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QCD-like theories can be engineered to remain in a confined phase when compactified on an arbitrarily
small circle, where their features may be studied quantitatively in a controlled fashion. Previous work has
elucidated the generation of a nonperturbative mass gap and the spontaneous breaking of chiral symmetry
in this regime. Here, we study the rich spectrum of hadronic states, including glueball, meson, and baryon
resonances. We find an exponentially growing Hagedorn density of states, as well as the emergence of
nonperturbative energy scales given by iterated exponentials of the inverse Yang-Mills coupling g2.
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I. INTRODUCTION

There are few ways to analytically study the low
temperature and density behavior of QCD-like quantum
field theories.1 Near the chiral limit (in theories containing
light fermions), chiral perturbation theory may be used to
systematically characterize the low energy consequences of
spontaneously broken chiral symmetry using a small
number of low energy parameters. (See, e.g., Ref. [1]
for a review.) But the demonstration of chiral symmetry
breaking and determination of these low energy constants
requires other methods, such as large scale lattice gauge
theory simulations or input of experimental data. Gauge-
gravity duality [2] has provided insight into some 4D
confining gauge theories [3–8], but is usefully applicable
primarily in theories which are strongly coupled at all
scales, not asymptotically free, and have a large number N
of colors. For 4D confining, asymptotically free gauge
theories, analytic methods based on controlled approxima-
tions are generally unavailable.
In this paper, we study properties of 4D confining QCD-

like theories, at finite N, in a regime which allows
controlled analytic calculations. Specifically, we consider
theories on R3 × S1, with one dimension compactified on a
circle of circumference L which is small compared to the
inverse strong scale of the theory, L ≪ Λ−1 (and henceforth
denoted S1L). This is a very old idea (see, e.g., Ref. [9] for a
review) but interest has been renewed in recent years with
the realization that a wide range of QCD-like theories may

be engineered to possess a phase diagram in which the
small-L regime is continuously connected to the large-L or
decompactified regime. Achieving such “adiabatic com-
pactification” requires nonthermal boundary conditions and
suitable matter content (or the addition of double trace
deformations) [10–15].
Compactifying one direction on a small circle does,

obviously, change properties of a theory. Lorentz invariance
is reduced from SOð1; 3Þ to SOð1; 2Þ and physical quan-
tities will depend on the newly introduced scale L. But if
one can engineer compactifications where the L depend-
ence is smooth (“adiabatic”), then studies of the small-L
regime may teach one qualitative lessons which remain
valid in the large-L limit. Previous work [12–35] has
examined symmetry realizations at small L and studied
the properties of the very lightest excitations. One finds that
it is possible to prevent the spontaneous breaking of the ZN
center symmetry of pure Yang-Mills (YM) theory, which
would signal a deconfinement transition. With massless
quarks present, one finds that chiral symmetry is sponta-
neously broken. The mechanism of confinement, the
generation of a nonperturbative mass gap (without massless
quarks), and the spontaneous breaking of chiral symmetry
(with massless quarks) all may be nicely understood in the
small-L regime using semiclassical methods. All evidence
supports the view that these center-stabilized compactifi-
cations are, indeed, adiabatic.2

Given the weight of evidence that adiabatic compacti-
fications exist, it is interesting to use these calculable
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1By “QCD-like” we mean 4D asymptotically free SUðNÞ

gauge theories, possibly containing fermions but without light
fundamental scalar fields. We assume that the fermion content is
such that the theory, when defined on R4, has a confining phase
characterized by some strong scale Λ.

2Consistency of symmetry realizations between small and
large L is, of course, necessary but not sufficient for physics to be
smooth in L. Phase transitions not involving any change in
symmetry realization could always be present at some inter-
mediate value of L. For center-stabilized QCD, with light quarks,
the careful lattice studies which would be needed to rule out this
possibility are not yet available. In the absence of any evidence to
the contrary, we proceed assuming that for the compactifications
we study below, physical properties are smooth in L.
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settings to explore properties of QCD-like theories in more
detail. In this paper we initiate efforts in this direction by
investigating qualitatively, and where possible quantita-
tively, the spectrum and properties of glueballs, mesons,
and baryons in the small-L regime of adiabatically com-
pactified theories. Some of the hadronic states we find are
stable, but naturally most are resonances. In the weakly
coupled small-L regime, hadronic resonances are narrow
with parametrically small decay widths. Portions of the
spectrum have interesting parallels with what one obtains
from naive quark models, but in a context where the
dynamics of the quantum field theory are under systematic
theoretical control.
We mention here two especially curious aspects of our

results. First, we find that the lightest glueballs (or dual
photons in the small-L description) form bound states
whose binding energies are given by iterated exponentials
of the Yang-Mills coupling, ΔE ∼ expð−Agk expðB=g2ÞÞ.
Second, we find that the density of states of both glueballs
and mesons exhibits Hagedorn (or exponential) growth
with energy, but this growth has an unusual origin.
Hagedorn scaling of the density of mesonic states is
typically attributed to the fluctuations of a long, highly
excited confining string, and can only be established
systematically in the large N limit where mesons cannot
decay. The origin of Hagedorn scaling in our context is
quite different. The extra scale L introduced by the
adiabatic compactification modifies the potential experi-
enced by heavy test quarks separated by a distance r, and
introduces a parametrically large regime where the poten-
tial is logarithmic, as illustrated in Fig. 1. The compactified
theory has many narrow resonances which can be described
using nonrelativistic quantum mechanics with this loga-
rithmic potential, leading to a Hagedorn spectrum. The fact
that stringy dynamics are not the only way to obtain a
Hagedorn spectrum, and in particular that such a spectrum
arises in ordinary quantum mechanics with logarithmic
potentials does not seem to be widely appreciated.3

To make our presentation reasonably self-contained, we
begin in Sec. II with a summary of center-stabilized
adiabatic compactifications. Section III discusses the light
sector of the compactified theory, with a focus on the
spectrum of bound states. In Sec. IV, we formulate the 3D
nonrelativistic effective field theory (EFT) which efficiently
describes the dynamics of heavy quark and gluon degrees
of freedom. Section V describes how the various sym-
metries of the underlying 4D gauge theory act within our
3D effective field theory. In Sec. VI we examine the
resulting spectrum of heavy bound states, while Sec. VII
discusses decay processes. We summarize our findings in

Sec. VIII and discuss some of their consequences, includ-
ing large N scaling relations and implications for the
thermodynamics of QCD-like theories. Several appendices
contain technical details.

II. ADIABATIC COMPACTIFICATION

Consider SUðNÞ Yang-Mills theory compactified on
R3 × S1, with the spatial circle having circumference L,

SYM ¼ 1

4g2

Z
R3×S1

d4xðFa
μνÞ2: ð2:1Þ

If all matter fields added to the theory transform in the
adjoint representation of the gauge group, then the theory
has a ZN center symmetry. (We discuss below the addition
of fundamental representation fermions.) Order parameters
for center symmetry are built from the holonomy of the
gauge field in the compact direction (or “Polyakov loop”),

Ω≡ Pei
R

L

0
dx3A3 : ð2:2Þ

Center symmetry transformations multiply the (fundamen-
tal representation) trace of the holonomy by a phase
factor equal to an N’th root of unity. The defining trans-
formation is

trΩ → ωtrΩ; ω≡ e2πi=N: ð2:3Þ
At large L center symmetry is unbroken, implying that
htrΩni ¼ 0 for all integer n ≠ 0modN. This is a hallmark
of a confining phase. At small L the realization of center
symmetry is analytically calculable [38,39]. We require that
the theory is engineered to prevent spontaneous breaking of
the ZN center symmetry in the L → 0 limit, so that the
theory is not in a deconfined plasma phase at small L. This

FIG. 1. Characteristic length scales in the static potential VðrÞ
for a heavy quark and antiquark separated by a distance r in Yang-
Mills theory on R4 (top), and in adiabatically compactified YM
theory on R3 × S1L (bottom). On R4 there is only one intrinsic
length scale Λ−1 which separates the short (V ∼ 1=r) and long
(V ∼ r) distance regimes. In the small-L regime of adiabatically
compactified YM theory on R3 × S1L, there is a parametrically
large intermediate regime,m−1

W ≪ r ≪ m−1
γ , inwhich the potential

is logarithmic, V ∼ ln r. Here m−1
W ∼ NL and m−1

γ ∼ NLη−11=6

with η≡ NLΛ ≪ 1. (See Eq. (2.14) below for details.)

3However, the notion of a limiting temperature for systems
with exponential densities of states was first introduced by Rumer
in 1960 [36], precisely in quantum mechanics with a logarithmic
potential, several years before Hagedorn’s suggestion [37] that
such a density of states may arise in hadronic physics.

AITKEN, CHERMAN, POPPITZ, and YAFFE PHYSICAL REVIEW D 96, 096022 (2017)

096022-2



can be achieved by adding suitable double trace deforma-
tions of the form jtrΩj2 (plus higher windings) to the action
of pure Yang-Mills theory [12,40]. Alternatively, the center
symmetry at small L can be stabilized by the addition of
massless or sufficiently light adjoint representation fer-
mions [15,18,41–43].4 If the adjoint fermions are massive,
center stabilization for small L requires that their mass madj

satisfy the constraint madj ≲ 2π=NL [15].
With center symmetry stabilized, the one-loop effective

potential VeffðΩÞ for the holonomy, obtained by integrating
out field modes with nonzero Kaluza-Klein (KK) momen-
tum in the compact direction, has a unique (up to gauge
equivalence) ZN symmetric minimum,

Ω ¼ ω−ðN−1Þ=2diagð1;ω;ω2;…;ωN−1Þ: ð2:4Þ

For sufficiently small L, the gauge coupling at the com-
pactification scale is weak and quantum fluctuations are
suppressed. Hence, one may regard the holonomy Ω as a
nearly constant SUðNÞ matrix with eigenvalues which are
all N’th roots of unity for N odd, and all N’th roots of −1
for N even. The holonomy acts like an adjoint representa-
tion Higgs field, “breaking” the non-Abelian gauge sym-
metry (using typical sloppy perturbative language) down to
the Uð1ÞN−1 Cartan subgroup. We will refer to the N − 1
diagonal Cartan components of the gauge field as “pho-
tons.” The off-diagonal components of gauge field (charged
under the Cartan subgroup) will be termed “W-bosons” and
receive masses given by positive integer multiples of

mW ≡ 2π=ðNLÞ: ð2:5Þ

Fluctuations in the eigenvalues of the holonomy will
have an effective mass mΩ whose value depends on the
details of the center symmetry stabilization. One may
regard mΩ ∼

ffiffiffi
λ

p
mW as a characteristic fiducial value, with

λ≡ g2N the usual ’t Hooft coupling. This is the typical size
resulting from modifications to the one-loop effective
potential for the holonomy, unless one fine-tunes the
stabilization mechanism, for instance by considering a
nearly supersymmetric limit of the theory.
The dynamical Higgs mechanism and resulting Abeli-

anization induced by the center-symmetric holonomy is the
key feature responsible for the analytic tractability of the
theory at small L. All charged degrees of freedom have
masses of order mW or more, so the 4D ’t Hooft coupling λ
does not continue to run below the scale mW. If mW ≫ Λ,
or equivalently

η≡ NLΛ ≪ 1; ð2:6Þ

then the long-distance value of the ’t Hooft coupling will be
small, λðmWÞ ≪ 1. We focus on this regime in what follows
and, unless stated otherwise, the value of g2 is taken at the
scale mW.
Previous work on adiabatically compactified QCD-like

theories has focusedexclusivelyon the lightest subsector in the
smallL limit, with characteristic energies and momenta much
less than mW and mΩ. On these scales, the physics can be
described by an effective field theory of N − 1 Abelian pho-
tons living in three dimensions. Nonperturbative monopole-
instanton effects generate small but relevant interactions
between the photons. The Euclidean action for the diagonal
components of the gauge field has the schematic form5

Slight ¼ L
Z

d3x

�
1

4g2
ðFa

μνÞ2 þ Lmonopole
int

�
: ð2:7Þ

A three-dimensional Abelian duality transformation leads to
the Coulomb gas representation,6

Slight ¼
Z

d3x

�
λmW

16π3
ð∇σÞ2 − ζ

XN
i¼1

cosðαi · σ þ θ=NÞ
�
:

ð2:8Þ

The fieldσ ¼ fσig is anN-component compact scalar field; in
our basis it is independently periodic in every component with
period 2π. The fundamental domain of σ is the unit cell of the
weight lattice, generated by the shifts σ → σ þ 2πμi where
fμig are the fundamental weight vectors of SUðNÞ and fαig
are the corresponding root vectors. The “fugacity”

ζ ¼ Am3
Wλ

−2e−8π
2=λ; ð2:9Þ

whereA is anOð1Þ coefficientwhich depends on the choice of
regularization scheme. Although not immediately apparent,
the action (2.8) is invariant, as it must be, under shifts in the
QCD θ angle by multiples of 2π.
To obtain an expression for the masses of the dual

photons, note that the potential V ¼ −ζ
P

N
i¼1 cosðαi · σ þ

θ=NÞ has N extrema in the unit cell of the weight lattice

4If center symmetry is stabilized with adjoint fermions, we
assume that 2 ≤ nA ≤ 5 species of adjoint Majorana fermions are
added, so the theory is asymptotically free but nonsupersymmetric
(in the massless limit). We also take the adjoint fermion massmadj
to be large compared to the mass gap scale mγ discussed below.

5Perturbative corrections generate photon mixing terms (as
well as higher derivative terms which are irrelevant at long
distances). The photon mixing matrix has been calculated in
N ¼ 1 SYM theory to first order in λ [29]. This photon mixing is
diagonalized by the sameZN Fourier transform mentioned below,
and does not affect the following discussion.

6A redundant field component has been introduced in this
representation, as if the original gauge group were UðNÞ instead
of SUðNÞ. The unphysical components,

P
N
a¼1 F

a
μν and

P
N
a¼1 σ

a,
exactly decouple and can be ignored. See, e.g., Ref. [12] for more
detailed discussion. Appendix B contains details of our con-
ventions, normalizations, and duality transformation.
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located at hσik ¼ 2πk
N ρ for k ¼ 0;…; N − 1, where ρ ¼P

N−1
i¼1 μi is the Weyl vector.7 For θ ¼ 0 the minimum lies at

k ¼ 0. For general θ, the vacuum energy density is given by

ϵ0 ¼ −N2
mW

2π
ζmax

k

�
cos

2πkþ θ

N

�
: ð2:10Þ

Expanding the potential around each of the N extrema and
diagonalizing the curvature (via a ZN Fourier transform)
yields the θ-dependent mass spectrum in each of the N
extrema (not all of which are minima). At the lowest-energy
minimum, which determines the physical mass spectrum,
one finds

m2
p ¼ m2

γsin2
πp
N

max
k

�
cos

2πkþ θ

N

�
; ð2:11Þ

for p ¼ 1; 2;…; N − 1, with

mγ ≡ CmWλ
−3=2e−4π

2=λ: ð2:12Þ

The Oð1Þ coefficient C is determined in terms of the
coefficient A in the fugacity (2.9). The label p can be
viewed as the charge under ZN center symmetry trans-
formations; this is discussed in Sec. V. One may also show
that expectation values of large fundamental representation
Wilson loops (not wrapping the compactified direction)
have area law behavior, with a string tension [12]

T ¼ C0λmWmγ; ð2:13Þ

with C0 another Oð1Þ coefficient.
The dual photon mass mγ can be expressed in terms of

the strong scale Λ by using the renormalization group to
relate λ at the scale of mW to Λ. The specific form of this
relation depends on the value of the beta function, and
hence on whether center symmetry is stabilized by double
trace deformations, or by the addition of adjoint fermions.
If center symmetry is stabilized by a double trace defor-
mation, then parametrically [12]

mγ ∼ ΛðNLΛÞ5=6 ¼ OðΛη5=6Þ; ð2:14Þ

and mγ=mW ¼ Oðη11=6Þ.8

A. Addition of fundamental quarks

We will consider center-stabilized adiabatically compac-
tified QCD in addition to pure Yang-Mills theory.
This entails adding nf flavors of quarks—fundamental

representation Dirac fermions. We restrict our discussion
to nf ≤ N and, for simplicity, focus on the massless quark
limit,

mq ¼ 0; ð2:15Þ
where the uncompactified theory has an SUðnfÞL ×
SUðnfÞR × Uð1ÞV continuous chiral symmetry.9When com-
pactifying the theory on R3 × S1, one must specify the
boundary conditions on the quark fields. Instead of simply
choosing periodic, or antiperiodic, boundary conditions for
all quark flavors, we will consider flavor-twisted boundary
conditions, or equivalently introduce a nondynamical flavor
holonomyΩF ∈ UðnfÞV. If one regards the quark fields q as
anN × nf matrix of spinors, then inA3 ¼ 0 gauge (where the
gauge holonomy becomes encoded in boundary conditions),
the boundary conditions on quarks are

qðt;x; LÞ ¼ Ωqðt;x; 0ÞΩ†
F: ð2:16Þ

We specifically choose the flavor holonomyΩF to have a set
of eigenvalues which are invariant under Znf cyclic permu-
tations. The symmetry structure of QCDwith such boundary
conditions was discussed in Ref. [44] (see also Refs. [45–
53]). To preserve reflection (in the compactified direction)
and charge conjugation symmetries, we also require that
complex conjugation leave this set of eigenvalues
unchanged. These two conditions imply that the eigenvalues
ofΩF are either given by all nf’th roots ofþ1, or by all nf’th
roots of −1. Finally, to simplify our discussion and leave
unchanged the relevant degrees of freedom in the non-
perturbative analysis of the light sector, we want all flavors
of quarks to receive nonzero effective masses from the
compactification. This requires that no eigenvalue of the
gauge holonomy coincide with an eigenvalue of the flavor
holonomy.
Solutions to these just-stated constraints depend on the

values of N and nf , in particular whether N is even or odd
and (when N is even) whether N and nf have common
divisors. For simplicity of exposition we will henceforth
assume that N is odd, unless stated otherwise, so that the
eigenvalues (2.4) of the gauge holonomy Ω are N’th roots
of unity. To avoid coinciding gauge and flavor eigenvalues,
this implies that the flavor holonomy eigenvalues must
equal nf’th roots of −1. Consequently, we choose

ΩF ¼ diag
�
ξ
1
2; ξ

3
2;…; ξnf−

1
2

�
; ξ≡ e2πi=nf : ð2:17Þ

When the gauge holonomy is encoded in a nonzero value
of A3 (so that the gauge field satisfies simple periodic
boundary conditions), the resulting quark boundary con-
ditions are

7To see this, use αi · ρ ¼ 1 for i ¼ 1;…; N − 1, together
with αN · ρ ¼ 1 − N.

8If center symmetry is stabilized by the addition of nA light
adjoint Majorana fermions with mass comparable to mW, then
mγ=mW ¼ Oðηð11−2nAÞ=6Þ.

9For nf > N, it is not currently known how to ensure that chiral
symmetry realizations coincide at large and small L.
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qAðt;x; LÞ ¼ ξ
1
2
−AqAðt;x; 0Þ; ð2:18Þ

where A ¼ 1;…; nf is a flavor index. The effect of these
boundary conditions is to shift the moding (i.e., the allowed
values of the momentum in the compact direction), in a
flavor-dependent fashion which is detailed below. The
boundary conditions (2.18) reduce the non-Abelian flavor
symmetry to the Abelian subgroup10

Uð1Þnf−1L ×Uð1Þnf−1R × Uð1ÞV: ð2:19Þ
Note that this residual flavor symmetry of our compactified
theory contains the axial subgroup Uð1Þnf−1A which differ-
entially rotates the phases of left- and right-handed quarks
in a flavor-dependent fashion.
In the center-stabilized regime of YM theory, the

addition of massless quarks with the boundary conditions
)2.18 ) produces fermion zero modes localized on the

monopole-instantons. The presence of these zero modes
modifies the nonperturbative long distance dynamics. After
a 3D duality transformation, one may show that nf − 1 of
the dual scalar fields remain exactly massless [35], while
the remaining N − nf dual scalar fields develop nonper-
turbative masses just as in center-stabilized YM theory
without fundamental quarks. The mechanism causing
nf − 1 dual scalars to become massless in the presence
of fermion zeromodes involves their acquisition of nontrivial
transformation properties under the anomaly free Uð1Þnf−1A
axial symmetry, as explained in Ref. [35]. Consequently,
these exactly massless fields are precisely the expected
Nambu-Goldstone bosons (or “neutral pions”) produced
by spontaneous breaking of the chiral symmetry (2.19)
down to the diagonal vectorlike Uð1ÞnfV subgroup [35].
If a small quark massmq is added to the theory, then some

of the dual photons, or neutral pions, become massive. For
example, when nf ¼ N one finds [35] (at θ ¼ 0) that

mp ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mWmq

p
e−4π

2=λ sin
πp
N

: ð2:20Þ

(Here p is the charge of the pion under cyclic flavor
permutations.) One may again relate mp to the strong scale
Λ by taking into account the contribution of the fundamental
fermions to the running of the coupling at the scalemW.With
the pure-YM center symmetry stabilized via double trace
deformations and nf ¼ N, one finds

mp ¼ Oðη
ffiffiffiffiffiffiffiffiffiffi
mqΛ

q
Þ; ð2:21Þ

where, once again, η≡ NLΛ.

III. LIGHT SECTOR BOUND STATES

As noted in the introduction, when the color holonomy
has the center symmetric form (2.4), a rich spectrum of
hadronic states is present in the small-L regime of the
compactified theory. These states fall into two categories
based on the scale of their rest masses. One set of states
have rest masses of order of the light scale mγ , while the
other set has rest masses of order of the heavy scalemW. As
will be shown below, in both sectors the binding momenta
are small compared to the rest masses of constituents, so the
most efficient way to describe each sector of the theory
involves constructing an appropriate nonrelativistic effec-
tive field theory. In this section we describe the effective
field theory for the light “dual photon” sector and discuss
the resulting light bound state spectrum.

