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We study the magnetic properties of quark matter in the Nambu–Jona-Lasinio model with the tensor
interaction. The spin-polarized phase given by the tensor interaction survives even when the quark mass is
zero, while that given by the axial-vector interaction disappears. There are two kinds of spin-polarized
phases: one appears in the chiral-broken phase, and the other in the chiral-restored phase where the quark
mass is zero. The latter phase can appear independently of the strength of the tensor interaction.
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I. INTRODUCTION

The discovery of magnetars [1,2], which are neutron
stars with a super strong magnetic field, seems to revive an
important question about the origin of the strong magnetic
field in compact stars. Magnetars have a huge magnetic
field of 1015 G and are grouped into a new class of compact
stars. Many people usually assume that the conservation of
magnetic flux during stellar evolution explains the mag-
netic field of pulsars. However, if we naively apply this
hypothesis to magnetars, we immediately have a contra-
diction that their radius should be much less than the
Schwarzschild radius. Thus, it may not be very easy to
explain the strong magnetic field without considering
properties of hadronic matter inside stars. We should pay
attention to a microscopic origin to solve the “magnetar”
problem.
Recently, many theoretical and experimental efforts

have been devoted to exploring the QCD phase diagram
in the density-temperature (ρ-T) plane, which may be
closely related to phenomena observed in relativistic
heavy-ion collisions, compact stars, or the early Universe
[3–5]. In particular, quark-gluon plasma (QGP) at a high-
temperature but low-density regime and color superconduc-
tivity (CSC) at a high-density but low-temperature regime
have been elaborately studied [3,6].
Because dense matter occupies a large portion of

compact stars, its property should be reflected in various
phenomena. Tatsumi [7] has suggested the possibility of a
ferromagnetic transition in QCD; it is possible in quark
matter interacting with a one-gluon-exchange (OGE) inter-
action and its critical density is of the order of nuclear
density, ρFM ≃ ρ0, where ρ0 is the normal nuclear matter
density, ρ0 ∼ 0.16 fm−3. Using this idea we can roughly
estimate the strength of the magnetic field at the surface of
compact stars. Considering a star with mass, M ∼ 1.4 M⊙,
and radius, R ∼ 10 Km, and assuming the dipole magnetic
field, the maximum strength at the surface can be simply
estimated by Bmax ¼ ð8π=3ÞfQμqρ0, where fQ is the

volume fraction of quark matter, and μq is the quark
magnetic moment. Thus we evaluate it as Oð1015–17 GÞ
for the extreme case, fQ ¼ 1, which should be compared
with observations. This is a perturbative result based on the
Bloch mechanism, in analogy with electron gas [8–10].
In the relativistic framework the “spin density”

can take two forms [11], ψ†Σiψð≡ − ψ̄γ5γ
iψÞ and

ψ†γ0Σiψð≡− ψ̄σ12ψÞ, with ψ being the quark field. The
former is a space component of the axial-vector (AV) mean
field, and the latter is that of the tensor (T) one. These two
mean fields become equivalent to each other in the non-
relativistic limit, while they are quite different in the
ultrarelativistic limit (massless limit) [11]. In the text we
shall call the former and latter polarizations the AV-type
and T-type spin polarizations (SP), respectively.
For quark matter, we have introduced the AV interaction

and have studied the SP mechanism in the mean-field
approximation [7,12,13]. In these studies we have suc-
ceeded at showing the coexistence of the spin polarization
and the CSC [14] and the dual chiral density wave
(DCDW), which is an inhomogeneous chiral phase [13,15].
Furthermore, Maedan has also studied the SP in the

Nambu–Jona-Lasinio (NJL) model [16] with this AV mean
field [17]. When the quark mass is fixed, the SP appears in a
high-density region, but the AV mean field disappears
when the quark mass becomes zero. Then, the spin-
polarized phase can appear only in a low-density region
just below the chiral phase transition (CPT) density, ρc.
As mentioned above, the AV channel of the quark

interactions has often been used for the study of SP in
quark matter because this channel is obtained by the Fierz
transformation from the OGE interaction. On the other
hand, the T channel has not been often used because this
interaction channel does not appear in the Fierz trans-
formation from the OGE interaction.
The OGE interaction should be useful in a very high-

temperature and/or very high-density region. However,
the density region is not very high around the CPT
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density, and a perturbative calculation cannot be applied
there. In such a moderate density region, the low-
energy effective models such as the NJL model have
often been used, but they are not directly related to the
OGE interaction. They include some nonperturbative
effects instead, and there is no reason to exclude this
channel.
The T channel interaction can play an important role,

differently from the AV channel interaction, to produce
the spin-polarized phase, because the T-type SP can
appear even if the quark mass becomes zero [12].
Actually, Tsue et al. [18] have also shown that the
SP appears in the chiral-restored phase, where the quark
mass is zero, in the NJL model within the effective
potential approach.
In addition, the magnetic effect with the T-type SP is

much larger than that of the AV-type SP [12]. In the
Fermi degenerate system, the magnetic field should be
almost created by magnetization, which is proportional to
ψ†γ0Σiψ . The lower component of the Dirac spinor
contributes to ψ†Σiψ and ψ†γ0Σiψ , oppositely. In the
relativistic region, where the quark mass is much less than
the Fermi momentum, the contribution from the lower
component has the same order as that from the upper
component. As hψ†Σiψi increases, then hψ†γ0Σiψi
becomes smaller in the AV-type SP.
Thus, the AV-type SP appears in a narrow density region

below the chiral transition and may not contribute to the
magnetic field very largely. In contrast, the T-type SP can
appear in the wide density region and largely contribute to
the magnetic field. Thus, we should examine behaviors of
the SP and its relation with chiral symmetry.
We discuss spontaneous spin polarization in the absence

of the external magnetic field. If quark matter is exposed
to the strong external magnetic field, we must take into
account the coupling with it; the energy scale of
Oð1018−19ÞG is comparable with the Fermi energy or the
dynamical quark mass.
In this paper we study the T-type SP in the NJL model

and figure out the relation between the spontaneous SP and
chiral transition. In the next section we present a framework
to deal with the present subject. In Sec. III we show the
results of the numerical calculation and discuss the relation
between SP and chiral restoration. Section IV is devoted to
summary and concluding remarks.

