalf of the fact that it would only amount to a very
small shift in the saddle points.
Now, in order to get the field solutions we are looking

for, we have to re-transform the polarization field in the
x⃗-space:
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Pðt; zÞ ≔ eμ1P̂μðt; zÞ

¼ 1

2π

Z
Γ
~Pðk0; kzÞe−ik0tþikzzdkz

¼ 1

2π

Z
Γ
fðk0; kzÞeiðkzz−k0tþgðk0;kzÞÞdkz: ð63Þ

The contour Γ has to be homotopic to the real line and it has
to be chosen in order for the mode solutions to decay inside
the horizon, as these are the boundary conditions relevant
for particle creation (see [26]). Moreover the contour has to
be chosen in order for the integral to converge.
Before approaching the computation of Pðt; zÞ, let us

undertake the following change of variable:

u ≔
ωffiffiffiffiffiffiffiffiffiffiffiffiffi
jαjχω2

0

p ; ð64Þ

in such a way that, by defining

η ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jαjχω2

0

p
γv

; ð65Þ

we obtain

kz ¼ ηu −
k0
v
: ð66Þ

With these definitions Eq. (63) can be written as

Pðt; zÞ ¼ C
2π

ηðiηÞiðxþþx−Þe−ik0t−i
k0
v z

Z
Γu

eηsðz;uÞdu; ð67Þ

with

sðz; uÞ ≔ i

�
uz −

u3

3

�
þ i

xþ
η
lnðu − uþb Þ þ i

x−
η
lnðu − u−b Þ;

ð68Þ

where we have defined the branch points

u�b ≔
k0
η

�
1

v
∓ 1

�
: ð69Þ

Note that u�b > 0∀ k0 > 0.
η defined as above has to be considered as the “big

parameter” to be used in the saddle point approximation:
η → ∞. Indeed,

η ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jαjχω2

0

q
∼

1ffiffiffiffi
B

p ≫ 1; ð70Þ

as usual in the Cauchy approximation.
Before pursuing further calculations, we stress that in

previous papers [16,18] a different approach was assumed;

i.e., for the saddle point approximation the function
s̄ðz; uÞ ≔ iðuz − u3

3
Þ was taken into account in place of

(68). As a consequence a quadratic equation was obtained
and suitable integrals around the branch cuts were consid-
ered (see in particular [18]). In the following, we shall
compare our present approach with the aforemen-
tioned ones.
The integrand possesses four saddle points, which are

obtained by solving the quartic equation ∂
∂u sðz; uÞ ¼ 0.

Since its exact solutions are too involved to be of any
usefulness, we solve this equation by expanding it, as well
as its solutions, in orders of η−1:

u ¼ uð0Þ þ 1

η
uð1Þ þ 1

η2
uð2Þ þ…: ð71Þ

At zeroth order, we get

uð0Þ�s ¼ 0; ð72Þ

uð0Þ� ¼ � ffiffiffi
z

p
; ð73Þ

where u� ≃ uð0Þ� are the “standard” saddle points, whose
higher-order corrections are of limited interest, hence we
can simply write

u� ¼ � ffiffiffi
z

p
: ð74Þ

As regards u�s, at first order, we get

uð1Þ�s ¼
k0
v

1

jαjzχ
�
1þ jαjzχ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jαjzχÞð1þ jαjzχv2Þ

q �
:

ð75Þ

Under the condition χjαjz ≪ 1 this yields:

uþs ¼
2k0

vjαjzχηþ
k0
2vη

ð3þ v2Þ; ð76Þ

u−s ¼
k0

2γ2vη
: ð77Þ

We stress that these two saddle points are usually over-
looked in the literature, yet we take the view that they cover
a very important role in this analysis.
As a consistency condition for our expansion, we require

that the first-order solutions above be much smaller than the

zeroth-order ones. This implies z ≫ 1
jαjχ ð

4γ2k2
0

χω2
0

Þ
1
3. From this

requirement we can state an explicit definition of the linear
region:

�
4γ2k20
ω2
0

�1
3

≪ jαjz ≪ 1: ð78Þ
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Note that the peak emission frequency [see Eq. (A6)] is
proportional to κ, hence if κ was large enough no linear
region would be present.

1. On the choice of the contour, branch cuts
and steepest descent paths

As mentioned before, the choice of the contour has to be
made in order to fulfill some staple requirements.
The requirement of the convergence of the integral

is achieved by a contour running to infinity along any
direction of the complex u-plane in which the integrand
decays to zero. This is equivalent to require that the contour
asymptotes to a region where Re½sðz; uÞ� < 0. Specifically
note that at large u the function sðz; uÞ is dominated by the
cubic term. We then have to require that in the allowed
asymptotic regions Re½−iu3� < 0 holds. This implies9 that
the contour must asymptote to any of the following three
regions of the complex u-plane

ð1Þ π

3
< θ <

2

3
π

ð2Þ − π < θ < −
2

3
π

ð3Þ −
π

3
< θ < 0: ð79Þ

Convergence regions amount to valleys of the integrand.
Another issue regards the choice of the two branch cuts,

which arise from the complex natural logarithm, spreading
from the two branch points u�b . We adopt the simplest
possible choice, which is to consider vertical cuts going
upwards to þi∞.
Later on, we will have to use the method of steepest

descent (or saddle point method) to compute the contri-
butions to the integral (67) coming from the saddle points.
Steepest descent paths can be obtained by imposing

Im½ηsðu; zÞ� ¼ I0; ð80Þ

where I0 is a constant.
Substituting u ¼ aþ ib into sðu; zÞ, where a and b are

obviously the real and imaginary part of u, as well as
neglecting the subleading logarithmic terms for simplicity
(which give contributions only near the branch points),
we obtain

ηa

�
z −

a2

3
þ b2

�
¼ I0: ð81Þ

In a more explicit form,

b2 ¼ −zþ a2

3
þ I0
aη

: ð82Þ

In order to guarantee the reality of the above expression, we
have to find the regions where the left hand side function is
non-negative (remember we are considering z > 0). For

large jaj, the function meets the oblique asymptotes � jajffiffi
3

p ,

while for a → 0þ (a → 0−) we have a vertical asymptote as
long as I0 > 0 (I0 < 0).

