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We calculate the angular distribution spectra between beauty (B) and antibeauty (B̄) mesons in proton-
proton collisions in the leading order approximation of the parton Reggeization approach consistently
merged with the next-to-leading order corrections from the emission of an additional hard gluon. To
describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation
functions extracted from the world eþe− annihilation data. We have obtained good agreement between our

predictions and data from the CMS Collaboration at the energy
ffiffiffi
S

p ¼ 7 TeV for BB̄ angular correlations
within uncertainties and without free parameters. Predictions for analogous correlation observables atffiffiffi
S

p ¼ 13 TeV are provided.
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I. INTRODUCTION

Production of b-quarks in the high energy pp-collisions
is the object of an intensive experimental study at the
CERN LHC. In the present paper we focus on measure-
ments of bb̄ angular and momentum correlations, since
they provide a test of dynamics of hard interactions, which
is highly sensitive to the higher-order corrections in QCD.
There are two ways of studying these bb̄ correlations. The
first one is based on reconstruction of pairs of b-jets [1,2];
in the second case we get information on dynamics of the
hard production of bb̄-pairs using data on pair production
of B-mesons. In turn, long-lived B-mesons are recon-
structed via their semileptonic decays. One advantage of
the latter method is the unique capability to detect BB̄-pairs
even at small opening angles, in which case the decay
products of the B-hadrons tend to be merged into a single
jet and the standard b-jet tagging techniques are not
applicable [3].
On the theory side, apart from multiple radiation of soft/

collinear additional partons one has to take into account
radiation of hard additional partons to describe such
angular correlations over the whole observable range of
opening angles between momenta of B-mesons. In the
leading order (LO) of the collinear parton model (CPM),
b-quarks are produced back to back at an azimuthal angle.
Effects of the soft and collinear Initial State Radiation (ISR)
or Final State Radiation (FSR) somewhat smear the
distribution in the azimuthal angle difference between
transverse momenta of mesons (Δϕ) around Δϕ≃ π.
These effects are systematically taken into account with
the Leading Logarithmic Accuracy in the Parton Showers

(PS) of the standard Monte Carlo (MC) generators, such as
PYTHIA or HERWIG.
Radiation of the additional hard gluons or quarks causes

B and B̄ mesons to fly with Δϕ < π, but such radiation is
beyond the formal accuracy of standard PS. Description of
such events essentially depends on the way that transverse
momentum and the “small” light-cone component of the
momentum of the emitted parton are dealt with inside a PS
algorithm, the so-called “recoiling scheme” [4]. Usually the
accuracy of the description of such kinematic configura-
tions is improved via different methods of matching the
full NLO corrections in the CPM with the parton shower,
such as MC@NLO [5] or POWHEG [6], or via merging of the
kinematically and dynamically accurate descriptions of a
few additional hard emissions, provided by the exact tree-
level matrix elements, with the soft/collinear emissions
from the PS [7,8].
The presence of additional free parameters in the

matching/merging methods, as well as the multitude of
possible recoiling schemes, clearly calls for the improved
understanding of the high-pT regime of the PS from the
point of view of Quantum Field Theory. Apart from the
soft and collinear limits, the only known limit of scattering
amplitudes in QCD whose structure is sufficiently simple
for the theoretical analysis is the limit of multi-Regge
kinematics (MRK), when emitted partons are highly
separated in rapidity from each other. This makes the
MRK limit a natural starting point for the construction of
improved approximations. In the present paper, we con-
struct the factorization formula and the framework of LO
calculations in the parton Reggeization approach (PRA),
which unifies the PS-like description of the soft and
collinear emissions with the MRK limit for hard emissions.
Then we switch to the description of the angular correla-
tions in the production of BB̄-pairs accompanied by the
hard jet, which sets the scale of the process. The present
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study is motivated by the experimental data of Ref. [3]. In
Ref. [3] the predictions of PYTHIA6.4 MC event generator
[9], MC@NLO predictions [5] matched to the HERWIG6.5

MC event generator [10], and the predictions in the
MadGraphþMadEvent framework [11,12] were com-
pared to the experimental data. Neither the above-
mentioned MC calculations in the framework of collinear
factorization nor the calculations employing the CASCADE

MC event generator [13], based on the Ciafaloni-Catani-
Fiorani-Marchesini evolution equation [14] or the LO of
kT-factorization approach in Ref. [15], could accurately
describe the shape of angular distributions. A very similar
situation has been found in a recent measurement of BB̄-
correlations, performed by the ATLAS Collaboration [16]
in the pp-collisions at

ffiffiffi
S

p ¼ 8 TeV. Comparison of the
experimental data with different options of PYTHIA8.1 [17]
and SHERPA [18] MC event generators in Figs. 7, 8, and 9 of
Ref. [16] is especially interesting. These figures show the
large spread between predictions of different event gen-
erators or different options of the same event generator,
which amounts up to �50% in some bins.
In the present paper, we construct the consistent pre-

scription, which merges the LO PRA calculation for this
process with tree-level NLO matrix element. The latter
improves the description of those events, in which not the
b-jet, but the hard gluon jet is the leading one, while
avoiding possible double-counting and divergence prob-
lems. In such a way we achieve a good description of the
shape of all BB̄ correlation spectra without additional free
parameters.
The paper has the following structure. We describe the

basics of the PRA and its relationships to other approaches
in Sec. II. In Sec. III we present our merging prescription
and the analytic and numerical tools that we use. Then we
concentrate on the numerical results, comparison with
experimental data of Ref. [3], and predictions for possible
future measurements in Sec. IV. Finally, we summarize our
conclusions in Sec. V.

