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We discuss free Dirac fermions rotating uniformly inside a cylindrical cavity in the presence of
background magnetic field parallel to the cylinder axis. We show that, in addition to the known bulk states,
the system contains massive edge states with the masses inversely proportional to the radius of the cylinder.
The edge states appear at quantized threshold values of the fermion mass, which depend on the details of
(chiral) MIT boundary conditions imposed at the surface of the cylinder. In the limit of infinite fermion
mass, the masses of the edge states remain finite but, generally, nonzero as contrasted to the masses of the
bulk states which become infinitely large. The presence of magnetic field affects the spectrum of both bulk
and edge modes, and the masses of the edge states may vanish at certain quantized values of magnetic field.
The moment of inertia of Dirac fermions is nonmonotonically increasing, oscillating function of magnetic
field. The oscillations are well pronounced in a low-temperature domain and disappear at high
temperatures. We also show that the edge modes alone do not support the anomalous transport phenomena
such as chiral magnetic and chiral vortical effects.
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I. INTRODUCTION

Rotating systems of relativistic fermions appear in
various physical settings characterized by different energy
scales. The examples include the interior of rapidly spin-
ning neutron stars [1], quark-gluon plasma in noncentral
heavy-ion collisions [2], and anomalous-vortical chiral
transport phenomena [3] applied both to neutrino fluxes
in rotating astrophysical environments [4,5] and to semi-
metal materials in solid-state applications [6].
Rotation changes the spectrum of free fermions [7–11]

and, consequently, affects the mass gap generation in
interacting fermionic systems. For example, the critical
temperature of chiral symmetry restoration Tc is a dimin-
ishing function of the rotational angular frequency Ω
[12–16]. The rotational effects have been studied under the
simplifying assumption that the rotation is globally uni-
form so that the angular velocity does not depend on the
distance to the rotational axis. A uniformly rotating
relativistic system should be bounded in the transverse
directions with respect to the axis of rotation in order to
comply with the causality principle. The latter requires
that the velocity of particles should not exceed the speed
of light to avoid pathological effects [9,17]. The presence
of the boundary implies a dependence of the chiral
restoration temperature Tc ¼ TcðΩÞ on geometrical fea-
tures, in particular, on the type of the boundary condition
[18]. The uniform rotation in magnetic field background
but in an unrestricted transverse geometry has been
studied in Ref. [13].

In this paper, we generalize the results of Refs. [10,18] in
threefold way. First, we show that, in addition to the bulk
modes, the spectrum of free massive Dirac fermions
contains the edge states localized at the boundary of the
cylinder. Second, we discuss the spectrum of both bulk and
edge modes in the presence of external magnetic field.
Finally, we illustrate the importance of the edge modes for
thermodynamics of free Dirac fermions and for its rota-
tional properties such as the moment of inertia which
exhibits curious oscillating behavior as a function of
magnetic field.
Notice that possible effects of the edge states have not

been accounted for in existing studies of the phase structure
of the interacting rotating fermions [13–16,18]. In
Refs. [13,14], rotational properties were investigated in
the transversally unrestricted geometry which questions the
consistency with the requirement of relativistic causality
under uniform rotation and, simultaneously, does not allow
for the presence of the edge states. The existence of the
edge states, found in the present paper, definitely calls for a
reestimation of the phase diagram of interacting fermions
under uniform rotation.
We would like to mention that in solid-state terms the

system of Dirac fermions considered in this article corre-
sponds to a nontopological insulator as it is characterized
by the presence of gapped bulk modes and the absence of
symmetry-protected boundary (edge) states with zero
mass. The edge states are generally massive, and their
mass is proportional to the mean curvature of the cylinder
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surface. Notice that the Dirac equation alone is not enough
to describe topological insulators [19], where the presence
of zero-mass edge states is guaranteed by topological
reasons of underlying lattice Hamiltonians [20].
The structure of this paper is as follows. In Sec. II, we

review, following Ref. [10], known bulk solutions for the
Dirac fermions in the cylinder with the MIT boundary
conditions in the absence of magnetic field. We also discuss
particularities of the spectrum for the chiral boundary
conditions [18]. In the same section, we find the edge
states of the system and describe their properties. In
Sec. III, we discuss properties of bulk and edge solutions
in the magnetic field background. Section IV is devoted to
studies of rotational properties of the system in the limit of
(negative) infinite fermion mass. In this limit, the thermo-
dynamics of the system is given by the edge states only,
allowing us to highlight their importance. We also dem-
onstrate explicitly that the edge modes cannot lead to
anomalous transport phenomena such as chiral magnetic
and chiral vortical effects. The last section is devoted to
conclusions.

II. BULK AND EDGE SOLUTIONS IN THE
ABSENCE OF MAGNETIC FIELD

In this section, we discuss solutions of massive rigidly
rotating Dirac fermions confined in a cylindrical geometry
in the absence of magnetic field. We start from the known
bulk states that were already described in Ref. [10] (see also
Ref. [15]), and then we demonstrate that the system
contains also certain new (edge) states which possess
rather peculiar properties.

A. Dirac equation in the cylinder

We consider a system of free fermions which is rigidly
rotating with the angular frequency Ω about the axis of the
infinitely long cylinder of the radius R.
Given the geometry of the system, it is convenient to

work in the cylindrical coordinates, x≡ ðt; x; y; zÞ ¼
ðt; ρ cosφ; ρ sinφ; zÞ. There are two natural reference
frames in this problem: the inertial laboratory frame and
noninertial corotating frame. The former one corresponds
to a rest frame, while the latter one is rigidly fixed with
the rotating system. The coordinates t, ρ, and z in the
corotating reference frame coincide with the corresponding
coordinates of the laboratory frame: t ¼ tlab, ρ ¼ ρlab, and
z ¼ zlab. The angular variables in these frames are related as

φ ¼ ½φlab −Ωt�2π; ð1Þ

where ½…�2π means “modulo 2π.” The simple relation
between angular variables (1) leads, nevertheless, to a quite
nontrivial metric in the corotating frame,

gμν ¼

0
BBB@

1 − ðx2 þ y2ÞΩ2 yΩ −xΩ 0

yΩ −1 0 0

−xΩ 0 −1 0

0 0 0 −1

1
CCCA; ð2Þ

which corresponds to the line element

ds2 ¼ gμνdxμdxν ¼ ημ̂ ν̂dxμ̂dxν̂

¼ ð1 − ρ2Ω2Þdt2 − 2ρ2Ωdtdφ − dρ2 − ρ2dφ2 − dz2;

ð3Þ

where ημ̂ ν̂ ¼ diagð1;−1;−1;−1Þ is the flat metric. Here,
we adopt the convention that î; ĵ… ¼ t̂; x̂; ŷ; ẑ and
μ; ν… ¼ t, x, y, z refer to the local coordinates in the
laboratory frame and the corotating frame, respectively. We
use the units in which the speed of light and the reduced
Planck constant are equal to unity, c ¼ ℏ ¼ 1.
The spectrum of the fermions is described by the

eigenfunctions of the free Dirac equation in the corotating
reference frame [10],

½iγμð∂μ þ ΓμÞ −M�ψ ¼ 0; ð4Þ

where the Dirac matrices in the curved corotating space-
time γμðxÞ ¼ eμ

î
ðxÞγ î are connected to the matrices in the

laboratory frame γ î via the vierbein eμ
î
. The vierbein is a

“square root” of the metric ηî ĵ ¼ gμνe
μ
î
eν
ĵ
. In the case of the

metric (2), the vierbein may be chosen in the form

ett̂¼exx̂¼eyŷ¼eyŷ¼1; ext̂ ¼yΩ; eyt̂ ¼−xΩ; ð5Þ

with all other components of ηî ĵ being zero.
In Eq. (4), the spin connection Γμ in the metric (2) has

only one nonzero component,

Γt ¼ −
i
2
Ωσx̂ ŷ; ð6Þ

where

σx̂ ŷ ≡ Σz ¼
�
σ3 0

0 σ3

�
ð7Þ

in the Dirac representation of the gamma matrices:

γ t̂¼
�
1 0

0 −1
�
; γ î¼

�
0 σi

−σi 0

�
; γ5¼

�
0 1

1 0

�
: ð8Þ

Equation (4) is supplemented with the MIT boundary
condition at the boundary of the cylinder,

iγμnμðφÞψðt; z; R;φÞ ¼ ψðt; z; R;φÞ; ð9Þ
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where the spatial vector nμðφÞ ¼ ð0; cosφ; sinφ; 0Þ is
normal to the cylinder surface. This condition “confines”
the fermions inside the cavity by enforcing the normal
component jn ≡ −jμnμ of the fermionic current jμ ¼ ψ̄γμψ
to vanish at the surface of the cylinder jnðρ ¼ RÞ ¼ 0.
Furthermore, the condition (9) implies that the chiral
condensate, ψ̄ψ , and the axial current along the z direction,
j5z , vanish at the surface of the cylinder:

ψ̄ψ jρ¼R ¼ 0; j5zðρ ¼ RÞ≡ ψ̄γ5γẑψ jρ¼R ¼ 0: ð10Þ

B. Bulk states

A general solution of the Dirac Eq. (4) in the (co)rotating
reference frame (1) has the form (according to Ref. [10])

Uλ
j ¼

1

2π
e−i ~Etþikzuλjðρ;φÞ; ð11Þ

where uλj is an eigenspinor characterized by the eigenstate
helicity λ ¼ �1=2, the z component of momentum
k≡ kz ∈ R, the projection of the quantized angular
momentum m≡mz ∈ Z onto the z axis, and the radial
quantum number l ¼ 1; 2;…, which describes the behavior
of the solution in terms of the radial ρ coordinate. The
helicity λ of the state is the eigenvalue of the helicity
operator Ŵ ¼ P̂ · Ĵ=p,

ŴUλ
Ekm ¼ λUλ

Ekm; ð12Þ

where P̂ ¼ −i∂ is the momentum operator and Ĵ is the
angular momentum operator. In the absence of magnetic
field, the helicity operator Ŵ has the simple form