2. Mode functions inside the black hole (z < 0)

A possible choice for the contour inside the horizon,
which we shall call Γin, is portrayed in Fig. 2.
In this case, the value of the integral is dominated by the

contribution of the saddle point u− ¼ −i
ffiffiffiffiffijzjp
, from which

the contour passes. Using the saddle point approximation at
the leading order (in the limit η → ∞ it becomes asymp-
totically exact, see e.g. [34]) we have

Z
Γin

eηsðz;uÞdu≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

ηj ∂2
∂u2 sðz; u−Þj

s
eηsðz;u−Þ: ð83Þ

Inserting the value of the saddle point, we obtain

Pinðt; zÞ≃ C

ffiffiffiffiffiffi
η

4π

r
ðiηÞiðxþþx−Þ

�
−i

ffiffiffiffiffi
jzj

p
− uþb

	
ixþ

×
�
−i

ffiffiffiffiffi
jzj

p
− u−b

	
ix− jzj−1

4e−ik0t−i
k0
v ze−

2
3
ηjzj32 :

ð84Þ

FIG. 2. Schematic (not to scale) representation of the complex
u-plane, in which are depicted the forbidden asymptotic regions
(shaded regions), the branch cuts (red and zigzagged paths), the
branch and saddle points, as well as the inside-horizon contour
Γin (blue curve).

9Re½−iu3�< 0⇔Re½−iρ3e3iθ�< 0⇔ e3iθ−e−3iθ
2i < 0⇔ sinð3θÞ<

0⇔ 1
3
ð2πn− πÞ< θ< 2

3
πn;n∈Z.
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We can see that this solution decays exponentially inside
the horizon, as required from the boundary conditions.
Note that, had we chosen a contour passing through the
saddle point uþ, it would have led to a growing mode
function inside the horizon. The saddle points u�s, instead,
would have led to oscillating modes. This facts justify the
choice made for the inside-horizon contour of the integral.

3. Mode functions outside the black hole (z > 0)

The outside-horizon case has a richer behavior than the
previous one. Indeed, now the saddle points u� are purely
real and, since z appears as an external parameter in this
framework, it is possible to observe, as z varies, different
hierarchies for the saddle and branch points in the complex
u-plane. First of all notice that, according to the linear
region assumptions on the parameters, we always have
0 < u−s < u−b < uþb < uþs. This implies that the u�s sad-
dle points can be ignored in this discussion. The different
possible hierarchies for the branch points and for the saddle
points u�, as z varies in the near horizon range, are then:

ðaÞ u− < u−b < uþb < uþ; ð85Þ

ðbÞ u− < u−b < uþ < uþb ; ð86Þ

ðcÞ u− < uþ < u−b < uþb : ð87Þ

Configuration (a) could be thought of as “standard”, but
a priori it’s not clear if it should be considered as the
relevant one. The issue of its preponderance with respect to
the other hierarchies is talked over in Appendix A. From
now on, if not explicitly stated, we shall only deal with the
standard configuration (a).
We shall now show that
(i) the leading-order contributions coming from the u�

saddle points, can be correctly identified with the
WKB short-wavelength modes, as usual;

(ii) the leading-order contribution coming from the u−s
saddle point, can be correctly identified with the
counterpropagating mode;

(iii) the leading-order contribution coming from the uþs
saddle point, can be correctly identified with the
Hawking mode.

To prove the first three statements let us adopt as a contour,
now tagged Γout, an homotopical modification of Γin which
passes through every saddle point, as depicted in Fig. 3. In
this case, the relevant contributions to the integral, in the
large-η limit, are

Poutðt; zÞ≃ P−ðt; zÞ þ P−sðt; zÞ þ Pþsðt; zÞ þ Pþðt; zÞ:
ð88Þ

The leading-order contributions for the u� saddle point
read

P�ðt; zÞ≃ C

ffiffiffiffiffiffi
η

4π

r
ðiηÞiðxþþx−Þð� ffiffiffi

z
p

− uþb Þixþ

× ð� ffiffiffi
z

p
− u−b Þix−z−

1
4e−ik0t−i

k0
v ze�2

3
iηz

3
2

∼ z−
1
4e−i

k0
v z�2

3
iηz

3
2þixþþx−

2
ln z: ð89Þ

We clearly see that these contributions perfectly match, in
the linear region, with the asymptotic WKB modes with
short wavelength, as can be seen from the amplitude and
phase factor of such modes, reported in table I.
As for the leading-order contribution for the u−s saddle

point, we have

P−sðt; zÞ≃ C
8πvγ3

ðiηÞiðxþþx−Þ
ffiffiffiffiffiffiffiffiffiffi
jαjk0
g2v

s
ðu−s − uþb Þixþ

× ðu−s − u−b Þix−e−ik0t−i
k0
2vð1þv2Þz

∼ e−i
k0
2vð1þv2Þz; ð90Þ

which can be correctly interpreted as the counterpropagat-
ing contribution.
As for the leading-order contributions due to the uþs