II. LO PRA FRAMEWORK

To derive the factorization formula of the PRA in the LO
approximation, let us consider production of the partonic
final state of interest Y in the following auxiliary hard
subprocess:

gðp1Þ þ gðp2Þ → gðk1Þ þ YðPAÞ þ gðk2Þ; ð1Þ

where the four-momenta of particles are denoted in
parentheses, and p2

1 ¼ p2
2 ¼ k21 ¼ k22 ¼ 0. The final state

Y sets the hard scale μ2 of the whole process via its
invariant mass M2

A ¼ P2
A, or transverse momentum PTA;

otherwise it can be an arbitrary combination of QCD
partons. In a frame where p1 ¼ −p2 is directed along

the Z-axis, it is natural to work with the Sudakov
(light-cone) components of any four-momentum k:

kμ ¼ 1

2
ðkþnμ− þ k−nμþÞ þ kμT;

where nμ� ¼ ðn�Þμ ¼ ð1; 0; 0;∓1Þμ; n2� ¼ 0; nþn− ¼ 2;
k� ¼ k� ¼ ðn�kÞ ¼ k0 � k3; and n�kT ¼ 0, so that p−

1 ¼
pþ
2 ¼ 0 and s ¼ ðp1 þ p2Þ2 ¼ pþ

1 p
−
2 > 0. The dot product

of two four-vectors k and q in this notation is equal to

ðkqÞ ¼ 1

2
ðkþq− þ k−qþÞ − kTqT:

For the discussion of different kinematic limits of the
process (1) it is convenient to introduce the “t-channel”
momentum transfers q1;2 ¼ p1;2 − k1;2, which implies that
qT1;2 ¼ −kT1;2, q−1 ¼ −k−1 , and qþ2 ¼ −kþ2 . Let us define
t1;2 ¼ q2

T1;2, and the corresponding fractions of the “large”
light-cone components of momenta,

z1 ¼
qþ1
pþ
1

; z2 ¼
q−2
p−
2

;

for the further use. The variables z1;2 satisfy the conditions
0 ≤ z1;2 ≤ 1 because k�1;2 ≥ 0 and qþ1 ¼ Pþ

A þ kþ2 ≥ 0,
q−2 ¼ P−

A þ k−1 ≥ 0 since all final-state particles are on
shell.
In the collinear limit (CL), when k2

T1;2 ≪ μ2, while
0 ≤ z1;2 ≤ 1, the asymptotic for the square of the tree-level
matrix element for the subprocess (1) is very well known:

jMj2CL ≃ 4g4s
k2
T1k

2
T2

Pggðz1ÞPggðz2Þ
jACPMj2
z1z2

; ð2Þ

where the bar denotes averaging (summation) over the spin
and color quantum numbers of the initial-state (final-state)
partons, gs ¼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
is the coupling constant of QCD,

PggðzÞ ¼ 2CAðð1 − zÞ=zþ z=ð1 − zÞ þ zð1 − zÞÞ is the LO
gluon-gluon Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) splitting function, and ACPM is the amplitude
of the subprocess gðz1p1Þ þ gðz2p2Þ → YðPAÞ with on-
shell initial-state gluons. The error of approximation (2) is
suppressed asOðk2

T1;2=μ
2Þwith respect to the leading term.

The limit of MRK for the subprocess (1) is defined as

Δy1¼yðk1Þ−yðPAÞ≫1; Δy2¼yðPAÞ−yðk2Þ≫1; ð3Þ

k2
T1 ∼ k2

T2 ∼M2
TA ∼ μ2 ≪ s; ð4Þ

where rapidity for the four-momentum k is equal to yðkÞ ¼
1
2
logðkþk−Þ. The rapidity gaps Δy1;2 can be calculated as
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Δy1;2 ¼ log

2
64 MTA

jkT1;2j
1 − z1;2

z1;2 −
k2
T2;1

sð1−z2;1Þ

3
75:

From this expression, taken together with the conditions (3)
and (4), one can see that the following hierarchy holds in
the MRK limit,

k2
T1;2

s
≪ z1 ∼ z2 ≪ 1; ð5Þ

so that the small parameters, which control the MRK limit,
are actually z1;2, while the transverse momenta are of the
same order of magnitude as the hard scale, and the collinear
asymptotic of the amplitude (2) is inapplicable. Also, the
following scaling relations for momentum components
hold in the MRK limit:

MTA ∼ jkT1j ∼ qþ1 ∼Oðz1Þ ≫ q−1 ∼Oðz21Þ;
MTA ∼ jkT2j ∼ q−2 ∼Oðz2Þ ≫ qþ2 ∼Oðz22Þ; ð6Þ

which allows one to neglect the “small” light-cone com-
ponents of momenta q−1 and qþ2 .
The systematic formalism for the calculation of the

asymptotic expressions for arbitrary QCD amplitudes in
the MRK limit has been formulated by Lipatov and
Vyazovsky in a form of gauge-invariant Effective Field
Theory (EFT) for multi-Regge processes in QCD [19,20],
see also [21] for a review. The MRK asymptotics of the
amplitude in this EFT is constructed from gauge-invariant
blocks—effective vertices, which describe the production
of clusters of QCD partons, separated by the large rapidity
gaps. These effective vertices are connected together via
t-channel exchanges of gauge-invariant off-shell degrees of
freedom, Reggeized gluons R�, and Reggeized quarksQ�.
The latter obey special kinematical constraints, such that
the fieldQ�ðR�Þ carries only the q� light-cone component
of momentum and the transverse momentum of the same
order of magnitude, while q∓ ¼ 0. As shown above, these
kinematical constraints are equivalent to MRK.

Due to the requirements of gauge invariance of the
effective vertices and the above-mentioned kinematic con-
straints, the interactions of QCD partons and Reggeons in
the EFT [19,20] are nonlocal and contain the Wilson’s
exponents of gluonic fields. After the perturbative expan-
sion, the latter generate an infinite series of induced vertices
of interaction of particles and Reggeons. The Feynman
rules of the EFT are worked out in detail in Ref. [22];
however, we also collect the induced and effective vertices,
relevant for our present study, in Figs. 1 and 2 for the
reader’s convenience.
The diagrammatic representation of the squared ampli-

tude of the process (1) is shown in Fig. 3. Explicitly, the
R�gg effective vertex, which is depicted diagrammatically
in Fig. 2, reads

Γabc
μν�ðk1; k2Þ ¼ −igsfabc

�
2gμνk

∓
1 þ ð2k2 þ k1Þμn∓ν

− ð2k1 þ k2Þνn∓μ −
ðk1 þ k2Þ2

k∓1
n∓μ n∓ν

�
:

By evaluating the square of R�gg effective vertex, con-
tracted with the polarization vectors of on-shell external
gluons, one obtains

X
λ1;λ2

jΓμν�ðk1;−k2Þϵμðk1; λ1Þϵ⋆ν ðk2; λ2Þj2 ¼ 8ðk∓1 Þ2: ð7Þ

Using the result (7) and the Feynman rules of Fig. 1, one
can write the MRK asymptotics of the squared amplitude of
the process (1) in the following form,

jMj2MRK ≃ 4g4s
k2
T1k

2
T2

~Pggðz1Þ ~Pggðz2Þ
jAPRAj2
z1z2

; ð8Þ

where the MRK gluon-gluon splitting functions ~PggðzÞ ¼
2CA=z reproduce the small-z asymptotics of the full
DGLAP splitting functions and the squared PRA amplitude
is defined as

FIG. 1. Feynman rules of the EFT [19]. The propagator of the Reggeized gluon (top left panel) and Reggeon-gluon induced vertices up
to the Oðg2sÞ are shown. The usual Feynman rules of QCD hold for interactions of ordinary quarks and gluons.
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jAPRAj2 ¼
�

qþ1 q
−
2

4ðN2
c − 1Þ ffiffiffiffiffiffiffi

t1t2
p

�
2

½A⋆
c1c2A

c1c2 �; ð9Þ

where A is the Green’s function of the subprocess
Rþðq1Þ þ R−ðq2Þ → YðPAÞ with amputated propagators
of the Reggeized gluons, and c1;2 are their color indices.
The error of the approximation (8) is suppressed as Oðz1;2Þ
with respect to the leading term.
In contrast with the collinear limit, the PRA amplitude

explicitly and nontrivially depends on the qT1 and qT2.
However, when kT1;2 ≪ μ2, the MRK limit reduces to the
small-z1;2 asymptotics of the collinear limit and Eq. (8)
should reproduceEq. (2). To this end, the following collinear
limit constraint for the PRA amplitude should hold:

Z
dϕ1dϕ2

ð2πÞ2 lim
t1;2→0

jAPRAj2 ¼ jACPMj2; ð10Þ

where ϕ1;2 are the azimuthal angles of the vectors qT1;2. One
can prove the constraint (10) for the general PRA amplitudes

of the type Rþ þ R− → Y, with the help of Ward identities
for the Green’s functions with Reggeized gluons, which has
been discovered in Ref. [23].
Now we introduce the modified MRK (mMRK) approxi-

mation for the squared amplitude of the subprocess (1) as
follows:
(1) In Eq. (8) we substitute the MRK asymptotics for the

splitting functions ~PggðzÞ by the full LO DGLAP
expression PggðzÞ.

(2) We substitute the factors k2
T1;2 in the denominator

of (8) by the exact value of q21;2, as if all four
components of momentum qþ1;2, q

−
1;2, and qT were

flowing through the t-channel propagator: k2
T1;2 →

−q21;2 ¼ q2
T1;2=ð1 − z1;2Þ.

(3) However, the “small” light-cone components of
momenta, q−1 and qþ2 , do not propagate into the
hard scattering process, so its gauge-invariant
definition is unaffected and is given by Lipatov’s
EFT [19].