II. FORMALISM

In order to examine the T-type SP we start with the
following NJL-type Lagrangian density with SUð2Þ chiral
symmetry,

L ¼ LK þ Ls þ LV þ LT; ð1Þ

with

LK ¼ ψ̄ði=∂ −mÞψ ; ð2Þ

LS ¼ −
Gs

2
½ðψ̄ψÞ2 þ ðiψ̄γ5τψÞ2�; ð3Þ

LV ¼ −
Gv

2
½ðψ̄γμψÞðψ̄γμψÞ þ ðiψ̄γ5γμτψÞðiψ̄γμγ5τψÞ�;

ð4Þ

LT¼−
GT

2
½ðψ̄σμνψÞðψ̄σμνψÞþðψ̄iτaγ5σμνψÞðψ̄iτaσμνγ5ψÞ�;

ð5Þ

where ψ is a field operator of quarks, and Gs, Gv, and GT
are the coupling constants for the scalar, vector, and tensor
channels, respectively.
Here, we comment on the tensor interaction. If the original

Lagrangian includes only LS in Eq. (3), the Fierz trans-
formation effectively gives the following Lagrangian:

LFT ¼ 1

4
Gs½ðψ̄ψÞ2 þ ðψ̄iτγ5ψÞ2 − ðψ̄τψÞ2 − ðψ̄iγ5ψÞ2

þ 2ðψ̄γ5γμψÞðψ̄γ5γμψÞ − 2ðψ̄γμψÞðψ̄γμψÞ

þ 1

2
ðψ̄σμνψÞðψ̄σμνψÞ −

1

2
ðψ̄σμντψÞðψ̄σμντψÞ�: ð6Þ

Thus, the tensor interaction can appear even if the original
interaction does not include this channel. However, one
cannot derive any channel of the interactions in the NJL
model from basic QCD. We calculate here the spin polari-
zation by using several values of GT to see GT dependence.
In the present work, we restrict calculations and dis-

cussions to the flavor symmetric matter (ρu ¼ ρd) at zero
temperature. Within the mean-field approximation, the
quark Dirac spinor uðp; sÞ is obtained as the solution of
the following equation,

½=p −Mq − U0γ
0 −UTΣz�uðp; sÞ ¼ 0; ð7Þ

with Σz ¼ diagð1;−1; 1;−1Þ and

Mq ¼ −Gsρs ¼ −Gshψ̄ψi; ð8Þ

U0 ¼ Gvρq ¼ Gvhψ̄γ0ψi; ð9Þ

UT ¼ GTρT ¼ GThψ̄Σzψi −GThψ̄Σzτ3ψiτ3: ð10Þ

Accordingly the quark Green function is defined as a
solution of the following equation:

½=p −Mq −U0γ
0 − UTΣz�SðpÞ ¼ 1: ð11Þ

By solving the above Eq. (11) we can obtain
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SðpÞ ¼ ½γμp�μ þMq þ ΣzUT �fp�2 −M2
q þ U2

T þ 2UTðpzγ5γ
0 − p0γ5γ

3Þg
ðp�2

0 − E2
p −U2

TÞ2 − 4U2
Tðp2T þM2

qÞ � iδ
; ð12Þ

with p�
μ ¼ pμ −U0δ

0
μ and Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
.

The SðpÞ has poles at p0 ¼ �eðp; sÞ, which give the
single particle energies

eðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
q þ p2T

q
þ sUT

�
2 þ p2

z

r
þ U0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ 2sUT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ p2T

q
þU2

T

r
þ U0; ð13Þ

where s ¼ �1 indicates the spin of a quark.
It should be interesting to compare it with a single

particle energy in the AV mean field, UA:

eðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
q þ p2

z

q
þ sUA

�
2 þ p2T

r
þ U0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ 2sUA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

q þ p2
z

q
þ U2

A

r
þU0: ð14Þ

Here, we make a comment on the qualitative difference
in the SP by the tensor and axial-vector interactions. When

UA ¼ UT , we can obtain the above expression of eð p; sÞ in
Eq. (14) from that in Eq. (13) by exchanging pz and pT .
The equal-energy surfaces in the momentum space satisfy
the same relation for the two types of SP. However, pz is
one-dimensional, while pT is the absolute value of the
two-dimensional vector.
In Fig. 1, we show the equal-energy surface for

eðp;−1Þ −U0 ¼ 3Mq (a) in the T-type spin-polarized
phase when UT ¼ 3Mq and (b) in the AV-type spin-
polarized phase when UA ¼ 3Mq. We see that difference
in the momentum distribution between the two types of SP:
it is deformed prolately in the T-type SP and oblately in the
AV-type SP.
Using these single particle energies, the quark propaga-

tor is separated into the vacuum part SF and the density-
dependent part SD as

SðpÞ ¼ SFðpÞ þ SDðpÞ; ð15Þ

with

SFðpÞ ¼
½γμp�

μ þMq þ ΣzUT �fp2 −M2
q þU2

T þ 2UTðpzγ5γ
0 − p0γ5γ

3Þg
½p2

0 − e�2ðp; 1Þ þ iδ�½p2
0 − e�2ðp;−1Þ þ iδ� ; ð16Þ

SDðpÞ ¼
X
s¼�1

½γ0e� − γ · pþMq þ ΣzUT �
�
1þ sðpzγ5γ

0 − p0γ5γ
3Þ þ sUTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2T þM2
q

q
�

iπ
2e�ðp; sÞ nðp; sÞδ½p0 − eðp; sÞ�; ð17Þ

where p�
μ − pμ −U0δ

0
μ; e� ¼ e −U0; nðp; sÞ ¼ Θ½eF − eðp; sÞ�; and eF is the Fermi energy.