saddle point we have

Pþsðt; zÞ≃ C
2πγgv

ðiηÞiðxþþx−Þ
ffiffiffiffiffiffiffiffiffiffiffi
k0

jαjχv

s
1

z
ðuþs − uþb Þixþ

× ðuþs − u−b Þix−e−ik0tþ2i
k0

vjαjχþi
k0
2vð1þv2Þz

∼ z−1ei
k0
2vð1þv2Þz−iðxþþx−Þ lnðzÞ; ð91Þ

FIG. 3. Outside-horizon contour (blue) for the standard con-
figuration, Eq. (85). The notation is as in Fig. 2. The dashed parts
of the contour are taken at Re½ηsðu; zÞ� constant and asymptoti-
cally in the allowed regions, such that their contribution is
negligible.
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which, in view of the perfect correspondence between
the amplitude and the logarithmic part of the phase factor,
can be identified with the Hawking mode. We take the view
that the remaining mismatching regarding the linear term in
z of the phase, is due to the extreme sensibility to accuracy
in the calculations needed to properly manage the
Hawking state.
As regards the branch-cuts contributions, which appear

in the case one adopts the quadratic equation for the saddle
points as in [16,18], by adopting a path circumventing
the branch-cuts,10 a straightforward calculation in the limit
as z → ∞ leads to

Pcut�ðt; zÞ≃ C
2π

ð�2k0Þix∓ð1 − e2πx�ÞΓð1þ ix�Þ
ðizÞ1þix�

e−ik0ðt�zÞ:

ð92Þ

Still, this asymptotic expansion is not compatible with the
approximation in which the dielectric perturbation δnðzÞ is
small, i.e. jδnðzÞj ≪ 1; hence, we take the view that these
solutions shall not be identified with the counterpropagat-
ing and Hawking modes. A different view under different
assumptions is found in [18], where for the refractive index
one allows n → 1 as z → ∞. We limit ourselves to notice
that, if we were to identify these solutions with the
counterpropagating and Hawking modes, for the counter-
propagating mode there would be no correspondence at all
with the appropriate WKB mode, while for the Hawking-
mode the only thing that matches would be the amplitude,
whereas the phase factor would be utterly mismatching.
We notice that, in our perturbative approach, the two new

perturbative saddle points appear in such a way that there is
no more need to consider branch cut contributions (as no
path strictly circumventing the cuts is necessary, see Fig. 3),
and the matching with asymptotic states is straightforward.
In other terms, also the short momentum states which were
“nested” in the branch cut contributions in [16,18], appear
explicitly in our calculations.

4. Thermality of pair creation

Let’s now analyse the thermal properties of the three
configurations reported in Eqs. (85) to (87).
As a consequence of the construction of the states in

the near horizon region, the temperature of the Hawking
emission can be deduced from the ratio between the near-
horizon states which match with the asymptotic negative
and positive norm states, respectively. In formulas (with
restored units):

jP−j2
jPþj2 ¼ e−

k0ℏ
kbT: ð93Þ

To do so, we focus our attention on the amplitude of P�,
Eq. (89), in which all the information related with the
different hierarchies is encoded.
Let’s start from configuration (a). We have

Pþ ≃ juþ − uþb jixþjuþ − u−b jix− ; ð94Þ

P− ≃ ju− − uþb jixþeπxþju− − u−b jix−eπx− : ð95Þ

This means that

jP−j2
jPþj2 ¼ e2πðxþþx−Þ: ð96Þ

Restoring the units of measure and according to Eqs. (62)
and (B8) this yields

T ¼ ℏ
2πckb

v2γ2jκj: ð97Þ

We underline that this is exactly the same result found in
[10,16], as well as in [18], since the geometries considered
in all these works are conformally identical.
For the configurations (b) and (c), it is easy to show that

no thermality is associated with the two of them.

C. Near-horizon four-dimensional analysis

In the four-dimensional case, the transverse basis vectors
are given by Eq. (51). As can be easily seen these two
transverse vectors aren’t mutually orthogonal, implying
that a projection of the Fuchsian equation [Eq. (56)] on
these transverse vectors would give rise to coupled equa-
tions. To prevent this fact to occur we look for a new
transverse basis vector, ~e2, orthogonal to both e1, k and v:

~e2 ≔ αe1 þ βe2 such that ~eμ2e1μ ¼ 0: ð98Þ

This is achieved by requiring β ¼ α
k2yþk2x

kyðvk0þkzÞ, hence,

selecting the particular vector of this family with α ¼ 1,
we get

~e2 ≔ e1 þ
k2y þ k2x

kyðvk0 þ kzÞ
e2: ð99Þ

According to this new basis vector we can now project
Eq. (56) over either e1 or ~e2 without mixing field
components.
In particular, projecting over e1 yields exactly Eq. (57),

except that now the field component will depend on
k and that the regular singular points will be