Ŵ ¼
�
ĥ 0

0 ĥ

�
; ĥ ¼ σ · P̂

2p
; ð13Þ

where p≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

p
> 0 is the magnitude of the spatial

momentum defined as follows:

P̂2Uλ
j ¼ p2

jU
λ
j: ð14Þ

Here, the notation

j ¼ ðk;m; lÞ; ð15Þ
is used to denote a set of quantum numbers [10].
The energy in the corotating frame ~Ej is related to the

energy Ej in the laboratory frame as

~Ej ¼ Ej −Ω
�
mþ 1

2

�
≡ Ej −Ωμm; ð16Þ

where μm can be identified with the quantized value of the z
component of the total angular momentum

Ĵzψ ¼ μmψ ; μm ¼ mþ 1

2
; ð17Þ

which comprises the orbital and spin parts,

Ĵz ¼ −i∂φ þ
1

2
Σz; ð18Þ

where the matrix Σz is given in Eq. (7).
The solutions of the Dirac equation which satisfy the

MIT boundary conditions (9) are linear combinations of
positive and negative helicity spinors,

UMIT
j ¼ CMIT

j ½bUþ
j þU−

j �; ð19Þ

where the 4-spinors with a definite helicity λ,

uλjðρ;φÞ ¼
1ffiffiffi
2

p
 
Eþϕλ

j

2λEj

jEjj E−ϕ
λ
j

!
; ð20Þ

are expressed with the 2-spinors

ϕλ
jðρ;φÞ ¼

1ffiffiffi
2

p
�

pλeimφJmðqρ=RÞ
2iλp−λeiðmþ1ÞφJmþ1ðqρ=RÞ

�
; ð21Þ

which are eigenspinors of the two-component helicity
operator ĥ (13),

�
kj P̂−

P̂þ −kj

�
ϕjðρ;ϕÞ
2pj

¼ λjϕjðρ;ϕÞ; ð22Þ

with P̂� ¼ P̂x � iP̂y ¼ −ie�iφð∂ρ � iρ−1∂φÞ.
In the eigenfunctions (19), the degree of mixing between

positive and negative helicity states is determined by the
parameter

b ¼ Eþpþ þ E−p−jmlsignðEjÞ
Eþp− þ E−pþjmlsignðEjÞ

; ð23Þ

where

p� ≡ p�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

pj

s
;

E� ≡ E�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� M

Ej

s
ð24Þ

are, respectively, the momentum- and energy-related quan-
tities which depend explicitly on the helicity of the
eigenmodes and

pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2ml

R2

r
ð25Þ
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is (the modulus of) the effective momentum which incor-
porates the longitudinal continuous momentum k and the
transverse (radial) discrete momentum number q≡ qml. We
also use the notation [10]

jml ¼
JmðqmlÞ
Jmþ1ðqmlÞ

; ð26Þ

where JmðxÞ is the Bessel function.

The dimensionless real-valued and positive quantity qml
is the lth real-valued positive root ðl ¼ 1; 2;…Þ of the
following equation [10]:

J2mðqÞ þ
2MR
q

JmðqÞJmþ1ðqÞ − J2mþ1ðqÞ ¼ 0: ð27Þ

The normalization coefficient

CMIT
j ¼ 1

RjJmþ1ðqm;lRÞj
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2− þ p2þj2ml

ðj2ml þ 1Þðj2ml − ð2mþ 1Þ jml
qm;lR

þ 1Þ − ðj2ml − 1Þ jml
qm;lR

vuut ð28Þ

ensures that these modes are orthonormalized,

hUMIT
j ; UMIT

j0 i ¼ δðk − k0Þδm;m0δl;l0θðEjEj0 Þ; ð29Þ

with respect to the inner Dirac product:

hψ ; χi ¼
Z þ∞

−∞
dz
Z

2π

0

dφ
Z

R

0

dρρψ†ðxÞχðxÞ: ð30Þ

The energies of the eigenmodes in the laboratory frame
are

Ej ≡ Emlðk;MÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 þ q2ml

R2

r
; ð31Þ

where the plus (minus) sign corresponds to the particle
(antiparticle) modes.
The density ψ̄γ0ψ ≡ ψ†ψ of the wave functions (20)

is not localized at the boundary of the cylinder, and there-
fore we refer to these solutions as the “bulk eigen-
modes.” They should be discriminated from the “edge”
solutions (to be discussed below) for which the density is
concentrated at the boundary of the cylinder. From
Eq. (31), we conclude that the masses of the bulk states
Mbulk defined as

Mbulk
ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2ml

R2

r
ð32Þ

are higher than or equal to the mass of the fermion M.
The reflection m → −1 −m, corresponding to the sign

flips of the total angular momentum (17) μm → −μm, leaves
the qml solutions unchanged,

qml → q−1−m;l ≡ qml: ð33Þ
This property implies that the mass spectrum (32) and,
consequently, the energy spectrum of the bulk modes are
invariant under the flips μm → −μm.
A couple of real-valued solutions qml of Eq. (27)

are shown in Fig. 1(a) as a function of the fermion

mass M. As the mass M decreases, the lowest (l ¼ 1)
real-valued modes qml ≥ 0 touch the q ¼ 0 axis and
disappear one by one at the critical values of the
(negative) fermion mass:

(a)

(b)

FIG. 1. (a) Solutions of the eigenvalue Eq. (27) as the function
of the fermion mass M: (a) the real-valued solutions q ≥ 0
corresponding to the bulk modes (from Ref. [15]) and (b) the
purely imaginary solutions qedge ¼ iνedge with ν ≥ 0 correspond-
ing to the edge modes. The inset shows ðνedgeÞ2 vs M.
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MðmÞ
c ¼ −

1

R

�
jμmj þ

1

2

�
≡
�− 1þm

R ; m ≥ 0;
m
R ; m < 0.

ð34Þ

As the values qm;1 and q−1−m;1 coincide with each other
due to the reflection invariance (33), the real-valued q will
disappear in pairs at the critical mass points (34).
Contrary to the ground state with l ¼ 1, the excited
l ≥ 1 bulk states do not disappear from the spectrum.
Finally, we would like to stress that the values of the

critical mass (34) depend on the type of the boundary
condition at the boundary of the cylinder. For example, if
we flip the sign of the vector nμ in the MIT boundary
condition (9), then the mass critical values (34) would also

change the sign, MðmÞ
c ð−nμÞ ¼ −MðmÞ

c ðnμÞ, so that the
disappearance of the ground-state (l ¼ 1) modes would

then happen at the positive fermion masses, MðmÞ
c > 0.

With the more general chiral boundary conditions para-
metrized by the chiral angle Θ [21],

½iγμnμðφÞ − e−iΘγ
5 �ψðt; z; ρ;φÞjρ¼R ¼ 0; ð35Þ

the critical masses becomes as follows [18]:

MðmÞ
c ðΘÞ ¼ MðmÞ

c ð0Þ
cosΘ

≡
(
− 1þm

cosΘ
1
R ; m ≥ 0;

m
cosΘ

1
R ; m < 0.

ð36Þ

In particular, at the specific values of the chiral angle
Θ ¼ �π=2, the ground-state levels never disappear.

C. Edge states

Besides the bulk eigenfunctions with real-valued solu-
tion q ¼ qml, the system contains also quite peculiar
eigenstates, which are localized at the boundary of the
cylinder. These are the edge states which correspond to
purely imaginary solutions of Eq. (27),

qedgem ¼ iνedgem ; ð37Þ

with a real νedgem ≥ 0.1

Using the relation JmðixÞ ¼ imImðxÞ, we get from
Eq. (27) the equation which determines ν,

I2mðνÞ þ
2MR
ν

ImðνÞImþ1ðνÞ þ I2mþ1ðνÞ ¼ 0; ð38Þ

where ImðxÞ is the modified Bessel function.
In Fig. 1(b), we show the solutions of Eq. (38) as the

function of the fermion mass M. First of all, we notice that
there is only one edge eigenmode for each value of the
orbital momentum m. Moreover, the edge modes νedgem

appear at the critical mass points (34) where the lowest bulk
modes qm;1 disappear (as the fermion mass M diminishes).
Therefore, we conclude that at the critical mass points (34)
the lowest bulk modes (34) are transformed into the edge
modes and vise versa.
Despite that the edge states appear at negative values of

the fermion mass M, these solutions represent physical
modes which contribute to the equation of state and other
thermodynamic properties of the system (certain examples
will be considered in Sec. IV below). One can show, for
instance, that the negative critical values (34) flip their signs

MðmÞ
c → −MðmÞ

c if the spatial vector n in the MIT boundary
condition (9) is flipped from the outward direction to the
inward direction, n → −n. Both original and flipped MIT
boundary conditions have apparently the same physical
sense, as they confine fermions inside the cylinder. The
MIT boundary condition with flipped vector n corresponds
to the “chiral boundary condition” considered for the case
of the cylinder in Ref. [10]:

½iγμnμðφÞ þ 1�ψðt; z; ρ;φÞjρ¼R ¼ 0: ð39Þ

The sign flip of the fermion mass is related to the chiral
transformation

ψ → e−iθγ5ψ ; ψ̄ → ψ̄e−iθγ5 ð40Þ

of the Dirac spinors. This transformation leads to the
modification of the mass term

M → e−iθγ5Me−iθγ5 ð41Þ

of the Dirac Eq. (4). The choice θ ¼ π=2 changes the sign
of the fermion mass, M → −M, while not affecting the
sign of energy of the eigenmode (42). In an infinite volume,
the positive and flipped negative fermionic masses corre-
spond to the same positive-energy particle state related by
the discrete (θ ¼ π=2) chiral transformation (40). In a
cylindric cavity, the MIT boundary condition (9) breaks
down the chiral symmetry (40) explicitly, thus leading to
the asymmetry of the fermionic spectrum with respect to
the flip of the fermion mass. In other words, the would-be
inequivalence of features of fermions with positive and
negative masses is caused by the MIT boundary condition
which breaks explicitly the chiral flip symmetryM → −M.
The energy Ej of the edge states in the laboratory

frame is

Eedge
j ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j þM2

q
≡�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðMedge

m Þ2
q

; ð42Þ

where

pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 −

ν2m
R2

r
ð43Þ1As in the case of the bulk modes, the solutions νedgem and

−νedgem correspond to the same eigenmode.
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is an analog of momenta. The plus (minus) sign in Eq. (42)
corresponds to the particle (antiparticle) modes similarly to
the bulk modes (31).
Equation (42) implies that, contrary to the masses of the

bulk states (32), the masses of the edge states are smaller
than or equal to the mass of the fermion M:

Medge
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

ν2m
R2

r
: ð44Þ

Notice that, due to the inequality jνmj < MR, the masses
(44) of the edge states and their energies Eedge always
remain real numbers, while the effective momentum p may
take become purely imaginary for longitudinal momenta
jkj < νm=R. In other words, for the edge modes, ν2m > 0,
k2 > 0, and E2

j > 0, while p2
j may take both positive and

negative values. The negative values of the effective
momentum squared p2

j are not consistent with the real-
valued spectrum of the helicity operator (13) due to the
anti-Hermiticity of this operator. Nevertheless, as we will
see shortly, we may apply to the edge modes all the steps
of the derivation of Sec. II B following Ref. [10].
The presence of the edge modes is largely related to the
helicity-broken boundary conditions at the edge of the
cylinder. Namely, the MIT boundary conditions (9) couple
the modes with different helicity λ, Eq. (19), so that the
general eigenmode solution (19) mixes both λ ¼ � hel-
icities. As a consequence, the edge eigenmodes do not
possess a definite helicity at all.
In the rotating frame, the energy of the edge mode

follows from Eq. (16),

~Eedge
j ¼ Eedge

j −Ωμm; ð45Þ

where Eedge
j is the energy of the edge modes in the

laboratory frame (42).
In Fig. 2, we show the mass spectrum both for the bulk

modes (32) and for the edge modes (44). This figure clearly
demonstrates that the ground state l ¼ 1 becomes the edge
mode as the critical point (34) is passed for each fixed m.
Similarly to the bulk modes (33), a reflection in the sign

of the total angular momentum (17), μm → −μm, leaves the
νml eigenvalues unchanged,

qml → q−1−m;l ≡ qml: ð46Þ

Therefore, the energy spectrum of the edge modes is
symmetric with respect to the flips μm → −μm. Both bulk
and edge modes are degenerate in the absence of external
magnetic field.
The 2-spinors of the edge eigenmode with definite

helicity λ are given the spinor

ϕλ ¼ Cj
ϕϕ̌λ; ϕ̌λ ¼

� ðkþ 2pjλÞeimφImðνm ρ
RÞ

−i νmR eiðmþ1ÞφImþ1ðνm ρ
RÞ

�
; ð47Þ

where Cj
ϕ is a normalization constant and we implied that

the check mark over a spinor means that this spinor is not
normalized.
To prove that the spinor (47) is the eigenmode of the

helicity operator (22), we used the useful relations

P̂þ

�
eimφIm

�
νm

ρ

R

��
¼νm
iR

eiðmþ1ÞφImþ1

�
νm

ρ

R

�
; ð48Þ

P̂−

�
eiðmþ1ÞφImþ1

�
νm

ρ

R

��
¼νm
iR

eimφIm

�
νm

ρ

R

�
ð49Þ

for the operators

P̂� ¼ −ie�iφð∂ρ � iρ−1∂φÞ: ð50Þ

The 2-spinors for the bulk modes (21) were normalized
using the condition [10],X

m∈Z
ϕλ;†
Ekmϕ

λ
Ekm ¼ 1; ð51Þ

which utilized the convenient summation property of the
Bessel functions: X

m∈Z
J2mðxÞ ¼ 1: ð52Þ

The edge states (47) depend on modified, rather than usual,
Bessel functions that possess a different summation rule:

FIG. 2. The masses (44) of the edge states (the solid blue lines)
and the masses (32) of the lowest (l ¼ 1) bulk states (the dashed
magenta lines) as the function of the fermion mass M in the
absence of magnetic field, B ¼ 0. Four lowest states are shown.
The critical points (34) are marked by the red dots (and the thin
gray lines). The asymptotic masses of the edge states (76) in the
limitM → −∞ are shown by the green arrows. Four lowest l > 1
bulk states are shown by the dotted lines.
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X
m∈Z

ð−1ÞmI2mðxÞ ¼ 1: ð53Þ

This equations suggests that the edge eigenmodes (47)
should be normalized according to another normalization
relation,

X
m∈Z

ð−1Þmϕedge;†
Ekm ϕedge

Ekm ¼ 1; ð54Þ

which has a less clear physical sense. Nevertheless, for the
sake of completeness, we give the value of the prefactor Cj

ϕ

corresponding to the normalization (54):

Cj
ϕ¼

1ffiffiffi
2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ2λkRepjþ Im2pj

q

¼ 1ffiffiffi
2

p ·

�ðk2þ2λkpjÞ−1=2; p2
j >0;

R=νm; p2
j <0.

ð55Þ

In the corotating reference frame, the Dirac equation, if
expressed via the corotating coordinates, has the same form
as the standard Dirac equation in the laboratory frame in the
absence of rotation. Using the explicit representation of the
γ matrices (8), the Dirac Eq. (4) in the corotating frame can
be rewritten as

ði∂ −MÞUedge
j;λ ≡

�Eedge
j −M −2pjĥ

2pjĥ −ðEedge
j þMÞ

�
Uedge

j;λ ¼ 0

or

�Eedge
j −M −2pjλ

2pjλ −ðEedge
j þMÞ

�
Ψedge

j;λ ¼ 0; ð56Þ

where we set

Uedge
j;λ ¼ 1

2π
e−i

~Eedge
j tþikzΨedge

j;λ ;

Ψedge
j;λ ¼

� Cλ;up
j ϕ̌λ

j

Cλ;down
j ϕ̌λ

j

�
ð57Þ

and then used the fact that the 2-spinors ϕ̌λ
j, Eq. (47), are the

eigenfunctions of the helicity operator ĥ, Eq. (13).
The self-consistency of the Dirac equation for the edge

modes (56) gives us the expression for their energy (42) and
fixes the coefficients Cλ;up

j and Cλ;down
j in Eq. (57) up to the

overall normalization factor (set to unity in this expression):

Ψ̌edge
j;λ ¼

� ðEedge
j þMÞϕ̌λ

j

2λpjϕ̌
λ
j

�
: ð58Þ

Denoting Ψedge
j ¼ ðΨj

↑;Ψ
j
↓ÞT , the MIT boundary con-

ditions (9) may be explicitly written as

ði=n − 1ÞΨedge
j ¼ −

�
1 iσρ

−iσρ 1

� Ψj
↑

Ψj
↓

!
¼ 0; ð59Þ

where we set ρ ¼ R and defined

σρ ¼ σ1 cosφþ σ2 sinφ: ð60Þ

The 4-spinor solutions satisfying these conditions should
involve both λ ¼ �1=2 helicities [10],

Ψedge
j ≡Ψedge

j;MIT ¼
X
λ¼�

Cλ
jΨ̌

edge
j;λ

≡
� ðEedge

j þMÞðCþ
j ϕ̌

þ
j þ C−

j ϕ̌
−
j Þ

pjðCþ
j ϕ̌

þ
j − C−

j ϕ̌
−
j Þ

�
; ð61Þ

because the MIT boundary condition (9) breaks the helicity
conservation.
The self-consistency requirement for the MIT condition

(59) and (61) gives us the relation (38) which determines
the value of νm.
From Eq. (38), it follows that the nontrivial solutions for

ν ¼ νm exist if and only if M < 0. Solving Eq. (38) as a
quadratic equation, we get

im ≡ Imþ1ðνmÞ
ImðνmÞ

¼ −
MRþ signðμmÞMedge

m R
νm

≡
�−MRþMedge

m R
νm

; m ≥ 0;

−MR−Medge
m R

νm
; m < 0;

ð62Þ

where the angular momentum μm and the mass of the edge
state Medge

m are given in Eqs. (17) and (44), respectively.
The coefficients in Eq. (61) satisfy the relation

X
λ¼�1=2

Cλ
jð1þ 2λκjÞ ¼ 0; ð63Þ

where
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κj ¼
pjðEedge

j þM þ νmim=RÞ
k½Eedge

j þM�

¼ pjðEedge
j − signðμmÞMedge

m Þ
kðEedge

j þMÞ

≡ kðEedge
j −MÞ

pjðEedge
j þ signðμmÞMedge

m Þ ; ð64Þ

and we adopted the usual convention C�1=2
j ≡ C�

j . One can
also rewrite the last expression in the following explicit
form:

κj ¼
pjð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 − ν2m

R2

q
− signðμmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ν2m

R2

q
Þ

kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2 − ν2m

R2

q
þMÞ

:

Combining (63) and (61), we get the edge eigenmode in
the explicit form:

Ψj ¼ Cj
0

0
BBBBB@

ðEedge
j þMÞðκjk − pjÞeimφImðνm ρ

RÞ
νm
iR ðEedge

j þMÞκjeiðmþ1ÞφImþ1ðνm ρ
RÞ

pjðpjκj − kÞeimφImðνm ρ
RÞ

ipj
νm
R eiðmþ1ÞφImþ1ðνm ρ

RÞ

1
CCCCCA: ð65Þ

The overall constant Cj
0 is determined by the orthonorm-

alization condition given in Eq. (29). For the edge mode,
the Dirac inner product is given by

hUedge
j ; Uedge

j0 i ¼ δðk − k0Þδmm0θðEedge
j Eedge

j0 ÞjC0j2

×
��

ðEedge
j þMÞ2ðκjk − pjÞ2 þ p2

jðpκj − kÞ2 þ
�
ν2m
R2

ðEedge
j þMÞ2κ2j þ p2

j
ν2m
R2

��
Iþ
mþ1=2

þ
�
ðEedge

j þMÞ2ðκjk − pÞ2 þ p2ðpκj − kÞ2 −
�
ν2m
R2

ðEedge
j þMÞ2κ2m þ p2

j
ν2m
R2

��
I−
mþ1=2

�
; ð66Þ

where I�
mþ1=2 is defined as

Iþ
mþ1=2ðνmÞ ¼

Z
R

0

dρρ
I2mðνm ρ

RÞ þ I2mþ1ðνm ρ
RÞ

2
¼ R2

2

1

νm
ImðνmÞImþ1ðνmÞ;