(a) (b)
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FIG. 1. The energy constant surfaces for e − U0 ¼ 3Mq and s ¼ −1, when (a) UT ¼ 3Mq and when (b) UA ¼ 3Mq.
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In the above expression, the quark density is written as

ρq ¼ Nd

X
s¼�1

Z
d3p
ð2πÞ3 θ½eF − eðp; sÞ�; ð18Þ

where Nd ¼ NfNc ¼ 6 is given by the degeneracy of the
flavors, Nf ¼ 2, and color degrees of freedom, Nc ¼ 3; the
baryon density is given as ρB ¼ ρq=Nc.
Here, we make a comment about the vector interaction.

The vector mean field, U0, has only a role to shift the single
particle energy, and the solutions of the mean-field equa-
tions (8) and (10) are not changed, so that the vector
interaction does not affect a spin property. When U0 ¼ 0,
the quark chemical potential, eF, does not monotonously
increase with density, and eF becomes maximum at a certain
density, which we call ρM. If this ρM is smaller than the CPT
density, ρc, there are two solutions for a chemical potential.
In the density region, ρM < ρB < ρc, ∂eF=∂ρB < 0, so that
this state is unstable. As the chemical potential increases,
thus, the system is transitioned to the chiral-restored phase at
ρM; this phase transition is of the first order.
As the vector coupling Gv increases, the density depend-

ence of eF is changed, and the ρM becomes higher. When
ρM ≥ ρc, the system is continuously changed from the
chiral-broken phase to the chiral-restored phase at ρB ¼ ρc,
so that the CPT is of the second order [19,20].
The nature of the CPT has not been clarified, yet. As

mentioned above, we can control the CPT by varying Gv
without changing other properties. In this work, thus, we
assume that Gv is sufficiently large and that the CPT is of
the second order. We omit U0 and rewrite p�

0 and e� as p0

and e in the following. Then, we solve Eqs. (8) and (10) for
the chiral-broken phase in all density regions. If one would
like to describe the CPT as the first order phase transition,
one should set the value of GV to give any ρM and exclude
the solutions in ρM < ρB < ρc.
In the mean-field approximation the dynamical quark

mass Mq and the UT are determined by

1 −
Gsρs
Mq

¼ 0; ð19Þ

1 −
GTρT
UT

¼ 0; ð20Þ

where the scalar density ρs and the tensor density ρT are
given by

ρs ¼ Nd

Z
d4p
ð2πÞ4 Tr½iSðpÞ�; ð21Þ

ρT ¼ Nd

Z
d4p
ð2πÞ4 Tr½iΣzSðpÞ�: ð22Þ

Each density is separated into two parts, the vacuum part
and the density-dependent part such as

ρs ¼ ρsðVÞ þ ρsðDÞ

¼ Nd

Z
d4p
ð2πÞ4 Tr½iSFðpÞ� þ Nd

Z
d4p
ð2πÞ4 Tr½iSDðpÞ�:

ð23Þ

The density-dependent part is written as

ρsðDÞ¼Nd

X
s¼�1

Z
d3p
ð2πÞ3nðp;sÞ

Mq

eðp;sÞ

0
B@1þ sUTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
qþp2

T

q
1
CA:

ð24Þ

The density-dependent part of the tensor density is also
written as

ρTðDÞ ¼ Nd

X
s¼�1

Z
d3p
ð2πÞ3 nðp; sÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þM2

q

q
þ UT

eðp; sÞ :

ð25Þ

Because ρT < 0 when UT > 0, thus Eq. (20) has a solution
when GT < 0.
Here, we make a comment on the tensor density. When

Mq ¼ 0, the tensor density in Eq. (25) becomes

ρTðDÞ ¼ −
Nd

12π
e3F ≠ 0; ð26Þ

while ρA ¼ 0 [13,14]. When Mq ¼ 0, namely, the T-type
SP can appear while the AV-type SP never appears. This
difference comes from the momentum distribution in the
SP phase (see Fig. 1).
The above argument about the sign of GT is right only

when the SP is isoscalar, where the average spins of u- and
d-quarks are directed along the same direction. In the
isovector spin-polarized system, the tensor densities for
the u- and d-quarks have opposite signs. In the symmetric
matter, we define ρT ¼ ρTðuÞ − ρTðdÞ ¼ 2ρTðuÞ andUT ¼
UTðuÞ −UTðdÞ ¼ 2UTðuÞ, and we rewrite Eq. (10) as
UT ¼ −GTρT , which is the same as Eq. (20) except for the
sign of the rhs. This fact demonstrates that, when GT > 0,
the isovector spin-polarized phase can appear, and its
strength is the same as that for GT < 0.
In this paper we perform the argument only when

GT < 0, but we can apply the same argument to the
isovector spin-polarized system for GT > 0 and get the
same strength of the SP for each quark. However, we
should note that a magnetization is larger when GT > 0,
because of the opposite sign for the u- and d-quark charges.
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In order to extract the vacuum part we use the proper
time regularization (PTR) [21], where the thermodynamical
potential density is written with the cutoff parameter Λ as

Ωvac ¼ iNd

Z
d4p
ð2πÞ4 ln ½ðp

2
0 − e2ðp;þ1ÞÞ�½ðp2

0 − e2ðp;−1ÞÞ�

¼ −iNd

X
s¼�1

Z
∞

0

dτ
τ

Z
d4p
ð2πÞ4 e

τ½ðp2
0
−e2ðp;sÞÞ�

≈
Nd

8π2
X
s

Z
∞

1=Λ2

dτ
τ2

Z
∞

Mq

dETETe−τðETþsUTÞ2 ð27Þ

at zero temperature. The vacuum part of the scalar density
is then given by

ρsðVÞ ¼
∂Ωvac

∂Mq

¼ −
NdMq

8π2
X
s

Z
∞

1=Λ2

dτ
τ2

e−τðMqþsUTÞ2

¼ −
NdMq

8π2
Λ2

X
s

F2

�ðMq þ sUTÞ2
Λ2

�
; ð28Þ

where the function Fn is defined as

FnðxÞ ¼ x
Z

∞

x

dτ
τn

e−τ: ð29Þ

The vacuum part of the tensor density can be also obtained
with ρTðVÞ ¼ ∂Ωvac=∂UT . However, this term strongly
depends on the cutoff parameter Λ in the present model,
even when Mq ¼ 0. Indeed, the vacuum part of the tensor
density is also dependent on the regularization scheme and
the value of the cutoff parameter (see Appendix B 1 for
details). For example, the vacuum contribution in the PTR
suppresses the SP while that in the effective potential
approach [18] enlarges it.
In the AV-type SP, the vacuum part in the PTR also

