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We study 72/Z, orbifold models with magnetic fluxes. We propose a systematic way to analyze the
number of zero-modes and their wave functions by use of modular transformation. Our results are
consistent with the previous results, and our approach is more direct and analytical than the previous ones.

The index theorem implies that the zero-mode number of the Dirac operator on 77 is equal to the index M,
which corresponds to the magnetic flux in a certain unit. Our results show that the zero-mode number of the
Dirac operator on T2/Zy is equal to [M/N| + 1 except one case on the 72/Z; orbifold.
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I. INTRODUCTION

Superstring theory is a promising candidate for unified
theory including gravity and leads to six-dimensional space
in addition to our four-dimensional (4D) spacetime. Thus,
extra dimensional models are well-motivated. Indeed, many
studies have been carried out. It is a key point how to derive
4D chiral theory starting from extra dimensional theories,
because the standard model is a chiral theory. For example,
the toroidal compactification is one of the simplest com-
pactifications, but leads to nonchiral theory. Then, the
simple toroidal compactification is not realistic. However,
the torus compactification with magnetic fluxes can lead to
4D chiral theory from extra dimensional theories as well as
superstring theories [1-4]. In addition, the magnitude of
magnetic flux determines the number of zero-modes, which
would correspond to the generation number. Also zero-
mode profiles are quasilocalized and can lead to suppressed
couplings depending on their localized points. Hence, the
torus compactification with magnetic fluxes is quite inter-
esting. Indeed, several studies have been done, e.g. on
computation of Yukawa couplings [5], higher order cou-
plings [6], non-Abelian flavor symmetries [7,8], massive
modes and their phenomenological effects [8§—11], etc.!

The orbifold models with magnetic fluxes are also
interesting. Orbifolding can project out the adjoint matter
fields corresponding to open string moduli, which remain
massless in the toroidal compactification with magnetic
fluxes. The number of zero-modes and their profiles in
orbifold models are different from those in toroidal models
[14]. Thus, orbifold models with magnetic fluxes have rich
structures in model building. Indeed, Z, orbifold models
have been studied on several aspects, e.g. model building
[15-19], realization of quark and lepton masses and their
mixing angles and CP phase [20-23]. In addition, it is
possible to introduce some degree of freedom on orbifold

'See also [12,13].
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fixed points, e.g. localized modes and localized operators.
That makes phenomenological aspects richer [24-27].

Other Zy orbifold models with N = 3, 4, 6 have been
also studied. Zero-mode wave functions were studied by
numerical studies [28] and the corresponding states were
studied by operator analysis in quantum mechanism [29].
By use of those results, model building and fermion mass
matrices were also studied [30-32]. However, the numeri-
cal study is not analytical, and results from both approaches
were rather complicated. A simpler approach would be
useful for further applications.

Here, we study Z, orbifold models with magnetic
fluxes. In particular we study the number of zero-modes
and their wave functions directly by using modular trans-
formation. The modular transformation is a geometrical
transformation of the lattice which is used to construct 72.
Zero-mode wave functions can be written in terms of theta
functions, which have a characteristic behavior under
modular transformation. When we fix a value of complex
structure properly, certain modular transformation behaves
as Zy twists with N = 3, 4, 6. Using such behavior, we can
obtain zero-mode wave functions on Z, orbifolds. For
generic values of magnetic flux, we compute the number of
zero-modes with each Z eigenvalue on 72/Z,. We show
that the number of Z, invariant zero-modes is almost
universal on different 72 /Z, orbifolds, and it is equal to
|[M/N| + 1 for magnetic flux M in a certain unit except one
case in the 72/ Z orbifold, where | 7| denotes the maximum
integer n satisfying n < r. Alternatively, the number of Z;
invariant zero-modes is written by 2|M/(2N)| + 1.