I−
mþ1=2ðνmÞ ¼

Z
R

0

dρρ
I2mðνm ρ

RÞ − I2mþ1ðνm ρ
RÞ

2
¼ R2

2

�
I2mðνmÞ −

2mþ 1

νm
ImðνmÞImþ1ðνmÞ − I2mþ1ðνmÞ

�
: ð67Þ

Thus, the normalization coefficient Cj
0 is given by the following expression:

Cj
0 ¼

1

jImðνmÞj

ffiffiffi
2

p
k

pj
ffiffiffiffiffiffi
νm

p
���

k2 þ ðEedge
j −MÞ2 þ ν2m

R2

�
i2m þ 4

νmM
R

im þ
�
k2 þ ðEedge

j þMÞ2 þ ν2m
R2

��
im

þ
�
2Eedge

j ðEedge
j −MÞi2m − 4

νmE
R

im − 2Eedge
j ðEedge

j þMÞ
��

1 −
2mþ 1

νm
im − i2m

��
−1=2

: ð68Þ

In the special case k ¼ 0, one gets the following explicit
expression of the edge eigenmode:

Ψj ¼ Cj
0

0
BBBBB@

θðμmÞðM þMedge
m ÞeimφImðνmρR Þ

θð−μmÞðM þMedge
m Þeiðmþ1ÞφImþ1ðνmρR Þ

−iνmθð−μmÞeimφImðνmρR Þ
−iνmθðμmÞeiðmþ1ÞφImþ1ðνmρR Þ

1
CCCCCA: ð69Þ

The normalization coefficient (for m ≥ 0 so far) is given
by the expression

Cj
0 ¼

1

jImðνmÞj
· ðγm½νm þ 2mγmM

edge
m − 2γmðMedge

m Þ2�Þ−1
2;

ð70Þ
where

γm ¼ −
ðM þMedgeÞR

νm
: ð71Þ

Notice that 0 < γm < 1.
The solutions (65) correspond to the edge modes because

their density ψ̄γ0ψ ≡ ψ†ψ grows exponentially as one
approaches the edge of the cylinder at ρ ¼ R, Fig. 3. We
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see that the higher the absolute value of the (negative)
fermion mass M, the stronger the localization of the edge
modes at the cylinder’s boundary. Since all modified Bessel
functions In grow exponentially at large values of its
argument, the localization length of the edge states (65)
at the boundary of the cylinder is determined by the length
scale

ξedgem ¼ R
νm

: ð72Þ

Thus, the edge modes are characterized by two dimen-
sionful parameters, their mass (44), and the localization
length (72). Notice that the former may be expressed via the
latter:

Medge
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ðξedgem Þ−2

q
: ð73Þ

Now, let us consider the behavior of the masses of the
edge modes Medge in the limit of a large negative fermion
mass M. For a large positive real z ≫ 1, the modified
Bessel functions have the following asymptotic expansion:

ImðzÞ ¼
ezffiffiffiffiffiffiffiffi
2πz

p
�
1þ 1 − 4m2

8z
þOðz−2Þ

�
: ð74Þ

Substituting Eq. (74) into the relation (62), we get that in
the limit of a large negative mass M the solutions νedge

behave as

νedgem ¼ jMjR −
μ2m

2jMjRþOððMRÞ−2Þ; ð75Þ

where μm is the total angular momentum of the mode (17).
Therefore, in the limit of the infinite fermionic mass, the

masses of the edge modes remain finite, contrary to the
bulk modes Mbulk

ml which become infinitely massive in this
limit (32) and therefore decouple from the system.

Moreover, in the limit of large (negative) fermion mass,
the mass spectrum of the edge modes may be computed
analytically:

Medge
∞;m ¼ lim

M→−∞
Medge

m ¼ jμmj
R

: ð76Þ

We find that the masses of the edge modes (76) are (i) finite
and (ii) quantized. According to Eq. (75), the localization
length (72) tends to zero in this limit. The edge states are
double-degenerate as the modes with opposite angular
momenta (μm and μ−1−m ≡ −μm) possess the same mass.
We also stress that in the absence of magnetic field there are
no massless edge modes in the spectrum in a cylinder of a
finite radius R. The modes eventually become massless in
the limit of a large radius R → ∞.
We would like to stress that in this section we discuss the

edge eigenmodes, which are characterized by purely imagi-
nary solutions qm ¼ iνm of the eigenvalue Eq. (27), as
contrasted to real solutions qm of the “bulk” states found in
Ref. [10] and discussed in Sec. II B above. The components
of the spinorwave functions of the edge eigenmodes (65) are
proportional to the modified Bessel functions Im, which, in
turn, satisfy the asymptotic expansion (74). This implies that
the density of a zero mode ψ for any angular momentum m
behaves as ψ†ψ ∼ e2jMjðρ−RÞ in the limit of large (negative)
fermion mass jMj. Thus, the density of a typical edge mode
becomes the exponentially increasing function as the dis-
tance at the radial coordinate approaches the edge of the
cylinder, ρ ¼ R. In a contrast, the density of a typical bulk
mode with real qm is localized in the bulk of the system, as
demonstrated in Fig. 4. The larger the excitation number l of
the bulk state, the more its density gets concentrated to the
center of the cylinder. Therefore, we choose the name “edge
mode” for the whole family of purely imaginary solutions
qm ¼ iνm despite that for lowvalues of the fermionmass jMj
this family of solutions has a nonzero density in the middle
of the cylinder, Fig. 3.

FIG. 3. An example of the density of the edge modes for k ¼ 0
and m ¼ 0 at various fermionic masses M in the absence of the
background magnetic field (B ¼ 0). For the sake of convenience,
in this figure, we show the density normalized to unity at ρ ¼ R.

FIG. 4. Five lowest bulk states (the dashed lines) and the edge
mode (the solid line) for MR ¼ −5 and m ¼ 0 at zero magnetic
field. The modes are normalized according to Eq. (30).
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In conclusion of this section, we would like to notice that
the physical particle-antiparticle interpretation of the fer-
mionic modes in the second-quantization formalism
depends on the presence of the modes for which
Ej

~Ej < 0. The physical meaning of such modes is ambigu-
ous (see Refs. [4,7] as well as the detailed discussion in
Ref. [10]), and therefore the absence of such modes in the
spectrum makes the theory well defined. In short, the
modes Ej > 0 (Ej < 0) in the laboratory frame are inter-
preted as particle (antiparticle) states in the Vilenkin
quantization [4], while the modes with ~Ej > 0 ( ~Ej < 0)
in the corotating frame are interpreted as particle (anti-
particle) states in the quantization of Iyer [7]. Both vacua
are the same, provided Ej

~Ej > 0 for all modes. In Ref. [10],
it was indeed found that for uniformly rotating states
bounded within the light cylinder (so that with
jΩjR < 1) with physically reasonable boundary conditions
the condition Ej

~Ej > 0 is satisfied for all bulk modes [10]
so that the rotating (Iyer) and laboratory (Vilenkin) vacua
are equivalent. Below, we show that the same identity is
also true for the edge modes,

Eedge
j

~Eedge
j > 0; ð77Þ

provided they rotate within the light cylinder, jΩjR < 1.
Since the energy for k ≠ 0 is grater than the one for

k ¼ 0, we focus on the energy for k ¼ 0,

jEedge
j j ¼ Medge

m : ð78Þ

The derivative of Eedge
m with respect to M is given by

djEedge
j j

dM
¼ M − νm

R2

dνm
dM

jEedge
j j : ð79Þ

The derivative can be also expressed via Eq. (62),

1

R
dνm
dM

Imþ1ðνmÞ
ImðνmÞ

�
1þ νm

I0mþ1

Imþ1

− νm
I0m
Im

�

¼ −1 − signðμmÞ
djEedge

j j
dM

; ð80Þ

with I0mðνmÞ ¼ dImðνmÞ=dνm. Using the properties of the
modified Bessel functions,

I0mðzÞ ¼
m
z
ImðzÞ þ Imþ1ðzÞ; ð81Þ

I0mþ1ðzÞ ¼ ImðzÞ −
mþ 1

z
Imþ1ðzÞ; ð82Þ

the derivative can be rewritten as

djEedge
j j

dM
¼ 2jμmjM − 2jEedge

j jMR − jEedge
j j

2jμmjjEedge
j j − 2ðEedge

j Þ2R −M
: ð83Þ

If there is a local minimum at M ¼ M0 < MðmÞ
c < 0, the

energy is given by

jEedge
j jR ¼ 2M0R

1þ 2M0R
jμmj: ð84Þ

Because of the non-negativity of the left-hand side of the
above equation, the local minimum can exist only for
M0R < −1=2. In this region, the inequality jEedge

j jR >

jμmj is satisfied at all local minima, and thus Eedge
j

~Eedge
j >

0 is satisfied for ΩR < 1 (here, we take for simplicity
Ω > 0). There is also a possibility that the minimum is
achieved at the ends, MR → −jμmj − 1=2 or M → −∞. At
such points, the energies are given by Eedge

j ¼ ðjμmj þ
1=2Þ=R and Eedge

j ¼ jμmj=R, respectively. Therefore, in
the region of MR ∈ ð−∞;−jμmj − 1=2Þ, the relation
Eedge
j

~Eedge
j > 0 is always satisfied for the uniform rotation

within the light cylinder ΩR < 1.

III. BULK AND EDGE SOLUTIONS IN THE
MAGNETIC FIELD BACKGROUND

In this section, we derive, following the general line of
the previous section, the eigenspectrum of the Dirac
fermions in the background of magnetic field.