A. N = 2 bound states

To illustrate the relevant physics in the simplest setting,
consider adiabatically compactified pure-YM theory with
N ¼ 2 and θ ¼ 0. The relativistic 3D effective theory
describing interactions of the single (physical) dual photon
field σ ≡ σ1 − σ2, to leading nontrivial order in the semi-
classical expansion, is

S3D;rel ¼
Z

d3x

�
λmW

32π3
ð∂μσÞ2 − 2ζ cosðσÞ

�
: ð3:1Þ

Introducing a canonically normalized field ~σ ≡ σðλmW
16π3

Þ1=2,
and expanding the potential, one finds

S3D;rel ¼
Z

d3x

�
1

2
ð∂μ ~σÞ2 þ

1

2
m2

γ ~σ
2 −

2

3
ϵmγ ~σ

4

þ 16

45
ϵ2 ~σ6 −

32

315
ϵ3m−1

γ ~σ8 þ � � �
�
; ð3:2Þ

where

ϵ≡ π3mγ

λmW
¼ Oðλ−5=2e−4π2=λÞ: ð3:3Þ

At first glance it is tempting to assume that the interaction
terms in (3.2) have negligible consequences. To our knowl-
edge, effects of these weak interactions have not previously
been considered, either in the literature on adiabatically
compactified 4D theories starting with Ref. [12], or in the
original literature on the Polyakov model in three dimen-
sions [54]. As we now discuss, this presumption overlooks
interesting physics.
The ~σ8 and higher terms in the action (3.2) are irrelevant

and can be ignored when focusing on the long distance
behavior of the theory. The ~σ4 coupling is relevant, but its
coefficient is exponentially small in units of the σ mass.
The ~σ6 coupling is marginal and infrared-free [55–58]. It is

10More precisely, the unbroken subgroup is Uð1Þnf−1L ×
Uð1Þnf−1R × Uð1ÞV=Znf . Henceforth, we will not be explicit with
the discrete identification needed to avoid double counting Znf
phase rotations.
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also exponentially small and stops running below the mass
gap scale mγ . These considerations might naively be
interpreted to imply that all interaction effects in the low
energy theory (3.2) are tiny. But consider interactions of ~σ
modes with low momenta p ≪ mγ . Such interactions can
be described by a nonrelativistic effective field theory.
Writing ~σ ¼ ð2mγÞ−1=2e−imγtΣþ ðH:c:Þ, where Σ is the
nonrelativistic field, and integrating out rapidly oscillating
terms leads to the nonrelativistic description,11

S3D;NR ¼
Z

dtd2x

�
Σ†

�
i∂t þ

∇2

2mγ

�
Σþ ϵ

mγ
ðΣ†Þ2Σ2

−
8ϵ2

9m3
γ
ðΣ†Þ3Σ3 þ � � �

�
: ð3:4Þ

The scaling dimension assignments appropriate to non-
relativistic theories in spacetime dimension d are ½t� ¼ −2,
½x� ¼ −1, ½Σ� ¼ d−1

2
, and ½mγ� ¼ 0. This implies that the

coefficients of the ðΣ†ΣÞ2 and ðΣ†ΣÞ3 interactions have
dimensions d − 3 and 2ðd − 2Þ, respectively. In d ¼ 3, this
shows that the two particle ðΣ†ΣÞ2 interaction becomes
marginal in nonrelativistic dynamics, while the three
particle ðΣ†ΣÞ3 interaction becomes irrelevant. In fact,
the ðΣ†ΣÞ2 coupling ϵ runs logarithmically with scale
[59,60], as may be seen (for example) by calculating the
two particle scattering amplitude. Consequently, the def-
inition (3.3) should be interpreted as the value of the
running interaction strength ϵ at the UV momentum cutoff
μUV ∼mγ. In the nonrelativistic limit the only diagrams
which contribute to the renormalization group (RG) evo-
lution of ϵ beyond tree level are iterated bubble diagrams.
Summing them yields the exact beta function for ϵ. Using
dimensional regularization, one simply finds [60]

μ
dϵðμÞ
dμ

¼ −
1

π
ϵðμÞ2: ð3:5Þ

When the initial coupling ϵðμUVÞ is positive, corresponding
to an attractive interaction, ϵðμÞ diverges at the momentum
scale ΛIR ¼ μUV exp ½−π=ðϵðμUVÞÞ�. As a function of
momentum, the two particle scattering amplitude AðkÞ
becomes singular at k2 ¼ −Λ2

IR. A pole develops at this
position, indicating that ΛIR can be interpreted as the
binding momentum for a two-body bound state of dual
photons.12 The two particle binding energy is thus

ΔE2 ¼ −
k2

mγ
¼ −

μ2UV
mγ

e−2π=ϵðμUVÞ ¼ −
1

4
c2mγe−2λmW=π2mγ :

ð3:6Þ
In the final form we used the bare value (3.3) of ϵ and set
the ultraviolet cutoff to the reduced mass 1

2
mγ times an

Oð1Þ coefficient c, whose determination requires a more
careful matching calculation and is left for future work. The
two dual photon bound state has a rest mass

m2 ¼ 2mγ þ ΔE2 ¼ mγ

�
2 −

1

4
c2e−2λmW=π2mγ

�
: ð3:7Þ

Expressed in terms of the original gauge coupling, the
fractional binding energy involves a nonperturbative dou-
ble exponential,

ΔE2

2mγ
¼ −

1

4
c2 exp

�
−

2

π2C
λ5=2e4π

2=λ

�
; ð3:8Þ

whose appearance is quite peculiar in the context of the 4D
gauge theories.13

In addition to a two particle bound state, an attractive two-
body interaction in two space dimensions also binds higher
multibody bound states. (See, for example, Refs. [59,62].)
The magnitude of the k-body binding energy ΔEk increases
exponentially with k, with ΔEkþ1=ΔEk ∼ 8.6 for large k
[59]. In our context, we thus deduce the presence of a very
large number of bound states of dual photons, one slightly
below each k-particle threshold atE ¼ kmγ for k ¼ 2; 3; � � �,
with fractional binding energies proportional to the non-
perturbative double exponential (3.8).14

B. N > 2 bound states

We now briefly consider the generalization to arbitrary
N, still with θ ¼ 0. Using a ZN Fourier transform to
diagonalize the mass terms, σi ≡ ðλmW

8π3
Þ−1=2 PN−1

p¼1 ω
ip ~σp=ffiffiffiffi

N
p

(with ~σ�p ¼ ~σN−p), the generalization of the action
(3.2) is

S3D ¼
Z

d3x
XN−1

p¼1

1

2
ðj∂μ ~σpj2 þm2

pj ~σpj2Þ

−
4ϵmγ

3N

XN−1

p1���p4¼1

δp1þp2þp3þp4;0e
iπðp1þp2þp3þp4Þ=N

×

�Y4
i¼1

sin

�
πpi

N

��
~σp1

~σp2
~σp3

~σp4
þOð ~σ6Þ; ð3:9Þ

11Here and in Eq. (3.10) below, we flip the overall sign so that
the nonrelativistic action S3D;NR has the conventional T − V form.

12One may also directly solve the quantum mechanical
problem of a particle of reduced mass 1

2
mγ moving in the

attractive potential − 2ϵ
mγ
δð2ÞðxÞ. The bound state wave function

equalsK0ðr=rBÞ, with the bound state size rB ¼ jmγΔE2j−1=2 and
ΔE2 equaling the binding energy (3.6).

13However, the existence of double-exponential nonperturba-
tive scales in gauge theory has been previously advocated [61],
based on quite different considerations from those discussed here.

14This weak coupling nonrelativistic description breaks down
when kðln 8.6Þ becomes exponentially large and comparable to
2λmW=π2mγ ∼ λ5=2eþ4π2=λ.
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where all center charges fpkg are understood to be defined
modulo N. The masses fmpg and coupling ϵ are given by
Eqs. (2.11) and (3.3), respectively. [Recall that the field
~σ0 ∝

P
iσi decouples, and is omitted. Expression (3.9)

reduces to the earlier form (3.2) for N ¼ 2, as it should.]
The sign of the quartic interaction depends on the values

of the center charges of the particles under consideration.
For elastic scattering of dual photons with arbitrary charges
p1 and p2, the relevant piece of the quartic interaction has
an overall minus sign, which corresponds to attraction. The
effective theory which follows from a nonrelativistic
reduction of the action (3.9), and generalizes the earlier
form (3.4) to arbitrary N, is

S3D;NR¼
Z

dtd2x

�XN−1

p¼1

Σ†
p

�
i∂tþ

∇2

2mp

�
Σpþ

2ϵ

N

m2
p

m3
γ
ðΣ†

pÞ2Σ2
p

þ
X
p1<p2

8ϵ

N

mp1
mp2

m3
γ

Σ†
p1
Σ†
p2
Σp2

Σp1
þ���

�
; ð3:10Þ

where we have included only those terms contributing to
elastic 2 ↔ 2 scattering.15 Note the factor of 4 difference in
the coefficients of the quartic terms responsible for scatter-
ing of identical vs. nonidentical particles.
Applying the earlier analysis (either solving the two-

particle Schrödinger equation with a delta function poten-
tial, or resumming bubble diagrams and locating the
resulting pole in the scattering amplitude) to states con-
taining particles of center charge p1 and p2, one finds the
binding energy

ΔEp1≠p2

2 ¼ −2c2m exp

�
−
πN
4ϵ

m3
γ

mp1
mp2

m

�
; ð3:11Þ

if p1 ≠ p2. Here m≡ ðm−1
p1

þm−1
p2
Þ−1 is the reduced mass

of the two constituents. If the two constituents are identical,
then the result is

ΔEp1¼p2

2 ¼ −c2mp1
exp

�
−
πN
ϵ

m3
γ

m3
p1

�
: ð3:12Þ

Bound states composed of equal mass constituents can
have either equal or opposite charge constituents. For the

first case, with charges p1 ¼ p2 ¼ p, the identical particle
binding energy (3.12) gives a total mass

mp;p
2 ¼ mp½2 − c2e−

πN
ϵ ðmγ=mpÞ3 �: ð3:13Þ

For opposite charges, p and N − p, the nonidentical
binding energy (3.11) with mp1

¼ mp2
¼ 2m ¼ mp gives

total mass

mp;N−p
2 ¼ mp½2 − c2e−

πN
2ϵ ðmγ=mpÞ3 � ð3:14Þ

[except for the special case of p ¼ N=2 with N even,
where the first result (3.13) applies]. In other words, the
fractional binding energy for nonidentical particles is
Oðe−πN

2ϵ ðmγ=mpÞ3Þ ¼ Oðe−πN
2ϵ j sinπpN j−3Þ, while bound states of

identical constituents have twice the exponential suppres-
sion in their binding energy.

IV. HEAVY SECTOR EFFECTIVE FIELD THEORY

We now consider states with rest masses of ordermW and
above, and characteristic binding momenta p in the range

mγ ≪ p ≪ mW: ð4:1Þ

This section describes the construction of a nonrelativistic
effective theory suitable for the description of such states.
We begin with the effective theory characterizing pure
gauge, or glueball, dynamics, and then discuss the addition
of fundamental representation quarks.

A. Gauge field contributions

The center-symmetric holonomy (2.4) may equivalently
be regarded as a nonvanishing constant diagonal gauge
field in the compact direction, A3, together with conven-
tional periodic boundary conditions. The tr½A3;A�2 term in
the classical Yang-Mills action generates tree-level masses
of order mW for the charged W-bosons. The efficient
description of the interactions of these massive charged
degrees of freedom with the Cartan photons is provided by
a nonrelativistic effective field theory with action:

Sheavy ¼
XN
a;b¼1

X0∞

n¼−∞

Z
dtd2x

�
ðϕ⃗ab

n Þ†i∂tϕ⃗
ab
n

−Mab
n jϕ⃗ab

n j2 − j∇ϕ⃗ab
n j2

2mab
n

�

þ λmW

4π

XN
a¼1

Z
dtd2xd2yρaðt;xÞGðx − yÞρaðt; yÞ;

ð4:2Þ

where

15The interaction (3.9) also includes charge exchange proc-
esses which lead to mixing among bound states with differing
constituents but the same total center charge. For generic values
of N and choices of p1 and p2 the effects of such interaction
terms on binding energies are suppressed in the nonrelativistic
limit, because the masses of the dual photons depend on their
center charge. Charge exchange processes can only become
relevant if states with differing constituents and the same total
charge also have the same total constituent mass. Such mixing
will deepen the binding of the lowest energy bound states of a
given total charge. We defer a complete multichannel treatment to
future work.
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Gðx − yÞ≡ 1

2π
lnðμjx − yjÞ ð4:3Þ

is the two dimensional Laplacian Green’s function. The
derivation of this effective theory is detailed in Appendix A.
Higher order (in λ) corrections, such as magnetic moment
interactions, are omitted for simplicity.
The two-dimensional vector fields ϕ⃗ab

n are the non-
relativistic reduction of the n’th Fourier component (in
the compact direction) of the ðabÞ component of the SUðNÞ
gauge field, viewed as an N × N Hermitian matrix. The
color (or “Cartan”) indices a, b run from 1 to N, and the
Kaluza-Klein index n is an arbitrary integer. In the action
(4.2), the prime on the sum over n is an indication to omit
the n ¼ 0 term when a ¼ b, but not otherwise. The vector
field ϕ⃗ab

n annihilatesW-bosons with charges ðþ1;−1Þ with
respect to the a’th and b’th unbroken Uð1Þ gauge groups.
The spatial gradient ∇ is a two-dimensional Uð1ÞN covar-
iant derivative defined by

ð∇Þiðϕab
n Þj ≡ ½∇i − ig3ðAa

i − Ab
i Þ�ðϕab

n Þj: ð4:4Þ

Here i, j ¼ 1, 2 label the two noncompact spatial directions
and fA⃗ag are N independent spatial gauge fields. We have
introduced N Abelian gauge fields, instead of N − 1, as if
the original gauge group were UðNÞ instead of SUðNÞ.
This simplifies notation, and makes no difference as the
unphysical extra photon, Āi ≡P

aA
a
i , will exactly decou-

ple from all physical states. We have also reverted to a
perturbative normalization for the gauge fields, with a
dimensionless gauge coupling g3 appearing inside the
covariant derivative, and a corresponding 3D Maxwell
action given by L

R
d3x 1

4
ðFa

ijÞ2. The 3D gauge coupling
is, to lowest order, just the 4D gauge coupling evaluated at
the scale mW,

g23 ≡ g24ðmWÞ: ð4:5Þ

Due to the nontrivial holonomy Ω, momentum in the
compact direction carried by individual field components is
quantized in units of mW, not NmW ¼ 2π=L. The Kaluza-
Klein reduction of the ðabÞ component of the gauge field
yields a sum of modes with momentum

p3 ¼ mWk; ð4:6aÞ

where

k ¼ a − bþ nN; n ∈ Z: ð4:6bÞ

For any given value of a ¼ 1;…; N specifying a row of
the SUðNÞ gauge field, there is a one-to-one mapping
between the momentum index k and the corresponding
values of the column b and KK index n,

b− 1¼ ðk−aþ 1Þ mod N; n¼ ðk−aþbÞ=N: ð4:7Þ

In the following, we will sometimes write expressions
involving the relabeled field

ϕ⃗a
k ≡ ϕ⃗ab

n ; ð4:8Þ

with the implicit understanding that momentum index k is
related to the (antifundamental) column and KK indices
fb; ng via relations (4.7). The momentum index k may
take on any integer value other than zero. For charged
W-bosons, kmodN ≠ 0. The “diagonal” operators ϕ⃗aa

n
with n ≠ 0 annihilate the neutral (uncharged under
Uð1ÞN) gauge bosons carrying nonzero KK momentum.
These gauge bosons form the Kaluza-Klein tower whose
n ¼ 0 modes (excluded from Sheavy) are the Uð1ÞN light
Abelian photons.
The rest and kinetic mass parameters appearing in the

effective theory (4.2) only depend on the Cartan and KK
indices via the combination k, and equal the magnitude of
the compact momentum p3, up to higher order radiative
corrections. In other words,

Mab
n ¼Mk≡mWðjkjþOðλÞÞ¼mWja−bþnNjþOðλmWÞ;

ð4:9aÞ

mab
n ¼mk≡mWðjkjþOðλÞÞ¼mWja−bþnNjþOðλmWÞ:

ð4:9bÞ

Although they coincide at lowest order, the kinetic and rest
masses appearing as parameters in our 3D nonrelativistic
effective field theory (4.2), or any other nonrelativistic EFT,
may differ when subleading corrections are included, even
when the underlying theory retains full 2þ 1 dimensional
Lorentz invariance.
In the effective action (4.2), the time components of the

Uð1ÞN Abelian gauge fields have been integrated out,
producing nonlocal Coulomb interactions. The operators

ρa ≡XN
b¼1

X0∞

n¼−∞
½ðϕ⃗ab

n Þ† · ϕ⃗ab
n − ðϕ⃗ba

n Þ† · ϕ⃗ba
n �; ð4:10Þ

are the Uð1ÞN charge densities. (Note that ρ̄≡P
aρ

a

vanishes identically.) The conserved charges defined by
spatial integrals of these charge densities must vanish,

Qa ≡
Z

d2xρaðxÞ ¼ 0; ð4:11Þ

when acting on any physical, gauge invariant state. Because
of this, the dependence of the 2D Laplacian Green’s
function (4.3) on the arbitrary scale μ inside the logarithm
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cancels in any physical state, since the variation of the
Lagrangian with respect to μ is proportional to ðQaÞ2.
The nonrelativistic effective theory (4.2) describes the

dynamics of all modes of the non-Abelian gauge field
which are charged under the Uð1ÞN Cartan subgroup,
namely W-bosons, plus the uncharged gauge field modes
which carry nonzero KK momentum, which we will term
“heavy photons.”However, we have not included any fields
describing fluctuations of the eigenvalues of the holonomy
in the effective field theory. These could easily be included
asN − 1 additional neutral scalar fields (not 2D vectors like
ϕ⃗ab
n ) with Oð ffiffiffi

λ
p

mWÞ masses whose precise values depend
on the matter content or double trace deformations used to
stabilize the center symmetry. These scalar fields only
interact with ϕ⃗ab

n via higher dimension local operators,
suppressed by powers of λ. For the physics we choose to
focus on, holonomy fluctuation fields will not play any
significant role and may be neglected. If adjoint fermions
are used to stabilize the center symmetry, then these
fermions are also missing from our nonrelativistic effective
theory. They could be easily included but, for simplicity, we
will limit our attention to states where adjoint fermions (and
eigenvalue fluctuations) play no significant role.
Reading off the quantum Hamiltonian from the effective

action (4.2) is trivial, except for one UV subtlety. The
Hamiltonian of the second quantized nonrelativistic theory
(with rest energies included) is

Ĥ ¼
XN
a;b¼1

X0∞

n¼−∞

Z
d2xϕab

n ðxÞ†i
�
−

∇2

2mk
þMkðμÞ

�
ϕab
n ðxÞi

−
XN

a;b;c¼1

X0∞

m;n¼−∞

Z
d2xd2y

λmW

8π2
lnðμjx− yjÞ

× ½ϕab
n ðxÞ†i ðϕac

m ðyÞ†jϕac
m ðyÞj −ϕca

m ðyÞ†jϕca
m ðyÞjÞϕab

n ðxÞi
−ϕba

n ðxÞ†i ðϕac
m ðyÞ†jϕac

m ðyÞj −ϕca
m ðyÞ†jϕca

m ðyÞjÞϕba
n ðxÞi�;
ð4:12Þ

where the field operators satisfy canonical commutation
relations,

½ϕab
n ðxÞi;ϕcd

n0 ðyÞj� ¼ 0;

½ϕab
n ðxÞi;ϕcd

n0 ðyÞ†j � ¼ δacδbdδnn0δijδ
2ðx − yÞ: ð4:13Þ

In the Hamiltonian (4.12) we have written out the charge
densities ρa explicitly and normal ordered the results. In the
quartic terms, normal ordering removes the UV sensitive
self-energy of each charged W-boson. The price of that
removal is that the μ dependence of the Coulomb inter-
action terms no longer vanishes identically. Instead, this
unphysical dependence on the scale μ is canceled by
explicit dependence on μ which has been introduced into
the bare rest masses (of charged W’s only),

μ
d
dμ

MkðμÞ ¼ −
λmW

4π2
ð1 − δ0kmodNÞ: ð4:14Þ

The effective action (4.2), and corresponding Hami-
ltonian (4.12), depend on the 3D gauge coupling g3, or
equivalently the ’t Hooft coupling λ, both in the coefficient
of the Coulomb interactions and inside the spatial covariant
derivatives. But when considering phenomena for which
the coupling to the transverse Cartan gauge fields fA⃗ag
may be neglected, the remaining dependence on λ takes
a very simple form. To see this, rescale all spatial
coordinates, x → x0=s, y → y0=s, and then redefine
ϕ⃗a
kðx0=sÞ ¼ sφ⃗a

kðx0Þ. This is a unitary transformation; the
rescaled operators fφ⃗a

kðxÞg satisfy the same canonical

commutation relations as the original operators fϕ⃗a
kðxÞg.