This paper is organized as follows. In Sec. II, we review
wave functions on the two-dimension torus 72 with
magnetic fluxes as well as the 72/Z, orbifold. In
Sec. 111, we study the 72/ Z,4 orbifold. In Sec. IV we study
the T2/ Z5 orbifold as well as T? /Z orbifold. In Sec. V, we
give a comment on our universal result on the number of
Zy invariant zero-modes. Section VI is the Conclusion. In
Appendix A, we show computations on the normalization
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factor of zero-mode wave function and inner product of two
types of wave functions. Such computations are useful for
Secs. III and IV. In Appendix B, we show the computation
on products of the Z; matrix. In Appendix C, we show
explicitly zero-mode wave functions on the 72/ Z, orbifold.

II. TORUS MODEL WITH MAGNETIC FLUX

Our starting point is the gauge theory with 2n extra
dimensions, which are chosen as (72)". Our theory includes
the spinor field 4, and its Lagrangian is written by

1 i -
L=——TrFMNF ... —— "D, A, 1
492 r M 292 M ( )

where Fy;y = 0)Ay — OnAy . Here, we set the kinetic term
of A as one in super Yang-Mills theory, because we are
motivated from such a theory. For simplicity, we concentrate
on U(1) gauge theory with n = 1 and spinor field with charge
q. Similarly, we can extend our analysis to a non-Abelian
gauge theory with n > 1.

We decompose

AR ™) = () ® ya (™), 2)

where x* denotes coordinates of four-dimensional space-
time, while y” with m = 1, 2 denotes coordinates on 7.
w,(y") are eigenfunctions of a Dirac operator on T2. In
what follows, we concentrate on the zero-modes, w(y),
which correspond to massless modes in 4D effective field
theory, and we denote them by w(y).

A. Magnetized torus models

Here, we give a review on the 72 model with a magnetic
flux, in particular zero-mode wave functions [5]. We use
the complex coordinate 7 = y' + 7y? instead of the real
coordinates, y' and y?, where 7 is a complex, and the metric
is given as ds? = g,3dz*dz",

e 0 1
ga/; _ <gz~ gzz > _ (2”R>2( | 2>. (3)
9zz  Yzz 5 0

To realize the T2, we identify z~z+ 1 and z ~z + 7.
We consider the U(1) magnetic flux F on 72,

.M ,
F—lIIn—T(dZ/\dZ). (4)

Such a magnetic flux can be obtained from the following
vector potential:

A(z) = %Im(zdz). (5)
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It satisfies the boundary conditions,

A(z+1)=A(z) +d¢,, Az +17) = A(2) + ds,
(6)

where

M
= Imz ¢2 = hn—TImTZ. (7)

Now, let us study the spinor field with U(1) charge ¢
on T2,

wma—(ﬁ). (s)

We use the gamma matrices,

rz_(zﬂm—l(g (2)) rf_(zﬂR)—IG g) 9)

Then, the Dirac operator on y is written by
] i (0 D
D =iV, +il*V, = — , 10
A A R

where

M

M
Di=0—-g—713, —
q2ImTZ

D55)+q2 (11)

z.
Imz

Thus, the zero mode equations of spinor are written by
Dy, =0, Diy_ =0. (12)

Also, they must satisfy the following boundary condition:

. M
wi(z+1) =1y, (z) =exp {iiiq ImZ}Wi(Z)’
mc
(13)
‘ M
wi(z+7) = ey, () = exp {iﬂq Im%Z}wi(Z),
Imz
(14)

because of Eq. (6). The magnetic flux should be quantized
and gM must be an integer.

If gM > 0, w_ has no zero-mode, but y, has gM zero-
modes and their wave functions are written as

/ i mz L
wM(z) = NemaMa: . 9 [‘fgl] (gMz,qM~z), (15)

with j=0,1,..
theta function,

., (gM — 1), where & denotes the Jacobi
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a
9 U, 7) = eﬂi(a+1)2762ﬂi(a+l)(u+b)‘ 16
HEEE> (16)

I€Z

Here, N denotes the normalization factor given by

21 M|\ V4
N:(Lljf ) , (17)

with A = 47°R?Imz. See Appendix A for computation
of V.

If gM < 0, . has no zero-mode, but y_ has |gM| zero-
modes. Their wave functions are the same as the above
except replacing gM by |gM|. Thus, introducing magnetic
flux leads to a chiral theory.