After these substitutions, the mMRK approximation for
the squared amplitude of the subprocess (1) takes the
following form:

jMj2mMRK ≃ 4g4s
q21q

2
2

Pggðz1ÞPggðz2Þ
jAPRAj2
z1z2

: ð11Þ

The mMRK approximation (11) reproduces the exact
QCD results both in the collinear and MRK limits. The
latter suggests that it should be more accurate than the
default collinear limit approximation (2) when kT1;2 ∼ μ2

even outside of the strict MRK limit z1;2 ≪ 1; however, at
present we cannot give the precise parametric estimate of
accuracy of Eq. (11) in this kinematic region. The available
numerical evidence (see Ref. [24] for the case of amplitudes
with Reggeized gluons in the t-channel and Refs. [25,26]
for the case of Reggeized quarks) supports the form of
mMRK approximation proposed above.

FIG. 3. Diagrammatic representation of the MRK asymptotics
for the squared amplitude of the subprocess (1).

FIG. 2. Structure of the effective vertices R�gg (top left), R�qq̄ (top right), RþR−g (bottom left), and the RþR−gg combined vertex
(bottom right). These vertices appear in the diagrams of Figs. 3, 5, and 7.
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To derive the LO factorization formula of the PRA we
substitute the mMRK approximation (11) into the factori-
zation formula of the CPM integrated over the phase space
of additional partons k1;2:

dσ ¼
Z

dkþ1 d
2kT1

ð2πÞ3kþ1

Z
dk−2 d

2kT2

ð2πÞ3k−2

Z
d ~x1d ~x2fgð ~x1;μ2Þ

× fgð ~x2;μ2Þ
jMj2mMRK

2S ~x1 ~x2
ð2πÞ4

× δ

�
1

2
ðqþ1 n− þ q−2 nþÞþ qT1 þ qT2 −PA

�
dΦA;

ð12Þ
where fgðx; μ2Þ are the (integrated) Parton Distribution
Functions (PDFs) of the CPM, pμ

1;2 ¼ ~x1;2P
μ
1;2, where P1;2

are the four-momenta of colliding protons, and dΦA is the
element of the Lorentz-invariant phase space for the final
state of the hard subprocess Y.
Changing the variables in the integral, ðkþ1 ; ~x1Þ→ðz1;x1Þ,

ðk−2 ; ~x2Þ → ðz2; x2Þ, where x1;2 ¼ ~x1;2z1;2, one can rewrite
Eq. (12) in a kT-factorized form:

dσ ¼
Z

1

0

dx1
x1

Z
d2qT1

π
~Φgðx1; t1; μ2Þ

×
Z

1

0

dx2
x2

Z
d2qT2

π
~Φgðx2; t2; μ2Þ · dσ̂PRA; ð13Þ

where the partonic cross section in the PRA is given by

dσ̂PRA ¼ jAPRAj2
2Sx1x2

· ð2πÞ4δ
�1
2
ðqþ1 n− þ q−2 nþÞ

þ qT1 þ qT2 − PA

�
dΦA; ð14Þ

and the tree-level “unintegrated PDFs” (unPDFs) are

~Φgðx; t; μ2Þ ¼
1

t
αs
2π

Z
1

x
dzPggðzÞ ·

x
z
fg

�
x
z
; μ2

�
: ð15Þ

The cross section (13) with “unPDFs” (15) contains the
collinear divergence at t1;2 → 0 and infrared (IR) diver-
gence at z1;2 → 1. To regularize the latter, we observe
that the mMRK expression (11) can be expected to give
a reasonable approximation for the exact matrix element
only in the rapidity-ordered part of the phase space, where
Δy1 > 0 and Δy2 > 0. The cutoff on z1;2 follows from
these conditions,

z1;2 < 1 − ΔKMRðt1;2; μ2Þ; ð16Þ

where ΔKMRðt; μ2Þ ¼
ffiffi
t

p
=ð

ffiffiffiffiffi
μ2

p
þ ffiffi

t
p Þ, and we have taken

into account that μ2 ∼M2
TA. The collinear singularity is

regularized by the Sudakov form factor,

Tiðt;μ2Þ ¼ exp

�
−
Z

μ2

t

dt0

t0
αsðt0Þ
2π

×
X

j¼q;q̄;g

Z
1

0

dzz ·PjiðzÞθð1−ΔKMRðt0;μ2Þ− zÞ
�
;

ð17Þ

which resums the doubly logarithmic corrections
∼ log2ðt=μ2Þ in the Leading Logarithmic Approximation
in a way similar to what is done in the standard PS [27].
The final form of our unPDF is

Φiðx; t;μ2Þ ¼
Tiðt;μ2Þ

t
αsðtÞ
2π

X
j¼q;q̄;g

Z
1

x
dzPijðzÞ ·

x
z
fj

�
x
z
; t

�

· θð1−ΔKMRðt;μ2Þ− zÞ; ð18Þ

which coincides with the Kimber, Martin, and Ryskin
(KMR) unPDF [28]. The KMR unPDF is actively used in
the phenomenological studies employing kT-factorization,
but to our knowledge, the reasoning above is the first
systematic attempt to uncover its relationships with the
MRK limit of the QCD amplitudes.
The KMR unPDF approximately (see Sec. 2 of Ref. [29]

for further details) satisfies the following normalization
condition:

Z
μ2

0

dtΦiðx; t; μ2Þ ¼ xfiðx; μ2Þ; ð19Þ

which ensures the normalization for the single-scale
observables, such as the proton structure functions or
dσ=dQ2dy cross section in the Drell-Yan process, on the
corresponding LO CPM results up to power-suppressed
corrections and terms of the NLO in αs. Results for
multiscale observables in the PRA are significantly differ-
ent than those in the CPM, due to the nonzero transverse
momenta of partons in the initial state.
The main difference of the PRA from the multitude of

studies in the kT-factorization, such as Ref. [15], is the
application of matrix elements with off-shell initial-state
partons (Reggeized quarks and gluons) from Lipatov’s EFT
[19,20], which allows one to study the arbitrary processes
involving the non-Abelian structure of QCD without
violation of gauge invariance due to the nonzero virtuality
of initial-state partons. This approach, together with the
KMR unPDF, gives stable and consistent results in a wide
range of phenomenological applications, which include the
description of the angular correlations of dijets [30], b-jets
[31], charmed [32,33] and bottom-flavored [34] mesons,
different multiscale observables in hadroproduction of
diphotons [26] and photoproduction of photonþ jet pairs
[35], as well as some other examples.
Recently, the new approach to derive gauge-invariant

scattering amplitudes with off-shell initial-state partons,
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using the spinor-helicity techniques and Britto-Cachazo-
Feng-Witten-like recursion relations for such amplitudes,
was introduced in Refs. [36,37]. This formalism is equiv-
alent to Lipatov’s EFT at the tree level, but for some
observables, e.g., related with heavy quarkonia, or for
the generalization of the formalism to NLO, the explicit
Feynman rules and the structure of EFTare more convenient.

III. LO PRA MERGED WITH TREE-LEVEL
NLO CORRECTIONS

Let us consider the kinematic conditions of a measure-
ment in Ref. [3]. In this experiment, the events with at least
one jet having pjet

T > pmin
TL have been recorded in pp-

collisions at
ffiffiffi
S

p ¼ 7 TeV, and the semileptonic decays of
B-hadrons reconstructed in these events, through the decay
vertices, which are displaced with respect to the primary
pp-collision vertex. The B-hadron is required to have
pTB > pmin

TB ¼ 15 GeV, while three data samples are pre-
sented in Ref. [3] for three values of pmin

TL ¼ 56, 84, and
120 GeV. The rapidities of B-hadrons are constrained to be
jyBj < ymax

B ¼ 2, while the leading jet is searched for in a
somewhat wider domain jyjetj < ymax

jet ¼ 3.
The leading jet, reconstructed in this experiment, sets

the hard scale of the event. Two possibilities should be
considered: the first one is that the jet originating from the
b-quark or b̄-antiquark is the leading one, and the second
option is that some gluon or light-quark jet is leading in pT ,
and jets originating from b or b̄ are subleading. Observables
with such kinematic constraints on the QCD radiation are
difficult to study in kT-factorization, because the radiation
of additional hard partons is already taken into account in
the unPDFs, and the jet originating from the unPDF could
happen to be the leading one.
One can easily estimate the distribution of additional jets

in rapidity, using the KMR model for unPDFs (18). The
variable z is related with rapidity (y) of the parton, emitted
in the last step of the parton cascade, as follows:

zðyÞ ¼
�
1þ

ffiffi
t

p

x
ffiffiffi
S

p ey
�−1

;

so, starting from Eq. (18) one can derive the distribution
integrated over t from some scale t0 up to μ2, but
unintegrated over y: Giðx; y; t0; μ2Þ. Representative plots
of this distribution for the case of Pgg-splitting only are
shown in Fig. 4 for some values of scales typical for the
process under consideration. The LO PDFs from the
MSTW-2008 set [38] have been used to produce this plot.
From Fig. 4 it is clear that in the KMR model, the

majority of the hardest ISR jets with k2
T ∼ μ2 lie within

the rapidity interval jyj < 3 if the particles produced in the
primary hard process have rapidities close to zero.
Therefore these jets can be identified as the leading ones.
But the kinematic approximations, which have been made

in the derivation of the factorization formula, are least
reliable in this region of phase space, and hence the poor
agreement with data is to be expected. To avoid the above-
mentioned problem, we will merge the LO PRA description
of events with the leading bðb̄Þ-jets with events triggered by
the leading gluon jet, originating from the exact 2 → 3
NLO PRA matrix element.
The LO [Oðα2sÞ] subprocess, which we will take into

account, is

Rþðq1ÞþR−ðq2Þ→bðq3Þð→BðpTBÞÞþ b̄ðq4Þð→ B̄ðpTB̄ÞÞ;
ð20Þ

where the hadronization of bðb̄Þ-quarks into the BðB̄Þ
mesons is described by the set of universal, scale-dependent
parton-to-hadron fragmentation functions, fitted on the
world data on the B-hadron production in the eþe−-
annihilation in Ref. [39].
The following kinematic cuts are applied to the LO

subprocess (20):
(1) Both B and B̄ mesons are required to have

jyBj < ymax
B and minðpTB; pTB̄Þ > pmin

TB .
(2) If the distance between three-momenta q3 and q4

in the ðΔy;ΔϕÞ-plane is ΔR34 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δy234 þ Δϕ2

34

p
>

ΔRexp ¼ 0.5, then the b and b̄ jets are resolved
separately and we define pTL ¼ maxðjqT3j; jqT4jÞ.