�k̄ ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 − ðkxÞ2 − ðkyÞ2

q
. The equation projected

over ~e2 will be different due to the contribution of the
nonzero commutator between ~e2 and ∂kz : ½~e2; ∂kz � ¼ 1

kx
, but

10See in particular [18]. In [16], in a zeroth-order approxima-
tion, the two branch cuts coalesced into a single one.
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since this represents a pure gauge term, it can be shown that
the two equations are physically equivalent.
Considering thus the projection over e1 and defining as

above ~PðkÞ ¼ eμ1 ~PμðkÞ we obtain

−iα∂kz
~PðkÞ −

�
4πg2ω2

k2
þ 1

χ
−

ω2

χω2
0

�
~PðkÞ ¼ 0: ð100Þ

whose solution is

~PðkÞ ¼ fðkÞeigðkÞ; ð101Þ

where

fðkÞ ¼ C · ðkz þ k̄Þixþðkz − k̄Þix− ; ð102Þ

gðkÞ ¼ −
ω3

3αχω2
0γv

; ð103Þ

above we have defined for simplicity

x� ≔ � 2πg2γ2

αk̄
ðk0 ∓ k̄vÞ2: ð104Þ

Notice for further convenience that

xþ þ x− ¼ −
8πg2k0γ2v

α
; ð105Þ

which is remarkably independent from k̄.
As above, we have to re-transform the field in the x⃗-

space. Note that since kx and ky are conserved quantities
they are not to be integrated and shall be kept fixed.

PðxÞ ≔ 1

2π

Z
Γ
~PðkÞe−ik·xdkz

¼ 1

2π

Z
Γ
fðkÞe−iðk·x−gðkÞÞdkz; ð106Þ

where the contour is as in Sec. III B.
We now follow the same procedure as for the two-

dimensional-reduced case, introducing the variables u and
η as defined in Sec III B. We similarly get

PðxÞ ¼ C
2π

ðiηÞiðxþþx−Þηe−ik0tþikxxþikyy−i
k0
v z

×
Z
Γu

esðz;uÞdu; ð107Þ

This integral has exactly the same structure as the integral
in Eq. (67); i.e., it possesses four saddle points and two
branch points, being:

u�b ≔
1

η

�
k0
v
∓ k̄

�
; ð108Þ

u−s ¼
k0
2vη

�
1 − v2

k̄2

k20

�
; ð109Þ

uþs ¼
2k0

jαjzχvηþ
k0
2vη

�
3þ v2

k̄2

k20

�
: ð110Þ

The discussion regarding the matching between near and
far horizon modes is as in the two-dimensional case. The
only thing we are interested in here is thermality. According
to the saddle point method we get for the P� contributions
exactly Eq. (89), with the obvious substitutions. Then the
same procedure presented in Sec. III B applies to this case.
It can be shown that notwithstanding the changes due to the
mass term, the thermal result is precisely the same,

jP−j2
jPþj2 ¼ e2πðxþþx−Þ ¼ e−βk0 ; ð111Þ

yielding β ¼ 16π2g2γ2v
α , which returns for the temperature

exactly Eq. (97).

IV. CONCLUSIONS

In this paper, we presented the Hopfield-Kerr model, an
upgrade of the covariant Hopfield model [22,24], aiming
at the description of nonlinear effects in dielectric media
and, in particular, of the Kerr effect. Such description is
achievable through the introduction of a fourth-order self-
interacting polarization term in the Hopfield Lagrangian.
We analysed both the features of the inhomogeneity

described by the model and its thermal properties, ground-
ing on a linearization of the equations of motion, in order to
demonstrate analogue Hawking-like emission.
Our main results are the reckoning of an exact solitonic

solution for the full model; the analytical proof that the
Hopfield-Kerr model exhibits thermality, confirming the
result for the temperature found in the simplified scalar
model [16]; the discovery of the correct near-horizon
solutions associated with the long-wavelength asymptotic
modes (Hawking and counterpropagating).
As regards the inference of thermality, we adopted the

standard procedure for this kind of analysis [26], which
consists in a mixture of WKB technique and Fourier
transform for finding approximate solutions to the equa-
tions of motion of the linearized model. Far and near
horizon solutions has to be properly matched, in order to
identify the physical mode solutions. The identification of
short-wavelength modes, which are the ones enabling the
computation of the temperature of the emission process,
is a relatively easy task. Yet we can’t say the same as
regards the long-wavelength modes. We showed that, in the
near-horizon treatment, these modes originate from two
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subleading saddle points, which are never been considered
in the literature. We also underline that the system
considered presents different possible configurations with
respect to thermality, some of which doesn’t appear to be
thermal at all. At any rate the standard configuration, which
is the one usually considered in the literature, seems to be
the dominant one (see Appendix A).
As regards the model itself we showed that the chosen

nonlinear modification of the Lagrangian is equivalent, in
the linearized theory, to a spacetime modification of the
microscopic parameters ω0 and χ, in such a way that χω2

0 is
left invariant [see Eqs. (16) and (17)]. We also found that
the inhomogeneity described by the theory gives rise to a
negative Kerr effect, corresponding to a refractive index
decrease, in contrast with the phenomenology of standard
dielectric media.

APPENDIX A: ON THE RELEVANCE OF THE
STANDARD HIERARCHY FOR SADDLE

AND BRANCH POINTS

In this appendix, we present three heuristic arguments
supporting the thesis of the prevalence of the standard
configuration for the saddle and branch points displace-
ment, Eq. (85), with respect to the other configurations,
Eqs. (86) and (87). Note that the linear region condition,
Eq. (78), automatically implies the standard configuration.
Yet, a priori, this is not mandatory, since it is just a
condition which is implicit in our approximation scheme.