For simplicity, we normalize the charge ¢ = 1. We can
discuss other charges ¢ # 1 by replacing M — gM in the
following analysis. Hereafter, we also set M > 0. Thus, in
what follows, we consider the zero-mode wave functions,

A
l//j‘M(Z,T) =N einMzlmz/Imz | ,9|:A(’)1:| (Mz,MT). (18)

Here, we write 7 explicitly in /¥ (z, 7) because 7 depend-
ence is important in the following analysis. We can use
another basis of zero-mode solutions,
. N 0
)(j,M(T’ Z) _ . emMzImz/Imr .9 ; (Z, T/M) (19)
M i

These are related with each other as

) 1 Jk
X_],M — \/A_/I Zez’”m//k’M, (20)
k
. 1 jk
wiM = \/_A_lze—Zmﬁxk,M. (21)
k

See Appendix B for these relations.
Using these wave functions, we can compute 3-point
coupling [5],

/ Py M (@ @y Q). (22)

as well as n-point couplings [6],

/d2z1//j"M' (g2 M2 () - - ydnMa (7). (23)

B. T?/Z, orbifold

In [14], the zero-mode wave functions on the 72/Z,
orbifold were studied. On the 7%/Z, orbifold, we identify
z ~ —z. Under the Z, twist, the zero-mode wave functions
satisfy the following simple relation:
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p/M(=z) = yM M (2). (24)

Note that ¥ (z) = yMM(z). The other basis, y/¥(z),
also satisfies the same relation. Thus, the Z, even and odd

wave functions @ﬁ’l(z) can be written by

O (2) = %(w’ﬂ(z) LM (). (25)

The numbers of even and odd modes are shown in Table 1.

By using Z, eigenfunctions, @’Jl(z) we can compute
3-point couplings and higher order couplings similar to
Egs. (22) and (23). Then, we obtain phenomenological
interesting results e.g., the realization of quark and lepton
mass hierarchies and their mixing angles [20-23].

We also give a comment on Scherk-Schwarz phases and
discrete Wilson lines. These degrees of freedom are
equivalent to each other [28]. Hence, we restrict ourselves
to Scherk-Schwarz phases. With Scherk-Schwarz phases
(f1,p.), the boundary conditions (13) and (14) change as

W+ 1) = OBy (z), (26)

w(z 4 1) = e F21ey (7), (27)

for ¢ = 1. On the orbifold, discrete values of Scherk-
Schwarz phases are possible [28]. (See also [33].) On the
T?/Z, orbifold, there are four possible Scherk-Schwarz
phases,
(1.8:)=(0,0), (0,1/2), (1/2,0). (1/2.1/2).  (28)
For such boundary conditions, the zero-mode wave func-
tions are obtained as [28]

I+hi
l//j+ﬂ1’ﬁ”M(Z> :N. eiﬂMzImz/Imr . 19|: M :| (MZ,M’L'). (29)

T
Under the Z, twist, these wave functions behave as

Y HPBM (—z) = yM=i=Pr=beM (7
_ €_4m<./—/ﬂf}>ﬂ,wM_j_ﬁ]_ﬁT’M(Z)' (30)

Using this behavior, we can construct Z, eigenstates similar
to Eq. (25).

TABLE I. The numbers of Z, even and odd zero-modes.

M 2n 2n+1
Z, even n+1 n+1
Z, odd n—1 n
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IIL. 7%/Z, ORBIFOLD
Here, we study 7?/Z, orbifold models.

A. Modular transformation

We denote the basis vectors of the lattice A by (a;, a,) to
construct 72 = R?/A, i.e., a; = 2zR and a, = 27R7 in the
complex basis. The same lattice can be described by
another basis, (&, @), and these lattice bases are related
with each other as,

(@)= ) o

where a, b, ¢, d are integer with satisfying ad — bd = 1.
That is SL(2, Z) transformation. The lattice basis (a;, @)
spans exactly the same lattice as the basis (—a;, —a,).
Thus, the modular transformation is SL(2,Z)/Z,.