suppresses the SP [13], while that in the momentum cutoff
enlarges it [17].
The cutoff parameter has a role to restrict the momentum

space in the calculation. The T and AV densities are given
by the difference between the spin-up and spin-down
contributions, which depends on the restriction of the
momentum space, so that the result sensitively depends
on the regularization method and the value of the cutoff
parameter.
In the usual renormalization procedure we regularize

the vacuum polarization by introducing the suitable coun-
terterms which are determined from physical values. In
order to regularize the tensor density, ρTðVÞ, we need to
introduce at least three counterterms which are proportional
to U2

T , U
4
T , and U2

TM
2. In the NJL model we regularize the

vacuum contributions by using a cutoff parameter. The

vacuum part of the scalar density is associated with the
dynamical quark mass in the vacuum but is not concerned
with the spin properties. In the present model, the vacuum
part of the tensor density strongly diverges as Λ → ∞ for a
small asymmetry of the spin states. This fact does not have
any physical meaning, but we do not have any clear rule to
regularize the tensor density in a systematic way.
Thus, the cutoff dependence of the tensor density from

the vacuum contribution is less meaningful at present. In
the NJL model it is not easy to apply a consistent method
even for the qualitative discussions. In the next section,
then, we perform an actual calculation without the vacuum
contribution for the tensor density: ρT ≈ ρTðDÞ.
In Appendix B 2, instead, we try to give a tentative

calculation for the SP including the vacuum contribution.

III. RESULTS

In this section we show some numerical results for the
SP in relation to the chiral transition. For this purpose,
we consider the chiral limit and use two kinds of the
parameter sets PM1 (GsΛ2 ¼ 6;Λ ¼ 850 MeV) and PM2
(GsΛ2 ¼ 6.35;Λ ¼ 660.37 MeV), which are determined
to reproduce the vacuum properties such as the pion decay
constant, constituent quark mass, scalar condensate, and so
on [13].
Before showing actual numerical results, we discuss the

critical density of the SP (ρSC).
The tensor mean field is determined by the following

self-consistent equation1:

FTðUTÞ ¼ 1 −
GTρT
UT

¼ 0: ð30Þ

When UT ≫ eF þMq, ρT ¼ −Nde3F=12π, and ρq ¼
NdUTe2F=4π (see Appendix A), then eF → 0 and
FTðUTÞ → 1 when UT → ∞ at the fixed density. Hence,
Eq. (30) has a solution when FTð0Þ < 0 at UT ¼ 0, which
leads to

J ¼ 1þ GTNd

2π2

�
pFEF þM2

q

2
ln

�
EF þ pF

EF − pF

��
≤ 0; ð31Þ

with pF being the Fermi momentum and EF ¼
eFðUT ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þM2

q

q
.

J ¼ 0 in Eq. (31) can be expressed by the two inde-
pendent parameters, M2

qGT and pc
F=Mq, where pc

F indi-
cates the critical Fermi momentum for the spontaneous
SP. We show the boundary of the spin-polarized phase
in Fig. 2.
In Fig. 3 we show FTð0Þ with (a) PM1 and (b) PM2

when −GT=Gs ¼ 0.6 ∼ −1.5 as functions of baryon

1ρT → 0 when UT → 0 in Eq. (25).
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density, ρB, normalized by the normal nuclear density
ρ0 ¼ 0.17 fm−3. In addition, we show the dynamical quark
mass normalized by nucleon massMN at the spin-saturated
system (ρT ¼ 0) with PM1 (solid line) and PM2 (long
dashed line).
As baryon density becomes higher, FTð0Þ decreases at

first and increases later, so that FTð0Þ has a maximum at
CPT, ρc, and monotonously decreases again. For com-
parison, we show FTð0Þ when Mq ¼ 0 with thin lines,
where we plot the results only whenGT ¼ −1.5Gs for PM1
and GT ¼ −1.2Gs for PM2. We see that FTð0Þ monoto-
nously decreases when Mq ¼ 0 with the increase of ρB.
It was shown in Ref. [12] that FTð0Þ monotonously

decreases with density when the dynamical quark massMq

is fixed. However, the dynamical quark mass is also
decreasing in the NJL model, and a smaller quark mass
enlarges FTð0Þ. This effect changes the density dependence
of FTð0Þ, which becomes minimum at a certain density and
subsequently increases. Because ∂Mq=∂ρB is not continu-
ous at ρB ¼ ρc, the maximum point of FTð0Þ becomes a
cusp, which indicates that the CPT is of the second order.2

As mentioned before, FTð0Þ ¼ 0 shows the critical
density of the phase transition between the spin-saturated
and spin-polarized phases. As the coupling −GT becomes
larger, the number of crossing points becomes 1, 3, and 1.
The last case, where the number of crossing points is 1,
indicates that FTð0Þ < 0 at ρB ¼ ρc. In this case the line of
FTð0Þ with Mq ¼ 0 also crosses zero at a density lower
than the CPT density (see the thin lines in Fig. 3).
These results suggest that there are two kinds of spin-

polarized phases: one is the chiral-broken SP (SP-I) which
appears in the chiral-broken phase,Mq > 0, and the other is
the chiral-restored SP (SP-II) which appears in the chiral-

restored phase, Mq ¼ 0. Here we define ρðIÞSC and ρðIIÞSC as
critical densities of the SP-I and SP-II phases, respectively.