1. Dimensionless steepest descent parameter

It is easy to see that the quantities introduced in Eqs. (65)
and (64) are not dimensionless.11 A simple inspection
reveals that

½η� ¼ ½L�−3=2; ½u� ¼ ½L�1=2: ðA1Þ

We can then define dimensionless quantities as follows:

ηd ≔
η

jκj3=2 ; ū ≔ jκj1=2u; ðA2Þ

where κ ≔ jn0ð0Þj is a natural length scale for the physics at
hand. With this redefinition we obtain for the saddle and
branch points (outside the horizon and without considering
u�s which, as mentioned in Sec. III B 3, are irrelevant in
this discussion):

ū�s ¼ �
ffiffiffiffiffiffiffi
jκjz

p
; ū�b ¼ 1

ηdjκj
k0
v

�
1� v

c

�
: ðA3Þ

In order to understand their relative displacement, we have
to give an estimate for their values.
As regards the saddle points, a reasonable upper bound

for jκjz is

jκjz≲ sup δnðzÞ ∼ 10−3; ðA4Þ

hence we can roughly say that

jū�s j ∼ 10−2: ðA5Þ

As regards the branch points, we mean to estimate them
near the peak frequency of the emission spectrum, which
we will call kH0 . Hence we would need to estimate both kH0 ,
ηd and κ. It can though be shown that (see [10])

kH0 ≃ v2

c2 − v2
jκj: ðA6Þ

Then, the cancellation of kH0 and κ in the expression for the
branch points leaves us only ηd to be gauged. To do so,
notice that

ηd ≃ cffiffiffiffi
B

p
γvjκj≃

1ffiffiffiffi
B

p jκj≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B · ðkH0 Þ2
p ; ðA7Þ

hence

ū�b ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B · ðkH0 Þ2

q
: ðA8Þ

If we label with ω and kl respectively the frequency and
wave number in the lab frame, we can say that

B · ðkH0 Þ2 ¼ B · ðγðω − vklÞÞ2; ðA9Þ

where ω and kl have to satisfy the lab-frame dispersion
relation

kl ¼
1

c
nðωÞω: ðA10Þ

According to the Cauchy approximation for the refractive
index, we have

nðωÞ ¼ n0 þ Bω2; ðA11Þ

where the correction δnðzÞ shall not be considered. This
leads to

B · ðkH0 Þ2 ≃ v2

c2
γ2B3ω6: ðA12Þ

The Cauchy approximation is reliable in the visible
spectrum. As an example, let us consider λl ¼ 0.8 μm
(see [11]). For the other physical parameters, we shall take

11In Eq. (65), the denominator is adimensional, i.e. γ v
c, where

the c doesn’t appear due to the adoption of natural units.
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n0 ¼ 1.458, B ¼ 0.00354 μm2, v ¼ 0.685c (we should
have c=v ∼ n0), γ ¼ 1.37. With the above values, we get
B · ðkH0 Þ2 ∼ 10−7, which yields

ū�b ∼ 3 × 10−4: ðA13Þ

This guarantees the condition jū�s j ≫ jū�b j to hold. This
condition is associated with the standard diagram, where
saddle points are external with respect to the position of
the branch points. Still, this condition is neither man-
datory nor privileged, at least it is not clear why it should
dominate.

2. A further length scale

Another possible way to approach the subtle problem of
the choice of a length scale, is the one proposed in [35]:
we identify the appropriate length scale by considering the
integral in Eq. (63), in particular by selecting the leading
term in kz in Eq. (60). This term is

γ2v2

3αχω2
0

k3z : ðA14Þ

Now we define the length (cf. with Eq. (7) of [35])

dbr ≔
�
γ2v2

αχω2
0

�
1=3

: ðA15Þ

The ansatz is that this scale dominates the behavior of the
emission process; i.e., we assume that, as in [35], the length
scale dbr is such that the physical system is not able to
resolve distances shorter than the scale itself. This means
that we can consider the following lower bound for z:

z ≥ dbr: ðA16Þ

As a consequence, we must assume for the saddle points
the lower bound:

jus�j ≥
ffiffiffiffiffiffiffi
dbr

p
: ðA17Þ

In order to understand which configuration gives the
leading contribution, we have to compare the aforemen-
tioned lower bound with the value of the branch points
evaluated, as above, at kH0 :

ðu�b ÞH ≔ d3=2br
1

v
kH0 ð1� βÞ ¼ d3=2br

β

1 ∓ β
jκj: ðA18Þ

To make this comparison let’s notice that

jκjdbr ¼
1

ðηdÞ23
: ðA19Þ

From Eqs. (A7) and (A19), we can infer jκjdbr ∼ 5 × 10−3,
while from Eqs. (A6) and (A12), we get jκj∼5×10−3 μm−1.
This leads to the estimate dbr ∼ 1 μm.
Let’s now check if the inequality usþ > ðuþb ÞH holds:

usþ > ðuþb ÞH
⇕

1 > dbrjκj
β

1 − β
¼ η−2=3d

β

1 − β
∼ 5 × 10−3: ðA20Þ

Hence, if β is not very near 1, and if k0 ∈ ð0; kH0 Þ, the
dominant contribution to the amplitude of pair-creation
comes from the standard configuration, Eq. (85), and
thermality is recovered.