Under the above transformation (31), the modular
parameter 7 transforms as

atr+ b
- .
ct+d

T (32)

This transformation includes two important generators, S
and T,

1
S: -, 33
- (33)
T: -1+ 1. (34)

Here, we study S because it is relevant to the Z, twist. S
transforms the lattice basis as

(alva2) - (_a27a1)' (35)

This is nothing but the Z, twist, for 7 = i. More precisely
we can refer to this as the inverse of the Z, twist, i.e., the
—n/2 rotation.

B. T?/Z, orbifold model

Here, we study the transformation behavior of zero-
mode wave functions under S. Let us start with 3/M(z, 7).
Then, we examine its S transformation. That is, we replace
t— —1/7, z = z/7 in M (z,7). It is found that

M2/t =1/7) = w/M(z,7). (36)

To show this transformation, we have used the following
relation:

&[O}<f,—1> :(—dkﬂ”eMﬁ“-8{g](uK). (37)

a K K
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That is, the 9 function in y/™(z,7) transforms

0 T P &
9 |lz,—= ) = (-iMz l/ze’”M?w()[M} Mz, Mz).
) (e37) = o) 5+

(38)

In addition, we combine the S transformation of the phase

: Imz . . ﬁ
e™Mm: with the phase factor ™M=

tion (38) to find

I 2 -1
exp {m’MEL/T + m'MZ—} = exp {m’MZ mz}.

in the above equa-

zIm(-1/7) T Imz
(39)
Also the normalization factor transforms under S,
1\ /4
T

Using these results, we can derive the transformation
(36) [5].2

On the other hand, we replace

T — —1/1, 7= 1z, (41)

in y/™(z, 7). Similarly, we find that

yiM (Tz, - %) = M (z,7). (42)

We require that the torus is invariant under the S
transformation, i.e.

r=—2. (43)

Its solution is 7 = +i. Here, we set ¢ = i. Then, the above
transformation (41) is nothing but the Z, twist,
z — 1tz = iz. Thus, under such Z, twist, wave functions
transform,

Mz, 0 =1) - yM(iz, -1/t =)
="Mz =)
= Clyy M (.t =1). (44)

In the last equality, we have used the relation (20), and the
coefficients C{(’ y are written by

Such a transformation behavior is important in modular
symmetry of 4D low-energy effective field theory [34].

096011-4
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CJ yy = —= €2, (45)

VM

The matrix C{;M satisfies
j 1 L
ZC{QMC?M = Mzezm("+l)k/ M = O(j+1).nM> (46)
k k

where n is integer. That is, we find that the Z, trans-
formation,

W) = M (2 d) =y )
- )(M_j'M(Z, i) — l//j’M(Z, ). (47)

This transformation property is consistent with the Z,
transformation (24). That is, we can write
y M (2,0) = M (2, d0) > wM(=2.0)
= M (=2, d) =y (z.0), (48)
and the operation of the Z, twist 2 times is just the Z, twist.

Now, we can write the zero-mode wave functions with
Z, eigenvalues y = +1, 4/ as

(WM (z,0) + 7 M (2, i) + y 2 M (2, 0)

+ MM (2, 0)), (49)

N[ =

1e.,
e .
k
MM (z0) + 7Y Ol Rz i)) - (50)
k

Obviously, we can construct the Z, eigenstates as those
of the matrix C?c, - As an illustrating example, we study the

model with M = 3, where the matrix C{;’ 1 1s obtained as

| 11
C{;M:_ L p p . (51)
: 3
v3 L p* p

with p = 27i/ 3.? This matrix has eigenvalues, y = 1, —1, i,
and eigenvectors in the basis > a jl//j*3,

This matrix is the same as the matrix representation of S in
heterotic string theory on the Z; orbifold [35].
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TABLE II. The number of zero-modes in the Z, orbifold
model.

M 1 23456789 10 11 12
Zyeigenvalue: +1 1 1 1 2 2 2 2 3 3 3 3 4
Zyeigenvalue: -1 0 1 1 1 1 2 2 2 2 3 3 3
Zyeigenvalue: + 0 0 1 1 1 1 2 2 2 2 3 3
Zyeigenvalue: =i 0 0 0 0 1 1 1 1 2 2 2 2

TABLE III.  Generic results on the numbers of Z, zero-modes.
M 4n 4n +1 4n +2 4n+3
Z,4 eigenvalue: +1 n+1 n+1 n+1 n+1
Z, eigenvalue: —1 n n n+1 n+1
Z, eigenvalue: +i n n n n+1
Z, eigenvalue: —i n—1 n n n

(ag.ay,ar) = (14++/3,1,1) fory=1,

(1-v3,1,1) fory=—I,

(0,1,-1) fory =i, (52)

up to normalization factors.