ρðIIÞSC exists for any GT, but ρ
ðIÞ
SC appears only when −GT is

large; namely, the SP-II phase always appears independ-
ently of the strength of the tensor interaction. In addition,
−GT becomes even larger, such that FTð0Þ < 0 at ρB ¼ ρc
ρðIIÞSC < ρc; here, we should note thatMq ¼ 0 is a solution of
Eq. (8) as well as a solution of the gap equation (19).
In Fig. 4, we show [(a) and (c)] the baryon density

dependence of the tensor density ρT=ρ0 with PM1 and [(b)
and (d)] that of the dynamical quark mass when [(a)
and (b)] GT ¼ −1.2Gs and [(c) and (d)] GT ¼ −1.5Gs.
In panels (a) and (c), the solid lines represent ρT=ðNcρ0Þ in
the spin-polarized phase whenMq > 0, and the dotted lines
indicate that when Mq ¼ 0. In panels (b) and (d), the solid
and dashed lines represent the dynamical quark mass in the
spin-polarized and spin-saturated phases, respectively.
When GT ¼ −1.2Gs [Figs. 4(a) and 4(b)], we can see

that the two kinds of spin-polarized phases, SP-I and SP-II,
appear. In addition, there is a density region where the three

1 2 3 4
0

2

4

6

8

10

−Mq
2 GT

p Fc
 / 

M
q

FIG. 2. Coupling constant versus the critical Fermi momentum
for the spontaneous spin polarization.
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(a)
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)
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GT = −1.2 Gs

(b)

PM2
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0.0
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0.2

0.3

0.4

ρB / ρ0

M
q 

/ M
N PM1
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(c)

FIG. 3. FTð0Þ with (a) PM1, (b) PM2, and (c) the dynamical
quark mass as functions of ρB=ρ0. In panel (a) the dashed, solid
and dotted-dashed lines represent the results results when
GT=Gs ¼ −0.9, −1.2 and −1.5, respectively. In panel (b) the
dotted line represents the result when GT=Gs ¼ −0.6, and the
dashed and solid lines are the same as those in panel (a). The thin
lines in panels (a) and (b) indicate FTð0Þ when Mq ¼ 0. In panel
(c), the solid and long dashed lines indicate Mq=MN with PM1
and PM2, respectively.

2If the phase transition is of the first order, the critical density
of the chiral phase transition is lower than that of the second
order.

TOMOYUKI MARUYAMA and TOSHITAKA TATSUMI PHYSICAL REVIEW D 96, 096016 (2017)

096016-6



solutions corresponding to the spin-polarized phases, two
SP-I phases and one SP-II phase, exist.
WhenGT ¼ −1.5Gs [Figs. 4(c) and 4(d)], the SP-I phase

appears at first, and the SP-II phase appears in the density
region, ρB < ρc. Both SP phases exist in the same density
region up to a density higher than the CPT density, ρc, and
the SP-I phase disappears at a density higher than ρc, where
Mq ¼ 0 and UT ≠ 0.
In this approach we discard the vacuum contribution to

the tensor density even though the scalar density includes
the vacuum part, so that we cannot define the total energy
or determine what is realized among the spin-saturated,
SP-I, and SP-II phases.
In order to look into this behavior more clearly, we

calculate FTðUTÞ by varying baryon density. In Fig. 5 we
show the results at several baryon densities.
When ρB ≲ 2ρ0, FTðUTÞ is a monotonously increasing

function. As the density decreases, FTð0Þ becomes smaller,
and,whenFTð0Þ<0, the equationFTðUTÞ¼0has a solution.
When ρB ≳ 2ρ0, FTð0Þ becomes larger with density, but

FTðUTÞ has a minimum at a certain UT . The equation
FTðUTÞ ¼ 0 has two solutions when FTð0Þ > 0 and the
minimum value is negative. As density further increases,
the minimum value of FT becomes positive, and there is no
solution.
In Fig. 6, we show the results with PM2 with [(a) and (b)]

GT ¼ −0.8Gs, [(c) and (d)] GT ¼ −1.2Gs, and [(e) and (f)]
GT ¼ −1.5Gs. The behaviors of the SP are similar to those
in PM1 (Fig. 4). When GT ¼ −0.8Gs [Figs. 6(a) and 6(b)],
the SP-I and SP-II phases appear in different density
regions. When GT ¼ −1.2Gs [Figs. 6(c) and 6(d)] and

GT ¼ −1.5Gs [Figs. 6(e) and 6(f)], the results clearly show
that the SP-I and SP-II phases coexist in the density region,
ρB > ρc, and that the SP-I phase disappears at higher
density.
We can confirm that the SP-I phase disappears at a

density higher than ρc, where the tensor density is finite,
ρT ≠ 0. In Fig. 7 we finally show the critical density
between the spin-saturated and spin-polarized phases as a

function of GTM2
N in (a) the chiral-broken phase, ρðIÞSC, and
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−
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 / 
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(a) GT = −1.2 Gs
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0.0
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M
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/ M
N

(b)

Mq ≠ 0

Mq = 0

(c) GT = −1.5 Gs

0 1 2 3 4 5
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(d)

FIG. 4. Spin-polarization properties with PM1. (a) and (c): The tensor densities normalized by the normal nuclear density. The solid
and dotted lines represent the results in the chiral-broken and chiral-restored phases, respectively. (b) and (d): The dynamical quark mass
normalized by nucleon mass in the spin-polarized (solid lines) and spin-saturated phases (dashed lines). The left and right panels show
the results when [(a) and (b)] GT ¼ −1.2 and [(c) and (d)] GT ¼ −1.5, respectively.
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FIG. 5. FTðUTÞ versus UT=MN with PM1 and GT ¼ −1.2Gs.
The dotted, dashed, long-dashed, dotted-dashed, and solid lines
represent results when ρB=ρ0 ¼ 0.5, 1, 2, 3, 3.4, respectively.
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(b) chiral-restored phase, ρðIIÞSC . The critical density when

Mq ¼ 0, ρðIIÞSC , is determined only by GT, independently of
Gs. In addition, we plot the critical density ofCPT, ρc, with
PM1 (dotted line) and PM2 (dashed line) in Fig. 7(b).