A. Dirac equation in rotating space-time
in the uniform magnetic field

In the presence of an external magnetic field parallel to
the cylinder axis B ¼ ð0; 0; Bz ≡ BÞ, the Dirac Eq. (4) is
modified,

½iγμðDμ þ ΓμÞ −M�ψ ¼ 0; ð85Þ
where Dμ ¼ ∂μ − ieAμ is the covariant derivative. In the
laboratory frame, the corresponding gauge field can be
chosen in the symmetric form

Aî ¼
�
0;
By
2
;−

Bx
2
; 0

�
: ð86Þ

In the corotating frame, the background gauge field is as
follows:

Aμ ¼
�
−
BΩr2

2
;
By
2
;−

Bx
2
; 0

�
: ð87Þ

The Dirac Eq. (85) can be explicitly written as follows:�
iγ t̂
�
∂t þ yΩ∂x − xΩ∂y −

i
2
Ωσx̂ ŷ

�
þ iγx̂

�
∂x þ

ieBy
2

�

þ iγŷ
�
∂y −

ieBx
2

�
þ iγẑ∂z −M

�
ψ ¼ 0: ð88Þ
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As in the absence of magnetic field, the eigenvectors of
the Dirac Eq. (88) are labeled by the eigenvalues of

commuting operators f ~̂H; P̂z; Ĵz; Ŵg, where ~̂H is the
corotating Hamiltonian, P̂z is the z component of the
momentum operator, Ĵz is the z component of the total
angular momentum (18), and Ŵ is the helicity operator. In
the presence of magnetic field, these operators coincide
with the ones given in Sec. II with the substitution
P̂ → P̂þ eÂ, which accounts for the gauge invariance of
these operators. In the presence of magnetic field, the
corotating energy ~Ej is related to the laboratory energy Ej

according to Eq. (16).
Notice that Eq. (88) is gauge invariant because of the

identity which holds for usual ∂μ and covariant Dμ

derivatives in the corotating reference frame:

∂t þ yΩ∂x − xΩ∂y ≡Dt þ yΩDx − xΩDy: ð89Þ

Here, we used the fact that in the rotating frame the gauge
field (87) acquires the compensating time compo-
nent A0 ¼ −BΩr2=2.
In fact, relation (89) has a much deeper sense than just a

simple mathematical identity. In the absence of the mag-
netic background, the relation between the energies in
corotating and laboratory frames is given by Eq. (16). Since
thermodynamical and mechanical properties of the system
depend on the energies in the corotating (rather then
laboratory) frame, it is important to figure out if the relation
(16) still holds in the presence of magnetic field B or not.
Indeed, to maintain the gauge invariance, the usual deriv-
atives ∂μ in the presence of magnetic field in all physical
operators should transform to the covariant derivatives
Dμ ¼ ∂μ − ieAμ. In particular, the angular momentum
operator (18) should become

ĴzðAÞ ¼ Jz − ieAφ ≡ −i∂φ þ
1

2
Σz −

eBr2

2
; ð90Þ

where Jz ≡ JzðA ¼ 0Þ. Therefore, we could naturally
expect that in the presence of magnetic field the crucial
corotating-laboratory energy relation (16) could also be
modified. To clarify this issue, we notice that the relation
(16) comes from the relation between Hamiltonians in the

rotating ( ~̂H ¼ i∂t) and laboratory (Ĥ ¼ i∂ t̂) reference
frames,

~̂H ¼ Ĥ −ΩĴz; ð91Þ

which has been used so far at vanishing magnetic field.
However, in the presence of magnetic field, the gauge-
covariant Hamiltonian in the corotating frame is given by

H ¼ iDt ≡ i∂t þ eAt ð92Þ

[while the Hamiltonian in the laboratory frame Ĥ ≡ iDt̂
remains untouched as At̂ ≡ 0 according to Eq. (86)] so that
the eigenvalue equation for the energy levels becomes

iDtψ ¼ ½Ĥ −ΩĴzðAÞ�ψ : ð93Þ

However, taking into account in the rotating frame At ¼
ΩAφ ≡ −BΩr2=2 [used already in Eq. (89)], we arrive at
the conclusion that the “covariantization” of the
Hamiltonian (92) and the covariantization of the angular
momentum operator (90) exactly cancel each other in
Eq. (93), and we arrive at

i∂tψ ¼ ðĤ −ΩJzÞψ : ð94Þ

Next, we notice that the energy in the corotating frame
enters the wave function as ψðt; xÞ ¼ expf−i ~EjtgψðxÞ, and
therefore one gets from Eq. (94)

~EjψðxÞ ¼ ðĤ −ΩJzÞψðxÞ; ð95Þ

which agrees with Eq. (91), which, in turn, leads to the
relation in question (16). Thus, we conclude that the
relation (16) between the energies in the corotating ~E
and laboratory E frames is still valid in the presence of the
magnetic field background.

B. Solutions

A general solution of the Dirac Eq. (88) has the form

Ujðt; z; ρ;φÞ ¼
1

2π
e−i ~Ejtþikzujðρ;φÞ; ð96Þ

where uj is an eigenspinor. The diagonal forms of Ĵz and Ŵ
allow us to express the eigenspinor uj as

uλjðρ;φÞ ¼
� Cλ;up

j ϕλ
jðρ;ϕÞ

Cλ;down
j ϕλ

jðρ;ϕÞ

�
; ð97Þ

where the 2-spinor

ϕλ
jðρ;ϕÞ ¼

� eimφχλj−ðρÞ
eiðmþ1ÞφχλjþðρÞ

�
ð98Þ

is defined via two scalar functions χλj� of the radial
coordinate ρ with a definite helicity eigenvalue λ. The
helicity eigenvalue equation, ŴUλ

j ¼ λUλ
j, is reduced to the

relation
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�
k P̂− þ eÂ−

P̂þ þ eÂþ −k

�
ϕλ
jðρ;φÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q ¼ λjϕ
λ
jðρ;φÞ;

ð99Þ

with P̂� þ eÂ� ¼ −ie�iφð∂ρ � iρ−1∂φ � eBρ=2Þ. The
equations for χλj� are written as follows:�

∂2
ρ þ

∂ρ

ρ
−
�
mþ 1

ρ

�
2

þmeB −
e2B2

4
ρ2

þ ðE2
j −M2 − k2Þ

�
χλjþ ¼ 0; ð100Þ

�
∂2
ρ þ

∂ρ

ρ
−
�
m
ρ

�
2

þ ðmþ 1ÞeB −
e2B2

4
ρ2

þ ðE2
j −M2 − k2Þ

�
χλj− ¼ 0. ð101Þ

Using the substitution ξ≡ eB
2
ρ2, the above equations are

reduced, respectively, to a simpler set of relations,

ξðχλjþÞ00 þ ðχλjþÞ0 þ
�
−
1

4
ξþ βþj −

ðmþ 1Þ2
4ξ

�
χλjþ

¼ 0; ξðχλj−Þ00 þ ðχλj−Þ0 þ
�
−
1

4
ξþ β−j −

m2

4ξ

�
χλj− ¼ 0;

ð102Þ
where

β�j ¼ 2μm ∓ 1

4
þ 1

2eB
ðE2

j −M2 − k2Þ ð103Þ

and the angular momentum μm is given in Eq. (17).
The normalizable (regular in the origin) solutions are given

by the confluent hypergeometric function Mða; b; zÞ≡
1F1ða; b; zÞ [13,22],

χλjþ ¼ N λ
jþρ

jmþ1je−eB
4
ρ2Mþ

j ; ð104Þ
χλj− ¼ N λ

j−ρ
jmje−eB

4
ρ2M−

j ; ð105Þ
where M�

j is defined as

Mþ
j ≡M

�
aþj ; jmþ 1j þ 1;

eB
2
ρ2
�
; ð106Þ

M−
j ≡M

�
a−j ; jmj þ 1;

eB
2
ρ2
�

ð107Þ

and a�j is defined as

aþj ¼ 1

2
ðjmþ 1j −mþ 1Þ − 1

2eBR2
ðqBj Þ2; ð108Þ

a−j ¼ 1

2
ðjmj −mÞ − 1

2eBR2
ðqBj Þ2 ð109Þ

with qBj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2 − k2

q
R. The coefficient N λ

jþ can be

related to the coefficientN λ
j− by a substitution of Eqs. (104)

and (105) into the helicity Eq. (99):

N λ
jþ ¼ þiðE2

j −M2 − k2Þ
2ðkþ 2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q
Þðmþ 1Þ

N λ
j−; m ≥ 0;

N λ
jþ ¼ 2im

kþ 2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q N λ
j−; m < 0: ð110Þ

The 2-spinors ϕλ
j with the helicity λ are written as

ϕλ
jðρ;φÞ ¼ αλj

� fλj−M
−
j

fλjþM
þ
j

�
; ð111Þ

where αj is an overall constant and the 2-spinor ðfλj−fλjþÞT is
defined as

� fλj−

fλjþ

�
¼

8>>><
>>>:

�
2ðmþ 1ÞGmðρ;φÞ

2iλpB
j ðpB−λÞ2Gmþ1ðρ;φÞ

�
; m ≥ 0;

�
pB
j ðpBλ Þ2Gmðρ;φÞ
4iλmGmþ1ðρ;φÞ

�
; m < 0;

ð112Þ

with

Gmðρ;φÞ ¼ eimφρjmje−eB
4
ρ2 ð113Þ

and

pB� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k

pB
j

s
; pB

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q
: ð114Þ

Next, we use the Dirac Eq. (88) to determine the
constraint between Cλup

j and Cλdown
j :

0
B@ Ej −M −2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q
2λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2

q
−Ej −M

1
CAuλjðρ;ϕÞ ¼ 0; ð115Þ

or

Cλ;up
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej þM

p
2λ

Ej

jEjj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej −M

p Cλ;down
j : ð116Þ

Consequently, the spinor uλj with the helicity λ can be
written as
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uλjðρ;φÞ ¼ Cλ
j