3. Group horizon turning point

There is a further possible way to infer when the standard
configuration is the one to dominate. In the presence of a
group horizon, we have a turning point which can occur on
the right of the horizon z ¼ 0. Indeed, the equation to be
satisfied is (see [16])

c
v
− nðzGHÞ ¼ c0ðBk20Þ1=3; ðA21Þ

where

c0 ≔
3

22=3
γ−5=3

�
c
v

�
2=3

: ðA22Þ

The (k0-dependent) position of the group horizon is such
that

nðzGHÞ ¼
c
v
− c0ðBk20Þ1=3 <

c
v
; ðA23Þ

and, being the refractive index a decreasing function of z in
a neighborhood of the horizon z ¼ 0, we have

zGHðk0Þ ≥ 0; ðA24Þ

as well as, in particular, zGHðk0 ¼ 0Þ ¼ 0 and
zGHðk0 > 0Þ > 0. Hence, apart for k0 very near to zero,
we obtain a turning point on the right of z ¼ 0, and then we
can expect that every z < zGHðk0 > 0Þ eventually do not
play any relevant role in the scattering process at k0 > 0
fixed. In other terms, our guess is that the presence of the
turning point enables to stay away from z ¼ 0. As a
consequence, although in the spontaneous process it is
hard to justify a leading thermal contribution, in the
stimulated process, with a suitable choice of the frequen-
cies, and with a suitable enhancement of the stimulated
contribution with respect to the spontaneous one, it should
be still possible to recover a thermal spectrum, as well as
thermality of the Hawking radiation. Still, it is remarkable
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that the mechanism contributing to the particle production
is horizon-generated in all cases.

APPENDIX B: LINK WITH THE
PHYSICAL QUANTITIES

We want to link the physical quantities with the micro-
scopic parameters of the model. From the phenomenologi-
cal dispersion relation in the Cauchy approximation we
can write:

nðω; zÞ ¼ n0 þ Bω2 þ δnðzÞ; ðB1Þ

as well as

n2ðω; zÞ≃ n20 þ 2n0Bω2 þ 2n0δnðzÞ: ðB2Þ

The physical expression for the refractive index in
the lab frame is shown in Eq. (24). If we expand
this expression in the small-perturbation approximation,

i.e. δχðzÞ≪ω2
0
−ω2

χω2
0

, according to the notation of Sec. II A,

and in the Cauchy approximation, i.e. ω ≪ ω0,
we obtain12

n2ðω; zÞ ¼ 1þ 4πχω2
0g

2

ω2
0 þ δω2

0 − ω2

≃ 1þ 4πχg2 þ 4πχg2

ω2
0

ω2 −
4πχg2

ω2
0

δω2
0: ðB3Þ

By comparing the two previous expressions, we obtain

χ ¼ n20 − 1

4πg2
; ðB4Þ

ω2
0 ¼

2πχg2

n0B
¼ n20 − 1

2n0B
; ðB5Þ

δω2
0 ¼ −

n0ω2
0

2πχg2
δn ¼ −

δn
B
: ðB6Þ

The condition δðχω2
0Þ ¼ ðδχÞω2

0 þ χδω2
0 ¼ 0 gives:

δχ ¼ n0δn
2πg2

: ðB7Þ

Noting now that α ¼ d
dz

1
χ ¼ − 1

χ2
dχ
dz, we finally obtain:

α ¼ −8πg2
�
v
c

�
3

γ4κ; ðB8Þ

where we have to remember that in our model κ < 0 on
the black hole horizon, thus yielding a positive α on the
black hole horizon.

APPENDIX C: TRANSVERSE DISPERSION
RELATION IN THE

CAUCHY APPROXIMATION

The roots of the full transverse DR, Eq. (46), in a frame
different from the lab one, are very involved expressions.
We thus look for approximate solutions of the transverse
DR, expanded in powers of η−1 [see Eq. (65)].
First of all let’s rewrite the transverse DR in terms of

the variable u defined in Eq. (64). By also introducing
ω0 ≔ ηΩ0, since we have ω0 ¼ OðηÞ, as well as using
the two-dimensional-reduction approximation, we get for
the DR:

�
u2− 2

k0
ηv

uþ k20
η2γ2v2

��
1−

v2γ2

Ω2
0

u2
�
− 4πg2χγ2v2u2 ¼ 0:

ðC1Þ

We now expand this expression in powers of η−1, for
η → ∞, and study order by order its solutions, which are
themselves obtained as series in η−1:

u ¼ uð0Þ þ 1

η
uð1Þ þ 1

η2
uð2Þ þ…: ðC2Þ

At zeroth order, we obtain the following solutions:

uð0Þ�s ≔ 0; ðC3Þ

uð0Þ� ≔ �Ω0

γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4πg2γ2χv2

q
: ðC4Þ

By inserting these solutions one by one into Eq. (C1), we
can compute the first order contributions:

uð1Þ�s ≔
1

1− 4πg2γ2χv2
k0
v

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ð1− 4πg2γ2χv2Þ 1

γ2

s !
;

ðC5Þ

uð1Þ� ≔ −
4πg2γ2v2χ

1 − 4πg2γ2v2χ
k0: ðC6Þ

Passing now to the kz variable and in the linear region,
where it holds 1 − 4πg2γ2v2χ ≃ 2γ2vjκjz ¼ jαjzχ, we get

kz� ≃�η
ffiffiffi
z

p
−
k0
v
−

k0
2γ2v2jκjz ; ðC7Þ12Neglecting also the ω2δχðzÞ terms and higher powers of

them.
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kszþ ≃ −
k0
2v

ð3 − v2Þ þ k0
γ2v2jκj

1

z
; ðC8Þ

ksz− ≃ −
k0
2v

ð1þ v2Þ: ðC9Þ

kz� represent the short wavelength mode solutions. They
possess a negative group velocity with respect to the
perturbation (they travel towards the event horizon) and
they propagate a positive (kzþ) and a negative (kz−) charge.
Consequently, we expect them to be the relevant in-modes
for creating the outgoing Hawking radiation. kszþ is the long
wavelength mode which possesses positive group velocity
and charge, hence this mode is the only one escaping the
black hole and we expect it to be associated with the
Hawking radiation. ksz− represents the counterpropagating
mode, which travels towards the perturbation even in the
lab frame. Contrary to the other solutions, this mode is
regular across the horizon and decouples from the spectrum
in the small-κ approximation. The situation is partially
depicted in Fig. 4. We underline that these four approxi-
mated solutions for the physical dispersion relation, re-
present an improvement w.r.t the ones derived in [16].