We see the consequences in the phase diagram as
follows. As −GT increases, the phase transition in the
SP-I phase appears at ρB ≈ 1.9ρ0 when −GTM2

N ¼ 13.8
(−GT=Gs ¼ 0.949) in PM1 and at ρB ≈ 0.96ρ0 when
−GTM2

N ¼ 21.0 (−GT=Gs ¼ 0.819) in PM2. In the chi-

ral-restored phase ρðIIÞSC → ∞ as −GT → 0, so that the phase
transition occurs at any value of −GT . As −GT increases,

the critical density of SP-II, ρðIIÞSC , becomes smaller, and

then it is lower than the CPT density, ρðIIÞSC < ρc, when
−GTM2 > 17.7 (GT=Gs < −1.21) in PM1 and when
−GTM2 > 27.6 (GT=Gs < −1.07) in PM2.
In this work we take the current quark mass to be zero.

Realistically the current quark mass is nonzero, and the
SC-I and SC-II phase are not distinguished, but qualitative
behaviors must be the same. In most cases the SP-I phase
must continuously connect with the SP-II phase. However,
the SP phase may appear in two different regions as in
Fig. 6(a), and three SP states may appear at the same
density as in Fig. 4(a): the behaviors must depend on a
value of GT .

IV. SUMMARY

We have studied the spontaneous SP of quark matter in
the NJL model with the tensor interaction. There appear
two kinds of spin-polarized phases, the SP-I and SP-II
phases, where the dynamical quark mass is nonzero and
zero, respectively. The SP-I phase appears when the T
coupling GT is negatively large, but the SP-II phase can
always appear above the critical density whenGT < 0 even
though its transition density depends on GT [12,18].
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(c) GT = − 1.2 Gs

0 1 2 3 4
ρB / ρ0

(d)

Mq ≠ 0

Mq = 0

(e) GT = − 1.5 Gs

0 1 2 3 4
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FIG. 6. Spin-polarization properties with PM2. (a), (c), and (e): The T densities normalized by the normal nuclear matter density. The
solid and dotted lines represent the results in the chiral-broken and chiral-restored phases, respectively. (b), (d), (f): The dynamical quark
mass normalized by nucleon mass in the spin-polarized (solid lines) and spin-saturated phase (dashed lines). The left, middle, and right
panes show the results when [(a) and (b)] GT=Gs ¼ −0.9, [(c) and (d)] GT=Gs ¼ −1.2, and [(e) and (f)] GT=Gs ¼ −1.5, respectively.
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FIG. 7. Critical density between the spin-saturated and spin-
polarized phases as functions of GTM2

N when (a) Mq ≠ 0 and
(b) Mq ¼ 0. In panel (a) the solid and dashed lines represent

ρðIÞSC=ρ0 with PM1 and PM2, respectively. In panel (b) the solid

line shows the critical density of SP-II, ρðIIÞSC =ρ0, and the dotted
and dashed lines indicate the critical densities of CPT, ρc=ρ0,
with PM1 and PM2, respectively.
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The SP-I phase can exist in the density region above the
CPT density and shifts the chiral transition to higher
density. On the other hand, the SP-II phase can appear
below theCPT density. The SP-I and SP-II phases can exist
at the same density when −GT is large. In the present model
we cannot discuss the stability of each phase or draw a
definite conclusion. However, we can easily suppose that
the phase transition between the SP-I and SP-II phases is of
the first order.
We have considered an appearance of a nonuniform

phase with the AV interaction during the chiral transition,
where the pseudoscalar condensate as well as the scalar
condensate is nonvanishing, called the dual chiral density
wave [13]. The T-type SP must lead to a new type of
DCDW, which can appear in the chiral-restored phase. We
should study it in the future.
In this paper we treat the moderate density region

ρB ≲ 6ρ0, where the NJL model may be useful, and
obtain the SP properties in the mean-field framework.
In higher density, however, the CSC is brought about by
the particle-particle correlation such as the diquark
channel, whereas spontaneous magnetization is brought
about by the particle-antiparticle or particle-hole corre-
lation. In the CSC phase, the quark mass must be close
to the current quark mass, and the T channel interaction
may play a more important role than that of the AV
channel [14].
In addition, we can apply our approach to the problem of

the coexistence of the SP with the CSC. So, one may expect
some competition between them, which should be com-
plicated. It is also one of the future problems.
In this paper we have made the discussion only when

GT < 0: the spin-polarized phase is isoscalar. When
GT > 0, the spin-polarized phase becomes isovector,
where the directions of the SP for u- and d-quarks are
opposite. The strength of the magnetic field is much
larger in the isovector spin-polarized phase than in the
isoscalar SP phase because the charge of u- and d-quarks
have opposite signs.
Because of Eq. (10), however, the tensor density is

maximum at ρu ¼ ρd. When we impose the charge neutral-
ity, the u-quark density becomes smaller than that of
d-quark. In the charge neutral system, thus, the SP becomes
weaker than that of the present calculation.
In the present work we have discarded the vacuum

contribution to the tensor density because its contribution
strongly depends on the regularization method. We have
demonstrated in Appendix B that the vacuum contribution
becomes important at high densities. However, the value
of the cutoff parameter is determined to reproduce the
dynamical quark mass in the vacuum, but is not related to
the spin property, and then the large dependence on the
cutoff parameter is not meaningful.