 
Eþϕλ

j

2λ
Ej

jEjjE−ϕ
λ
j

!
ð117Þ

with E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� M

Ej

q
and an overall constant Cλ

j, which is

determined by an orthogonal condition. Notice that the
prefactor αλj in Eq. (111) is absorbed into Cλ

j.
The spinor uj which satisfies the MIT boundary con-

dition (9) can be constructed in terms of the linear
combination

ujðρ;φÞ ¼ bþj u
þ
j ðρ;φÞ þ b−j u

−
j ðρ;φÞ: ð118Þ

Substituting the eigenmode (96) and (118) into the
boundary condition (9) as ψ ≡Uj and using the explicit
form of the eigenspinors (117), we get a matrix equation for
the coefficients b� with the solution (118),

Eþðbþj ϕþ
j þ b−j ϕ

−
j Þjρ¼R

¼ −
iEj

jEjj
E−ðbþj σρϕþ

j − b−j σ
ρϕ−

j Þjρ¼R; ð119Þ

where σρ is given in Eq. (60). The matrix Eq. (119) can also
be represented in the form

 
i Ej

jEjjE−e−iφf
þ
jþM

þ
j þ Eþfþj−M

−
j −i Ej

jEjjE−e−iφf−jþM
þ
j þ Eþf−j−M

−
j

i Ej

jEjjE−eiφf
þ
j−M

−
j þ EþfþjþM

þ
j −i Ej

jEjjE−eiφf−j−M
−
j þ Eþf−jþM

þ
j

!�
bþj
b−j

�
jρ¼R ¼ 0. ð120Þ

We find that Eq. (120) has a nontrivial solution for b�j if the quantity

qBj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
j −M2 − k2

q
R ð121Þ

satisfies the relation

� ðqBj Þ2ðMþ
R Þ2 − 4ðmþ 1ÞMRM−

RM
þ
R − 4ðmþ 1Þ2ðM−

RÞ2 ¼ 0; m ≥ 0;

ðqBj Þ2ðM−
RÞ2 − 4mMRM−

RM
þ
R − 4m2ðMþ

R Þ2 ¼ 0; m < 0;
ð122Þ

where

Mþ
R ≡Mþ

j jρ¼R ¼ Mðaþj ; jmþ 1j þ 1;ϕB=ϕ0Þ;
M−

R ≡M−
j jρ¼R ¼ Mða−j ; jmj þ 1;ϕB=ϕ0Þ: ð123Þ

The magnetic field enters the spectrum in terms of the ratio,

ϕB

ϕ0

≡ eBR2

2
; ð124Þ

of the magnetic flux the cross section of the cylinder,

ϕB ¼ πBR2; ð125Þ

and the elementary magnetic flux,

ϕ0 ¼
2π

e
ð126Þ

(we remind the reader that in our units ℏ ¼ 1).
Since the dimensionless quantity qBj is obtained by the

equation only associated with the angular number m and is
discretized in accordance with effects of the boundary

condition, it can be labeled by m and the root number
l ¼ 1; 2; 3;…, i.e. qBml.
The zero solutions of Eq. (122), qBml ¼ 0, are achieved at

specific values of the fermion masses M ¼ MðmÞ
c with

MðmÞ
c ¼

(− mþ1
R

1
Mð1;mþ2;ϕB=ϕ0Þ ; m ≥ 0;

m
R

eϕB=ϕ0

Mð−m;−mþ1;ϕB=ϕ0Þ ; m < 0;
ð127Þ

where we used the properties Mð0; b; zÞ ¼ 1 and
Mða; a; zÞ ¼ ez. In the limit of vanishing magnetic field,

eB → 0, we can recover the result (34) for MðmÞ
c using the

property Mða; b; zÞ ¼ 1þOðzÞ valid for z → 0. In the
limit of strong magnetic field, eB → ∞, the mass becomes

MðmÞ
c ¼

(
− e−ϕB=ϕ0 ðϕB=ϕ0Þmþ1

Rm!
→ 0; m ≥ 0;

− 1
R
ϕB
ϕ0

→ −∞; m < 0;
ð128Þ

where we used the asymptotic expansion Mða; b; zÞ ∼
ðΓðbÞ=ΓðaÞÞezza−b valid at z → ∞ for all values of a
except for nonpositive integer a.

EDGE STATES AND THERMODYNAMICS OF ROTATING … PHYSICAL REVIEW D 96, 096014 (2017)

096014-13



We can recover Eq. (27) from Eqs. (122) and (123) in the
limit of vanishing magnetic field eB → 0 using the rela-
tions (valid for qBj ≠ 0 and n ≥ 0)

a�j →
eB→0 −

ðqBj Þ2
2eBR2

; ð129Þ

lim
x→0

1F1

�
−
y2

2x
; nþ 1;

x
2

�
¼ n!

�
2

y

�
n
JnðyÞ; ð130Þ

and J−mðxÞ ¼ ð−1ÞmJmðxÞ.
The masses of the bulk and the edge states are given by

the same formulas (32) and (44), respectively, as in the case
of the B ¼ 0 states (with the obvious change qml → qBml).
The quantity νBm for the edge states in the background of
magnetic field is defined similarly to the B ¼ 0 definition
in Eq. (37):

qBm ¼ iνBm: ð131Þ

In the limit of infinitely large fermion mass, M → −∞,
the wave function of the edge mode may be written in an
explicit form; see Eq. (145) below.

C. Properties of the solutions

To obtain the spectrum of free fermions in the cylinder in
the presence of external magnetic field, we solve Eqs. (122)
and (123) numerically.
In Figs. 5 and 6, we show the behavior of, respectively,

the bulk solutions qBml and the edge solutions νBm for the
orbital angular momentum m ¼ 0 (which represents the
qualitative behavior of all μm > 0 modes) and m ¼ −1
(which characterizes general properties of the solutions
with μm < 0) at nonzero magnetic field. These quantities at
zero magnetic field are shown in Fig. 1.
We notice the following effects of background magnetic

field on the bulk modes:
(i) Critical mass.—At zero magnetic field, the ground

states (l ¼ 1) disappear at the quantized critical

massesMðmÞ
c given in Eq. (34). As the magnetic field

becomes stronger, the critical masses MðmÞ
c deviate

from their B ¼ 0 values; for eB > 0, the critical
masses for the modes with a positive angular mo-

mentum μm > 0 tend to zero, MðmÞ
c → 0, while the

critical masses of the μm < 0 modes tend to negative

infinity, MðmÞ
c → −ðϕB=ϕ0Þ=R. The behaviors are

consistent with the analytical results given in
Eq. (128). One can show that at eB < 0 the modes

(a)

(b)

FIG. 5. The bulk qBml solutions of Eqs. (122) and (123) vs the
fermion mass M in the background of magnetic flux (124) ϕB ¼
7.5ϕ0 for (a) m ¼ 0 and (b) m ¼ −1 orbital numbers and various
radial excitation numbers l.

(a)

(b)

FIG. 6. The edge νBm solutions (131) of Eqs. (122) and (123) vs
the fermion mass M in the background of different magnetic
fluxes (124) ϕB for (a) m ¼ 0 and (b) m ¼ −1 orbital numbers.
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with μm > 0 and μm < 0 swap their places asMðmÞ
c →

−∞ for the former and MðmÞ
c → 0 for the later.

(ii) Level degeneracy.—At large positive or negative
values of the fermion mass,M → �∞, the levels are
grouping into pairs. This is a natural consequence of
the growing mass of the bulk levels (32). As the
mass become large, the bulk states become more
localized in space, and they become less sensitive to
the presence of the boundary of the cylinder. Then,
the energy spectrum shares a natural similarity
with the Landau levels in a boundless space where
the spin-up and spin-down states of the excited
levels are double degenerate in energy.

The behavior of the edge modes νBm at values of magnetic
field—or, equivalently, the magnetic flux ϕB, Eq. (125)—is
shown in Fig. 6. The mentioned properties of the critical
mass are quite consistent with the ones for the bulk modes,
as expected. As the fermion mass M decreases, the
quantities νm become linear functions of the mass M.
In Fig. 7, we show the masses of the lowest (l ¼ 1) bulk

modes (32) and the edge modes (44) as the functions of the
fermion mass M at various values of magnetic field B. We
notice the following remarkable properties of these
quantities:

(i) Masses for themodeswith negative angularmomenta
μm (i.e., with m ¼ −1;−2;…) behave regularly as
the l ¼ 1 bulk modes are transformed into the edge

modes at certain critical masses M ¼ MðmÞ
c ðBÞ.

These critical masses are growing in absolute value
(and negatively valued) functions of magnetic field.
At large enough strengths of the background mag-
netic field, the masses of the bulk modes experience,
as functions of the fermion mass M, a global
minimum.

(ii) At positive values of the angular momenta μm (i.e., at
m ¼ 0; 1; 2;…), the masses of the edge modes
behave rather irregularly. In particular, they vanish

at certain mass M ¼ MðmÞ
c ðBÞ,

Medge
m ðMðmÞ

c ðBÞÞ ¼ 0; m ≥ 0: ð132Þ

In Fig. 8, we plot, for a few values of m, the masses

of fermions M ¼ MðmÞ
c ðBÞ at which the mass of the

edge mode become zero (effectively, the massive
edge mode becomes the zero mode). These masses
are growing (in absolute value) negative-valued
functions of the magnetic field B.