In the Hamiltonian, the effect of this rescaling is to change
the relative coefficients of the kinetic and Coulomb energy
terms. Let

N̂ab
n ≡

Z
d2xϕ⃗ab

n ðxÞ† · ϕ⃗ab
n ðxÞ ð4:15Þ

denote the number operator which counts the number of
constituents of the indicated type, and define

ĤNRðλ; μÞ≡ ĤjA⃗a¼0
−

XN
a;b¼1

X0∞

n¼−∞
MkðμÞN̂ab

n ð4:16Þ

as the nonrelativistic Hamiltonian with rest energy con-
tributions removed, the spatial Abelian gauge fields set to
zero, and dependence on λ and the scale μ made explicit. If
one chooses s ¼ ffiffiffi

λ
p

, then a short exercise shows that

ĤNRðλ;μÞ ≅ λĤNRð1;μ=
ffiffiffi
λ

p
Þ ¼ λĤNRð1;μÞ−

λ lnλ
8π2

mWN̂W;

ð4:17Þ

where ≅ denotes unitary equivalence and

N̂W ≡XN
a;b¼1
a≠b

X0∞

n¼−∞
N̂ab

n ð4:18Þ

is the total number of charged W-bosons. The scaling
relation (4.17) shows that the spectrum of the 2D Coulomb
Hamiltonian ĤNRðλ; μÞ is simply proportional to the ’t
Hooft coupling λ, up to an overall additive shift propor-
tional to λ ln λ times the number of charged constituents.
This relation may equivalently be expressed as

1

λ
ĤNRðλ; μÞ ≅

1

λ0
ĤNRðλ0; μÞ −

mW

8π2
lnðλ=λ0ÞN̂W: ð4:19Þ
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B. Quark contributions

The quark fields modify the light and heavy sectors of
the theory in several ways. In addition to their effects on the
nonperturbative large distance dynamics, already men-
tioned in the previous section, the compactified quark
fields contain massive degrees of freedom which play a
role in physics on the scale of mW and above. Specifically,
every flavor and color component of a fundamental
representation Dirac fermion leads, in a nonrelativistic
description, to a pair of two-component spinor fields which
we will denote as ψaA

n and χaAn . The field ψaA
n annihilates

quarks of flavor A which have charge þ1 under the a’th
Uð1Þ gauge group [and are neutral with respect to all other
Uð1Þ gauge group factors]. The field χaAn annihilates
antiquarks of flavor A and charge −1 under the a’th
Uð1Þ gauge group [and are neutral with respect to the
other Uð1Þ gauge group factors]. It will be convenient to
define quark KK indices as half-integers, n ∈ Zþ 1

2
. These

fields satisfy canonical anticommutation relations,

fψaA
n ðxÞs;ψbB

n0 ðyÞ†s0 g ¼ fχaAn ðxÞs; χbBn0 ðyÞ†s0 g
¼ δabδABδnn0δss0δ

2ðx − yÞ; ð4:20Þ

where s; s0 ¼ � are spin-1=2 spinor indices. All other
anticommutators vanish. To describe the dynamics of the
quarks, one must add another set of terms to the effective
theory (4.2) describing W-bosons, namely,

Squark ¼
XN
a¼1

Xnf
A¼1

X
n∈Zþ1

2

Z
dtd2x

�
ðψaA

n Þ†i∂tψ
aA
n

−MaA
n jψaA

n j2 − j∇ψaA
n j2

2maA
n

þ ðχaAn Þ†i∂tχ
aA
n −MaA

n jχaAn j2 − j∇χaAn j2
2maA

n

�
; ð4:21Þ

where the covariant spatial gradients acting on fermions are
defined by

ð∇ÞiψaA
n ≡ ½∇i − ig3Aa

i �ψaA
n ; ð∇ÞiχaAn ≡ ½∇iþ ig3Aa

i �χaAn :

ð4:22Þ

The compact momentum p3 carried by a quark created by
ðψaA

n Þ† is

p3 ¼ mW

��
a −

1

2

�
−
�
A −

1

2

�
N=nf þ nN

�
; ð4:23Þ

while the antiquark created by ðχaAn Þ† carries the opposite
momentum −p3. The rest and kinetic quark masses equal
jp3j, the magnitude of the compact momentum, up to
higher order radiative corrections,

MaA
n ¼ jp3jð1þOðλÞÞ; maA

n ¼ jp3jð1þOðλÞÞ: ð4:24Þ

Note that these fermion masses in the effective theory have
nothing to do with chiral symmetry breaking quark masses
in the underlying 4D theory, which we have assumed
vanish. Our EFT fully respects the chiral symmetry (2.19)
of the compactified theory. Nevertheless, the nonrelativistic
quark masses (4.24) are nonvanishing for all values of
n ∈ Zþ 1

2
, a ¼ 1;…; N, and A ¼ 1;…; nf . (Recall that we

have assumed that N is odd.) Our explicit calculations in
Sec. VI will focus on the special case of nf ¼ N, for which
the allowed values of the compact momentum of a quark
become half-integers (times mW),

p3 ¼ mWk; with k≡ a − Aþ nN: ð4:25Þ

For a given Cartan index a, relation (4.25) gives a one-to-
one mapping between the flavor and KK indices fA; ng and
the quantized momentum index k. When discussing the
nf ¼ N theory, it will often be convenient to use the
momentum index k ∈ Zþ 1

2
in place of the (equivalent)

values of the flavor and KK indices and relabel the quark
fields as

ψa
k ≡ ψaA

n ; χak ≡ χaAn ; ð4:26Þ

with the implicit understanding that the flavor, KK and
momentum indices are connected via relation (4.25). In
other words, ψa

k annihilates a quark with compact momen-
tum p3 ¼ mWk and charge þ1 under the a’th Uð1Þ gauge
group, while χak annihilates an antiquark with compact
momentum p3 ¼ −mWk and charge −1 under the a’th
Uð1Þ group.
In addition to the above quark kinetic terms, the Abelian

charge densities ρa appearing in the Coulomb interactions
of the effective theory (4.2) must be augmented to include
the quark contributions,

ρa ≡XN
b¼1

X0

n∈Z
½ðϕ⃗ab

n Þ† · ϕ⃗ab
n − ðϕ⃗ba

n Þ† · ϕ⃗ba
n �

þ
Xnf
A¼1

X
n∈Zþ1

2

½ðψaA
n Þ†ψaA

n − ðχaAn Þ†χaAn �; ð4:27Þ

and the form of the Coulomb interactions appearing in the
action (4.2) must now have the contribution from the
unwanted extra Uð1Þ gauge group removed,

SCoulomb ¼
λmW

4π

Z
dtd2xd2yGðx − yÞ

�XN
a¼1

ρaðt;xÞρaðt; yÞ

−
1

N

XN
a;b¼1

ρaðt;xÞρbðt; yÞ
�
: ð4:28Þ
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[Without the subtraction of the second term in this
expression, the Coulomb energy would be that of a
UðNÞ gauge theory instead of SUðNÞ.] With quarks added
to the theory, all the conserved Abelian charges Qa, when
acting on physical states, equal the baryon number,

Qa ¼ NB ≡ 1

N

X
a;A;n

Z
d2x½ðψaA

n Þ†ψaA
n − ðχaAn Þ†χaAn �: ð4:29Þ

Conversion of the effective action for quarks (4.21) to the
corresponding quark contribution of the nonrelativistic
Hamiltonian proceeds as described earlier. As with the
W-bosons, normal ordering the Coulomb interactions
induces logarithmic dependence on the scale μ in the
quark rest masses,

μ
d
dμ

MaA
n ðμÞ ¼ −

λmW

8π2

�
1 −

1

N

�
: ð4:30Þ

In the presence of quarks the rescaling relation (4.19)
becomes

1

λ
ĤNRðλ; μÞ ≅

1

λ0
ĤNRðλ0; μÞ −

mW

16π2
lnðλ=λ0Þ

×

�
2N̂W þ

�
1 −

1

N

�
N̂qþq̄

�
; ð4:31Þ

where

ĤNRðλ; μÞ≡ ĤjA⃗a¼0
−

XN
a;b¼1

X0

n∈Z
Mab

n ðμÞN̂ab
n

−
XN
a¼1

Xnf
A¼1

X
n∈Zþ1

2

MaA
n ðμÞN̂aA

n ð4:32Þ

is the nonrelativistic Hamiltonian with all rest energies
removed,

N̂aA
n ≡

Z
d2x½ψab

n ðxÞ†ψab
n ðxÞ þ χabn ðxÞ†χabn ðxÞ� ð4:33Þ

counts the number of quarks plus antiquarks of the speci-
fied type, and the operator N̂qþq̄≡Pnf

A¼1

P
N
a¼1

P
n∈Zþ1

2
N̂aA

n

is the total number of quarks plus antiquarks.

V. SYMMETRIES

As already noted, physical states in an SUðNÞ gauge
theory must be gauge invariant. In the compactified theory,
this is trivially enforced dynamically: gauge invariant states
are those which do not have divergent Coulomb energies.
This is equivalent to the just-stated condition (4.29) that all
Uð1Þ changes equal the baryon number, Qa ¼ NB. To see
this connection more explicitly, it may be helpful to note

that our effective W-boson fields, ϕ⃗ab
n , which were

described earlier in a basis-dependent fashion as coming
from a specified row and column of the 4D gauge field—
when the holonomy has the specific form (2.4)—could
have been introduced in a manifestly basis-independent
fashion by first defining the operators

Pa ≡ 1

N

XN−1

n¼0

ω−ða−1
2
ðNþ1ÞÞnΩn; a ¼ 1;…; N: ð5:1Þ

The operators (5.1) are mutually orthogonal Hermitian
projection operators, PaPb ¼ δabPa, when Ω lies at the
center-symmetric minimum (2.4) and the eigenvalues of Ω
are all N’th roots of −1 or þ1. Our effective 3D fields
correspond to pieces of the original 4D fields extracted by
these projection operators,16

Fa
μν ∝ trðPaFμνÞ; ϕ⃗ab

n ∝ PaD⃗Pb;

ψaA
n ∝ PaqA; χaAn ∝ q̄APa ð5:2Þ

(neglecting details of the KK decomposition, spinor struc-
ture, etc.). This highlights the point that the Cartan gauge
fields are associated with manifestly gauge invariant 4D
operators, while the W-boson and quark fields are gauge
covariant, as one would expect. With the aid of such
expressions, it is easy to see that composite operators in the
3D theory which map onto manifestly gauge invariant 4D
operators are precisely those satisfying the condition
Qa ¼ NB. As examples, the operators

Gab ≡ ϕ⃗ab
0 · ϕ⃗ba

0 ∼ trðDiPbDiPaÞ; ð5:3aÞ

Ma
AB ≡ χaA1=2ψ

aB
1=2 ∼ q̄BPaqA; ð5:3bÞ

BA ≡ ψ1;A
1=2ψ

2;A
1=2 � � �ψN;A

1=2 ∼ ðP1qAÞðP2qAÞ � � � ðPNqAÞ;
ð5:3cÞ

(with no implied sums on Cartan indices, and extraneous
structure suppressed) are prototypical glueball, meson, and
baryon operators, respectively.
The global symmetries which are respected by our

compactification and under which eigenstates of the
Hamiltonian may be classified include the spacetime
symmetries of 2þ 1 dimensional Minkowski space,
leading to conserved total 2D spatial momentum (P⃗)
and angular momentum (Jz). States with vanishing Jz
may be further classified by their behavior under 2D

16These are leading order relations. As with any effective field
theory, field redefinitions and matching corrections complicate
higher order relations between fields in the effective and original
theories.
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spatial reflections.17 Translation invariance in the com-
pactified direction implies conservation of the total
compact momentum,

P3 ≡
Z

d2x

	XN
a;b¼1

X
n∈Z

mWða− bþ nNÞðϕ⃗ab
n Þ†ϕ⃗ab

n

þ
XN
a¼1

Xnf
A¼1

X
n∈Zþ1

2

mW

��
a−

1

2

�
−
N
nf

�
A−

1

2

�
þ nN

�

× ½ðψaA
n Þ†ψaA

n − ðχaAn Þ†χaAn �


: ð5:4Þ

As discussed earlier, our individual fields carry compact
momentum quantized in units of mW (for ϕ⃗ab

n ) or linear
combinations of mW and ðN=nfÞmW (for ψaA

n and χaAn ).
Physical glueball and flavor singlet mesons states must
have total compact momentum equal to an integer
multiple of 2π=L ¼ NmW, as these states remain invari-
ant when translated once around the compact dimension.
Due to our flavor-twisted boundary conditions for quarks,
flavor nonsinglet mesons can have P3 equal to integer
multiples of 2π=ðnfLÞ. The allowed values of P3 for
flavor singlet (nonsinglet) baryons are integer or half-
integer multiples of 2π=L (or 2π=ðnfLÞ) depending on
whether N is even or odd.
When quarks are present, the unbroken Uð1ÞnfV flavor

symmetry transformations are generated by the conserved
flavor charges

NA ≡
Z

d2x
XN
a¼1

X
n∈Zþ1

2

½ðψaA
n Þ†ψaA

n − ðχaAn Þ†χaAn �: ð5:5Þ

The sum of these flavor charges equals the total number
of quarks minus antiquarks, or N times the baryon
number NB.
Axial Uð1ÞnfA flavor symmetry transformations act as

spin rotations on the EFT fermions and are generated by the
axial charges

NA
5 ≡

Z
d2x

XN
a¼1

X
n∈Zþ1

2

½ðψaA
n Þ†σ3ψaA

n þ ðχaAn Þ†σ3χaAn �:

ð5:6Þ

The perturbative dynamics conserves these charges but the
long range nonperturbative dynamics violates conservation
of N̄5 ≡P

AN
A
5 (and the nonperturbative vacuum is not

annihilated by the other axial charges).

In the absence of quarks, the compactified theory is
invariant under the ZN center symmetry which, by con-
struction, remains unbroken. The defining center symmetry
transformation (2.3) multiplies the holonomy by an N’th
root of unity, Ω → ωΩ. This permutes the projection
operators (5.1), Pa → Pa−1 (with P0 ≡ PN), and also acts
as a cyclic permutation on our 3D fields,

σa → σa−1; ϕ⃗a
k → ϕ⃗a−1

k : ð5:7Þ

Here, Cartan indices are to be understood to be defined
modulo N (so a − 1≡ N when a ¼ 1). Glueball operators
such as Ga

k ≡ ϕ⃗a
k · ϕ⃗

a−q
−k (with kmodN ≡ q) are likewise

cyclically permuted by center symmetry transformations.
To diagonalize center symmetry, one must perform a
discrete ZN Fourier transform and define, for example,

~σp ≡ 1ffiffiffiffi
N

p
XN
a¼1

ωapσa; ~Gp
k ≡ 1ffiffiffiffi

N
p

XN
a¼1

ωapGa
k: ð5:8Þ

These operators now have definite center symmetry charge
p ¼ 0;…; N − 1, meaning that under the center symmetry
transformation (2.3) they transform into themselves multi-
plied by the eigenvalue ωp ¼ e2πip=N .
Adding fundamental representation quarks to the theory

generally breaks the ZN center symmetry. However, in the
special case of nf ¼ N, the theory retains an intertwinedZN
color-flavor center symmetry (see, e.g., Refs. [44,45]).18

This symmetry combines the usual center transformation
(2.3) with a cyclic permutation of quark flavors. In terms of
our 3D fields, this flavor-intertwined center symmetry
acts as

σa → σa−1; ϕ⃗a
k → ϕ⃗a−1

k ; ψa
k → ψa−1

k ; χak → χa−1k ;

ð5:9Þ

and again may be diagonalized by a discrete ZN Fourier
transform.
Because the sets of eigenvalues (2.4) and (2.17) of the

gauge holonomyΩ and our chosen flavor holonomyΩF are
invariant under complex conjugation, both charge conju-
gation and reflection of the compactified dimension
(x3 → −x3) remain symmetries of theory provided they
are combined with global gauge and flavor transformations
which suitably permute the Cartan and flavor indices. The
ordering (2.4) of the eigenvalues of the gauge holonomy
was chosen so that the required global gauge transforma-
tion V is just a permutation which flips Cartan indices,
a → N þ 1 − a, reflecting the fact that17Reflections are only a symmetry of the theory when θ ¼ 0

(or π), but the violation of reflection symmetry induced by a
nonzero θ only affects the long distance nonperturbative physics.
For a more thorough discussion of the action of various symmetry
transformations in the 3D effective theory, refer to Appendix C.

18More generally, if d≡ gcdðnf ; NÞ > 1, then a Zd color-
flavor center symmetry remains [44]. For simplicity, we will
focus on the case of nf ¼ N.
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Ω� ¼ VΩV†; ð5:10Þ

with V ≡ ∥δaþb;Nþ1∥ an antidiagonal transposition.
Similarly, given the order (2.17) of the flavor holonomy
eigenvalues, the required flavor transformation VF
also corresponds to a simple flip of flavor indices,
A → nf þ 1 − A, since

Ω�
F ¼ VFΩFV

†
F; ð5:11Þ

with VF ≡ ∥δAþB;nfþ1∥. This redefined charge conjugation
symmetry acts on the fields of our dimensionally reduced
EFT as

σa → −σā; ψaA
n → χā Ā−n ; ð5:12aÞ

ϕ⃗ab
n → −ϕ⃗b̄ ā

n ; χaAn → ψ ā Ā
−n ; ð5:12bÞ

where ā≡ N þ 1 − a, Ā≡ nf þ 1 − A.19 Note that center
symmetry does not commute with charge conjugation. In
choosing a basis for degenerate levels of the Hamiltonian,
one must choose between specifying center symmetry
charge, or the sign under the (appropriately redefined)
charge conjugation symmetry; we will generally opt for the
former.
Finally, reflection in the compact direction, x3 → −x3,

when combined with the same global gauge and flavor
transformations V and VF, remains a symmetry. This
redefined reflection symmetry acts on our 3D EFT fields as

σa → σā; ψaA
n → −iσ2ψ ā Ā

−n ; ð5:13aÞ

ϕ⃗ab
n → ϕ⃗ā b̄

−n; χaAn → iσ2χā Ā−n : ð5:13bÞ

The combined symmetry of charge conjugation times x3
reflection does not involve any global gauge or flavor
transformations and acts as

σa → −σa; ψaA
n → iσ2χaAn ; ð5:14aÞ

ϕ⃗ab
n → −ϕ⃗ba

−n; χaAn → −iσ2ψaA
n : ð5:14bÞ

This is the same as a CP transformation times a 180°
rotation in the uncompactified directions.

VI. HEAVY SECTOR SPECTRUM

A. Overview

Three basic types of bound states can be formed from the
constituents of our nonrelativistic effective theory: glue-
balls, mesons, and baryons. Here, “bound state” means
either a genuine single particle eigenstate of the full theory,
or a narrow resonance whose fractional decay width
vanishes in the L → 0 (and correspondingly λ → 0) limit.
In this section, we neglect the coupling to the Abelian
gauge fields contained in the spatial covariant derivatives,
as well as higher dimension operators not shown explicitly
in our effective theories (4.2) and (4.21). Effects of these
terms are discussed in Sec. VII which discusses decay
processes.
By glueballs we mean bound states of two or more

charged W-bosons, and no quarks or antiquarks. Mesons
are, of course, bound states of a quark and antiquark,
possibly containing additional W-bosons, while baryons
are bound states of N quarks (perhaps with additional
chargedW-bosons). In our weakly coupled small-L regime,
mixing between glueballs and flavor singlet mesons is
suppressed, so they are clearly distinguishable. Manifestly
gauge invariant interpolating operators for simple examples
of such states were shown in Eq. (5.3). Further possibilities,
which we will not focus on in this paper, include multi-
meson or multiglueball “molecules” and multibaryon
bound states.
As discussed above, all physical (gauge invariant) states

must satisfy Qa ¼ NB. Hence, glueballs and mesons must
be composed of combinations of constituents for which all
Uð1ÞN charges sum to zero. The simplest glueballs are two-
body bound states of aW-boson and its oppositely charged
antiparticle, created by operators such as

ðϕ⃗ab
0 Þ† · ðϕ⃗ba

0 Þ†; ð6:1Þ

with a ≠ b. Two different Uð1Þ gauge group factors
contribute to the logarithmic interaction between these
constituents, giving an attractive interaction of relative
strength 2. The explicit two-body Hamiltonian, and its
spectrum, is examined in Sec. VI B 2 below. Bound states
of more than two W-bosons can also form. States of this
type which cannot be decomposed into two or more
separately gauge invariant glueballs consist of W-bosons
whose charge assignments lead to a ringlike color structure
with nearest-neighbor logarithmic interactions. Examples
of operators creating such states are

ðϕab
0 Þ†i ðϕbc

0 Þ†jðϕca
0 Þ†k; ðϕab

0 Þ†i ðϕbc
0 Þ†jðϕcd

0 Þ†kðϕda
0 Þ†l ; ð6:2Þ

etc., with up toN constituents and Cartan indices a; b; c; � � �
all distinct. We will refer to these as “closed string”
glueballs. These are all single trace operators when
expressed in terms of the original 4D fields [as in

19The form of this transformation relies on our simplifying
assumption that N is odd, so that eigenvalues ofΩ are roots ofþ1
andΩF eigenvalues are roots of −1. If N is even then both�1 can
be eigenvalues of the flavor holonomy ΩF for some values of
nf ≤ N. When two eigenvalues of ΩF are real, the required flavor
transformation VF which must be combined with the naive action
of charge conjugation no longer corresponds to the simple flip
A → Ā of flavor indices.
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Eq. (5.3)]. In these multibody states, a single Uð1Þ factor
generates an attractive logarithmic interaction (of relative
strength 1) between each pair of neighboring constituents
in the cyclic list. This is illustrated schematically in Fig. 2.
We note that there is an amusing similarity between these
states and the picture advocated long ago in Ref. [63].
The situation with mesons is similar. The simplest

mesons are two-body bound states, created by operators
such as

ðχaA1=2Þ†ðψaB
1=2Þ†: ð6:3Þ

The attractive logarithmic interaction between the quark
and antiquark has relative strength of ð1 − 1

NÞ, with the
reduction from 1 coming from the subtraction of the
unwanted “extra” Uð1Þ contribution in the Coulomb
interaction (4.28). There are also mesons in which one
or more additionalW-bosons are present. States of this type
which cannot be decomposed into meson-glueball products
have charge assignments implying an “open string” color
structure. Examples of operators creating such states
include

ðχaA1=2Þ†ðϕab
0 Þ†i ðψbB

1=2Þ†; ðχaA1=2Þ†ðϕab
0 Þ†i ðϕbc

0 Þ†jðψcB
1=2Þ†; ð6:4Þ

etc., with up toN − 1W-bosons inserted between the quark
and antiquark and Cartan indices a; b; c; � � � all distinct.
There are attractive logarithmic interactions of relative
strength 1 between each pair of neighboring constituents,
along with a repulsive logarithmic interaction of strength
1=N between the quark and antiquark (with differing
Cartan charges). This is illustrated schematically in Fig. 3.

Finally, baryons containing N quarks, potentially with
additional W-bosons as well, are present as finite energy
bound states because our gauge group is SUðNÞ, notUðNÞ.
The simplest nonexotic baryons are created by operators
like

ðψ1;A
1=2Þ†ðψ2;B

1=2Þ†ðψ3;C
1=2Þ† � � � ðψN;Z

1=2 Þ†: ð6:5Þ

In such states, every pair of quarks has an attractive
logarithmic interaction of relative strength 1=N. Several
such baryon states, as well as baryon states containing
additionalW-bosons, are illustrated schematically in Fig. 4.
The stability of these various hadronic states will depend

on their relative energy differences and the resulting
radiative transition and short distance annihilation rates.
These are discussed below in Sec. VII.

B. Two-body states

Neglecting couplings to the spatial Abelian gauge fields
(which are relevant for radiative decays but not the leading
order spectrum), the dynamics of all two-body sectors of
our effective theory (4.12), namely glueballs composed of
oppositely charged W-bosons, quark-antiquark mesons,
and diquark baryons in the special case of N ¼ 2, are
described by a common first-quantized two-dimensional
nonrelativistic Hamiltonian,

Ĥ ¼ p2
1

2m1

þ p2
2

2m2

þ κ lnðμjx1 − x2jÞ; ð6:6Þ

with a logarithmic potential and positive interaction
strength, κ > 0. Before discussing our specific application
to glueball, meson, and N ¼ 2 baryons in compactified

FIG. 2. Examples of glueball states when N ¼ 4. Filled circles represent the charged W-bosons, with larger circles indicating more
massive constituents. Lines connecting the constituents indicate attractive logarithmic interactions (of relative strength 1).

FIG. 3. Examples of meson states (with N ≥ 3). Filled circles represent the charged constituents. Solid lines connecting constituents
indicate attractive logarithmic interactions of relative strength 1, dashed lines represent attractive interactions of strength 1 − 1

N, and
dotted lines represent repulsive logarithmic interactions of strength 1=N.
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QCD, we first summarize properties of the spectrum of this
quantum theory.