In order to remove the ambiguity we need to use a
renormalizable model and to introduce some counterterms
to reproduce the vacuum spin susceptibility at zero temper-
ature, which should be determined by other studies such as
by the Lattice QCD. It is a future problem.
In this work, furthermore, we have not considered the

AV channel of the quark-quark interaction, which can be
derived by the Fierz transformation of the one-gluon
exchange. The calculation of the spin-polarized phase is
very difficult when both the T and AV interactions are
introduced because the energy spectrum becomes very
complicated. If the weak T interaction is mixed with the AV
one, however, the AV-type SP phase appears even when the
quark mass is zero; this subject is beyond the scope of
this paper.
When the quark mass is small, the tensor density

decreases as the AV-type SP becomes larger,3 and the
magnetic field which is produced by the spin current also
decreases [12]. However, the magnetic field can be kept to
be finite by the tensor mean field even if it is weak. So, the
mixing of AV and T interactions may exhibit a new spin
polarization in quark matter.
Moreover, the external magnetic field leads to the

Landau quantization for quarks. When the strength of
the external magnetic field is 1018−19 G, the magnetic
energy becomes comparable with the Fermi energy, and
the Landau quantization affects magnetic properties of the
quark matter when the spin-spin interaction is an axial-
vector [22] or tensor type [23].
In the future, we hope to extend our formulation for the

system including both the AV and T interactions and/or
including the external magnetic field.
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APPENDIX A: DENSITY-DEPENDENT
PARTS OF DENSITIES

In this section, we give the detailed expressions of
the quark density ρq, the scalar density ρs, and the tensor
density ρT with the quark mass Mq, the chemical potential
eF, and the T field UTð> 0Þ.

3ρT → 0 when UA → ∞.
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1. Quark densities

When UT < eF − sMq for s ¼ �1,

ρqðsÞ ¼
Nd

2π2

�
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q

× ½2e2F − ðMq þ sUTÞð2Mq − sUTÞ�

−
s
2
UTe2F

	
π

2
− sin−1

�
Mq þ sUT

eF

�
�
: ðA1Þ

When UT > eF − sMq,

ρqðþ1Þ ¼ 0; ρqð−1Þ ¼
Nd

4π
UTe2F: ðA2Þ

2. Scalar densities

When UT < eF − sMq for s ¼ �1,

ρsðsÞ ¼
Nd

4π2
Mq

2
64eF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q

−
ðMq þ sUTÞ2

2
ln

0
B@eF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q

eF −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q
1
CA
3
75:

ðA3Þ

When UT > eF − sMq,

ρsð�1Þ ¼ 0: ðA4Þ

3. Tensor density

When UT < eF −Mq for s ¼ 1 or UT < Mq for s ¼ −1

ρTðsÞ ¼
Nd

12π2
s

8><
>:ðMq þ sUTÞ2

�
−Mq þ

s
2
UT

�

× ln

0
B@eF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q

eF −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q
1
CA

þ eFðMq − 2sUTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðMq þ sUTÞ2

q

þ e3Fsin
−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðUT þ sMqÞ2

q
eF

1
CA
9>=
>;: ðA5Þ

When UT > eF −Mq for s ¼ 1,

ρTðþ1Þ ¼ 0: ðA6Þ

When eF þMq > UT > Mq for s ¼ −1,

ρTð−1Þ ¼ −
Nd

12π2

8><
>:−

1

2
ðUT −MqÞ2ðUT þ 2MqÞ

× ln

0
B@eF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðUT −MqÞ2

q

eF −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðUT −MqÞ2

q
1
CA

þ eFð2UT þMqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðUT −MqÞ2

q

þ e3F

2
64π − sin−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2F − ðUT −MqÞ2

q
eF

1
CA
3
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9>=
>;:

ðA7Þ

When UT > eF þMq for s ¼ −1,

ρTð−1Þ ¼ −
Nd

12π
e3F: ðA8Þ

APPENDIX B: VACUUM CONTRIBUTION
TO TENSOR FIELD

1. Ambiguities of vacuum contribution

In the paper we mentioned that the vacuum contribution
is ambiguous and dependent on the regularization scheme.
We explain the reason for this difference with the energy
cutoff and the three-dimensional momentum cutoff as
examples.
In these regularization schemes, the vacuum part of the

tensor density is written as

ρTðVÞ¼Nd

Z
d4p
ð2πÞ4Tr½iΣzSFðpÞ�

¼ iNd

X
s

Z
d4p
ð2πÞ4nVðp;sÞ

×
4sUTð−p2

0−M2−U2
T−p2Tþp2

zÞ
ð−2eðp;sÞÞ½e2ðp;1Þ−eðp;−1Þ2�½p0þesðp;sÞ−iδ�

¼−Nd

X
s¼�1

Z
d3p
ð2πÞ3nVðp;sÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2TþM2

q

q
þUT

eðp;sÞ ;

ðB1Þ

where nVðp; sÞ is an effective momentum distribution for
negative energy particles including the cutoff parameter.
In the energy cutoff regularization, we should take

nV ¼ Θ½Λe − eðp; sÞ�. Apparently the ρTðVÞ is the different
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sign of ρTðDÞ; in the present choice ρTðDÞ < 0 < ρTðVÞ.
Namely, the vacuum contribution suppresses the tensor
density.
In general the cutoff parameter is taken to be much

larger than the Fermi energy, Λe ≫ EF, and the total tensor
density becomes positive, ρTðVÞ þ ρTðDÞ > 0, so that the
SP does not appear when GT < 0. When GT > 0, however,
the spontaneous SP appears in the vacuum when the cutoff,
Λe, increases and exceeds a certain critical value; this
phenomenon is not thought to have any physical meaning.
In the momentum cutoff regularization, on the other

hand, the effective momentum distribution is taken to be
nV ¼ ΘðΛp − jpjÞ. When 0 < UT ≪ 1,

ρTðVÞ ≈ −Nd

X
s¼�1

Z
d3p
ð2πÞ3ΘðΛp − jpjÞ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þM2

q

q
þUT

Ep

×

0
B@1 −

sUT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2T þM2

q

q
E2
p

1
CA;

≈ −2NdUT

Z
d3p
ð2πÞ3ΘðΛp − jpjÞ p

2
z

E3
p
< 0: ðB2Þ

ρTðVÞ has the same sign of ρTðDÞ; namely, the vacuum
contribution enlarges the tensor density.
The vacuum contribution to the tensor density is deter-

mined by the two effects: one is the difference in the
volume in the momentum space between the spin-up and
the spin-down quarks, and the other is momentum depend-
ence of