(a) (b)

(c) (d)

FIG. 7. The masses of the lowest bulk (l ¼ 1) and edge states vs the mass of the fermionM for various values orbital angular momenta
m and magnetic field B. The bulk (edge) modes are shown by the thicker (thinner) lines, while the positions where the bulk modes are
converted to the corresponding edge modes are marked by the red points.
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Notice that all these properties are valid for positive
magnetic field eB > 0. For the negative magnetic field,
eB < 0, the modes with positive and negative magnetic
momenta μm swap their places.
As in the absence of magnetic field, in the limit of a large

(negative) fermionic massM → −∞, the masses of the edge
modes remain finite, contrary to the excited l ≥ 2 bulk modes
which become massive (32) and decouple from the system.
Moreover, one can checknumerically that in this limit themass
spectrum of the edge states fits a simple analytical function:

Medge
∞;mðBÞ ¼ lim

M→−∞
Medge

m ðBÞ ¼
				μm −

ϕB

ϕ0

				 1R : ð133Þ

In fact, we can obtain the result (133) analytically by using the
large a expansion of Mða; b; zÞ [23]:

Mða; b; zÞ ¼ ðz=aÞð1−bÞ=2 e
z=2Γð1þ a − bÞΓðbÞ

ΓðaÞ
�
Ib−1ð2

ffiffiffiffiffi
az

p Þ −
ffiffiffi
z
a

r
Ibð2

ffiffiffiffiffi
az

p Þ
�
b
2
−

z
12

�
þOða−1Þ

�

¼ ðz=aÞð1−bÞ=2 e
z=2Γð1þ a − bÞΓðbÞ

ΓðaÞ
�

e2
ffiffiffiffi
az

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
π
ffiffiffiffiffi
az

pp ×

�
1þ 1 − 4ðb − 1Þ2

16
ffiffiffiffiffi
az

p −
ffiffiffi
z
a

r �
b
2
−

z
12

�
þOða−1Þ

��
: ð134Þ

Substituting Eqs. (134) and (74) into Eq. (122), we obtain
the solution of νm in terms of the expansion of a large
negative mass M,

νedgem ¼ jMjR −
ðμm − ϕB

ϕ0
Þ2

2jMjR þOððMRÞ−2Þ; ð135Þ

which leads to Eq. (133).
The masses of the edge states depend on the angular

magnetic moment μm of the mode and the Aharonov-Bohm
phase ϑ ¼ ϕB=ϕ0. In the limit of vanishing magnetic field,
ϕB ¼ 0, Eq. (133) matches with the B ¼ 0 result (76). The
mass spectrum of the edge states (133) in theM → ∞ limit
is shown in Fig. 9.

IV. EDGE MODES AND ROTATION

A. Zero magnetic field

In the limit of infinite negative mass M, the thermody-
namic and rotational properties of the system are deter-
mined only by the edge modes. Indeed, the masses of the
edge modes remain finite (76), while the masses of the bulk
modes tend to infinity, implying that the latter do not
contribute to the dynamics of the system. In the absence of
magnetic field, the energy of the edge modes (42) is given
by the simple expression2

Eedge
j ≡ Eedge

m ðkzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

μ2m
R2

r
; ð136Þ

where μm is the angular momentum of the edge mode (17)
and m ∈ Z.
The thermodynamic effects of the edge modes are

determined by the thermodynamic potential defined in
the corotating, as opposed to the laboratory, reference
frame (the latter fact is stressed by the tilde sign in ~F):

FIG. 8. The values of the fermion masses M ¼ MðmÞ
c at which

the masses of the edge modes vanish (132) vs the magnetic flux
ϕB for various values of orbital momentum m.

FIG. 9. The masses of the edge modes (76) as functions of
magnetic field B in the limit M → −∞.

2In this section, we consider only the positively defined branch
of the energy eigenmodes E ¼ þjEj, which corresponds to the
particle edge states (42) both for vanishing (136) and non-
vanishing (142) magnetic field.
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~FedgeðT;ΩÞ ¼ −
T
πR2

X
m∈Z

Z
dkz
2π

× ½ln ð1þ e−
Eedgem ðkzÞ−Ωμm

T Þ þ ðΩ → −ΩÞ�:
ð137Þ

Below, we omit the superscript “edge” in all our notations.
The angular momentum density is given by the deriva-

tive of the thermodynamic potential in the corotating
reference frame [24]:

L ¼ −
�∂ ~F
∂Ω
�

T
: ð138Þ

Since the rotation axis Ω ¼ Ωez coincides with the sym-
metry axis of the cylinder ez, the angular momentum has
only one nonzero component, L ¼ ð0; 0; LzÞ.
It is convenient to consider the density of the angular

momentum per unit height of the cylinder,

LzðΩÞ≡ πR2LzðΩÞ

¼
Z

∞

−∞

kz
2π

X
m∈Z

μm½fm;kzðΩ; TÞ − fm;kzð−Ω; TÞ�;

ð139Þ

where

fm;kzðΩ; TÞ ¼
1

e
EmðkzÞ−Ωμm

T þ 1
ð140Þ

is the occupation number of the fermionic edge mode.
The moment of inertia per unit height is related to the

density of the angular momentum (139) as follows:

IzðΩÞ ¼
LzðΩÞ
Ω

: ð141Þ

The angular momentum (139) and the moment of inertia
(141) at zero magnetic field are both shown in Fig. 10.
These quantities are, respectively, odd and even functions
with respect to the flips of the direction of rotation,
Ω → −Ω, because the thermodynamic potential (137) is
an even function ofΩ. Both the angular momentum and the
moment of inertia diverge in the ultrarelativistic regime at
ΩR → �1. At low temperature, both quantities are weakly
dependent on the angular frequency Ω, while in a high-
temperature regime, both quantities are In functions of Ω.
In Fig. 11, we show the density of the moment of inertia

at zero angular momentum. The moment of inertia is a
growing function of temperature because as temperature
increases the heavier (energetic) modes may participate in
rotation of the system.

B. Effects of magnetic field

In the presence of magnetic field, the energy dispersion
of the edge modes (in the limit of an infinite fermion mass
M → ∞) is given by the formula

Eedge
m ðkzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

1

R2

�
μm −

ϕB

ϕ0

�
2

s
; ð142Þ

where μm is the angular momentum of the edge mode (17)
with m ∈ Z.

(a)

(b)

FIG. 10. Densities of (a) the angular momentum (139) and
(b) moment of inertia (141) of the cylinder in the limit an infinite
fermion mass M → ∞ as the function of angular frequency Ω at
various temperatures T and zero magnetic field.

FIG. 11. Density of the moment of inertia (141) at Ω ¼ 0 vs
temperature T at vanishing magnetic field B ¼ 0.
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The angular momentum (138) can be readily calculated
using the partition function (137) and dispersion (142). In
Fig. 12, we show the angular momentum L in the magnetic
field–angular frequency ðB;ΩÞ plane for temperatures
TR ¼ 0.05, 0.1, 1. Naturally, the angular momentum is
an increasing function of the angular frequency Ω for every
fixed value of magnetic flux ϕB and for all temperatures T.

At low temperatures, TR≲ 0.1, and at slow rotations
(Ω ∼ 10−2=R), the angular momentum L exhibits oscillat-
ing, but nonperiodic, dependence on the value of magnetic
flux, as is clearly seen in Figs. 12(a) and 12(b). The local
minima and maxima of L approximately correspond to the
integer and half-integer values, respectively, of the ratio of
magnetic flux ϕB and the elementary flux (124). Apart from
these oscillations, the value of L slowly increases with the
strength of the background magnetic field. This quantum
behavior is seen at sufficiently low temperatures; the lower
the temperature, the more pronounced oscillations are.
There is also a certain small correlation between the
magnetic field and the angular frequency seen in the range
of middle frequencies, ΩR ∼ 0.2.
At higher temperatures TR ∼ 1, shown in Fig. 12(c), the

magnetic-field induced oscillations of the angular momen-
tum disappear completely. At sufficiently fast rotations, the
oscillations disappear for all temperatures. In these cases,
the angular momentum is an increasing function of both
magnetic field B and angular frequency Ω.
In Fig. 13, we show the dependence of the moment of

inertia (normalized by the temperature squared) at vanish-
ing angular frequency Ω ¼ 0 vs normalized magnetic flux
(124). We clearly see that with the increase of temperature
the moment of inertia of the edge modes increases in
agreement with zero-field behavior shown in Fig. 11.
Similarly to the angular momentum, the moment of inertia
experiences (nonperiodic) oscillations as a function of
magnetic field. The local minima (maxima) approximately
correspond to the integer (half-integer) values of the
magnetic flux [calculated in units of the elementary flux
(124)]. The oscillatory quantum behavior is pronounced
well at low temperatures while at higher temperatures, the
dependence of the moment of inertia on the magnetic flux
reduces to a monotonically increasing function. These
features are also very visible in Fig. 14(a), which shows
the moment of inertia I vs both magnetic flux ϕB and

FIG. 12. Angular momentum L of the edge modes per unit
height of the cylinder vs the angular frequency Ω and magnetic
flux ϕB at temperatures TR ¼ 0.05, 0.1, 1 in the limit of infinite
fermionic mass M → −∞ (the bulk modes are absent).

FIG. 13. Moment of inertia (divided by temperature squared)
per unit height of the cylinder vs the flux ϕB of the background
magnetic field at (a) vanishing angular frequency Ω ¼ 0 and
(b) nonzero frequency ΩR ¼ 0.5.
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temperature T at zero frequency Ω ¼ 0. At larger
angular frequencies, the oscillations are damped, and the
low-temperature behavior of the moment of inertia is
similar to the one in its featureless high-temperature region,
Fig. 14(b).
The fact that both the moment of inertia and the angular

momentum are not a periodic function of magnetic field is a
natural consequence of the nonequivalence of magnetic
field and rotation in relativistic domain. Indeed, in many
nonrelativistic quantum-mechanical applications, a (slow)
rotation may be treated as a (weak) magnetic field. This fact
is used, for example, in characterizing the spectrum of
rotation optical lattices of cold atoms [25]. The equivalence
is no more true in the case of a fast relativistic rotation; the
effects of rotation and magnetic field in this case are very
different [13,15]. To highlight the difference between
rotation and magnetic field, we mention that the ground-
state degeneracy is independent of the value of the angular
frequency, contrary to case of magnetic field [15].
Moreover, the phenomenon of dimensional reduction,
which govern many interesting effects in magnetic field
background, does not exist in the case of rotation [15].