Similarly, we can obtain Z, eigenvalues and eigenstates
by using explicit matrices, C{;.M for each value of M, in
particular small values of M. Table II shows the numbers of
Z, zero-modes for small values of M. This result is
consistent with the previous results [28,29] up to the
definition of the Z, twist." The corresponding Z, eigen-
states are shown in Appendix C.

We give a comment on Z, eigenstates. The Z, even states,
(y/M + yM=iM) " correspond to the Z, eigenstates with
eigenvalues y = +1, while Z, odd states, (y/M — yM=/:M),
correspond to the Z, states with eigenvalues y = 4-i. Explicit
results on eigenstates for small number of M are shown in
Appendix C. For M = even, Z, eigenvectors are relatively
simple, while for M = odd Z, eigenvectors are complicated.

From the above explicit results, we can expect generic
results on the numbers of zero-modes, which are shown in
Table III. Indeed, we can prove this result. First, we
compute trCy, ,,,

]
L

wC=—— Y 2. (53)
Mi=

In our computation, the following Landsberg-Schaar
relation:

“The number of zero-modes with Z, eigenvalue y =i is
exchanged for the number of zero-modes with eigenvalue y=—i
when we replace the definition of Z, twist by its inverse.

096011-5
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1 D zi 2g—1 5
2minq e4 _xin2p
er = E e p.g €N, (54)
q n=0

1
\/_1_9 n=0 \/2_

is very useful. We take p = M, ¢ = 1 in the Landsberg-
Schaar relation to compute trC,

p—

Al ! zik2M Al M
rC=et—=>» ez =e1—(1+e™2). (55)
Vit v
Then, we find that

14+i forM =4n
1 for M =4n + 1

trC = . (56)
0 for M =4n+2
i for M =4n+3

For example, recall that when M = 4n, there are
(2n+ 1) Z, even zero-modes and (2n — 1) Z, odd zero-
modes. That is, the sum of the numbers of Z, zero-modes
with eigenvalues y = +1 is equal to (2n + 1), while the
sum of the numbers of Z, zero-modes with eigenvalues
y = =i is equal to (2n — 1). Combination of these with
Eq. (56) leads to the result for M = 4n in Table IIL
Similarly, we can derive the numbers of Z, zero-modes
with other values of M as shown in Table III.

IV. T?/Z; ORBIFOLD

In this section, we study the zero-modes on 72/Z; and
T?/Z orbifolds.

A. T?/Z; orbifold

Here, we study the Z; orbifold models. Our strategy is
the same as one in the previous section. That is, we examine
the modular transformation corresponding to the Z; twist.
A good candidate for the Z; twist is ST transformation,
because it satisfies (ST)* = 1 on 7. Under ST, the modular
parameter 7 transforms as

1
T4+ 1°

(57)

T —

When 7 = ¢*27//3, the modular parameter is invariant under
ST, i.e.

1
T4+ 1°

(58)

For such a transformation, the Z5 twist (its inverse) can be
defined by

7 > 17, (59)

PHYSICAL REVIEW D 96, 096011 (2017)

when 7 = ¢>/3 (7 = ¢72%/3). Alternatively, we can define
the Z; twist by
-z
_— 60
=T (60)

because of the relation (58). In what follows, we study the
transformation of wave functions under Eqs. (57) and (60).
We restrict ourselves to the models with M = even,
because the following transformation behavior is valid
only for M = even.

We find that

PM(=2/(z+ 1), =1/ (c + 1)) = emihr -y (=2, 7)
— il yM-iM (2 7). (61)

Here, we have used the relation (37) and the following
relation:

o |( D=emengl . (62)
T+ — ,—ina(a—1) | . 7).
b v, T e b ta- % v, T
Since yM~IM = C; "M the transformation in the y basis

is written by

. . 2 .