(3) If ΔR34 < ΔRexp, then pTL ¼ jqT3 þ qT4j, accord-
ing to the anti-kT jet clustering algorithm [40].

(4) The MC event is accepted if maxðjqT1j; jqT2jÞ <
pTL and pTL > pmin

TL .
The set of Feynman diagrams for the subprocess (20) is

presented in Fig. 5. The convenient expression for the
squared amplitude of this subprocess with massless quarks

y

G x,y,t0, 2

S 7 TeV

t0 2 2

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 4. Distribution in the rapidity of gluon jets with jkT j >
μ=2 from the last stage of the parton cascade, as given by the
KMR model (18). The solid line represents μ2 ¼ 103 GeV2; the
dashed line represents μ2 ¼ 105 GeV2. Both plots are normalized
to the common integral; the scale of the G-axis is arbitrary. For
both distributions, x ¼ μ=

ffiffiffi
S

p
; i.e., the rapidity of the hard process

is zero.
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can be found in Ref. [30]. Due to the Ward identities of
Ref. [23], this amplitude coincides with the amplitude that
can be obtained in the “old kT-factorization” prescription,
i.e., by substituting the polarization vectors of initial-state
gluons in the usual gg → qq̄ amplitude by qμT1;2=jqT1;2j.
The NLO [Oðα3sÞ] subprocess is

Rþðq1Þ þR−ðq2Þ→ bðq3Þð→BðpTBÞÞ þ b̄ðq4Þð→B̄ðpTB̄ÞÞ
þ gðq5Þ; ð21Þ

and the following kinematic constraints are applied in the
calculation of this contribution:
(1) Both B and B̄ mesons are required to have jyBj <

ymax
B and minðpTB; pTB̄Þ > pmin

TB .
(2) The gluon jet is the leading one: pTL ¼ jqT5j,

max ðjqT1j; jqT2j; jqT3j; jqT4jÞ < pTL, and pTL >
pmin
TL .

(3) Rapidity of the gluon is required to be jy5j < ymax
jet .

The gluon jet is isolated: ΔR35 > ΔRexp and
ΔR45 > ΔRexp.

Furthermore, since the matrix elements for both sub-
processes (20) and (21) are taken in the approximation of
massless b-quarks, the corresponding final-state collinear
singularity is regularized by the condition ðq3þq4Þ2>4m2

b,
where mb ¼ 4.5 GeV.
A few comments are in order. For both subprocesses (20)

and (21), transverse momenta of jets from the unPDFs are
constrained to be subleading. In such a way we avoid the
double-counting of the leading emissions between the LO
and NLO contributions and additional subtractions are not
needed. This is in contrast to the observables fully inclusive
in the QCD radiation [26], where the double-counting
subtractions between LO and NLO terms have to be done.
For the reader’s convenience, we also illustrate the com-
plementarity of phase spaces for the LO contribution (20)
and NLO contribution (21) in Fig. 6. One can observe
that the above-described kinematic cuts clearly separate
events coming from the 2 → 2 subprocess from the events
generated by the 2 → 3 subprocess.
Another comment concerns the isolation condition for

the leading gluon jet in the NLO contribution (21). This
condition regularizes the collinear singularity between
the final-state gluon and bðb̄Þ-quark. In the full NLO
calculation, this singularity will be absorbed by the
renormalization of the parton-to-meson fragmentation

function and also partially canceled by the loop correction,
thus leaving some finite contribution, but since in the case
of subprocess (21) the gluon is required to be harder than b
or b̄-quarks, this finite contribution will be proportional
to the PgqðzÞ ¼ CFð1þ ð1 − zÞ2Þ=z splitting function at
z → 1, so we do not expect the logarithmically enhanced
contributions from this region of the phase space.
In more standard calculations that merge the MC PS with

higher-order matrix elements [7,8], the variable, sometimes
called the “merging scale,” appears. This variable controls
the separation of the emissions generated by the PS from
the emissions from the NLO matrix element. In our
case, the boundary between the 2 → 2 and 2 → 3 regions
in Fig. 6 is the analog of the merging scale. Approximate
cancellation of the dependence of the cross section from the
merging prescription then follows from the fact that if we
move the boundary toward the pb−jet

T axis in Fig. 6, then the
kinematics of the emission of additional partons becomes
closer to the MRK and eventually to the collinear limits,
so that the mMRK approximation, formulated in Sec. II,
describes the exact 2 → 3 matrix element better and better.

FIG. 5. The Feynman diagrams of Lipatov’s EFT for the Reggeized amplitude of subprocess Rþ þ R− → bþ b̄.