1. 2D logarithmic QM

Starting with the two particle Hamiltonian (6.6), sepa-
rating the center of mass motion and working in the center-
of-mass frame leads to a one-body Hamiltonian for the
relative motion,

Ĥrelative ¼
p2

2m
þ κ lnðμjxjÞ; ð6:7Þ

where m≡m1m2=ðm1 þm2Þ is the reduced mass.
Nonrelativistic dimensional analysis (with ℏ≡ 1) shows
that κm=μ2 is the only dimensionless combination of
parameters appearing in the Hamiltonian (6.7), so its
eigenvalues must have the form E ¼ κfðκm=μ2Þ for some
univariate function f. The manifestly trivial μ dependence,
∂E=∂μ ¼ κ=μ, then implies that the energy eigenvalues of
Ĥrelative are given by

E ¼ κ

�
ϵ −

1

2
ln
κm
μ2

�
; ð6:8Þ

where ϵ is an eigenvalue of the theory with
κ¼m¼μ≡1. Introducing a dimensionless radial variable
r ¼ ffiffiffiffiffiffi

κm
p jxj, eigenstates with orbital angular momentum

Lz≡l¼0;�1;�2;��� satisfy the one-dimensional radial
Schrödinger equation,

�
−
1

2

d2

dr2
þ VlðrÞ

�
χðrÞ ¼ ϵχðrÞ; ð6:9Þ

with effective radial potential

VlðrÞ≡ l2 − 1
4

2r2
þ ln r: ð6:10Þ

Solutions to the Schrödinger equation (6.9) are not
expressible in terms of familiar special functions. The

equation was analyzed numerically over 40 years ago
[64] (see also Refs. [36,65]), but we will present our
own more accurate and extensive results. Calculations of
low-lying energy levels are fairly straightforward using
variational methods and a suitable basis set, or alternatively
using pseudospectral methods [66] with a Gauss-Laguerre
grid for the semi-infinite radial domain.20 The first
ten levels, for each jlj ¼ 0;…; 9, are listed in Table I.
The spectrum is shown graphically in Fig. 5. Notice
that levels at neighboring values of l are interleaved,
ϵn;jlj < ϵn;jljþ1 < ϵnþ1;jlj.
As jlj increases, the minimum of the potential moves to

larger values, with rmin ∼ jlj þOðl−2Þ. When jlj ≫ 1, a
quadratic approximation to the potential is sufficient to find
low-lying states. For fixed level number n (starting from 0),

ϵn;l ¼ lnðjljÞ þ 1

2
þ 2nþ 1ffiffiffi

2
p jlj þOðl−2Þ: ð6:11Þ

Standard WKB methods may be used to study more
highly excited states. When the energy ϵ is large compared
to maxð1; ln jljÞ, the classically allowed region of the
Schrödinger equation (6.9) extends out to a turning point

FIG. 4. Examples of baryon states when N ¼ 4. Filled circles represent the charged constituents, with larger circles indicating more
massive constituents. Dotted lines represent attractive logarithmic interactions of strength 1=N, dashed lines represent repulsive
interactions of strength 1 − 1

N, and solid lines show attractive interactions of strength 1. In the single flavor example (left), each quark
constituent has a different mass due to their differing Cartan indices. The multiflavor example (right) shows the special case with nf ¼ 4
where all constituents have equal mass.

20A simple choice of basis for a variational calculation consists
of 2D harmonic oscillator eigenstates with definite angular
momentum l. Given a suitable adjustment of the scale of the
harmonic oscillator basis functions, a truncated basis of 40
harmonic oscillator states is sufficient to find the lowest energy
level of the logarithmic Hamiltonian (6.7) to an accuracy of a few
parts in 104. However, pseudospectral discretization using a
Laguerre grid turns out to provide significantly better accuracy
for a given basis size. (This is because harmonic oscillator wave
functions with their Gaussian envelope decrease too rapidly at
large r; as discussed below eigenstate wave functions in a
logarithmic potential decrease much more slowly.) To obtain
the eigenvalues shown in Table I and compute transition matrix
elements for radiative decays, discussed in Sec. VII, we used
Gauss-Laguerre grids with 100–200 points. To avoid excessive
precision loss in the evaluation of the spectral differentiation
matrices and the resulting eigenvalue computation, we used
extended precision arithmetic with slightly over twice as many
digits as the number of grid points.
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at r� ≡ expðϵÞ. For r > r�, the WKB solution which decays
as r → ∞ is

fIðrÞ ¼ ½lnðrÞ=ϵ − 1�−1=4 exp½−
ffiffiffiffiffi
2ϵ

p
jQ0ðrÞj þOðϵ−1=2Þ�;

ð6:12Þ

where

Q0ðrÞ≡
Z

r�

r
dr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − lnðr0Þ=ϵ

p
: ð6:13Þ

The usual Airy function matching across the turning point
(or analytic continuation around the turning point) shows
that this solution matches onto the allowed region WKB
solution

fIIðrÞ ¼ ½1− lnðrÞ=ϵ�−1=4 cos
� ffiffiffiffiffi

2ϵ
p

Q0ðrÞ−
π

4
þOðϵ−1=2Þ

�
:

ð6:14Þ

This WKB approximation is valid down to r ¼ Oð1Þ,
where

fIIðrÞ∼ cos

� ffiffiffiffiffi
2ϵ

p
r− IðϵÞþ π

4
þOðϵ−1=2Þ

�
× ð1þOðϵ−1ÞÞ;

ð6:15Þ

with

IðϵÞ≡ ffiffiffiffiffi
2ϵ

p
Q0ð0Þ ¼

ffiffiffi
π

2

r
expðϵÞ: ð6:16Þ

TABLE I. The first ten eigenvalues ϵn;l of the radial Schrödinger equation (6.9), for jlj ¼ 0; 1;…; 9. All digits shown are accurate.

n jlj ¼ 0 1 2 3 4 5 6 7 8 9

0 0.179935 1.03961 1.49780 1.81127 2.04971 2.24214 2.40348 2.54238 2.66432 2.77301
1 1.31468 1.66290 1.92929 2.14154 2.31731 2.46710 2.59753 2.71299 2.81656 2.91044
2 1.83061 2.04777 2.23348 2.39248 2.53070 2.65265 2.76163 2.86008 2.94982 3.03224
3 2.16887 2.32609 2.46790 2.59439 2.70781 2.81028 2.90360 2.98920 3.06819 3.14152
4 2.42105 2.54403 2.65839 2.76311 2.85901 2.94717 3.02859 3.10416 3.17460 3.24054
5 2.62222 2.72309 2.81873 2.90790 2.99083 3.06805 3.14015 3.20770 3.27118 3.33102
6 2.78959 2.87502 2.95712 3.03466 3.10761 3.17622 3.24085 3.30185 3.35957 3.41429
7 2.93290 3.00696 3.07882 3.14735 3.21239 3.27407 3.33257 3.38814 3.44101 3.49138
8 3.05822 3.12356 3.18740 3.24875 3.30740 3.36337 3.41677 3.46776 3.51650 3.56314
9 3.16956 3.22799 3.28541 3.34092 3.39428 3.44548 3.49457 3.54165 3.58684 3.63024

FIG. 5. Energy spectrum of the radial Schrödinger equation (6.9).
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For parametrically small values of r, the centrifugal term in
the potential cannot be neglected but the logarithmic term is
subdominant. In this region, the appropriate solution
satisfying regularity at the origin is

fIIIðrÞ ¼
�
1

2
ϵ

�
1=4 ffiffiffiffiffi

πr
p

Jjljð
ffiffiffiffiffi
2ϵ

p
rÞ: ð6:17Þ

When r≫ϵ−1=2, fIIIðrÞ∼cosð
ffiffiffiffiffi
2ϵ

p
r−π

2
jlj−π

4
ÞþOðð ffiffiffi

ϵ
p

rÞ−1Þ.
For Oð1Þ values of r, this matches onto the classically
allowed WKB solution (6.14) provided

IðϵÞ ¼ 1

2
ð2nþ jlj þ 1Þπ þOðϵ−1=2Þ; ð6:18Þ

for some integer n. Inserting the result (6.16), one finds that
eigenvalues ϵn;l of the radial Schrödinger equation (6.9) are
given by

ϵn;l ¼ lnð2nþ jlj þ 1Þ þ 1

2
ln
π

2
; ð6:19Þ

up to corrections vanishing faster than Oð1=nÞ. One may
verify that n equals the number of nodes in this solution, so
n is level number when counting from 0.
Numerically, the accuracy of the WKB approximation

(6.19) to energy levels is surprisingly good for modest
values of the level number n. For l ¼ 0 and n ¼ 10, the
difference between our numerical and WKB results is less
than 2 parts in 104. The relative deviation grows with
increasing l at fixed n, reaching 2% for l ¼ n ¼ 10.
The WKB result (6.19) shows that the level spacing (at

fixed l) decreases with increasing level number,
dϵ=dn ¼ 2=ð2nþ jlj þ 1Þ. Inverting this relation, one
finds that the asymptotic density of states with fixed orbital
angular momentum l rises exponentially with energy,

∂nl
∂ϵ ∼

eϵffiffiffiffiffiffi
2π

p : ð6:20Þ

(This neglects any spin degeneracy of the constituents.) The
integral of this density of states gives the total number of
quantum states, with fixed l, below a given energy, and
asymptotically equals the area of the classically allowed
region in phase space (in units of 2πℏ),

nlðϵÞ ¼
Z

dp
2π

drΘ
�
ϵ −

1

2
p2 − VlðrÞ

�

¼
ffiffiffi
2

p

π

Z
rmax

rmin

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − VlðrÞ

p

¼
ffiffiffi
2

p

π

�Z
eϵ

0

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ln r

p �
þO

�
jlj − 1

2

�

¼ eϵffiffiffiffiffiffi
2π

p þO
�
jlj − 1

2

�
: ð6:21Þ

The total number of states below energy ϵ (with vanishing
total momentum, but no projection onto definite l),
NðϵÞ ¼ P

lnlðϵÞ, coincides asymptotically with the clas-
sically allowed phase space volume of the 2D relative
dynamics. This grows exponentially at twice the rate of the
fixed-l result,

NðϵÞ ¼
Z

d2p
ð2πÞ2 d

2rΘ
�
ϵ −

1

2
p2 − ln r

�

¼
Z

eϵ

0

rdrðϵ − ln rÞ ¼ 1

4
e2ϵ: ð6:22Þ

This exponential growth is a direct consequence of the slow
increase of the confining logarithmic potential with dis-
tance. Bound states spread over rapidly growing spatial
regions as their energy increases. The exponential behavior
(6.21) of the fixed-l number of states is nothing but linear
dependence on the turning point radius r�, while the total
number of states (6.22) is, up to a factor of 1=ð4πÞ, just the
spatial area of the allowed region, πr2�.

2. Glueballs

For every pair of oppositely chargedW-bosons there is a
manifold of bound states described by the two-body
logarithmic interaction Hamiltonian (6.6) with interaction
strength

κ ¼ λmW

2π2
: ð6:23Þ

This is analogous to the ro-vibrational states associated
with each electronic level in molecular spectroscopy. For a
pair ofW-bosons with compact momentum indices k and k0
[defined by the relation (4.6) and satisfying the constraint
kþ k0 ¼ 0modN so that the W-bosons have opposite
Cartan charges], the resulting bound state energies are
given by

EWW ¼MkðmWÞ þMk0 ðmWÞ þ
λmW

2π2

�
ϵn;l −

1

2
ln

λmkk0

2π2mW

�
;

ð6:24Þ

where the reduced massmkk0 ≡mkmk0=ðmk þmk0 Þ, and we
have chosen to set the arbitrary scale μ equal to mW. The
lightest glueballs are composed of W-bosons with one unit
of compact momentum, jkj ¼ jk0j ¼ 1, and tree-level con-
stituent mass mW, leading to glueball energies

E ¼ 2M1ðmWÞ þ
λmW

2π2

�
ϵn;l −

1

2
ln

λ

4π2

�
: ð6:25Þ

Neglecting higher order relativistic corrections, as well
as nonperturbative physics on the scale of mγ , two-body
glueball states have a degeneracy of 4N if they are l ¼ 0
and CP self-conjugate. (Center symmetry gives a factor of
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N, and there is a spin degeneracy of 4 since each massive
W-boson has two spin states.) There is an additional factor
of 2 degeneracy for states with nonzero orbital angular
momentum (corresponding to positive and negative values
of l, which are exchanged by 2D spatial reflections), and a
separate additional factor of 2 degeneracy for states which
are not CP self-conjugate. The lightest glueball level (6.25)
contains CP self-conjugate l ¼ 0 states, and hence has the
minimal degeneracy of 4N.
Relativistic corrections to the above results contribute

Oðλ2mWÞ energy shifts, or relative OðλÞ corrections to
binding energies. Spin-orbit corrections give an energy

shift proportional to lSz (where Sz ≡ sð1Þz þ sð2Þz ), with a
positive coefficient. In our dimensionally reduced effective
theory, spin-spin (or hyperfine) interactions are local and

proportional to sð1Þz sð2Þz δ2ðxÞ, also with a positive coeffi-
cient.21 This spin-spin correction only has a nonzero
expectation value in l ¼ 0 states. Hence, first order
relativistic corrections produce an energy shift of the form

ΔEfine-structure ¼ λ2mW½AlSz þ Bδ0lðS2z − 2Þ�; ð6:26Þ

where A and B are positiveOð1Þ coefficients (depending on
n and jlj). For a given n and l ≠ 0, the spin-orbit
correction splits the four possible spin states, fj↑↑i,
j↑↓� ↓↑i, j↓↓ig, into three sublevels with the Sz ¼
−2l=jlj state moving lower in energy, the Sz ¼
þ2l=jlj state moving higher, and the two Sz ¼ 0 states
unchanged. For l ¼ 0 levels, the spin-spin interaction
produces two sublevels, with the energy of the Sz ¼ �2
states shifted upward, and the Sz ¼ 0 states downward. The
degeneracy between the spin symmetric and antisymmetric
Sz ¼ 0 states, j↑↓� ↓↑i, is not lifted by these leading
relativistic corrections, but should be removed at higher
orders.
Short distance effects will also induce higher order

corrections to the rest and kinetic masses, leading to further
spin-independent Oðλ2mWÞ energy shifts. Operators pro-
ducing Oðλ2mWÞ corrections are listed in Appendix A,
which discusses the relevant power counting rules. The
structure of higher dimensional operators that appear in our
nonrelativistic EFT follow the same pattern known, for
example, from studies of hydrogenic spectra or heavy
quark physics in QCD [67], but quantitative evaluation of
these higher order effects is left to future work.
The factor of N degeneracy associated with center

symmetry would be lifted by the nonperturbative long
distance physics on the scale of mγ but, more importantly,
this degeneracy is first lifted by one loop perturbative
corrections which generate photon mixing terms (men-
tioned earlier in footnote 5). Such mixing arises from

vacuum polarization corrections which are sensitive to the
differing massesMab

n of the charged virtualW-bosons. This
mixing (when rediagonalized) induces OðλÞ variations in
the coupling strengths of different light photons. Eigen-
states of bound W-bosons will have definite center charge
and are constructed by a ZN Fourier transform, as in
Eq. (5.8). The energies of states with differing values of
center charge will be split by Oðλ2mWÞ, or in other words
additional OðλÞ relative corrections to binding energies.

3. Mesons

Differences between the two-body meson and glueball
spectra arise from the differing constituent masses and the
strength of the logarithmic interaction. For an oppositely
charged quark-antiquark pair, the interaction strength is
given by

κ ¼
�
1 −

1

N

�
λmW

4π2
: ð6:27Þ

The allowed values of compact momentum (4.23) depend
on both N and nf . As mentioned earlier, a particularly
simple case which we will focus on is nf ¼ N. For this
number of flavors the tree-level constituent quark masses
(4.24) become half-integers times mW,

MaA
n ¼ Mk ≡mWðjkj þOðλÞÞ;

maA
n ¼ mk ≡mWðjkj þOðλÞÞ; ð6:28Þ

with k ¼ a − Aþ nN and n ∈ Zþ 1
2
. The resulting bound

state energies are given by

Eq̄q ¼ MkðmWÞ þMk0 ðmWÞ

þ
�
1 −

1

N

�
λmW

4π2

�
ϵn;l −

1

2
ln
ð1 − 1

NÞλmkk0

4π2mW

�
;

ð6:29Þ

where, once again, mkk0 is the reduced mass. The lightest
mesons have jkj ¼ jk0j ¼ 1

2
, leading to

Eq̄q ¼ 2M1=2ðmWÞ þ
�
1−

1

N

�
λmW

4π2

�
ϵn;l −

1

2
ln
ð1− 1

NÞλ
16π2

�
:

ð6:30Þ

Neglecting higher order relativistic corrections, the lightest
two-body meson levels (6.30) have a degeneracy of 16N if
they have l ¼ 0, with an additional factor of 2 if l ≠ 0.
(Four factors of 2 coming from the choice of spin for quark
and antiquark, plus the choice of sign of each momentum
index, and a factor of N from one choice of flavor, or
equivalently from the choice of which Uð1Þ photon
provides the binding.) Higher order spin-orbit, spin-spin

21In two spatial dimensions, spin-spin interactions do not have
a long range dipolar form since the magnetic field produced by a
current loop is localized inside the loop.
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and other radiative effects partially lift this degeneracy in
the same manner discussed above for glueballs.

4. N = 2 baryons

Finally, in the special case of two-color QCD, the
simplest baryons are bound states of two quarks (with
no additional W-bosons). The interaction strength κ equals
1
N λmW=ð4π2Þ which, for N ¼ 2, coincides with the quark-
antiquark interaction strength. Consequently, the resulting
diquark baryon spectrum is identical to the meson spectrum
(6.29) and (6.30) given above, when specialized to N ¼ 2.
The degeneracy of the lightest baryon levels (neglecting
relativistic corrections) is 16 for l ¼ 0 states, with an
additional factor of two for l ≠ 0.

C. Multi-body states

1. Glueballs

As noted in the overview, in addition to two-body W-
boson bound states, multibody bound states containing
three or more W-bosons with a ringlike color structure can
also form, such as those illustrated in Fig. 2. The spectrum
of such “closed string” states is quite rich.
The rest mass of W-bosons is given by Eq. (4.9),

reproduced here for convenience,

Mab
n ¼ Mk ≡mWjkj ¼ mWja − bþ nNj; ð6:31Þ

up to OðλmWÞ corrections. To form a physical (gauge
invariant) bound state, the Uð1ÞN Cartan charges of all W-
bosons in the bound state must sum to zero. For closed-
string glueball states which are not decomposable into
multiple separate glueballs, this means that each neighbor-
ing pair of W ’s in the ring is bound together by a distinct
Abelian gauge interaction. Bound states containing 3 ≤
P ≤ N constituents having compact momentum indices
fk1; k2;…; kPg exist, consistent with this constraint, pro-
vided that

XP
i¼1

ki ¼ 0 mod N: ð6:32Þ

For this state to be nondecomposable, no partial sum of the
momentum indices should vanish modulo N. In addition to
specifying the momentum index of each constituent, one
may specify one Cartan index of a single constituent;
together this information completely determines the Cartan
and KK indices of all constituents around the cycle. The
tree-level mass of such a closed string state is just

Mtot ¼ mW

XP
i¼1

jkij: ð6:33Þ

“Near extremal” states: An interesting subset of states
are those with nonzero compact momentum P3 and whose

tree-level mass equals the minimal value consistent with
this compact momentum,

M ¼ jP3j: ð6:34Þ

This implies that the momentum indices of all constituents
have the same sign. One simple case, satisfying the
constraint (6.32) (plus nondecomposability), are “pearl
necklace” bound states containing N W-bosons, all with
momentum indices equal to unity, ki ¼ 1, or all equal to
minus one, ki ¼ −1. For these states P3 ¼ mW

P
iki ¼

�NmW ¼ �2π=L and the (tree level) rest mass
M ¼ jP3j ¼ NmW. The middle example in Fig. 2 illustrates
this type of pearl necklace state (with P3 ¼ −2π=L) in the
case of N ¼ 4. Such a state is created by the N-body
operator

Ai1i2���iN ðϕ1
−1Þ†i1ðϕ2

−1Þ†i2 � � � ðϕN−1
−1 Þ†iN−1

ðϕN
−1Þ†iN ; ð6:35Þ

where the coefficients fAi1���iNg (defining a rank-N 2D
spatial tensor) determine the spin wave function.
There are also near-extremal states with fewer constitu-

ents. One can imagine fusing together any neighboring pair
of constituents in the operator (6.35) and replacing them
with a singleW-boson having the same Cartan charges and
compact momentum as the pair. Or doing the same fusing
process with a neighboring triplets of constituents, etc. The
resulting states are also near-extremal, and are created by
N − 1 or N − 2 body operators such as

Ai1i2���iN−1ðϕ1
−1Þ†i1ðϕ2

−1Þ†i2 � � � ðϕN−1
−2 Þ†iN−1

; ð6:36aÞ

or

Ai1i2���iN−2ðϕ1
−1Þ†i1ðϕ2

−1Þ†i2 � � � ðϕN−2
−3 Þ†iN−2

: ð6:36bÞ

Continuation of this fusing process leads to near-extremal
states with any number of constituents from N down to 1.
Three- and two-body examples are

Ai1i2i3ðϕ1
−1Þ†i1ðϕ2

−1Þ†i2ðϕ3
−ðN−2ÞÞ†i3 ; ð6:37aÞ

and

Ai1i2ðϕ1
−1Þ†i1ðϕ2

−ðN−1ÞÞ†i2 ; ð6:37bÞ

while the endpoint of this process is a neutral “heavy
photon” state created by a one-body operator such as

Aiðϕ1
−NÞ†i : ð6:38Þ

More generally, ignoring spin and center degeneracies there
are ð N

P−δP
1

Þ distinct categories of near-extremal states con-

taining P constituents associated with different contiguous
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fusing of the fields in the N-body operator (6.35), or
altogether 2N − N types of nondecomposable near-
extremal states having the same value of P3 ¼ �NmW.
“Nonextremal” states: Bound states containing constitu-

ents with oppositely signed momentum indices are “non-
extremal.” Such states have rest masses which exceed their
compact momentum, M > jP3j, by an OðmWÞ amount or
more. This includes all bound states of W-bosons having
vanishing total compact momentum, P3 ¼ 0, such as the
lightest glueballs (6.25).
Binding energies: Calculating the OðλmWÞ binding

energies of multibody glueball states requires one to find
eigenvalues of the first-quantized Hamiltonian which
describes the sector of the theory (4.12) with the chosen
number of constituents. For “closed string” bound states
composed of P ≤ N W-bosons, this is

Ĥ ¼
XP
i¼1

�
p2
i

2mi
þ λmW

4π2
lnðμjxi − xi−1jÞ

�
; ð6:39Þ

with the understanding that x0 ≡ xP. The scaling relation
(4.19) allows one to remove the dependence on λ, but
eigenvalues will be nontrivial functions of constituent mass
ratios,

Ebinding ¼
PλmW

8π2
½fðfmi=mjgÞ − lnðλ ~mmW=μ2Þ�; ð6:40Þ

where f is a dimensionless Oð1Þ function (depending on
the chosen energy level as well as mass ratios), and ~m is the
harmonic mean of the constituent masses.
For modest values of P (three or four), an accurate

variational calculation should be feasible despite the fact
that computational effort will rise as a rather high power of
the number of single particle states included in the
truncated basis. We leave such calculations to future work.
An interesting limiting case partially amenable to ana-

lytic analysis concerns low-lying states with large orbital
angular momentum, l ≫ 1, and constituents all having the
same mass m. Such states include rotating “pearl necklace”
configurations in which each constituent contributes
equally to the total orbital angular momentum. A semi-
classical analysis of such states is straightforward. The
classical Hamiltonian (for fixed l) has a local minimum
in which the constituents lie at the vertices of a regular
P-sided polygon whose circumscribed circle has radius
r ¼ 2πl=ðP ffiffiffiffiffiffiffiffiffiffiffiffiffi

λmmW
p Þ, rotating at angular velocity

Ω ¼ l=ðPmr2Þ ¼ PλmW=ð4π2lÞ. Semiclassical quantiza-
tion of vibrations about this configuration leads to energy
levels whose binding energies (ignoring center of mass
motion) are given by

Ebinding ¼
PλmW

4π2

�
1

2
þ ln

�
4πlμ sinðπ=PÞ
P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λmmW

p
��

þ
XP−2

i¼−ðP−2Þ

�
ni þ

1

2

�
ωjij þOðl−2Þ; ð6:41Þ

where the P − 1 vibrational frequencies fωig are
OðλmW=lÞ.22
The result (6.41) grows logarithmically with increasing

angular momentum l, with a coefficient of PλmW=4π2

proportional to the number of constituents. This linear
increase with P implies that these semiclassical “pearl
necklace” states are not the minimal energy states with a
given large orbital angular momentum. “Core-halo” states
will exist in which P − 1 constituents are clumped together
in a region of size

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=λmmW

p
while a single constituent

circles at a distance of order Oðl= ffiffiffiffiffiffiffiffiffiffiffiffiffi
λmmW

p Þ and contrib-
utes (nearly) all the orbital angular momentum. The bind-
ing energy of such states will increase with l just like
the two-body case, namely Ebinding ∼ ðλmW=2π2Þ lnl as
l → ∞. Computing the sub-dominant l-independent con-
tribution coming from the core wave function requires a full
quantum calculation.