.M i kM o mib
M (z,7) > Diyx (z,7), Dy = €™iCy . (63)
When we examine the inverse transformation,

1
T ———1,

1
7> -2z, (64)
T T

on the wave function y/™(z,7), we find that

w“6=m~025ﬁw%w@-<w

Thus, it is found that under the above inverse trans-
formation, the wave function y/** transforms as

Wi (D) . (66)

where D! is the inverse matrix of Di_ e
For example, for M = 2, we obtain

Dy = % ( 1 _11> (67)

However, we find that

; b 1+ 0
=550 L) @

This matrix does not realize exactly the Z; twist.

096011-6
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Indeed, for generic even number M, we can find

V2

See Appendix B. Thus, the matrix Dy ,, on y/* does not
represent the Z; twist exactly.

Here, we allow the constant phase for all modes under
the above transformation, e.g.’

Di,MDI},MDr{;L,M = (14+1)8;,, = em/46j,m' (69)

M (z,1) > DLM)(](’M(Z,T), D{;,M = e‘l"—ﬁ'D{;M. (70)

Then, we can realize the Z5 twist,
NPk R
Di,MDf,MDm.M = 5j,m' (71)
Here, we employ this matrix D as the Z5 twist.

For example, for M = 2, we use the following matrix for
the Z; twist on y/"M:

PHYSICAL REVIEW D 96, 096011 (2017)

TABLE IV. The number of zero-modes in the Z; orbifold
model.

M 2 4 6 8 10 12
Z5 eigenvalue: 1 1 1 3 3 3 5
Z5 eigenvalue: ¢>"/3 0 2 2 4 4
Z, eigenvalue: e~2%/3 1 1 1 3 3 3

Its eigenvalues are obtained as y = 1, e~2%/3

vectors are given as

, and eigen-

(1,V2yef1 - 1), (73)

in the (yOM, »'"M) basis, up to a normalization factor.
Similarly, we study the model with M = 4. The eigen-

values of the matrix D{( y are

. (1’ eZm'/S’ 827[[/3, e—2m’/3), (74)
~ e_% 1 1
Di,M=2 ==\ . .- (72)
V2 \i i and their eigenvectors are obtained in the basis a;y;,
|
[07 _1’ 0’ 1} )
[—i(=1+V2).(1+i)—V2,1,0],
[(—6+ 6i) + 3iv/2 — (2 4 2i)V/3 + (1 = 2i)V/6 | V2(3i + (1 +2i)V/3) 1]
3ivV2 + (2 - 2i)V3 3iV2+ (2-2)V3+V6
[61’4—3(—1)1/44—(1+3i)~/3/2+2\/§ | V2(=3i + (1 +2i)V/3 1} 75)
3= = (1-i)y/3/2+2ivV3 T =3iV2+(2-20)V3+V6 ]
up to ponnalization factors. . ( [)—1> i — ity . il . Cj’k‘ (76)
Similarly, we can analyze the eigenvalues and
eigenvectors for other M. Table IV shows the numbers L . .
) ) That is, its trace is written by
of Z; zero-modes with each eigenvalue for small values
of M. This result is consistent with the previous results M1 M1
[28,29]. We can derive eigenvectors, but their explicit tr(D7') = ™tz oy . o2l _ ity N p-3niky (77)
forms are, in general, very complicated. —o0 —0

We can analyze the number of Z; zero-modes for generic
even number M. First we compute the trace of the inverse
of 13,

>We have other two values for candidates of the constant
phase, and totally there are three possibilities. Different constant
phases lead to a change of degeneracy factors for each Z;
eigenvalues. Such possibilities of constant phases may corre-
spond to the possibility of the introduction of Scherk-Schwarz
phases. Similarly, we have the degree of freedom to define the Z,

twist by ¢""/2C],, with n =0, 1, 2, 3.