FIG. 6. The kinematic cuts for the 2 → 2 contribution (20) and
2 → 3 contribution (21) in the space of transverse momentum of
the leading b-jet in the event (pb-jet

T ) vs transverse momentum of
the leading light-quark/gluon jet in the same event (pnon-b jet

T ).
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In fact, the merging prescription described above is
probably optimal, because it lies on the edge of applicabil-
ity of the mMRK approximation. Thus, the full power of
the LO PRA approximation is exploited and it is substituted
by the NLO matrix element only when the underlying
mMRK approximation breaks down.
The set of Feynman diagrams for the amplitude of

subprocess (21) is presented in Fig. 7. We generate this
amplitude, using our model file ReggeQCD, which imple-
ments the Feynman rules of Lipatov’s EFT in FeynArts
[41]. The squared amplitude is computed using the
FormCalc [42] package and has been compared numeri-
cally with the squared amplitude, obtained by the methods
of Refs. [36,37]. Our results and the results of Refs. [36,37]
agree up to machine precision. Apart from the Feynman
rules, depicted in Figs. 1 and 2, the ReggeQCD package
contains all Feynman rules, which are needed to generate
an arbitrary PRA amplitude with Reggeized gluons or
quarks in the initial state and up to three quarks, gluons,
or photons in the final state. We are planning to publish
the ReggeQCD model file in a separate paper [43]. The
FORTRAN code for the squared amplitudes of the processes
(20) and (21) is available from the authors by request.

As stated above, we will use the fragmentation model to
describe the hadronization of b-quarks into B-hadrons, so
the observable cross section is

dσobs
dyBdyB̄dΔϕ

¼
Z

∞

pmin
TB

dpTB

Z
∞

pmin
TB

dpTB̄

Z
1

0

dz1
z1

DB=bðz1;μ2Þ

×
Z

1

0

dz2
z2

DB=bðz2;μ2Þ
dσbb̄

dqT3dqT4dy3dy4dΔϕ
;

ð22Þ

where Δϕ ¼ Δϕ34, DB=bðz; μ2Þ are the fragmentation
functions [39], and qT3 ¼ jqT3j ¼ pTB=z1, qT4 ¼ jqT4j ¼
pTB̄=z2, y3 ¼ yB, and y4 ¼ yB̄. To simplify the numerical
calculations, it is very convenient to integrate over qT3;4
instead of pTB and pTB̄ in Eq. (22); then all the dependence
of the cross section on fragmentation functions can be
absorbed into the following measurement function:

Θð ~z; μ2Þ ¼
	R

1
1= ~z dzDB=qðz; μ2Þ if ~z > 1;

0 otherwise;
ð23Þ
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FIG. 7. The Feynman diagrams of Lipatov’s EFT for the Reggeized amplitude of subprocess Rþ þ R− → bþ b̄þ g.
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which can be efficiently computed and tabulated in
advance, therefore reducing the dimension of phase-space
integrals by 2. Then the master formula for the cross
section of the 2 → 2 subprocess (20) in the PRA takes the
form

dσð2→2Þ
obs

dyBdyB̄dΔϕ
¼

Z
∞

0

dqT3dqT4 · Θ
�
qT3
pmin
TB

; μ2
�
Θ
�
qT4
pmin
TB

; μ2
�

×
Z

∞

0

dt1

Z
2π

0

dϕ1Φgðx1; t1; μ2Þ

×Φgðx2; t2; μ2Þ ·
qT3qT4jAð2→2Þ

PRA j2
2ð2πÞ3ðSx1x2Þ2

· θð2→2Þ
cuts ;

ð24Þ

where ϕ1 is the azimuthal angle between the vector qT1 and
qT3, t2 ¼ jqT3 þ qT4 − qT1j, x1 ¼ ðqþ3 þ qþ4 Þ=

ffiffiffi
S

p
, x2 ¼

ðq−3 þ q−4 Þ=
ffiffiffi
S

p
, and the theta function θð2→2Þ

cuts implements
the kinematic constraints for the 2 → 2 process, described
above. Analogously, the formula for the differential cross
section of the 2 → 3 process (21) reads

dσð2→3Þ
obs

dyBdyB̄dΔϕdy5
¼
Z

∞

0

dqT3dqT4 ·Θ
�
qT3
pmin
TB

;μ2
�
Θ
�
qT4
pmin
TB

;μ2
�

×
Z

∞

0

dt1dt2

Z
2π

0

dϕ1dϕ2Φgðx1;t1;μ2Þ

×Φgðx2;t2;μ2Þ ·
qT3qT4jAð2→3Þ

PRA j2
8ð2πÞ6ðSx1x2Þ2

·θð2→3Þ
cuts ;

ð25Þ

FIG. 8. Comparison of the predictions for Δϕ-spectra of BB̄-pairs with the CMS data [3]. The dashed, dashed-dotted, and solid lines
represent the contribution of the LO subprocess (20), contribution of the NLO subprocess (21), and sum of the LO and NLO
contributions, respectively.
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where ϕ2 is the azimuthal angle between the vectors
qT2, and qT3, qT5 ¼ qT1 þ qT2 − qT3 − qT4, x1 ¼
ðqþ3 þ qþ4 þ qþ5 Þ=

ffiffiffi
S

p
, x2 ¼ ðq−3 þ q−4 þ q−5 Þ=

ffiffiffi
S

p
; and the

theta function θcuts implements kinematic cuts for the 2 →
3 process, described after Eq. (21).