2. Mesons

Largely identical considerations apply to multibody
mesons. Focusing, once again, on the case of nf ¼ N,
bound states containing a quark and antiquark having half-
integer compact momentum indices kq and kq̄, plus P W-
bosons with momentum indices fk1;…; kPg, will have
total compact momentum

P3 ¼ mW

�
kq − kq̄ þ

XP
i¼1

ki

�
: ð6:42Þ

For the state not to be decomposable into a glueball-meson
molecule, no partial sum of the W-boson momentum
indices should vanish modulo N. With tree-level mass
Mtot ¼ mWðjkqj þ jkq̄j þ

P
ijkijÞ, it is immediate that

Mtot ≥ jP3j. Any of the multibody “closed string” glueball
states discussed above may be converted into an “open
string” meson state by replacing any one of the W-boson
constituents by a qq̄ pair collectively having the same
Cartan charges and compact momentum. As an example,
one analogue of the near-extremal N-body glueball oper-
ator (6.35) is the near-extremal meson operator

22One mode, here labeled i ¼ 0, is a uniform “breathing”mode
with ω0 ¼

ffiffiffi
2

p
Ω. All other modes (present only for P > 2) are

higher frequency doubly degenerate asymmetric stretching
modes. For P ¼ 2, the form (6.41) agrees as it must with the
prior results (6.24) and (6.11).
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Bsq̄sqi1i2���iN−1ðχ1þ1=2Þ†sq̄ðϕ1
−1Þ†i1ðϕ2

−1Þ†i2 � � � ðϕN−1
−1 Þ†iN−1

ðψN
−1=2Þ†sq
ð6:43Þ

(with sq and sq̄ denoting two-component spinor indices of
the quark and antiquark, respectively), in which N − 1
W-bosons are inserted between the quark and antiquark.
The OðλmWÞ binding energies of (nondecomposable)

multibody meson states containing P W-bosons are given
by eigenvalues of the first-quantized Hamiltonian

Ĥ ¼
XPþ1

i¼0

p2
i

2mi
þ λmW

4π2

�
−
1

N
lnðμjx0 − xPþ1jÞ

þ
XPþ1

i¼1

lnðμjxi − xi−1jÞ
�
; ð6:44Þ

where x0 ≡ xq̄ and xPþ1 ≡ xq refer to the antiquark and
quark, respectively, and likewise for the momenta p0 and
pPþ1 and masses m0 ≡mq̄ and mPþ1 ≡mq. The resulting
energy levels have the form

Ebinding ¼
�
Pþ

�
1 −

1

N

��
λmW

8π2

× ½fðfmi=mjgÞ − lnðλ ~mmW=μ2Þ�; ð6:45Þ

with f someOð1Þ function, differing from the glueball case
(6.40) just in the prefactor.
Just as with closed-string glueballs, it is interesting to

consider open-string mesons with large orbital angular
momentum, l ≫ 1. Among such states are semiclassical
“rotating wire” states. The classical Hamiltonian (for fixed
orbital angular momentum l) has local minima in which all
constituents are arrayed along a straight line which rotates
uniformly with some angular velocity ω, with the positions
of constituents along this line adjusted so that the sum of
forces (falling with inverse separation) acting on each
constituent provides the required centripetal acceleration,
and the common angular velocity ω is suitably adjusted to
yield the chosen angular momentum l. Solving for this
minimum analytically, for arbitrary P, is not easy, but a
numerical determination for chosen values of P is straight-
forward. Semiclassical quantization of such a stationary
configuration will lead to energy levels which, as in the
glueball case (6.41), grow logarithmically with increasing
l, with a coefficient which increases with the number of
constituents. Hence, for the same reasons discussed above,
lower energy “core-halo”mesonic states will exist in which
all but one constituent are clumped together and collec-
tively carry little or no angular momentum while a single
constituent (which may be either a quark or a W-boson)
circles the core at a large Oðl= ffiffiffiffiffiffiffiffiffiffiffiffiffi

λmmW
p Þ distance and

carries (nearly) all the orbital angular momentum.

3. Baryons

Baryonic bound states containing quarks with no addi-
tionalW-bosons (“nonexotic baryons”) may be formed from
a collection ofN quarks, each having a distinct color (Cartan)
index. Focusing, once again, on the case of nf ¼ N, the
momentum indices fk1;…; kNg of the quarks are arbitrary
half-integers (with ki the momentum index of the quark with
Cartan index i). The total compact momentum P3 ¼
mW

P
iki and the tree-level mass Mtot ¼ mW

P
N
i¼1 jkij.

Note that, for large values of N, baryons which are
composed of the lightest quark constituents with Oð1Þ
momentum indices will have a total massMtot which scales
linearly with N. Such baryons contain quarks of (nearly) all
N different flavors. Baryons which are solely composed of
quarks of a single flavor will have a total mass which is at
least OðN2Þ, because the momentum indices of quarks
must, in this case, all be distinct and hence will, at a
minimum, have magnitudes ranging from 1

2
up to ⌊N=2⌋.

The strength of the attractive logarithmic interaction
between two quarks of differing colors is 1=N, so the
first-quantized nonrelativistic Hamiltonian for nonexotic
baryons is

Ĥ ¼
XN
i¼1

p2
i

2mi
þ 1

N

XN
i<j¼1

λmW

4π2
ln ðμjxi − xjjÞ; ð6:46Þ

with mi ¼ mWjkij the i’th constituent quark mass.
For the lightest class of baryons, each quark has

momentum index � 1
2
and the minimal constituent mass

mi ¼ mq ≡ 1
2
mW. Such states are created by operators of

the form

Cs1s2���sN ðψ1
�1=2Þ†s1ðψ

2
�1=2Þ†s2 � � � ðψ

N
�1=2Þ†sN ; ð6:47Þ

with si denoting the two-component spinor index of the ith
quark. (Fig. 4 illustrates one such state for N ¼ 4.) For
simplicity of presentation, we will focus our discussion on
this lightest class of baryons.
For baryons with equal mass constituents, the

Hamiltonian (6.46) is completely symmetric under permu-
tations of constituents. The rescaling relation (4.31) implies
that

Ĥ ≅
λmW

4π2

�
1

2

XN
i¼1

p2
i þ

1

2N

XN
i≠j¼1

ln jxi − xjj
�

− ðN − 1Þ λmW

16π2
ln
�
λmWmq

4π2μ2

�
: ð6:48Þ

The spectrum of this Hamiltonian was already discussed in
Sec. VI B in the special case of N ¼ 2. We now examine
the opposite extreme, N ≫ 1.
As discussed by Witten [68], a Hartree approximation to

the many-body wave function is asymptotically accurate as
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N → ∞. The appropriateN-body Hartree wave function for
the ground state is just a product of identical one-body
wave functions,

Ψðx1;…;xNÞ ¼
YN
i¼1

ψðxiÞ; ð6:49Þ

with the one-body wave function ψðxÞ determined by
minimizing the expectationvalue of theHamiltonian (subject
to the normalization constraint

R
d2xjψðxÞj2 ¼ 1).23 The

resulting ground state baryonic mass grows linearly with N
and is given by

Ebaryon=N ¼ M1=2ðmWÞ þ
λmW

4π2

�
ϵ̄ −

1

4
ln

λmq

4π2mW

�

þOð1=NÞ; ð6:50Þ

where

ϵ̄≡min
ψ

ϵ½ψ �; ϵ½ψ � ¼ T ½ψ � þ V½ψ �: ð6:51Þ

Here,

T ½ψ �≡ 1

2

Z
d2xj∇ψðxÞj2=N ½ψ �; ð6:52aÞ

V½ψ �≡ 1

2

Z
d2xd2x0 ln jx − x0jjψðxÞj2jψðx0Þj2=N ½ψ �2;

ð6:52bÞ

withN ½ψ �≡ R
d2xjψðxÞj2. The ground state wave function

which minimizes ϵ½ψ � satisfies the Hartree equation,
�
−
1

2
∇2 þ UðxÞ

�
ψðxÞ ¼ λψðxÞ; ð6:53Þ

with the self-consistent potential

UðxÞ≡
Z

d2x0 ln jx − x0jjψðx0Þj2=N ½ψ �: ð6:54Þ

Thiswave function is guaranteed to be nodeless, and hence is
spherically symmetric, ψðxÞ ¼ ψðjxjÞ. After angular aver-
aging of the logarithm, the potential (6.54) becomes a
convolution with the radial Green’s function,

UðjxjÞ≡
Z

∞

0

r0dr0 lnðmaxðjxj; r0ÞÞψðr0Þ2=
Z

∞

0

r0dr0ψðr0Þ2:

ð6:55Þ

We minimize the functional ϵ½ψ � numerically, using
pseudospectral methods [66]. We write ψðrÞ ¼
e−μr=2fðrÞ and then represent the function f as an order
M − 1 polynomial determined by its values ffkg on the
Gauss-Laguerre grid points frkg which are the roots of the
Laguerre polynomial LMðμrÞ. This is equivalent to, but
much more computationally convenient than using the
coefficients fckg in the orthogonal polynomial expansion
fðrÞ ¼ P

M−1
k¼0 ckLkðμrÞ. The radial integrals in expressions

(6.52)–(6.55) are evaluated using M-point Gauss-Laguerre
quadrature. Radial derivatives become denseM ×M matri-
ces acting on the M-component vector f⃗ ≡ ðfkÞ, and the
Hartree Eq. (6.53) becomes an M-dimensional linear
eigenvalue equation. Starting with a simple pure exponen-
tial initial guess for ψðrÞ, we compute the Hartree potential
(6.55), solve for the lowest eigenvalue of the Hartree
Eq. (6.53), and iterate these two steps until convergence.24

Due to the nonanalyticity in the Green’s function (6.55),
the truncation error only falls with increasing basis size as
Oð1=MÞ. Six points suffice for 5% accuracy, thirty points
yield better than 1%, and several hundred are needed to
achieve 0.1% accuracy. For large M, the spectral matrices
become quite ill-conditioned and extended precision arith-
metic with roughly 2M digits is needed to avoid precision
loss. A very stable extrapolation in 1=M yields the result,

ϵ̄ ¼ 0.449558: ð6:56Þ

The degeneracy of this lightest baryon level, before
taking into account splittings due to higher order radiative
corrections, is 4N , growing exponentially as N increases.
(For each quark, there is one factor of two for the choice of
spin and another factor of two from the compact momen-
tum k ¼ � 1

2
.)

To compare our N ¼ 2 and N ≫ 1 results for ground
state baryons in a coupling independent fashion, consider
the binding energy scaled byN − 1, with the exactly known
λ ln λ contribution removed,

δEbindingðNÞ≡ 1

N − 1
½Ebaryon−NM1=2ðmWÞ�þ

λmW

16π2
ln

λ

8π2
:

ð6:57Þ

Our results,

23A better approximation would project this state onto vanish-
ing center-of-mass momentum. However, such projection only
affects Oð1Þ contributions to the total energy of the state, which
we neglect.

24Demanding stationarity of ϵ½ψ � under a rescaling ψðxÞ →
ξψðξxÞ at ξ ¼ 1 shows that T ½ψ � ¼ 1

4
at extrema of ϵ. This is the

analogue of the usual virial theorem for our logarithmic potential.
Choosing the scale μ ¼ ffiffiffi

2
p

in our spectral representation gives
our initial guess this correct value of T .
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δEbindingð∞Þ
δEbindingð2Þ

¼ ϵ̄
1
2
ðϵ00 þ ln 2Þ ¼ 1.0298; ð6:58Þ

show stunningly little dependence on N. It would be
interesting to see if this near-constancy is a coincidence,
or remains true for other values of N.
At large N, the probability density to find a quark at

position x relative to the baryon center of mass equals the
square of the Hartree single particle wave function,
pðxÞ ¼ jψðxÞj2. To compare this with the corresponding
distribution in N ¼ 2 ground state baryons, recall that the
Hamiltonian for relative motion (6.7) was expressed in
terms of the separation between constituents, so the
corresponding distribution relative to the center of mass
is pðxÞ ¼ 4jψ relð2xÞj2. One finds that the single particle
distribution is more highly concentrated at N ¼ 2 than at
N ¼ ∞. The mean square deviations differ by just about a
factor of two,

hx2i ¼ 8π2

λm2
W
×

	
1.0907; N ¼ 2;

2.0294; N ¼ ∞:
ð6:59Þ

Fig. 6 compares the N ¼ ∞ single particle radial proba-
bility density jxjpðxÞ with the corresponding N ¼ 2

distribution when distance is rescaled by a factor of
ffiffiffi
2

p
,

that is 1
2
jxjpðx= ffiffiffi

2
p Þ. As one sees from the figure, with this

rescaling the two radial distributions are very similar.
Above the baryon ground state level there is a manifold

of vibrationally excited baryon levels. For N ≫ 1, energy
levels in which a small number of quarks are excited may
be computed using a product wave function with a few of
the factors in the ground state wave function (6.49) replaced
by excited single particle wave functions. Low lying levels
with a single excited quark may be labeled by the number

of radial nodes n and orbital angular momentum l of the
excited quark, and have excitation energies

ΔEn;l ¼ λmW

4π2
ðλn;l − λ0;0Þ; ð6:60Þ

where λn;l is an eigenvalue of the Hartree Eq. (6.53)
containing the mean field generated by all the unexcited
quarks. The subtraction of λ0;0 accounts for the decrease in
the number of quarks in the lowest single particle level.
Table II lists the eigenvalues λn;l for the lowest few levels.
Excitation energies to baryon levels with multiple excited
quarks are, up to 1=N corrections, just the sum of the
individual excitation energies (provided the number of
excited quarks is a negligible fraction of N).
Lastly, in the same manner discussed above for mesons, it

is also possible to form exotic baryons containing N quarks
plus one or more W-bosons. For the bound state to be
nondecomposable into baryon-glueball molecules, no partial
sum of theW-bosonmomentum indices should vanish. Such
states can be progressively built from nonexotic baryons by
replacing a quark with a quark plus one or moreW-boson(s)
which collectively have the sameCartan charge and compact
momentum as the removed quark. One example of such a
state is shown inFig. 4.By suitably repeating this process one
may, for example, build baryons in which all N quarks have
the same color while N − 1 W-bosons mediate attractive
interactions between these quarks.

VII. DECAY PROCESSES

Higher order perturbative interactions turn most of the
hadronic states discussed in the previous sections into
narrow resonances. Examining the systematics of the
various decay processes is our next topic. First, however,
we detail those states which cannot decay.

A. Stable states

In the light sector of the quarkless theory, individual dual
photons are exactly stable. Each dual photon has a nonzero
center charge p ¼ 1;…; N − 1, and is the lightest state with

N

N 2 (scaled)

0 1 2 3 4
r0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 6. Single particle radial probability density jxjpðxÞ of
ground state baryons at N ¼ ∞ as a function of r≡ffiffiffi
λ

p
mWjxj=ð4πÞ (solid curve) overlaid with the corresponding

density for N ¼ 2 baryons as a function of r0 ≡ ffiffiffiffiffi
2λ

p
mWjxj=ð4πÞ

(dashed curve).

TABLE II. Eigenvalues λn;l of the Hartree Eq. (6.53), with the
self-consistent potential for the lowest baryon level, for indicated
values of the radial quantum number n and orbital angular
momentum l.

n jlj ¼ 0 1 2 3

0 0.64911 1.1367 1.5182 1.8152
1 1.4448 1.7124 1.9450 2.1457
2 1.9018 2.0805 2.2458 2.3964
3 2.2169 2.3503 2.4780 2.5979
4 2.4569 2.5632 2.6669 2.7663
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that value of center charge.25 To see this, note that the mass
formula (2.11) is a subadditive function of the center
charge, mp1þp2

< mp1
þmp2

. This implies that any split-
ting of a dual photon into two or more photons with the
same total center charge is kinematically forbidden. The
formation of k-body light sector bound states discussed in
Sec. III does not affect this conclusion, as the k-body
binding energies are exponentially small compared to the
relevant differences in photon masses. The two-body bound
state of dual photons with center charges 1 and N − 1,
whose binding energy is given by Eq. (3.8), is the lightest
center charge zero excitation and is likewise exactly stable.
If θ ¼ 0 then the theory isCP invariant.26 Individual dual

photons are CP odd. The lightest CP even states with
nonzero center charge p are bound states of two dual
photons with charges q and p − q and minimal total mass
Mp ¼ minqðmq þmp−qÞ. Specifically, these are the
ðq; p − qÞ bound states with

q ¼

8>><
>>:

1; for p ¼ 2;…; ⌊N
2
⌋; or p ¼ N − 1;

N − 1; for p ¼ ⌊Nþ1
2
⌋;…; N − 2; or p ¼ 1:

ð7:1Þ

Similarly, the lightest CP odd state with vanishing center
charge is a bound state of three dual photons with charges
ð1; 1; N − 2Þ (or their conjugates). These bound states are
necessarily stable at θ ¼ 0. Moreover, the charged two
particle bound states (7.1) remain absolutely stable at θ ≠ 0
for purely kinematic reasons. These bound states are
heavier than a single dual photon of the same total center
charge, but are lighter than all other multiparticle bound
states of the given charge, and hence have no allowed decay
channels which can conserve both energy and momentum.
Turning now to the theory with quarks, as discussed in

Sec. II A with nf ≤ N massless quark flavors, nf − 1 of
the dual photons become exactly massless and are the
Goldstone bosons of spontaneously broken Uð1Þnf−1A sym-
metry. When nf ¼ N, this means all N − 1 dual photons are
massless. These massless Goldstone bosons are stable.
In the heavy sector, exactly stable states are those

protected by conservation of the Uð1ÞnfV flavor charges
(5.5) and/or compact momentum (5.4). With nf ¼ N,
mesons composed of a quark and antiquark having the
minimal mass, mq ¼ mq̄ ¼ 1

2
mW, and opposite compact

momentum indices, kq ¼ −kq̄ ¼ � 1
2
, have flavor charges

ðþ1;−1Þ under two different Uð1Þ flavor subgroups and
nonvanishing total compact momentum P3 ¼ �mW. Such
mesons (with vanishing vibrational and rotational excita-
tions) are the lightest states with these flavor quantum
numbers, and hence are stable.27 These mesons are the
small-L avatars of charged pions and kaons (in the
chiral limit).
Baryons (or antibaryons) composed of N quarks (or

antiquarks) all with mass mq ¼ 1
2
mW are the lightest states

with nonvanishing baryon number, and a subset of these
states (those with minimal energy after including hyperfine
interactions) are stable. Whether there are additional bound,
and hence stable, di-baryons or higher multibaryon states is
an interesting open question.
Whether the heavy photons created by our EFToperators

ϕ⃗aa
�N are stable is also an interesting open question. These

states have P3 ¼ �NmW and tree-level mass M ¼ NmW.
This is the same value of P3 and the same tree-level mass as
a flavor singlet meson containing a quark and antiquark
with kq ¼ −kq̄ ¼ �N=2, or of a collection of N lightest
mesons each with identical values of P3 ¼ �1 and flavor
charges summing to zero, or a variety of other “near-
extremal” flavor singlet multiconstituent states. Whether
heavy photons decay into flavor singlet mesons, or col-
lections of flavored mesons, or vice-versa, depends on
which of these near-extremal states have the lowest energy.
To determine this one must, at a minimum, take into
account the leading OðλmWÞ perturbative energy
shifts. These include the binding energies computed in
Sec. VI B 3 for two-body mesons. But OðλmWÞ energy
shifts also include corrections to the tree-level constituent
rest masses. Evaluation of such corrections requires an
improved one-loop matching of the EFT parameters to the
underlying 4D gauge theory, and this matching calculation
has not yet been completed. Consequently, we are not yet
able to determine which transitions among near-extremal
states are kinematically allowed.

B. Light sector resonances

Light sector bound states other than those discussed
above (which are stable due to the absence of any symmetry
and kinematically allowed decay channels) will decay via
emission of one of more dual photons. Such decays are
induced by the cubic and higher order terms in the
expansion of the effective Lagrangian (2.8) about its
minimum. The relative decay widths of all of these states
are doubly exponentially small. Not only are the nonlinear25Recall that a p ¼ 0 dual photon was artificially added to the

light sector effective theory (2.8) to simplify the presentation, but
this extra degree of freedom exactly decouples from all physical
degrees of freedom. The physical particles of the SUðNÞ gauge
theory do not include a p ¼ 0 dual photon.