APPENDIX D: COALESCENCE OF BRANCH
POINTS AS k0 → 0

It is easy to see that in the limit k0 → 0 we have
coalescence of the branch points at u ¼ 0. In line of
principle, this coalescence would require a uniform asymp-
totic expansion, in order to reach an agreement between the
limit for k0 → 0 of the asymptotic approximation and the
asymptotic approximation taken at k0 ¼ 0 (which should

be a legitimate asymptotic expansion). In the following, we
show that no discontinuous behavior occurs, i.e. that both
taking the limit of the integrals and calculating the integrals
at k0 ¼ 0 yield the same result. The main point is that a
quite mild behavior actually takes place: indeed, for k0 ¼ 0,
no branch cut occurs in the equation for the polarization
field. This implies that at k0 ¼ 0 no cut contribution arises
and this is perfectly coherent with the fact that cut
contributions vanish as k0 → 0.
It is worthwhile stressing that k0 ¼ 0 is not only an

allowed parameter in the physics at hand, but it also
corresponds to the main contribution to particle creation
in the experimental situation, as verified by the group
leaded by Faccio [9,11,12].
Let us start from the analysis of the original system,

Eq. (42), evaluated at k0 ¼ 0:

~AμðkzÞ ¼ i
4πg
kz

ðγvημν − vμδ3νÞ ~PνðkzÞ; ðD1Þ

iα∂kz
~PμðkzÞ þ

�
4πg2γ2v2 þ χ̆ð0Þ − γ2v2k2z

χω2
0

�
~PμðkzÞ

þ 4πg2ðδ3μδ3ρ − γvðvμδ3ρ þ vρδ3μÞÞ ~PρðkzÞ ¼ 0: ðD2Þ

As it is evident, there are no more branch cuts in the
differential equation for the polarization. The solution of
the e1-projected equation is

~PðkzÞ ¼ Ce
−i γ

2v2

3αχω2
0

k3z
: ðD3Þ

Following the procedure outlined above, we can compute
the leading contributions to the Fourier transformed field
Pðt; zÞ outside the horizon, which are now only due to the
u� saddle points. Since no branch point is present we find

jP−j2
jPþj2 ¼ 1; ðD4Þ

as expected.
On the other hand, we recall that

lim
k0→0

x� ¼ 0; ðD5Þ

and from the foregoing analysis it is easily verified that

lim
k0→0

Pcut� ¼ 0: ðD6Þ

This confirms that there is no need for any sort of uniform
asymptotic expansion.

FIG. 4. Cauchy-approximated asymptotic physical dispersion
relation in the comoving frame. The approximated wave-vector
solutions to the dispersion relation mentioned in the text are
explicitly indicated.

HOPFIELD-KERR MODEL AND ANALOGUE BLACK HOLE … PHYSICAL REVIEW D 96, 096024 (2017)

096024-17



[1] S. W. Hawking, Black hole explosions?, Nature (London)
248, 30 (1974).

[2] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[3] W. G. Unruh, Experimental Black Hole Evaporation,
Phys. Rev. Lett. 46, 1351 (1981).

[4] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Relativity 8, 12 (2005); 14, 3 (2011).

[5] Analogue Gravity Phenomenology, edited by D. Faccio, F.
Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U.
Moschella (Springer, New York, 2013).

[6] J. Kerr, A new relation between electricity and light:
Dielectrified media birefringent, Philos. Mag. Ser. 5, 50,
337 (1875).

[7] J. Kerr, A new relation between electricity and light:
Dielectrified media birefringent (second paper), Philos.
Mag. Ser. 4, 50, 446 (1875).

[8] T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König,
and U. Leonhardt, Fiber-optical analog of the event horizon,
Science 319, 1367 (2008).

[9] D. Faccio, Laser pulse analogues for gravity and analogue
hawking radiation, Contemp. Phys. 53, 97 (2012).

[10] F. Belgiorno, S. L. Cacciatori, G. Ortenzi, L. Rizzi, V.
Gorini, and D. Faccio, Dielectric black holes induced
by a refractive index perturbation and the Hawking effect,
Phys. Rev. D 83, 024015 (2011).

[11] F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G.
Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio,
Hawking Radiation from Ultrashort Laser Pulse Filaments,
Phys. Rev. Lett. 105, 203901 (2010).

[12] E. Rubino, F. Belgiorno, S. L. Cacciatori, M. Clerici, V.
Gorini, G. Ortenzi, L. Rizzi, V. G. Sala, M. Kolesik, and D.
Faccio, Experimental evidence of analogue Hawking radi-
ation from ultrashort laser pulse filaments, New J. Phys. 13,
085005 (2011).

[13] M. Petev, N. Westerberg, D. Moss, E. Rubino, C. Rimoldi,
S. L. Cacciatori, F. Belgiorno, and D. Faccio, Blackbody
Emission from Light Interacting with an Effective Moving
Dispersive Medium, Phys. Rev. Lett. 111, 043902 (2013).