IV. NUMERICAL RESULTS FOR
BB̄-CORRELATION OBSERVABLES

Now we are in a position to compare our numerical
results, obtained in the approximation formulated in Sec. III
of the present paper, to the experimental data of Ref. [3].
Experimental uncertainties, related with the shape of
Δϕ and ΔR ¼ ΔR34 distributions, are relatively small
(∼20–30%). They are indicated by the error bars in

Figs. 8 and 9. However, an additional uncertainty in the
absolute normalization of the cross sections ≃�47% is
reported in Ref. [3], but it is not included in the error bars
of the experimental points in Figs. 8 and 9 or in the plots
presented in the experimental paper. Taking this large
uncertainty into account, it is reasonable to consider the
overall normalization of the cross section to be a free
parameter, which is also the case in MC simulations
presented in Ref. [3]. Following this route we find that
to obtain a very good agreement of the central curve of our
predictions both with the shape and normalization of all
experimental spectra we have to multiply all our predictions
on the universal factor ≃0.4. Since the major part of the
reported normalization uncertainty is due to the uncertainty
in the efficiency of identification of B-mesons, our finding

FIG. 9. Comparison of the predictions for ΔR-spectra of BB̄-pairs with the CMS data [3]. Notation for the histograms is the same
as in Fig. 8.
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seems to support the assumption that the B-meson
reconstruction efficiency is largely independent from the
kinematics of the leading jet, and in particular, from the
value of pmin

TL . In the plots below, we show theoretical
predictions multiplied by the above-mentioned factor;
however, our default result is also compatible with experi-
ment, if one takes into account full experimental uncer-
tainties and the scale uncertainty of our predictions.

In Figs. 8 and 9 we present the comparison of our
predictions with Δϕ and ΔR spectra from Ref. [3]. Apart
from the above-mentioned overall normalization uncer-
tainty, our model does not contain any free parameters. To
generate the gluon unPDF, according to Eq. (18) we use the
LO PDFs from the MSTW-2008 set [38]. We also use the
value of αsðMZÞ ¼ 0.1394 from the PDF fit. In both LO
(20) and NLO (21) contributions we set the renormalization

FIG. 10. Predictions for the dσ=dΔϕ-spectra
ffiffiffi
S

p ¼ 13 TeV for the same kinematic cuts as in Ref. [3]. Notation for the histograms is
the same as in Fig. 8.
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and factorization scales to be equal to the pT of the leading
jet: μR ¼ μF ¼ ξpTL, where ξ ¼ 1 for the central lines of
our predictions, and we vary 1=2 < ξ < 2 to estimate the
scale uncertainty of our prediction, which is shown in the
following figures by the gray band. All numerical calcu-
lations have been performed using the adaptive MC
integration routines from the CUBA library [44], mostly
using the SUAVE algorithm, but with the cross-checks

against the results obtained by the VEGAS and DIVONNE
routines.
The shape of measured distributions, both inΔϕ andΔR,

agrees with our theoretical predictions within the exper-
imental uncertainty. Also, our model correctly describes the
dependence of the cross section on the pmin

TL cut.
Recently, the ATLAS Collaboration performed a

measurement of a large set of correlation observables for

FIG. 11. Predictions for the dσ=dΔR-spectra
ffiffiffi
S

p ¼ 13 TeV for the same kinematic cuts as in Ref. [3]. Notation for the histograms is
the same as in Fig. 8.
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b-hadron pair production in the pp-collisions at
ffiffiffi
S

p ¼
8 TeV [16]. Comparison of predictions of our model to
the results of this measurement requires the detailed MC
modeling of the decays b-hadron → J=ψð→ μþμ−Þ þ X
and b-hadron → μþ X which has been selected for the
analysis in the Ref. [16]. This work is in progress and will
be the subject of a future publication.
Our predictions for the dσ=dΔϕ and dσ=dΔR spectra atffiffiffi
S

p ¼ 13 TeV are presented in Figs. 10 and 11 for the same
kinematic cuts as in Ref. [3]. Also in Figs. 12 and 13 we
provide predictions for the ratios of Δϕ and ΔR spectra at

different energies, as proposed in Ref. [45]. The primary
advantage of such observables is that the theoretical scale
uncertainty mostly cancels in the ratio, leading to a more
precise prediction. The residual Δϕ and ΔR dependence of
the ratio arises in the interplay between the x-dependence of
PDFs and the dynamics of emissions of additional hard
radiation, therefore probing the physics of interest for the
PRA. Measurements of such observables at the LHC will
present an important challenge for state-of-the-art calcu-
lations in perturbative QCD and tuning of the MC event
generators.

FIG. 12. Predictions for the ratio of dσ=dΔϕ-spectra at
ffiffiffi
S

p ¼ 13 TeV and
ffiffiffi
S

p ¼ 7 TeV for the same kinematic cuts as in Ref. [3].
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V. CONCLUSIONS

In the present paper, the example of BB̄-azimuthal
decorrelations has been used to show how the contributions
of the 2 → 2 and 2 → 3 processes in the PRA can be
consistently taken together to describe multiscale correla-
tional observables in the presence of experimental
constraints on additional QCD radiation. Our numerical
results agree well with the experimental data of Ref. [3], up
to a common normalization factor. The predictions forffiffiffi
S

p ¼ 13 TeV have been provided. Also, the foundations
of the parton Reggeization approach were reviewed in
Sec. II, and the relation of the PRA with collinear and

multi-Regge limits of scattering amplitudes in QCD has
been highlighted.
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