26This paragraph assumes that N ≥ 3. Because SUð2Þ is
pseudoreal, charge conjugation is a distinct symmetry in
SUðNÞ pure-YM theory only for N > 2.

27More precisely, such mesons with opposite spins and total
Sz ¼ 0 are stable. As noted in Sec. VI B, hyperfine interactions
shift the Sz ¼ �1 mesons up in energy relative to the Sz ¼ 0
states. A light Sz ¼ �1 meson can decay to its corresponding
Sz ¼ 0 partner via emission of a dual photon—the QCD analog
of 21 cm radiation from hydrogen.
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couplings within the dual photon sector (3.2) exponentially
small, Oðe−4π2=λÞ, more importantly the binding momen-
tum (3.6) is so tiny that the probability for two constituents
of a bound state to be within a Compton wavelength of each
other is comparable to the relative binding energy (3.8).
Consequently, the logarithm of the relative decay width is
exponentially large and negative,

− lnðΓ=mγÞ ¼ Oðe4π2=λÞ ð7:2Þ

(neglecting powers of λ). We have not attempted to
compute any such decays quantitatively.

C. Heavy sector resonances

The primary decay processes for heavy sector resonan-
ces are direct analogues of familiar processes in QED and
atomic physics: radiative decays and particle-antiparticle
annihilations. The key differences are the reduced dimen-
sionality, additional conserved quantities (compact
momentum and center charge), and multiple Uð1Þ gauge
groups. There are also more unusual decay processes
involving splitting or joining of W-boson constituents
within hadrons. These include, in particular, transitions
among “near-extremal” states whose tree-level masses are
identical. As noted above, understanding such processes
requires a higher order determination of rest masses in the
nonrelativistic EFT. We leave explorations of such tran-
sitions to future work, and focus here on radiative and
annihilation processes, specifically in two-body states.

1. Radiative decays

The relevant photon momenta for radiative decays will
be in the range mγ ≪ p ≪ mW, so the nonperturbative
physics of the light sector may be wholly ignored and
photons treated as massless. Excitation energies of low-
lying heavy sector states are OðλmWÞ. Photons of such
energies have wavelengths parametrically large compared
to the characteristic Oðλ−1=2m−1

W Þ size of these states.
Consequently, the usual multipole expansion of the photon
field applies. The fastest radiative decays will be electric
dipole transitions. Adapting the standard logic for hydro-
genic decays to our 2Dmultiphoton situation, one finds that
the total dipole transition rate from some initial state jIi to
lower energy final states fjFig is given by

Γtot ¼
π

2
κ
X
F

ΔE2
IFjhFjxjIij2; ð7:3Þ

where ΔEIF ≡ EI − EF and κ equals to the strength of the
logarithmic potential binding the constituents, so κ ¼
λmW=ð2π2Þ for glueballs and ð1 − 1

NÞλmW=ð4π2Þ formesons.
Parametrically, dipole decay rates for low-lying states are

Oðλ2mWÞ. To obtain quantitative results, including state

dependence, one must evaluate the precise dipole matrix
elements. We evaluated these matrix elements, for level
numbers n up to 100, using radial wave functions computed
using pseudospectral methods (as briefly described in
footnote 20 and Sec. VI C 3), with up to several hundred
grid points. Figure 7 shows the resulting total dipole
decay rates, in units of κ2=m (with m the reduced mass of
the two-body bound state), for orbital angular momentum
l ¼ 0, 1, 2 and 4. As seen in the figure, decay rates at fixed
l grow with increasing level number n and appear to
asymptote to a finite limit. At fixed level number n, decay
rates also grow with increasing l, and quickly appear to
reach a limiting value. Our numerical results are consistent
with a limiting value of π

4
κ2=m in either case, with

subleading Oð1=lÞ corrections if l increases at fixed n,
andOðn−1=2Þ corrections if n increases at fixed l, although
this inverse power of n is not well-constrained by our data
on the first 100 levels.
Consider states with positive orbital angular momentum,

l > 0. The interleaving of energy levels, ϵn;jlj <
ϵn;jljþ1 < ϵnþ1;jlj, implies that the j0;li minimal energy
states (for a given angular momentum) decay down to the
j0; 0i ground level by sequential j0;li → j0;l − 1i tran-
sitions, with each emitted photon carrying off one unit of
angular momentum. States with nonzero angular momen-
tum and nonminimal energy, n > 0 and l > 0, have
multiple possible dipole allowed final states, including
both Δl ¼ þ1 and Δl ¼ −1 transitions. Examining tran-
sition rates to specific final states, one finds that the total
decay rates for states with n;l > 0 are highly dominated by
decays to the nearest lower levels, either jn;li → jn;l − 1i
or jn;li → jn − 1;lþ 1i. Of these two decay channels,
the decay decreasing l is significantly more likely than the
decay increasingl. The rates for all other decay channels are
smaller by one or more orders of magnitude. (The predomi-
nance of transitions decreasing jlj over those increasing jlj

l 4
l 2
l 1
l 0

20 40 60 80 100
n

0.2

0.4

0.6

0.8

FIG. 7. Total radiative decay rates of two-body bound states in
units of κ2=m, as a function of the level number for the first 100
states with l ¼ 0, 1, 2, and 4. Higher rows of points correspond
to larger values of l.
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is visible in Fig. 7 as the smaller values of the l ¼ 0 points
compared to l ¼ 1.) Consequently, an excited state jn;li
with n ≫ 1 will cascade stepwise down to n ¼ 0, with l
undergoing a random walk biased toward l ¼ 0.
For high angular momentum, l ≫ 1, one may regard the

n ¼ 0 eigenstate as a quasiclassical circular orbit. In two
dimensions, the power radiated by an electric dipole of
magnitude eR rotating at frequency ω is

P ¼ 1

8
e2R2ω3: ð7:4Þ

For our high-l bound states with e2¼ 2πκ, R ¼ lðκmÞ−1=2,
and orbital frequency ω ¼ κ=l, this gives P ¼ π

4
κ3=ðmlÞ.

The power radiated must equal the photon frequency
times the decay rate, so this classical result implies an
l-independent asymptotic decay rate,

Γ ¼ π

4
κ2=m × ð1þOðl−1ÞÞ: ð7:5Þ

Decay rates from states with fixed n nicely converge to this
value as l increases.

2. Annihilation decay

In addition to radiative decays, two-body bound states
having l ¼ 0 and composed of particle-antiparticle pairs
can annihilate into two or more light sector photons. This is
a short-distance process, represented by higher dimension
operators in our nonrelativistic EFT. Annihilation rates are
parametrically smaller than dipole-allowed radiative tran-
sition rates, and hence only significant for the lowest l ¼ 0
energy levels. Constituents with masses of order mW have
Compton wavelengths which are comparable (for small N),
or larger (for large N), than the compactification size L.
Consequently, annihilation rates are most easily calculated
using a dimensionally reduced relativistic EFT, having the
form (A2) for W-boson bound states or 2þ 1 dimensional
QED for mesons. The annihilation rate may be expressed as

Γannih ¼ ðlim
v→0

σvÞjψð0Þj2; ð7:6Þ

where σv is the flux-weighted cross-section in two spatial
dimensions (a quantity with dimensions of length) and ψðxÞ
is the wave function for relative motion, so jψð0Þj2 is
the 2D probability density for coincident constituents.
Parametrically, σv ∼ λ2=mW for CP even states which can
annihilate to two photons having momenta of order mW,
while jψð0Þj2 ∼ κm since this is the inverse mean square size
of the lowest l ¼ 0 two-body bound states. Hence

Γannih ¼ Oðλ3mWÞ; ð7:7Þ

which is one power of λ smaller than radiative decay rates.

Evaluating the cross section in the relativistic 2þ 1D
relativistic EFT, we find28

σWW→2γ ¼
11π

64v
κ2

m3
½1þOðp2=m2Þ� ð7:8Þ

for annihilation of W-bosons with mass m and interaction
strength κ ¼ λmW=ð2π2Þ, and

σqq̄→2γ ¼
5π

128v
κ2

m3
½1þOðp2=m2Þ� ð7:9Þ

for qq̄ annihilation with mass m and interaction
strength κ ¼ ð1 − 1

NÞλmW=ð4π2Þ.
For the lowest n ¼ l ¼ 0 level of our two-body loga-

rithmic quantum mechanics, the probability at the origin is

jψð0Þj2 ¼ 2.68915κ ~m; ð7:10Þ

with ~m the reduced mass of the two constituents.
Consequently, for the lightest CP-even glueballs and
mesons (with constituent masses equal to mW and 1

2
mW,

respectively) we find

Γannih ¼
8<
:

5.80815mW

�
λ

4π2

�
3
; glueballs;

0.660017mW

�
λ

4π2

�
3
�
1 − 1

N

�
3
; mesons:

ð7:11Þ

VIII. DISCUSSION

A. Adiabatic continuation

Recent studies have shown that it is possible to engineer
circle compactifications of 4D SUðNÞYM theory and QCD
in such a way that symmetry realizations for large and small
circle sizes coincide [12–35]. Available evidence is con-
sistent with the natural conjecture that the weakly coupled
small-L regime is smoothly connected—that is, without
intervening phase transitions—to the strongly coupled
large-L regime. The small circle regime offers a rare
luxury: controlled analytic calculations in a phase of the
theory with confinement and chiral symmetry breaking.
Taking advantage of this tractability, we have studied the
behavior of glueballs, mesons, and baryons, with a focus on
the spectrum of resonances and their decays.

28We consider decays from bound states with vanishing total
compact momentum and equal mass constituents. Higher KK
modes (i.e., heavy photons) may be neglected. For WW anni-
hilation, each W-boson couples to two different Uð1Þ photons
and consequently there are three different processes which
contribute (γAγA, γBγB, and γAγB). Evaluating the leading order
seagull, t, and u-channel diagrams and taking the nonrelativistic
limit yields the result shown.
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Our results are broadly consistent with the conjecture of
continuity between small and large L. Much physics in
adiabatically compactified theories depends on the circle
size L through the parameter η ¼ NLΛ. To place our small
η results into perspective, first recall that when η ≫ 1, the
dynamics of QCD-like theories are insensitive to the scale
L. (Finite volume effects vanish at least as fast as L−2.)
With fundamental representation fermions (nf ≲ N)
with a common mass mq ≪ Λ, at large L there are multiple
characteristic scales for the masses of particles: the pseudo-
Nambu-Goldstone (pNGB)mass scalempNGB ∼

ffiffiffiffiffiffiffiffiffiffi
mqΛ

p
, the

glueball andmesonmass scalemM ∼ Λ, and the baryonmass
scale mB ∼ NΛ.29

In the weakly coupled regime η ≪ 1, we find a similar
picture, but with particle masses depending onL through the
combination η ¼ NLΛ. In adiabatically compactified QCD
with, e.g., nf ¼ N earlier work [35] found that the pNGB
masses lie in the range mpNGB ∼ ½Oð1=NÞ −Oð1Þ� ×
η

ffiffiffiffiffiffiffiffiffiffi
mqΛ

p
at small η (if double trace deformations stabilize

the color-flavor center symmetry). Our results in this paper
show explicitly that mM ∼ Λη−1 and mB ∼ NΛη−1. This is
clearly similar to the large L pattern, apart from the natural
appearance of dependence on the parameter η when L is
small.30 In Fig. 8 we sketch a possible simple interpolation of
the spectra of light and heavy states as L is varied.
The situation at nf ¼ 0 is depicted in Fig. 9. At small L,

instead of light pNGB mesons there are now light glueball
states involving dual photons and their bound states, with
masses mlight ∼ ½Oð1=NÞ −Oð1Þ� × Λη5=6 (if double trace
deformations stabilize center symmetry). The N − 1 dual
photons are charged under the center symmetry, indicating
that they are topologically nontrivial excitations containing
flux wrapping the compactified direction. These states
cannot be created by topologically trivial local operators
(acting on the vacuum) and will have masses which do not
asymptote to finite limits at large L but rather grow linearly,
m ∼ σL, with σ the decompactified YM string tension. The
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FIG. 8. A sketch of a possible interpolation of the spectrum as
the circle size L is varied in adiabatically compactified QCD with
nf ¼ N and 0 < mq ≪ Λ. In this log-log cartoon, masses are in
units of Λ and the abscissa η≡ NLΛ. The short-dashed red and
dotted blue curves correspond to the neutral and charged pNGBs,
respectively. At small L, the neutral pNGBs are dual photons,
while the charged pNGBs are nonrelativistic quark-antiquark
bound states. The large splitting in their masses at small L is due
to the partial breaking of flavor symmetry to its Cartan subgroup
by our flavor-twisted boundary conditions. The solid red curve
represents the lightest flavor singlet meson which, at small L, is a
bound state of dual photons. The long-dashed blue curve
represents glueballs and other mesons (both flavor singlet and
nonsinglet) which are not pNGBs and which, at small L, are
bound states ofW-bosons. The fuzzy green curve at the top of the
figure represents the evolution of the mass of a baryon from small
to large L.
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FIG. 9. A sketch of a possible interpolation of the spectrum as
the circle size L is varied in adiabatically compactified Yang-
Mills. The illustration is for N ¼ 2 for simplicity. The dashed
green curve shows the lightest glueball, with vanishing center
charge, which is a bound state of two dual photons at small L.
The dotted blue curve with a positive slope at small η corresponds
to the lightest topologically nontrivial “glueball” with nonzero
center charge. This state is a dual photon at small L and evolves
into a state with a linearly growing energy, m ∼ σL at large L,
where σ is the string tension. The two solid red curves correspond
to center-neutral W-boson bound states, which evolve into
ordinary glueballs at large L. The dotted blue curves with
negative slope at small η correspond to W-boson states with
nonzero center charge, which evolve into wrapped-flux states
with a linearly diverging mass at large L.

29If nf ≪ N andmq=Λ ≪ 1=N ≪ 1, then there is an additional
scale ΛN−1=2 associated with the mass of the η0 meson [69].

30The dependence of pNGB masses (2.20) at small L on the
charge of the particle under cyclic flavor permutations may, at
first sight, seem surprising. But such dependence is also present
when L is large but finite in adiabatically compactified theories
with flavor twisted boundary conditions, as seen explicitly in the
results of Ref. [70].
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bound state of two dual photons with vanishing total center
charge is the lightest topologically trivial glueball at small
L, and can smoothly connect to the lightest glueball at large
L. In the heavy sector at small L, W-boson bound states
form nearly degenerate multiplets containing all values of
center charge. Within each such multiplet, the vanishing
center charge state can evolve into an ordinary topologi-
cally trivial glueball at large L, while the remaining states
with nonzero center charge will have linearly diverging
masses at large L.
Finally, when 1 ≤ nf < N, the overall picture is the same

as the sketch shown in Fig. 8, except that the light sector at
small L now contains nf − 1 pseudo-Nambu-Goldstone
bosons, with masses vanishing at mq ¼ 0, as well as non-
pNGB states, namely the remaining N − nf dual photons
and their bound states. These non-pNGB states have
masses on the order of mlight ∼ Ληb with an exponent
b > 0 depending on nf=N. Whether these states should be
described as glueballs or mesons, or some admixture, is not
clear. There is no symmetry which clearly delineates a
distinction. It should be possible to clarify the situation by
computing the amplitudes with which these states are
created by local fermion bilinears or Polyakov loop
operators, but such an analysis has not yet been performed.
In any case, these states can smoothly evolve into ordinary
glueballs and mesons as L → ∞. The same is true of the
glueballs and mesons in the heavy sector at small L. Due to
string breaking by dynamical quarks, none of these states
will have masses which diverge as L → ∞.

B. Large N behavior

Our analysis has been carried out with N arbitrary but
fixed. The usual largeN limit involves sendingN to infinity
while holding fixed the ’t Hooft coupling λ (or equivalently
the strong scale Λ). If the compactification size L is also
held fixed, then the large N limit takes the compactified
theory out of the regime η ¼ NLΛ ≪ 1 where a weak
coupling analysis is possible and into the strongly coupled
domain, η ≫ 1, where large N volume independence
applies [41,71–75]. Our small η analysis adds nothing to
the understanding of this limit.
However, it is interesting to consider an alternate N → ∞

limit in which η ¼ NLΛ is held fixed. This is the key
parameter which controls the physics of adiabatically com-
pactified QCD-like theories. Viewing Λ as a fixed physical
scale, fixing η requires reducing the compactification size as
N increases, L ∝ 1=N, or equivalently holding fixed
mW ≡ 2π=ðNLÞ. If η is fixed at a small value, then a weak
coupling analysis remains valid for all N.

1. Heavy sector

Starting with the heavy nonrelativistic sector, our results
show that the glueball and meson spectra remain stable as
N → ∞ (regardless of whether nf ¼ N, or nf ≪ N). For

example, the value of N simply never enters the result
(6.24) for two-body glueball binding energies, while the
only N dependence in meson binding energies (6.29)
comes from the quark-antiquark interaction strength pro-
portional to 1 − 1

N. So masses of glueballs and mesons
become N-independent at large N. The lightest baryon
masses, as one would expect, grow linearly with N, but
(based only on results at N ¼ 2 and N ≫ 1) the ground
state baryon binding energy per quark (6.58) and the shape
of the single particle distribution (Fig. 6) are quite insensi-
tive to N.
Similarly, the only N dependence in the glueball and

meson radiative decay (7.3) and annihilation rates (7.11)
arises from the same 1 − 1

N interaction strength factor for
mesons. Given this, one might guess that glueball and
meson scattering amplitudes would also have finite, non-
zero large N limits—but this is not entirely correct. If one
ignores higher order radiative corrections then, for exam-
ple, two-body mesons (at small η) may be labeled by the
Cartan charge of their constituents. The amplitude for the
elastic scattering process Ma þMb → Ma þMb arising
from the exchange of one or more Cartan photons will
include a trivial factor of δab expressing the fact that both
mesons must contain constituents charged under the same
Uð1Þ factor if they are to scatter via photon exchange.
When radiative corrections are included, the actual
mass eigenstates are linear combinations of the fixed
Cartan charge states which (for nf ¼ N) have definite
center charge (or more precisely, definite color-flavor
center charge, as discussed in Ref. [44]), ~Mp ¼
N−1=2P

aω
−apMa. The resulting scattering amplitude for

~Mp þ ~Mq → ~Mp0 þ ~Mq0 , is Oð1=NÞ for all center charges
satisfying pþ q ¼ p0 þ q0, instead of Oð1Þ for coinciding
Cartan charges and zero otherwise.
The same argument applies to glueballs. Consider,

for simplicity, glueballs which are bound states of two
W-bosons, with either nf ¼ 0 or nf ¼ N (so the compacti-
fied theory has either an ordinary, or intertwined color-
flavor center symmetry). As discussed in Sec. VI C 1,
glueballs in our small η regime, before diagonalizing center
symmetry, may be labeled by a single Cartan index plus the
ordered compact momenta of their W-boson constituents.
[Subsequent Cartan indices are determined by the mass
formula (4.9), which in turn is a consequence of the adjoint
Higgs mechanism operative at small η.] The transformation
to a mass eigenstate basis with definite center charge
involves exactly the same discrete Fourier transform as
for mesons, ~Gp ¼ N−1=2P

aω
−apGa. The resulting 2 ↔ 2

scattering amplitude for ~Gp þ ~Gq → ~Gp0 þ ~Gq0 is sup-
pressed by 1=N for all center charges satisfying
pþ q ¼ p0 þ q0.
More generally, scattering amplitudes at small η involv-

ing K external particles (incoming plus outgoing) scale
as OðN1−1

2
KÞ. This holds for processes involving any
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combination of light dual photons and heavy sector bound
states (either mesons or glueballs) with Oð1Þ constituents,
provided at least one of the particles in the scattering
process is a heavy sector bound state. (Scattering involving
only dual photons is discussed below.) This relation shows
that decay amplitudes into two particle final states are
OðN−1=2Þ, so decay rates to exclusive two particle final
states are suppressed by 1=N. That may appear inconsistent
with the Oð1Þ total radiative and annihilation rates com-
puted in Sec. VII, but inclusive decay rates sum over all
accessible final states. Because the splittings between states
with differing center charge are parametrically smaller than
heavy sector binding or rest energies (by powers of λ for
heavy states, or mγ=mW for light dual photons), inclusive
1 → 2 decay rates pick up a factor of N from summing over
all possible center charges of the final state particles
consistent with the initial state center charge.31 The same
logic shows that while fully exclusive 2 ↔ 2 scattering
rates are OðN−2Þ, inclusive 2 ↔ 2 scattering rates for
mesons and glueballs are OðN−1Þ as N → ∞.
Meson-baryon scattering amplitudes scale as OðN0Þ,

since a quark (or antiquark) with any given Cartan index
can interact with the quark having the same Cartan index in
the baryon. The same scaling holds for glueball-baryon
scattering (for both heavy sector bound state glueballs, and
light dual photons). Baryon-baryon scattering amplitudes
are OðNÞ, since every quark in one baryon can interact via
an unbroken Uð1Þ gauge group with one of the quarks in
the other baryon.
These large N scaling relations at small η may be

compared with conventional large N behavior when Λ
and L are held fixed, and hence η → ∞. It will be
interesting to compare with conventional behavior in both
the ’t Hooft (nf fixed as N → ∞) and Veneziano (nf=N
fixed as N → ∞) limits. In all cases, meson and glueball
spectra are stable as N → ∞, while the lightest baryon
masses grow linearly with N. One unusual consequence of
our flavor-twisted boundary conditions, at small η, is that
baryons composed of only a single flavor of quark [or more
generally Oð1Þ different flavors] have masses which grow
quadratically with N.
In the standard ’t Hooft large N limit, glueball scattering

amplitudes scale as OðN2−KgÞ, with Kg the number of
external glueballs (incoming plus outgoing) [68]. For proc-
esses involving mesons, possibly with additional glueballs,
the scaling of scattering amplitudes becomesOðN1−Kg−1

2
KmÞ,

where Km is the number of external mesons. Hence, meson
decay widths areOðN−1Þ and glueball decaywidths to either
two glueball, or twomeson final states areOðN−2Þ. Rates for
two glueballs to scatter into two glueballs, or into two

mesons, are OðN−4Þ, while 2 ↔ 2 meson scattering rates
areOðN−2Þ. Baryon-baryon scattering amplitudes areOðNÞ
while baryon-meson scattering amplitudes are Oð1Þ [68].
In the Veneziano large N limit, the additional factors of

nf ∝ N in sums over final states (assuming a common
quark mass for all flavors) make both meson and glueball
decay rates Oð1Þ. Hence, except for the lightest states in
each symmetry channel, mesons and glueballs remain
resonances, with finite lifetimes, as N → ∞. The inclusive
rate for two mesons to scatter into two mesons is OðN−1Þ,
while two glueballs can scatter into two mesons with an
OðN−2Þ inclusive rate, parametrically faster than the
OðN−4Þ rate for pure glueball scattering.
Comparing these conventional large η scaling relations

with our small η results, one sees that for mesons our
OðN0Þ total decay rates, OðN−1Þ inclusive two particle
scattering rates, andOðN−2Þ exclusive two particle rates all
coincide with the behavior of mesons in the Veneziano
limit. The scaling of our baryon-baryon and baryon-meson
scattering amplitudes is the same as in conventional largeN
limits. But the fact that, at small η, glueball processes have
the same large N scaling as mesons is quite peculiar.
Two significant features contribute to this change in

behavior of glueball dynamics between large and small η.
First is the adjoint Higgs mechanism induced by the center-
symmetric holonomy at small η. This suppresses fluctua-
tions in off-diagonal components of the SUðNÞ gauge field,
so that only the N − 1 gluonic degrees of freedom play a
significant role in resonance formation, scattering, and
decay. In contrast, at large η there are huge fluctuations in
the holonomy and all N2 gluonic degrees of freedom
contribute to every glueball operator. This leads to the
familiar 1=N2 suppression factors in exclusive decay rates
and 2 → 2 scattering amplitudes of glueballs. A second
essential difference at large and small η is the contribution
of states with nonzero center charge. At nf ¼ 0, such states
have linearly diverging energy as η → ∞ (as shown in
Fig. 9), and play no role in scattering processes involving
OðN0Þ energies. But at small η these topologically non-
trivial states become nearly degenerate in energy with
vanishing center charge states, and dominate inclusive
scattering and decay rates at large N.