C. Anomalous transport properties of edge modes

As we mentioned in the Introduction, the quantum field
theories may exhibit anomalous transport associated with
quantum anomalies that break otherwise conserved
classical symmetries of the theory (for details, we refer
to Ref. [26] for reviews). In particular, in theories with
chiral fermions, the axial anomaly leads to a family of
transport phenomena of which the best known represent-
atives are the chiral vortical effect [3] and the chiral
magnetic effect [27]. In general, the anomalous chiral
effects generate steady electric (vector) and chiral (axial)
currents of chiral fermions in the rotating fermionic
medium and/or in the background of magnetic field.
These effects are realized at finite density and/or in a
chirally imbalanced medium with different numbers of left-
handed and right-handed chiral fermions. The chiral nature
of fermions is essential for these processes as the chiral
fermionic number is a conserved quantity for massless
(chiral) fermions. Therefore, the anomalous transport
phenomena are predominantly discussed in the scope of
theories possessing relativistic massless fermions.
Coming back to our case of massive Dirac fermions in

the cylinder, we notice that, even in the case of massive
bulk fermions, the edge modes may become massless states
for certain quantized values of background magnetic field
Bc. In particular, for the case of the infinitely massive bulk
fermions, M → ∞, the masses of the light edge states
vanish for half-integer fluxes ϕB of magnetic field
(cf. Fig. 9):

ϕBc
¼
�
nþ 1

2

�
ϕ0; n ∈ Z: ð143Þ

With the help of Eqs. (124), (125), and (126), this condition
may be rewritten as follows:

Bc ¼
2nþ 1

eR2
; n ∈ Z: ð144Þ

At the critical magnetic field (144), the energy spectrum
of edge modes (142) contains a mode with the linear
dispersion: Eedge

m ¼ jkzj
Since at the critical values of magnetic field (144) the

mass of the edge mode vanishes, one could expect that
the anomalous chiral phenomena may be realized via the
massless edge modes even for the infinitely massive bulk
fermions. To check this hypothesis, we explicitly write the
wave functions of the edge modes in the limit M → −∞,

FIG. 14. Moment of inertia per unit height of the cylinder vs
magnetic flux ϕB and temperature T at (a) vanishing (Ω ¼ 0) and
(b) nonzero (ΩR ¼ 0.5) angular frequency.
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Ψedge
m ¼ 1

2πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj

2EmðEmR−μmþ ϕB
ϕ0
Þ

s
e−i ~Emtþikzz

·

0
BBBBB@

kzReimφ

−iðEmR−μmþ ϕB
ϕ0
Þeiðmþ1Þφ

ðEmR−μmþ ϕB
ϕ0
Þeimφ

ikzReiðmþ1Þφ

1
CCCCCAejMjðρ−RÞ; ð145Þ

where the energy of the edge mode Em ≡ Eedge
m is given in

Eq. (142) and ~Em ¼ Em − Ωμm according to Eq. (45). The
solution (145) may be explicitly derived following all steps
of Sec. III B in the simplifying limit M → −∞.
Using the explicit form of the eigenfunction (145), we

find that, despite that the mass of the edge mode vanishes at
the critical magnetic field (144), the eigenmode itself is not
chiral at any value of the magnetic flux3:

γ5Ψedge
m ≠ �Ψedge

m : ð146Þ

This property is consistent with the fact that the edge modes
do not possess a definite helicity, Sec. II C.
Therefore, we come to a conclusion that one cannot

define left-handed and right-handed chiral edge modes and,
consequently, the chirally imbalanced edge matter is not a
well-defined physical notion. As a result, one may expect
that the anomalous transport phenomena, based on the
property of chirality, may not be supported by the edge
modes. And indeed, using the explicit form of the wave
function (145), we find that the contribution of each edge
mode to the chiral (axial) current in the direction along the
axis of the cylinder is identically zero at every point of the
cylinder’s interior:

j5zðxÞ ¼ Ψ̄edge
m ðxÞγ5γzΨedge

m ðxÞ≡ 0: ð147Þ

Therefore, the total axial current due to the edge modes
vanishes:

hJ5ziedge ≡ 0: ð148Þ

This property can be understood readily from properties of
the MIT boundary condition (9) and the corresponding
edge modes; in the negative infinite mass limit, the edge
modes are located only at the surface of the cylinder, and
thus the axial current vanishes everywhere except the
surface. However, the value of the axial current at the
surface also becomes zero due to the MIT boundary
condition (9) as mentioned in Eq. (10).

The density of the electric (vector) current generated by a
single edge mode is, however, nonzero,

Jz ¼
Z
jxj≤R

d2x⊥jzðxÞ

¼
Z
jxj≤R

d2x⊥Ψ̄edge
m γzΨedge

m ¼ kz
2πEedge

m
; ð149Þ

where the energy of the edge mode Eedge
m is defined in

Eq. (142). The dimension of the current density (149)
comes from the fact that we integrated the current over the
cylinder cross section and used the normalization of the
edge modes (29) with respect to the inner Dirac product
(30). Since the electric current (149) is antisymmetric with
respect to reflections, kz → −kz, the net electric current in
the state of thermal equilibrium is identically zero,

hJziedge ≡ 0: ð150Þ
We remind the reader that we cannot generate a chiral
imbalance with the edge modes since these modes are not
chiral (146).
Thus, we come to the conclusion that anomalous trans-

port phenomena, such as the chiral magnetic effect and
chiral vortical effect, are not supported by the (massless)
edge modes.

V. CONCLUSIONS

We study a uniformly rotating relativistic system of free
Dirac fermions in the background of a constant magnetic
field directed along the axis of rotation. The system must be
bounded in any plane perpendicular to the rotation axis in
order to respect the relativistic causality according to require-
ment that the rotational velocity of particles does not exceed
the speed of light. Therefore, we enclose the system into an
infinitely high cylinder of radius R and restrict the angular
frequency Ω of rotation to the subluminal domain: ΩR < 1.
At the surface of the cylinder, we impose either the MIT
boundary condition (9) or its chiral generalization (35),
which is characterized by the chiral angle Θ. Both these
conditions force the normal component of the fermionic
current to vanish at cylinder’s surface, thus conserving the
global fermionic number inside the rotating cylinder.
In general, the spectrum of fermions in a finite geometry

contains two types of solutions: bulk solutions concentrated
in the interior of the system and the edge states which are
localized at the boundary. The bulk states in cylindrical
geometry were already discussed in the literature. In the
absence of magnetic field, the bulk spectrum of fermions
was obtained in Ref. [10], in which the cylinder with the
MIT boundary conditions (9) was studied. The bulk
spectrum with the chiral MIT boundary conditions (35)
was found later in Ref. [18]. In our paper, we extend these
results in various directions.

3It is worth also mentioning that the contribution of the light
edge modes to the chiral condensate is identically zero
Ψ̄edge

m Ψedge
m ≡ 0 in the considered limit of large bulk fermion

masses.
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First, we find that the system possesses the edge modes
at a certain region of the parameter space. Second, we
extend the results for the edge and bulk modes to the case of
nonzero magnetic field parallel to the axis of the cylinder
(so that the magnetic flux is a constant quantity along the
axis of the cylinder). Third, we implement the uniform
rotation of the whole system and investigate the interplay
between rotation and magnetic field in thermodynamical
properties of free fermions.4 Fourth, we highlight the role of
the edge states that have been neglected so far in the
analysis of thermodynamics of rotating fermionic systems.
We found the following features of the system:
(1) The boundary condition is important for the edge

states. The mass spectrum and the very existence of
the edge modes depend on the values of the fermion
mass M, magnetic field B, and the chiral Θ angle at
the boundary. For example, there are no edge states
at the chiral angle Θ ¼ π=2 at zero magnetic field.

(2) The lowest (ground-state) bulk modes transform into
the edge states and vice versa as the value of the
fermion mass M crosses, for each fixed value of the
angular momentum (17), a certain threshold mass. In
the absence of magnetic field, the threshold masses
(34) are given, for the MIT boundary conditions (9),
by Mc ¼ −n=R with n ¼ 1; 2;…. They differ from
the threshold masses for the fermions with the chiral
boundary conditions (36). The threshold masses for
the MIT boundary conditions are changed to
Eq. (127) in the case of nonzero magnetic field.

(3) The edge states are massive so that in the solid-state
language the system may be associated with a
nontopological insulator.

(4) The masses of the edge states are finite for B ¼ 0. In
the absence of magnetic field, the spectrum is
degenerate with respect to the sign flips of the
angular momentum, μm → −μm; see Fig. 2. The
masses of the bulk (edge) modes rise (fall) with
the increase of the absolute value of the fermion
mass M. In the limit of a negative infinite fermionic
mass, M → −∞, the bulk modes become infinitely
heavy so that they decouple from the dynamics of
the system and disappear. On the contrary, in this
limit, the masses of the edge modes remain finite

(76). They are proportional to the mean curvature of
the cylinder’s surface, 1=R.

(5) The masses of the edge states may vanish for B ≠ 0.
Nonzero magnetic field lifts out the μm → −μm
degeneracy of the mass spectrum of both the bulk
states and the edge states; see Fig. 7. For example,
the edge states with signðμmeBÞ > 0 possess only
nonvanishing masses, while the masses of the edge
states with signðμmeBÞ > 0 may become zero at
certain values of momentum, shown in Fig. 8.
The masses of the bulk modes become infinitely
massive in the limit M → −∞, while the masses of
the edge states exhibit a periodic dependence on the
magnetic flux, see Fig. 9, described by the simple
formula (133).

(6) The moment of inertia oscillates with magnetic field.
The presence of magnetic field affects drastically the
rotational properties of the system. For example, in
the domain of low temperatures in the limit of
infinitely large negative fermion mass—where the
thermodynamics is given by the edge modes only—
the angular momentum (Fig. 12) and, consequently,
the moment of inertia (Fig. 13) experience quasi-
periodic (quantum) oscillations as functions of
magnetic flux ϕB. The local minima (maxima)
of the moment of inertia correspond to the integer
(half-integer) values of the magnetic flux ϕB in units
of the elementary flux ϕ0, Eq. (124). At high
temperature, the oscillations disappear; see Fig. 13.

(7) Edge modes do not contribute to the anomalous
transport of axial and electric charges. The edge
modes do not possess a definite handedness in terms
of chirality and helicity even in the case when these
modes are massless. The edge states in the infinite
negative mass limit cannot lead to anomalous trans-
port phenomena such as the chiral vortical effect
and/or chiral magnetic effect in uniformly rotating
cylinder and/or in the background of magnetic field,
respectively.
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