[14] S. Finazzi and I. Carusotto, Quantum vacuum emission in a
nonlinear optical medium illuminated by a strong laser
pulse, Phys. Rev. A 87, 023803 (2013).

[15] S. Finazzi and I. Carusotto, Spontaneous quantum emission
from analog white holes in a nonlinear optical medium,
Phys. Rev. A 89, 053807 (2014).

[16] F. Belgiorno, S. L. Cacciatori, and F. Dalla Piazza, Hawking
effect in dielectric media and the Hopfield model, Phys.
Rev. D 91, 124063 (2015).

[17] M. Jacquet and F. König, Quantum vacuum emission from a
refractive-index front, Phys. Rev. A 92, 023851 (2015).

[18] M. F. Linder, R. Schtzhold, and W. G. Unruh, Derivation of
Hawking radiation in dispersive dielectric media, Phys. Rev.
D 93, 104010 (2016).

[19] J. J. Hopfield, Theory of the Contribution of Excitons to
the Complex Dielectric Constant of Crystals, Phys. Rev.
112, 1555 (1958).

[20] U. Fano, Differential inelastic scattering of relativistic
charged particles, Phys. Rev. 102, 385 (1956).

[21] C. Kittel, Quantum Theory of Solids (Wiley, New York,
1987).

[22] F. Belgiorno, S. L. Cacciatori, and F. Dalla Piazza, The
Hopfield model revisited: Covariance and quantization,
Phys. Scr. 91, 015001 (2016).

[23] F. Belgiorno, S. L. Cacciatori, and F. Dalla Piazza,
Perturbative photon production in a dispersive medium,
Eur. Phys. J. D 68, 134 (2014).

[24] F. Belgiorno, S. L. Cacciatori, F. Dalla Piazza, and M.
Doronzo, Exact quantisation of the relativistic Hopfield
model, Ann. Phys. (Berlin) 374, 338 (2016).

[25] F. Belgiorno, S. L. Cacciatori, F. Dalla Piazza, and M.
Doronzo, Φ −Ψ model for electrodynamics in dielectric
media: Exact quantisation in the Heisenberg representation,
Eur. Phys. J. C 76, 308 (2016).

[26] S. Corley, Computing the spectrum of black hole radiation
in the presence of high frequency dispersion: An Analytical
approach, Phys. Rev. D 57, 6280 (1998).

[27] R. Boyd, Nonlinear Optics (Academic Press, New York,
2008).

[28] S. Corley and T. Jacobson, Black hole lasers, Phys. Rev. D
59, 124011 (1999).

[29] D. Faccio, T. Arane, M. Lamperti, and U. Leonhardt,
Optical black hole lasers, Classical Quantum Gravity 29,
224009 (2012).

[30] U. Leonhardt and T. G. Philbin, Black hole lasers revisited,
in Quantum Analogues: From Phase Transitions to Black
Holes and Cosmology, edited by W. G. Unruh and R.
Schutzhold (Springer, Berlin, 2007).

[31] A. Coutant, R. Parentani, and S. Finazzi, Black hole
radiation with short distance dispersion, an analytical
S-matrix approach, Phys. Rev. D 85, 024021 (2012).

[32] D. J. Griffiths, Introduction to Quantum Mechanics
(Prentice-Hall, Englewood Cliffs, NJ, 2005).

[33] J. Ehlers and A. R. Prasanna, A wkb formalism for multi-
component fields and its application to gravitational and
sound waves in perfect fluids, Classical Quantum Gravity
13, 2231 (1996).

[34] R.Wong, Asymptotic Approximation of Integrals (Academic
Press, New York, 1989).

[35] A. Coutant and R. Parentani, Hawking radiation with
dispersion: The broadened horizon paradigm, Phys. Rev.
D 90, 121501 (2014).

F. BELGIORNO et al. PHYSICAL REVIEW D 96, 096024 (2017)

096024-18

https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1126/science.1153625
https://doi.org/10.1080/00107514.2011.642559
https://doi.org/10.1103/PhysRevD.83.024015
https://doi.org/10.1103/PhysRevLett.105.203901
https://doi.org/10.1088/1367-2630/13/8/085005
https://doi.org/10.1088/1367-2630/13/8/085005
https://doi.org/10.1103/PhysRevLett.111.043902
https://doi.org/10.1103/PhysRevA.87.023803
https://doi.org/10.1103/PhysRevA.89.053807
https://doi.org/10.1103/PhysRevD.91.124063
https://doi.org/10.1103/PhysRevD.91.124063
https://doi.org/10.1103/PhysRevA.92.023851
https://doi.org/10.1103/PhysRevD.93.104010
https://doi.org/10.1103/PhysRevD.93.104010
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.102.385
https://doi.org/10.1088/0031-8949/91/1/015001
https://doi.org/10.1140/epjd/e2014-40803-6
https://doi.org/10.1016/j.aop.2016.09.001
https://doi.org/10.1140/epjc/s10052-016-4146-1
https://doi.org/10.1103/PhysRevD.57.6280
https://doi.org/10.1103/PhysRevD.59.124011
https://doi.org/10.1103/PhysRevD.59.124011
https://doi.org/10.1088/0264-9381/29/22/224009
https://doi.org/10.1088/0264-9381/29/22/224009
https://doi.org/10.1103/PhysRevD.85.024021
https://doi.org/10.1088/0264-9381/13/8/016
https://doi.org/10.1088/0264-9381/13/8/016
https://doi.org/10.1103/PhysRevD.90.121501
https://doi.org/10.1103/PhysRevD.90.121501