2. Light sector

Turning now to the light sector, when nf ≪ N, the
smallest nonzero dual photon mass is Oðmγ=NÞ.
Holding η fixed as N → ∞ implies that the light scale
mγ is also held fixed. Consequently, the lightest (non-
Goldstone boson) mass vanishes as N → ∞.
The interpretation and consequences of the vanishing of

the mass of the lightest non-Goldstone boson excitations in
the small-η large N limit were the focus of Ref. [76]. At
very low energies, small compared to mγ , the theory does
not flow to a trivial fixed point. Rather, to all orders in the

31This assumes the decay channel is not parametrically close to
threshold, so that the decay kinematics is insensitive to the
splittings between final state particles with differing center
charges.

QCD ON A SMALL CIRCLE PHYSICAL REVIEW D 96, 096022 (2017)

096022-29



semiclassical expansion the low energy theory becomes
gapless as N → ∞. The low energy dynamics at N ¼ ∞ is
most naturally written as a four-dimensional theory, despite
the fact that the “parent” UV theory was compactified on a
tiny circle. The fourth dimension in the low energy, large N
dynamics is emergent, appearing only on length scales
large compared to m−1

γ .
The results in this work are consistent with this picture,

but do not shed much additional light on the origin or
interpretation of this unexpected phenomena. The quartic
interactions of dual photons, shown in Eq. (3.9), may be
interpreted in the large N emergent dimension description
as momentum-dependent interactions with vertex factors
proportional to 1=N times the product of photon momenta
in the emergent dimension. Consequently, for OðN0Þ
momenta (in the original spatial dimensions), dual photon
scattering amplitudes scale as OðN−1Þ at large N, the same
as for heavy sector glueballs.
As shown in Eqs. (3.11) and (3.12), the dual photon

binding energies (and momenta) discussed in Sec. III
vanish exponentially as N → ∞. So these bound states
play no significant role at largeN, and the emergence of the
extra dimension in the light sector of the theory happens
just as described in Ref. [76]. To understand how, e.g., the
glueballs arising from W-boson bound states fit into the
large N emergent dimension picture, recall that the emer-
gent dimension appears as an N-site discretized circle with
lattice spacing m−1

γ [76]. A continuum 4D description is
only relevant for physics with momenta small compared to
mγ . But at small η, the OðmWÞ W-boson masses, their
OðλmWÞ binding energies, and the Oðλ2mWÞ radiative
corrections to binding energies are all large compared to
mγ . So the largeN bound state dynamics does not involve the
low energy emergent dimension, and must be treated using a
3D effective field theory, as done in the present paper.

C. Outlook

The analysis and results of this paper raise a number of
questions which would be interesting to study in future
work. First, as noted near the end of Sec. VII A, we have
not performed the matching calculation necessary to
determine the OðλÞ corrections to the rest mass parameters
of the 3D nonrelativistic EFT. Differences in the short
distance corrections to the EFT rest masses are needed to
determine the relative stability of meson, glueball, and
heavy photon resonances whose leading order masses are
identical. For example, the lightest glueball resonances
with mass near 4mW might be composed of two W-bosons
each with (tree level) mass 2mW, or from four of the lightest
W-bosons each with mass mW. Such glueball states are
nearly degenerate with heavy photons having a tree-level
mass of 4mW. The results of a one-loop matching calcu-
lation of EFT rest energies would enable one to determine
the relative ordering of these states. In particular, this would

allow one to answer the interesting question of which near-
extremal states are absolutely stable by virtue of minimiz-
ing the ratio of mass to compact momentum, M=jP3j.
Second, as emphasized in Sec. VI, the bound state spectra

for glueballs, mesons, and baryons have an exponentially
rising (Hagedorn) density of states. It is interesting that this
Hagedorn scaling emerges as a consequence of a logarithmic
potential within the domain of validity of nonrelativistic
quantum mechanics, in contrast to the common lore that
Hagedorn scaling is characteristic of relativistic string
dynamics. In any case, the implications of Hagedorn scaling
in the density of states for the thermodynamics of adiabati-
cally compactified QCD deserve further study. Previous
work [19,22,27] considered the SUð2Þ deformed Yang-
Mills theory (see also Refs. [77,78]), and argued that a
thermal confinement-deconfinement transition occurs near
the temperature

β−1c ≃ λmW

4π2
: ð8:1Þ

The picture behind this conclusion is that in the regime32

ζ1=3 ≪ β−1 ≪ mW, the dilute monopole-instanton gas rep-
resentation of the 3D Euclidean vacuum effectively reduces
to a dilute two-dimensional gas of magnetically charged
particles subject to binary logarithmic interactions. At the
same time, there is also a thermal gas of electrically charged
particles, namelyW-bosons. The thermal phase transition is
believed to be driven by a competition between the effects of
these electrically and magnetically interacting gases.
However, in Refs. [19,22,27,77,78] the electrically charged
component of the gas was treated classically, and the
existence of Hagedorn behavior in the density of states
was not taken into account. It would be interesting to revisit
these calculations in light of our results here, and clarify
whether the temperature (8.1) is indeed a correct estimate of
the phase transition temperature.
Next, it would be very interesting if lattice gauge theory

simulations could be performed in both pure Yang-Mills
and QCD exploring the cross-over regions in Figs. 8 and 9,
along the lines of Refs. [20,30]. This would require
simulations in a variety of lattice volumes with one
dimension having double trace center stabilizing terms
and flavor-twisted boundary conditions on quarks.
Last, and perhaps most interesting from a phenomeno-

logical perspective, is the possibility of studying multi-
baryon states at small L. To motivate this, recall that in the
real world there is a wide separation between “nuclear”
excitation scales relevant in multibaryon systems and the
energy scales characteristic of single baryons. For example,
the saturation binding energy per nucleon of nuclear matter,

32This temperature range is similar to, but slightly more
restrictive than the condition for the validity of our nonrelativistic
EFT analysis, and is needed to justify the treatment of the
monopole-instanton gas as two-dimensional.
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roughly 14MeV, is tiny compared to the≈300 MeV energy
required to excite a single nucleon beyond its ground state.
Or, one may compare nuclear binding scales to nucleon
masses of nearly a GeV. Both comparisons indicate a wide
separation between nuclear and single-baryon energy
scales. Moreover, lattice simulations indicate that the
nuclear/hadronic scale separation persists even as quark
masses are varied [79–81], and that it also persists when
N ¼ 2 instead of 3 [82], suggesting that this scale sepa-
ration is a robust feature of QCD. This scale separation is
vital for essentially all phenomenological understanding
nuclear physics, including the modeling of nuclei as a
collection of individual nucleons.
The puzzle is that there is no fundamental explanation

for this important experimentally observed scale separation
from QCD. For example, this scale separation is not an
automatic consequence of either the largeN or chiral limits.
The adiabatic small-L regime allows one to use straightfor-
ward numerical and analytic methods to study multibaryon
systems for any quark mass and any number of colors.
Further exploration of QCD phenomenology on a small
circle may thus yield useful insights into the long-standing
and important puzzle of the separation between nuclear and
hadronic energy scales in QCD.
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APPENDIX A: NONRELATIVISTIC
EFT DERIVATION

We denote SUðNÞ indices by a, b, c, d, etc.,
each running from 1 to N, and define the set of N × N
basis matrices fEabg by ðEabÞcd ≡ δacδbd. We use an N-
dimensional basis for the root vectors βab (a ≠ b). The
positive roots are βab ¼ ð0;…; 0; 1; 0;…; 0;−1; 0;…; 0Þ,
a < b, with 1 and −1 in the a-th and b-th position,
respectively; the negative roots are βba ¼ −βab, a < b.
The indices μ ¼ 0, 1, 2 denote the noncompact spacetime
directions and x3 ≡ x3 þ L is the coordinate of the compact
direction. The circumference L≡ 2πR. The Cartan gen-
erators are denoted by Ha ≡ Eaa. The overall Uð1Þ photon
coupling to

P
aH

a decouples from the SUðNÞ dynamics
and is introduced solely for the convenience of working
with an N-dimensional weight basis. Since all weight
vectors are orthogonal to the vector (1,1,1,1,...,1), the static
interactions discussed below in Appendix B only involve

SUðNÞ charges which are neutral with respect to this
overall Uð1Þ.
Until otherwise specified [just before Eq. (A9)], we write

Euclidean space expressions in this appendix. The Yang-
Mills Lagrangian L ¼ N

4λ trF
2
αβ, with Fαβ Hermitian. The ’t

Hooft coupling λ≡ Ng2ðmWÞ, where the scale mW ≡
1=ðNRÞ denotes the lightestW-boson mass. We decompose
the gauge field into components along the compact and
noncompact directions,

A3 ¼
X

1≤a≤N
Aa
3ðxμÞHa; ðA1aÞ

Aμ ¼
X

1≤a≤N
Aa
μðxμ; x3ÞHa þ

X
1≤a<b≤N

Wab
μ ðxμ; x3ÞEab

þWab�
μ ðxμ; x3ÞEba: ðA1bÞ

The expansion (A1) is written in the unitary gauge, where
the only nonzero gauge field components along the S1

direction are the Cartan components and they have no
x3-dependence. The N real fields Aa

μ describe 3D photons
in the Cartan subalgebra, while the 1

2
ðN2 − NÞ complex

fields Wab
μ (a < b) in the off-diagonal elements describe

charged W-bosons.
Next, we expandAa

3 around the center symmetric expecta-
tion value (2.4) of the holonomy, Aa

3 ≡ ρa=ðNRÞ þ ϕa, so
that ϕa represents the fluctuations of the holonomy.33

Plugging the expansion (A1) into the Yang-Mills
Lagrangian one obtains, up to quadratic order in the W-
boson fields,

L2W ¼ N
4λ

	 X
1≤a≤N

Fa
μνFμν a þ 2∂μϕ

a∂μϕa þ 2∂3Aa
μ∂3Aμa

þ
X

1≤a<b≤N
2j∂μWab

ν þ iðAa
μ − Ab

μÞWab
ν − ðμ ↔ νÞj2

þ 4

����
�
−i∂3 þ

a − b
RN

þ ϕb − ϕa

�
Wab

μ

����
2

þ 2iðFa
μν − Fb

μνÞWab
½μ W

ab�
ν�



: ðA2Þ

The second line shows explicitly that theW-boson fieldWab
μ

has charge þ1 and −1 under the a-th and b-th Cartan Uð1Þ
gauge groups, respectively. Hereafter, we neglect the fluc-
tuations ϕa of the holonomy; as explained in Sec. IV, they
play no role in the dynamics to the order thatwe study. (These
neutral fluctuations are gapped by the perturbative center-
stabilization mechanism.)

33Here, ρa ¼ 1
2
ðN þ 1Þ − a are the components of the Weyl

vector in our basis. The expectation value hAa
3i ¼ ρa=ðNRÞ

corresponds to ZN symmetric eigenvalues of the holonomy
and produces vanishing traces in the fundamental representation,
htrFΩki ¼ 0 for k ¼ 1;…; N − 1.
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Next, we derive the leading-order EFT valid for
momenta p ≪ mW [but large compared to the nonpertur-
batively induced mass gap (2.12), p ≫ mγ]. This EFT
describes the interactions of charged massive W-bosons
with the (perturbatively) massless Cartan photons and with
the “heavy photons,” modes in the Kaluza-Klein (KK)
tower containing the Cartan photon fields. (See Ref. [83]
for a closely related treatment.)
As a final step before considering the p ≪ mW non-

relativistic limit, we rewrite the Lagrangian (A2) in a mass
(or KK) eigenstate basis. The KK expansions are defined as
usual, e.g.,

Aa
μðxν; x3Þ ¼

X∞
n¼−∞

eix
3n=RAa;n

μ ðxνÞ; ðA3Þ

with Aa;−n
μ ðxνÞ ¼ ðAa;n

μ ðxνÞÞ�, and similarly for the Wab
μ

fields (without a corresponding reality condition). Inserting
these expansions into the 4D Lagrangian (A2), integrating
over x3 (and neglecting holonomy fluctuations), leads to an
effective three-dimensional Lagrangian

L3D ¼ L2 þ L3 þ L0
3 þ � � � ; ðA4Þ

in which we separate, for convenience, quadratic, cubic,
and higher order terms. The quadratic part is given by

L2 ¼
NL
4λ

X∞
n¼−∞

� X
1≤a≤N

jFa;n
μν j2 þ 2jmaa

n Aa;n
μ j2

þ
X

1≤a<b≤N
2j∂ ½μW

ab;n
ν� j2 þ 4jmab

n Wab;n
μ j2

�
; ðA5Þ

with the KK masses

mab
n ≡mWja − bþ nNj; mW ≡ ðNRÞ−1: ðA6Þ

The cubic terms contain the coupling of the Cartan photons
to the charge currents of the W-bosons,

L3¼
NL
4λ

X∞
m;n¼−∞

X
1≤a<b≤N

2i∂ ½μW
ab;n�
ν� ðAa;n−m

½μ −Ab;n−m
½μ ÞWab;m

ν�

þðH:c:Þ; ðA7Þ

as well as their magnetic-moment coupling to the spin of
the W-bosons,

L0
3 ¼

NL
4λ

X∞
m;n¼−∞

X
1≤a<b≤N

2iðFa;n−m
μν − Fb;n−m

μν ÞWab;m
½μ Wab;n�

ν� :

ðA8Þ

Quartic terms in the Lagrangian, if needed, can be worked
out similarly.

We shall eventually return to our Lagrangian of interest,
L3D, but first we discuss the construction of a nonrelativ-
istic effective field theory (NR EFT) in the simpler case
of a single massive charged vector boson. To this end, let
Wμ denote a 3D complex vector field with Uð1Þ gauge
symmetry, Wμ → eiαWμ, and Lagrangian34

L ¼ −
1

4e2
ð∂ ½μAν�Þ2 −

1

2
j∂ ½μWν�j2 −M2WμWμ�

þ iAμðWν∂ ½μWν� −Wν∂ ½μW�
ν�Þ

−
1

2
jA½μWν�j2 −

i
2
∂ ½μAν�W½μW�

ν�: ðA9Þ

This charged vector boson Lagrangian contains precisely
the kinds of terms appearing in the Lagrangian (A4)–(A8)
of our full theory. We use e2 to denote the coupling constant
of the massless photon. The leading-order correspondence
with our full theory is

e2 ¼ λ

NL
¼ λmW

2π
: ðA10Þ

Note that the vector field Wμ has a conventional normali-
zation, but we have chosen to scale the charge e out of
covariant derivatives and define the photon field Aμ as
having dimension 1.
A 3D massive vector field has two polarization states.

Define polarization vectors eiμðkÞ, i ¼ 1, 2, obeying
eiμðkÞejμðkÞ ¼ δij and kμeiμðkÞ ¼ 0, for on-shell momenta
kμ ≡ ðjkj;kÞ. Explicitly,

e1μðkÞ≡
�
0;

~k
jkj

�
; e2μðkÞ≡

�jkj
M

;
k
jkj

ωk

M

�
; ðA11Þ

where ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
and ð ~kÞi ≡ ϵijðkÞj (we use i,

j ¼ 1, 2 to denote spatial indices and take
ϵ12 ¼ −ϵ21 ¼ 1). The free mode expansion of the second
quantized field is

Wμðt;xÞ ¼
Z

d2k
ð2πÞ2 ffiffiffiffiffiffiffiffi

2ωk
p

X2
i¼1

½eiðωkt−k·xÞeiμðkÞaiðkÞ†

þ e−iðωkt−k·xÞeiμðkÞbiðkÞ�;
≡Wþ

μ ðt;xÞ þW−
μ ðt;xÞ; ðA12Þ

where ½aiðkÞ;ajðpÞ†�¼½biðkÞ;bjðpÞ†�¼ð2πÞ2δijδ2ðp−kÞ,
and all other commutators vanish. It is convenient to denote
by W�

μ the positive frequency ð∝ eiωktÞ and negative
frequency ð∝ e−iωktÞ parts, respectively. The Uð1Þ charge
operator Q≡ R

d2x2ImðWν�∂0WνÞ, after normal ordering,

34At this point, we revert to Minkowski space expressions
using a ð−;þ;þÞ metric signature.
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becomesQ ¼ R
d2k
ð2πÞ2

P
i½aiðkÞ†aiðkÞ − biðkÞ†biðkÞ�, from

which it is evident that the operators aiðkÞ† (aiðkÞ) are
creation (annihilation) operators of positively charged vector
bosons while the operators biðkÞ† (biðkÞ) create (annihilate)
negatively charged antiparticles. Polarization index i ¼ 1
(i ¼ 2) refers to particles with transverse (longitudinal)
polarization, respectively. The free Hamiltonian P0 ¼R

d2k
ð2πÞ2 ωk

P
i½aiðkÞ†aiðkÞ þ biðkÞ†biðkÞ� and has eigen-

value ωk for all four single-particle states of a given spatial
momentum k.
Apart from explaining the physical content of the

massive vector boson theory, the mode expansion (A12)
provides an easy way to see that an effective theory
describing the dynamics of nonrelativistic vector bosons
can be expressed solely in terms of the spatial components
Wi of the vector field Wμ. For small momenta, jkj ≪ M,

the longitudinal polarization vector e2μðkÞ¼ð0; kjkjÞþOðjkjM Þ,
with only spatial components to leading order. Since the
transverse polarization vector e1μðkÞ is purely spatial, in
the nonrelativistic limit the time component W0 can be
eliminated, leading to an effective theory for a spatial
vector field.
One may construct the Lagrangian of this effective

nonrelativistic theory by writing all terms consistent with
the symmetries and matching the coefficients to terms in
the relativistic theory to the desired order in the small
coupling and small momentum expansion (treating
j∇j
M ∼ jkj

M ≪ 1, where ∇ is a spatial gradient.) To carry out
this procedure, we introduce two different two-component
complex fields, ϕ⃗þðt;xÞ and ϕ⃗−ðt;xÞ. In a second-
quantized nonrelativistic theory, these fields (and their
Hermitian conjugates) annihilate (or create) particles of
charges þ1 and −1, respectively. The two-component
vector represents the direction in the two-dimensional
polarization space. To leading order in the derivative and
small-coupling expansion, the fields ϕ⃗� can be considered
as scalars under SOð2Þ spatial rotations, with an emergent
SOð2Þ “flavor” symmetry acting as rotations in the polari-
zation space. Magnetic moment interactions explicitly
break this SOð2Þ × SOð2Þ symmetry down to the diagonal
SOð2Þ. (This is completely analogous to the approximate
spin rotation symmetry in light atoms and molecules when
spin-orbit interactions can be neglected.)
Temporarily ignoring the gauge field Aμ, to lowest

nontrivial order in powers of ∇
M, the Lagrangian of the

NR EFT is

LNR ¼ ϕ⃗†
þi∂tϕ⃗þ þ ϕ⃗†

−i∂tϕ⃗− −Mjϕ⃗þj2

−Mjϕ⃗−j2 −
j∇ϕ⃗þj2
2m

−
j∇ϕ⃗−j2
2m

; ðA13Þ

and the corresponding Hamiltonian is

H ¼
Z

d2x ϕ⃗þðxÞ† ·
�
M −

∇2

2m

�
ϕ⃗þðxÞ þ ϕ⃗−ðxÞ†

·

�
M −

∇2

2m

�
ϕ⃗−ðxÞ: ðA14Þ

The conserved charge Q ¼ R
d2xðϕ⃗þÞ† · ϕ⃗þ þ ðϕ⃗−Þ† · ϕ⃗−.