P
s ūðp; sÞσ12uðp; sÞ at the fixed momentum. The

two effects have opposite roles: the former reduces the
tensor density, and the latter increase it.
In the energy cutoff regularization, the former effect is

larger, and the vacuum contribution reduces the SP. In the
momentum cutoff regularization, in contrast, the former
effect does not exist, and then the vacuum contribution
increases the SP.
When Λe;p ≫ Mq and UT ≪ 1, the vacuum contribution

becomes ρTðVÞ ≈ NdUTΛ2
e=2π2 for the energy cutoff and

ρTðVÞ ≈ −NdUTΛ2
p=3π2 for the momentum cutoff. Both

results are proportional to the square of the cutoff parameter
although the signs of the two results are opposite.

2. Spin polarization with vacuum contribution

In this section, we discuss the vacuum polarization in the
proper time regularization.
The vacuum contribution is given by

ρTðVÞ ¼
Nd

4π2
Λ2

Z
MþUT

M−UT

dETF1

�
E2
T

Λ2

�

þ Nd

8π2
UTΛ2

X
s

F2

	ðM þ sUTÞ2
Λ2



: ðB3Þ

In the limit of Λ → ∞, the tensor density becomes

ρTðVÞ ≈
Nd

4π2

�
Λ2UT þ

�
M2

qUT −
1

3
U3

T

�
ln

Λ2

jM2
q − U2

T j

−
1

3
M3

q ln

�
Mq þ UT

Mq −UT

�
2

þ 1

3
M2

qUT −
5

9
U3

T

�
:

ðB4Þ

When UT ≪ Mq, in addition,

ρTðVÞ ≈
Nd

4π2

�
Λ2UT þ

�
M2

qUT −
1

3
U3

T

�
ln

Λ2

M2
q

−M2
qUT −

4

9
U3

T

�
: ðB5Þ

Thus, the terms proportional to UT , U3
T , andM

2
qUT diverge

in the limit of Λ → ∞.
The above equation shows us that the spin susceptibility

proportional to ∂ρT=∂UT has a very large value at any
density, and the SP does not appear in the chiral-
broken phase.
When Mq ¼ 0 and UT ≪ 1, it becomes ρTðVÞ ≈

NdUTΛ2=4π2 and ρTðDÞ ≈ −NdUTp2
F=2π

2, and the con-
dition of the SP becomes

p2
F ≥

Λ2

2
−
2π2

GT
; ðB6Þ

which is strongly dependent on the cutoff parameter Λ.
In the field theory, the divergent terms are renormalized

to be physical values. In the NJL model, the cutoff
parameter is taken to be finite, and determined by the
quark mass at zero density. On the other hand we cannot
relate the vacuum part of the tensor density with any
physical quantity. In addition, even the sign of this part
depends on the regularization method. We cannot believe
such a large contribution from the vacuum.
In the present model the term proportional to Λ2

makes ρTðVÞ extraordinarily large. In the AV-type SP
phase [13], on the other hand, the vacuum contribution
of the AV density under the AV field, UA, is written, when
jUAj ≪ Mq ≪ Λ, as

ρAðVÞ ≈
Nd

π2
UAM2

q ln

�
Λ
Mq

�
: ðB7Þ

We see that this vacuum contribution in the AV-type SP
[13] does not affect the final result as largely as that of the
T-type SP.
As shown in the energy cutoff calculations in

Appendix B 1, the term proportional to Λ2 indicates a
contribution from the surface area of the integration in the
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region restricted with the cutoff parameter in the momen-
tum space, and it must be removed by the renormalization.
So, we examine the vacuum contribution by removing

the term proportional to Λ2. For this purpose we introduce
an additional counterterm, βT , and define the renormalized
thermodynamical potential density as

ΩR ¼ Ωvac −
1

2
βTU2

T; ðB8Þ
which gives the renormalization vacuum tensor density
as ρTðRÞ ¼ ρTðVÞ − βTUT . Note that we can define the

additional term in the above equation in a Lorentz covariant
way by rewriting U2

T in the tensor field including six
independent components, although this modification does
not change the result.
In order to examine the vacuum effects, here, we choose

βT to set the vacuum contribution to be zero at ρB ¼ 0 and
compare those results with those without the vacuum effect.
The Lattice QCD calculation has shown that the negative

magnetic susceptibility at the zero temperature limit is
zero [24] or negative [25]. The magnetic susceptibility is
proportional to the spin susceptibility, and hence our choice
is reasonable for a test calculation.
Then, we take βT to be

βT ¼ Nd

4π2
Λ2

	
2F1

�
M2

0

Λ2

�
þ F2

�
M2

0

Λ2

�

; ðB9Þ

where M0 is the dynamical quark mass at ρB ¼ 0.
In Fig. 8 we show the tensor density normalized by

(a) the normal nuclear matter density ρT=ðNcρ0Þ and (b) the
dynamical quark mass Mq with PM1 and GT ¼ −1.2Gs.
The solid and dotted-dashed lines represent the results
without and with the vacuum contribution, respectively.
In the density region, ρB ≲ ρc, the results with the

vacuum contribution are almost the same as those without
the vacuum contribution. In the density region, ρB ≳ ρc,
however, the SP ratio is larger than that without the vacuum
contribution, and the SP-I phase survives when the vacuum
contribution is included. The vacuum polarization has a
role to keep the quark mass finite in the SP phase in the
high-density region.
These large vacuum contributions are considered to

come from the second term of Eq. (B5), which is propor-
tional to lnðΛ2=M2

qÞ, and becomes larger as the dynamical
quark mass decreases. This contribution cannot be removed
by a usual renormalization process because a related
counterterm must be proportional to M2

qU2
T , which

becomes smaller with the decrease of Mq.
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