Mode expansions of the nonrelativistic fields read

ϕiþðt;xÞ† ¼
Z

d2k
ð2πÞ2 e

iεkt−ik·xaiðkÞ†;

ϕi
−ðt;xÞ† ¼

Z
d2k
ð2πÞ2 e

iεkt−ik·xbiðkÞ†; ðA15Þ

where εk ≡M þ k2=ð2mÞ, and aiðkÞ† and biðkÞ† are the
same creation operators appearing in the relativistic expan-
sion (A12) (and its Hermitian conjugate). The fields (A15)
satisfy nonrelativistic canonical commutation relations,
½ϕiþðt;xÞ;ϕj

þðt; yÞ†� ¼ ½ϕi
−ðt;xÞ;ϕj

−ðt; yÞ†� ¼ δijδ2ðx − yÞ,
with other commutators vanishing.
To fix parameters in the NR EFT one demands that

physical quantities, computed in the EFTand in the IR limit
of the full theory, agree with each other order by order in
the low energy and weak coupling expansions. At low
orders, the matching is rather straightforward. In the free
theory (A13), single-particle states have energies εk ¼
M þ k2

2m and charges �1. This agrees with the energy and
charge of low momentum states in the relativistic theory
(A9) provided both the rest mass parameter M, and the
kinetic mass m, appearing in the nonrelativistic theory
(A13) equal, at lowest order, the physical mass M of the
original theory.
Note that if one ignores the explicit polarization vector

dependence in the relativistic expression (A12), then the
operator ϕiþðt;xÞ† corresponds, in the nonrelativistic limit
and after a trivial rescaling by

ffiffiffiffiffiffiffi
2M

p
, to the positive-

frequency part Wþ
i of Wμ, while ϕi

−ðt;xÞ† corresponds
to the positive frequency part ðW−

i Þ† of the conjugate
field W†

μ.
We now proceed to write down the NR EFT Lagrangian

describing the theory (A9) to leading order in the small-λ
and derivative expansion. We choose to work in Coulomb
gauge for the photon field Aμ. The time component A0 is
not an independent field but is determined by the charge
distribution of theW-bosons via Gauss’ law. We denote the
vector boson charge density by

nðt;xÞ ¼ iWν∂ ½0Wν� − iWν∂ ½0W�
ν�; ðA16Þ

(neglecting higher order “seagull” contributions). Varying
the action, the Lagrangian (A9) gives A0ðt;xÞ ¼
e2

R
d2yGðx − yÞnðt; yÞ, where the two-dimensional

Laplacian Green’s function G was defined in
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Eq. (4.3). Using this result to eliminate A0 from the
action, one obtains the Coulomb energy, VC≡
− e2

2

R
d2xd2ynðt;xÞGðx − yÞnðt; yÞ, as a contribution to

(minus) the Lagrangian. Ignoring, for the moment, inter-
actions mediated by spatial components of the photons as
these are higher order in the nonrelativistic limit, our effective
theory (A13) changes, to leading order, only by the inclusion
of the Coulomb energy in the action,

SNR ¼
Z

dtd2x

�
ϕ⃗†
þi∂tϕ⃗þ þ ϕ⃗†

−i∂tϕ⃗− −Mjϕ⃗þj2

−Mjϕ⃗−j2 −
j∇ϕ⃗þj2
2M

−
j∇ϕ⃗−j2
2M

�

þ e2

2

Z
dtd2xd2ynðt;xÞGðx − yÞnðt; yÞ; ðA17Þ

where nðt;xÞ ¼ ϕ⃗þðt;xÞ† · ϕ⃗þðt;xÞ − ϕ⃗−ðt;xÞ† · ϕ⃗−ðt;xÞ
is the nonrelativistic limit of the vector boson charge density
(A16). The corresponding Hamiltonian is just

H ¼
Z

d2x ϕ⃗þðxÞ† ·
�
M −

∇2

2M

�
ϕ⃗þðxÞ

þ ϕ⃗−ðxÞ† ·
�
M −

∇2

2M

�
ϕ⃗−ðxÞ

−
e2

2

Z
d2xd2ynðxÞGðx − yÞnðyÞ: ðA18Þ

The action (A17) or Hamiltonian (A18) include all leading-
order terms in the nonrelativistic (v=c ≪ 1) limit using the
systematic power counting rules that we discuss next. (In
what follows, c≡ 1.)
Higher order terms which can appear in the NR EFT may

be classified and ordered using a suitable power counting
scheme for the operators and their matrix elements,
evaluated in characteristic bound states.35 This approach
is now well-established for 3þ 1 dimensional Coulombic
systems [67]. Compared to such systems, several important
differences arise in our 2þ 1D theory. The first is that a
particle of massM moving in a nonrelativistic orbit due to a
central force F ∼ e2=r moves at speed v ∼ e=

ffiffiffiffiffi
M

p
, for any

orbit radius, rather than v ∼ e=
ffiffiffiffiffiffiffi
Mr

p
as in a three dimen-

sional F ∼ e2=r2 central force field. The second is the
appearance of e2 lnðe2=MÞ terms, nonanalytic in the
coupling, in the ground state energy [as seen in
Eq. (6.8)], owing to the scaling properties of the logarith-
mic potential. Ignoring such logarithmic factors, the appro-
priate power counting is similar to that detailed in Ref. [67]:
the size of bound states is of order a0 ∼ ðe2MÞ−1=2 and their

characteristic binding energy ΔE ∼ e2. For estimating the
parametric dependence of matrix elements of arbitrary
operators that may arise in the NR EFT Hamiltonian,
evaluated in low-lying bound states of the lowest-order
theory (A18), we take36 the fields ϕ⃗� to scale as

ffiffiffiffiffiffiffiffiffi
e2M

p
,

time derivatives ∂t ∼ e2, spatial derivatives∇ ∼
ffiffiffiffiffiffiffiffiffi
e2M

p
, and

Coulomb-gauge scalar and vector potentials eA0 ∼ e2 and
eA ∼ e4=

ffiffiffiffiffiffiffiffiffi
e2M

p
. Thus, the field strengths scale as eE ∼

e2
ffiffiffiffiffiffiffiffiffi
e2M

p
and eB ∼ e4. (Here, and below, we have rescaled

the Maxwell action for the photon by e2, to give the gauge
field a conventional perturbative normalization.) Using
these parametric estimates, it follows that all terms in
the lowest-order NR Hamiltonian (A18), excepting the rest-
energy terms, are of order e2, as required.
To assess the relative importance of higher order terms,

we begin with the magnetic moment coupling of the vector
bosons, the last term in the NR Lagrangian (A9). Writing
the leading terms consistent with the symmetries of the
theory which couple the field strength tensor Fij to the NR
vector fields ϕi and ϕi†, one finds, to leading order in 1=M,
that there is a unique such term,

Lmag
NR ¼ −

i
2M

eFijðϕi†
þϕ

j
þ − ϕi†

−ϕ
j
−Þ; ðA19Þ

whose coefficient follows by matching to the relativistic
form (A9) using relations (A11), (A12), and (A15). The
above power counting rules show that magnetic moment
interactions will shift bound state energy levels by an
amount of order e4=M, or a relativeOðe2=MÞ correction to
binding energies.
Given our original choice (A11) of polarization vectors,

the NR fields ϕi
�, i ¼ 1, 2 annihilate vector bosons which

are linearly polarized, either transverse or parallel to their
momenta, respectively. However, using operators that
create particles in eigenstates of Sz, the spin of the vector
boson field Sz ¼

R
d2xðϵij _WiW�

j þ H:c:Þ, is typically more
convenient when discussing bound states in a central
potential. Such operators can be obtained by redefining
our NR field operators as follows:

ϕ1
� ¼ 1ffiffiffi

2
p ðϕ↑

� þϕ↓
�Þ; ϕ1†

� ¼ 1ffiffiffi
2

p ðϕ↑†
� þϕ↓†

� Þ;

ϕ2
� ¼ 1ffiffiffi

2
p

i
ðϕ↑

�−ϕ↓
�Þ; ϕ2†

� ¼ iffiffiffi
2

p ðϕ↑†
� −ϕ↓†

� Þ: ðA20Þ

The new operators ϕ↑†
� and ϕ↑

� obey canonical commuta-
tion relations and create or destroy vector bosons with

35These are determined by solving the two-particle Schrö-
dinger equation which results from projecting the Hamiltonian
(A18) into the two-particle Hilbert space.

36These power counting rules for ϕ⃗� follow, e.g., by demand-
ing that

R
d2xϕ†ϕ ∼ 1 in a bound state of size a0. For the

remaining assignments, the arguments are the same as given in
Ref. [67]; see also Ref. [84].
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Sz ¼ 1, similarly, ϕ↓†
� and ϕ↓

� create or destroy Sz ¼ −1
states. Using these redefined fields, the magnetic moment
coupling (A19) becomes

Lmag
NR ¼−

eB
2M

ðϕ↑†
þ ϕ↑

þ−ϕ↓†
þ ϕ↓

þ−ϕ↑†
− ϕ↑

−þϕ↓†
− ϕ↓

−Þ; ðA21Þ

showing that the magnetic moment couplings split, at order
e4=M, the level degeneracy of ↑↑ and ↓↓ bound states. In
particular, the magnetic moment interaction term (A21)
leads to the spin-spin hyperfine interaction potential (local
in 2D), discussed in Sec. VI B 2.
Coefficients of further operators in the EFT can be found

by matching scattering amplitudes between the full and
effective theories, as done in continuum NRQED in
Ref. [84]. (See Ref. [67] for matching in NRQCD using
lattice gauge theory.) The resulting terms are dimen-
sionally reduced versions of ones listed in the above
references and include, for example, e

M2 ½C1∇ · Eϕj†
þϕ

j
þþ

C2ð∂iEj − 1
2
δij∇ ·EÞϕi†

þϕ
j
þ þ � � ��, whose coefficients can

be found by matching scattering amplitudes in external
static electric fields. The contribution of these operators to
the bound state energies also scale as e4=M. Additionally,
there are a number of possible contact terms involving four
nonrelativistic fields, schematically of the form e2ðϕ†ϕÞ2,
that also contribute Oðe4=MÞ energy shifts. There are, of
course, also corrections arising from higher orders in the
expansion of the relativistic dispersion relation of the form
ϕi†
þ ∇4

M3 ϕiþ þ � � �. According to the power counting rules,
these also contribute to bound state energies at order e4=M.
We have not systematically enumerated all possible higher
order terms in the NR EFT and leave their detailed study
and matching for future work.
To conclude this Appendix, we invite the reader to

consider the transition from the nonrelativistic effective
theory (A17) for our toy single vector boson model (A9), to
the effective theory (4.2) describing our full theory (A4)–
(A8). The transition from the toy NR EFT (A17) to our
full EFT (4.2) is largely one of bookkeeping due to the
proliferation of fields in the full theory. In brief, in the NR
EFT (4.2), the fields ϕ⃗ab with a > b correspond to the field
ϕ⃗þ of the toy model, while the fields ϕ⃗ab with a < b
correspond to the ϕ⃗− field of the single complex vector
model. The charge densities (4.10) are the multifield
generalizations of toy model charge density (A16). The
Hamiltonian (A18) is easily seen to give rise to the
complete form (4.12) (with the same normal ordering
issues discussed in Sec. IV).

APPENDIX B: LIGHT SECTOR DETAILS

We start with the quadratic part (A5) of the 4D action to
remind the reader about the 3D photon-scalar duality and
the normalization of the dual photon field used in dual
description (2.8). The Cartan generators in the fundamental

representation have eigenvalues given by the N weight
vectors νA, A ¼ 1;…; N. In our basis and choice of
normalization, the highest weight is ν1 ¼ ð1 −
1
N ;−

1
N ;…;− 1

NÞ and coincides with the first fundamental
weight vector μ1 of suðNÞ. Consider a static quark, or
fundamental representation probe charge, placed at the
origin of R2 and having some weight vector ν character-
izing its color charge. This adds a source to the 3D
(Minkowskian, c.f. footnote 34) Lagrangian for the static
(KK index n ¼ 0) Cartan components of the gauge
field, − NL

4λ F
a
μνFμνa þ Aa

0ðxÞνaδ2ðxÞ (where a sum on a
is implied, and νa is the a-th component of the quark’s
weight).
The resulting Aa

0 equation of motion, NL
λ ∇2Aa

0ðxÞ ¼
νaδ2ðxÞ, implies Gauss’ law,

H
C dln̂

iðNL
λ Fa

i0Þ ¼ νa, where
the curve C encircles the origin (counterclockwise) and n̂ is
its outward normal. An N-component dual photon field σ
may be introduced via the relation NL

λ Fa
i0 ¼ 1

2π ϵij∂jσ
a

(with ϵ12 ≡ 1). The choice of coefficient ensures thatH
C dln̂

iϵij∂jσ
a ¼ 2πνa, i.e., the monodromy of the dual

photon field is 2π times the charge (the weight vector ν). To
be consistent with probes in all fundamental representa-
tions, the dual photon field is defined to be periodic with a
periodicity of 2π times the suðNÞ weight lattice, generated
by the fundamental weights f2πμAg. The 2þ 1D Lorentz
invariant form of the above duality relation is Fa

μν ¼
λ

2πNL ϵμνλ∂λσa ¼ λmW
4π2

ϵμνλ∂λσa (with ϵ0ij ≡ −ϵij). To imple-
ment the duality, we replace the Maxwell part of the
quadratic action (A5) by − NL

4λ F
a
μνFμνa þ 1

4π ϵμνλF
μνa∂λσa.

Treating σa and Fa
μν as independent integration variables

and integrating out the field strength Fa
μν, the resulting

kinetic term for the dual photon is λ
8π2NL ð∂λσ

aÞ2 ¼
λmW

16π3
ð∂λσ

aÞ2, as shown in the light sector action (2.8).
The Coulomb energy VC of two static charges with

weights λ1 and λ2, separated by a distance r, can also be
obtained from the above expressions. One finds
VC ¼ − λmW

4π2
ðλ1 · λ2Þ ln r. The weights for W-bosons are

root vectors, and since roots have length two, the inter-
action energy of oppositely charged static W-bosons is
λmW
2π2

log r, as shown in Eqs. (6.6) and (6.23). For a
fundamental quark and an antiquark of opposite weights,
we have −λ1 · λ2 ¼ ν · ν ¼ 1 − 1

N, hence they experience
attraction of that strength, as shown in (6.27). On the other
hand, a quark with weight λ1 ¼ ν and antiquark with
weight λ2 ¼ −ν0, with ν ≠ ν0, experience repulsion since
−λ1 · λ2 ¼ ν · ν0 ¼ − 1

N, as shown in Fig. 3. Likewise, it
follows that quarks (or antiquarks) of different weights
attract with strength 1

N, as shown in Fig. 4.
Finally, a magnetic monopole-instanton of magnetic

charge α (one of the affine roots), is represented in the
dual description by insertions of eiα·σðxÞ (x ∈ R3). Hence
the interaction action between two monopole-instantons of
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charges α1 and α2 can be obtained as heiα1·σðx1Þeiα2·σðx2Þi ¼
exp½− 2π2

λmW

α1·α2
jx1−x2j�, where the expectation value was calcu-

lated with the free field portion of the σ-field Lagrangian
(2.8). A remark relevant for the thermal case is that, when
reduced to two dimensions, the corresponding correlator

becomes e
4π2T
λmW

α1·α2 lnðjx1−x2jTÞ for jx1 − x2j ≫ 1=T.

APPENDIX C: SYMMETRY TRANSFORMATIONS

Let us choose to work in A3 ¼ 0 gauge, where the
holonomy Ω is an independent degree of freedom.
Regarding AμðxÞ as anti-Hermitian, and viewing the quark
field q as an N × nf matrix of spinors, we will define
ΩF ¼ diagðξ1=2; ξ3=2;…; ξN−1=2Þ. Our boundary conditions
(in both index-free and component forms) are

Aμðx3þLÞ¼ΩAμðx3ÞΩ†; Aμðx3þLÞab≃ωa−bAμðx3Þab;
ðC1aÞ

qðx3 þ LÞ ¼ Ωqðx3ÞΩ†
F;

qðx3 þ LÞaA ≃ ω−N
2
þða−1

2
Þξ−ðA−1

2
Þqðx3ÞaA; ðC1bÞ

where ≃ means when Ω has the form (2.4).

1. Mode expansions

Suppose that Ω has the form (2.4) with negligible
fluctuations, let y ≡ ðy1; y2Þ denote the noncompact spatial
coordinates, and ignore interactions. Then:

Aμðt; y; x3Þab ¼
1

L

X
n∈Z

Z
d2p

ð2πÞ2 ffiffiffiffiffiffi
2ω

p

× ½e−iðωt−p·y−kabn x3Þeiμðp⃗ÞϕiðpÞabn
− eiðωtþp·yþkabn x3Þeiμð−p⃗Þ�ðϕið−pÞba−nÞ†�;

ðC2Þ

where μ ¼ 0, 1, 2, the compact momentum kabn ≡
2π
NL ða − bþ nNÞ, the 3D spatial momentum p⃗≡ ðp1; p2;
kabn Þ, and the frequency ω≡ ðp2 þ ðkabn Þ2Þ1=2 (with
dependence on p, n, a and b implicit). The polarization
vectors feiμðp⃗Þg, i ¼ 1, 2, satisfy 2þ 1D transversality,
pμeiμ ¼ 0, with p0 ≡ ω. This expansion satisfies BCs (C1),
anti-Hermiticity and transversality of Aμ, and the 4D free
wave equation □Aμ ¼ 0.
The corresponding mode expansion for the quarks is

qðt;y;x3ÞaA¼
1

L

X
n∈Zþ1

2

Z
d2p

ð2πÞ2 ffiffiffiffiffiffi
2ω

p

× ½e−iðωt−p·y−kaAn x3Þusðp⃗Þψ sðpÞaAn
þeiðωtþp·yþkaAn x3Þu−sð−p⃗Þðχsð−pÞaAn Þ†�; ðC3Þ

where the quark compact momentum is kaAn ≡
2π
NL ½ða − 1

2
Þ − N

nf
ðA − 1

2
Þ þ nN�, the 3D spatial momentum

p⃗≡ ðp1; p2; kaAn Þ, and the frequency ω≡ ðp2 þ ðkaAn Þ2Þ1=2.
The free particle spinors usðp⃗Þ have helicity s ¼ �1 and
satisfy γαpαusðp⃗Þ ¼ 0 with pα ≡ ðω; p⃗Þ. In a chiral basis,
γ0 ≡ ð 0

−1
1
0
Þ, γi ≡ ð 0σi

σi
0
Þ, γ5 ≡ −iγ0γ1γ2γ3 ¼ ð1

0
0
−1Þ, one has

uþðp⃗Þ ¼ ðξþðp̂Þ
0

Þ and u−ðp⃗Þ ¼ ð 0
ξ−ðp̂ÞÞ, where ξ�ðp̂Þ are two-

component spinors satisfying p̂ · σ⃗ξ�ðp̂Þ ¼ �ξ�ðp̂Þ with
phase convention ξ�ðp̂Þ� ¼ �iσ2ξ∓ðp̂Þ. The free particle
spinors satisfy γ5usðp⃗Þ ¼ susðp⃗Þ and usðp⃗Þ� ¼ Cu−sðp⃗Þ
with C≡ iγ5γ2 and C†γαC ¼ ðγαÞ�. The above mode
expansion satisfies the boundary conditions (C1b) and
the massless Dirac equation γα∂αq ¼ 0.
The coordinate space EFT operators are just 2D spatial

Fourier transforms of the momentum-space mode operators,

ϕ⃗ðyÞabn ≡
Z

d2p
ð2πÞ2 e

ip·yϕ⃗ðpÞabn ; ðC4aÞ

ψ�ðyÞaAn ≡
Z

d2p
ð2πÞ2 e

ip·yψ�ðpÞaAn ; ðC4bÞ

χ�ðyÞaAn ≡
Z

d2p
ð2πÞ2 e

ip·yχ�ðpÞaAn : ðC4cÞ

2. Axial Uð1ÞnfA
Let θ ¼ diagðθ1;…; θnf Þ. The axial transformation is

standard:

qðxÞ → eiγ5θqðxÞ; qðxÞaA → eiγ5θAqðxÞaA; ðC5Þ

with γ5 ≡ ðγ5Þ†. Noninvariance under the diagonal Uð1ÞA
only appears in the nonperturbative light sector. This
transformation is produced by

ψ�ðpÞaAn → e�iθAψ�ðpÞaAn ; χ�ðpÞaAn → e�iθAχ�ðpÞaAn :

ðC6Þ

Building two-component operators, ψðpÞaAn ≡ ðψþðpÞaAn
ψ−ðpÞaAn Þ and

χðpÞaAn ≡ðχþðpÞaAnχ−ðpÞaAn Þ, this transformation is equivalent to

ψðpÞaAn → eiθAσ3ψðpÞaAn ; χðpÞaAn → eiθAσ3χðpÞaAn : ðC7Þ

3. Charge conjugation

Recall that N is assumed odd. Combine the basic charge
conjugation transformation, Aμ → A�

μ, with global color
and flavor permutations V and VF, respectively, chosen to
preserve the form (2.4) ofΩ at the ZN symmetric minimum
and the quark boundary conditions,
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V≡ ∥δaþb;Nþ1∥¼ ∥δā;b∥; VF ≡ ∥δAþB;nfþ1∥¼ ∥δĀ;B∥;

ðC8Þ

where ā≡ N þ 1 − a, Ā≡ nf þ 1 − A. Note that Ω� ¼
VΩV† and Ω�

F ¼ VFΩFV
†
F. The action of charge conju-

gation is

Ω → VΩ�V† ≃ Ω; ðC9aÞ
AμðxÞ→VAμðxÞ�V†; AμðxÞab→ðAμðxÞā;b̄Þ�¼−AμðxÞb̄;ā;

ðC9bÞ

qðxÞ→CðVqðxÞ�V†
FÞ; qðxÞaA →CðqðxÞā ĀÞ�: ðC9cÞ

This transformation is produced by

ϕ⃗ðpÞabn → −ϕ⃗ðpÞb̄ ān ; ψ sðpÞaAn → χsðpÞā Ā−n ;
χsðpÞaAn → ψ sðpÞā Ā−n : ðC10Þ

4. x3 reflection

Let y≡ ðx0; x1; x2; L − x3Þ denote the reflected coordi-
nates. Combine the basic reflection, AμðxÞ → AμðyÞ (recall
A3 ≡ 0), with the global color and flavor permutations V
and VF defined above. Then the action of x3 reflection is

Ω → VΩ†V† ≃ Ω; ðC11aÞ

AμðxÞ → VAμðyÞV†; AμðxÞab → AμðyÞā b̄; ðC11bÞ

qðxÞ → R3ðVqðyÞV†
FÞ; qðxÞaA → R3qðyÞā Ā; ðC11cÞ

where R3 satisfies R
†
3γ

αR3 ¼ ð1 − 2δα3Þγα and in our chiral
basis R3 ¼ γ5γ3. The free particle spinors satisfy

R3usðp⃗0Þ ¼ su−sðp⃗Þ where p⃗0 ≡ ðp1; p2;−p3Þ. This trans-
formation is produced by

ϕ⃗ðpÞabn → ϕ⃗ðpÞā b̄−n; ψ sðpÞaAn → −sψ−sðpÞā Ā−n ;
χsðpÞaAn → sχ−sðpÞā Ā−n : ðC12Þ

5. ZN center

Assume here that either nf ¼ 0, or nf ¼ N. Combine the
basicZN center transformation,Ω → ωΩ, with global color
and flavor permutations P and PF chosen to preserve the
form (2.4) of Ω and the quark boundary condition,

P≡ ∥δa;b−1∥; PF ≡ ∥δA;B−1∥; ðC13Þ

with color and flavor indices regarded as defined modulo
N. Note that P†ΩP ¼ ωΩ when Ω has the form (2.4), and
similarly P†

FΩFPF ¼ ωΩF. The action of a ZN center
transformation is

Ω → ωPΩP† ≃ Ω; ðC14aÞ

AμðxÞ→ PAμðxÞP†; AμðxÞab → AμðxÞa−1;b−1; ðC14bÞ

qðxÞ → PqðxÞP†
F; qðxÞaA → qðxÞa−1;A−1: ðC14cÞ

This transformation is produced by

ϕ⃗ab
n ðpÞ → ϕ⃗a−1;b−1

n−δaþδbðpÞ; ψaA
n ðpÞ → ψa−1;A−1

n−δaþδA
ðpÞ;

χaAn ðpÞ → χa−1;A−1n−δaþδA
ðpÞ; ðC15Þ

where δa ¼ 1 if a ¼ 1, otherwise 0. This is equivalent to
relations (5.7) and (5.9).
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