Here, we use the Landsberg-Schaar relation (54) with
p =3 and 2g = M. Then, we find

. it
5

~ e M
r(D7") = (1 + 26’”7>. 78
(D7) 7 (78)
Explicitly, we obtain the following results:
l+@w forM=6n+2
uD =< w? for M = 6n+ 4, (79)
2+ w? for M =6n
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TABLE V. Generic results on Z; zero-modes. TABLE VI. Generic results on Zg zero-modes.
M 6n 6n+2 6n+4 M 6n 6n+2 6n+4
Z5 eigenvalue: 1 2n+1 2n+1 2n+1 eigenvalue: 1 n—+1 n+1 n+1
Z, eigenvalue: ¢2/3 2n 2n 2n+2  cigenvalue: "/ n n n+1
Z5 eigenvalue: ¢2/3 2n—1 2n+1 2n41  eigenvalue: >3 n n+1 n+1
eigenvalue: ¢3/3 n n n
eigenvalue: ¢*i/3 n n n+1
. H . ,5mi/3 _
where @ = ¢27/3, Then, the trace of its inverse can be cigenvalue: e no1 " "
obtained by replacing @ — @?,
for M = 6n,6n +2,6n + 4,
1 +w®> for M =6n+2 + +
trD ={ o for M = 6n+4. (80) 2n for M = 6n,6n + 2
N,+ N, = ) (86)
24+w for M =6n 2n+2 forM =6n-+4
From this result, we can derive the number of Z; eigen- and
states as shown in Table V. Note that 1 + » + @? = 0.
2n—1 for M =6n
Nyp+ N, = . (87)
B. Z orbifold 2n+1 forM =6n-+2,6n-+4

Obviously, the Zg twist can realized by the product of the
Z, and Z5 twists. Also, recall that the Z, twist on y/¥(z)
and y/M(z) is realized by

Y M (2) =y (=2) = MM (),
xMM(2) = 7 (=2) = MM (). (81)

Here, we restrict ourselves to the models with M = even.
From the analysis on the 72/Z; orbifold, the Zg twist can
be realized by

. . 2.

Fj = efie™™hiCy . (82)
Again, using the Landsberg-Schaar relation (54), we
compute the trace of F{{  Matrix,

trF = e%Ze’”kﬁ = efiet, (83)
[

The possible eigenvalues of F-matrix are y = p* with
k=0,1,....,5and p = ¢™/3, Here, we denote the number
of zero-modes with eigenvalues y by N,. Since (Fy )’
corresponds to the Z, twist, the zero-mode numbers, N,
must satisfy

N1+N/,2—|—Nﬂ4=n+l, Np—i-N/p—l—Mps =n-—1,

(84)

for M = 2n. Similarly, (F {C )? corresponds to the Z3 twist,
the zero-mode numbers must satisfy

N +Njy=2n+1, (85)

Combining these relations with the trace (83), we find the
number of eigenstates, which is shown in Table VI.

In principle, we can derive zero-mode wave functions
with eigenvalues y, but its explicit form is complicated.

V. ZERO-MODES ON ORBIFOLDS

We have studied the zero-modes on several orbifolds,
T?/Zy with N = 2, 3, 4, 6. Now, let us compare our results
between different 72/Z, orbifolds. We examine the Zy
invariant zero-modes. It is found that the number of Z
invariant zero-modes is written by

on T?/Zy orbifold with magnetic flux M except the Z;
orbifold with M = 6n + 4. Here, |r| denotes the maxi-
mum integer n, which satisfies n < r. Alternatively, the
number of Z; invariant zero-modes is written by

Iy =2IM/2N)] + 1. (89)

Our results are quite universal for different 72/Z,
orbifolds.
The index theorem tells that the number of zero-modes

of the Dirac operators on 72 with flux M is equal to M. The

above number /), 5 as well as I[(S?N would correspond to

such an index on the 72/Z, orbifolds.

It would be useful to rewrite the numbers of zero-modes
with other eigenvalues by using the symbol |r]|. These are
shown in Table VII. Note that the number of zero-modes
with Zy eigenvalue y is exchanged for one with Zj
eigenvalue y~! when we replace the definition of Z, twist
by its inverse.
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TABLE VII. Generic results on Z, zero-modes.

Eigenvalues (y) Number of zero-modes

Zn—p, invariant IM/N| +1
Z5 invariant 2[{M/(2N)] +1
Zy (y =-1) (M —1)/2]
Zy (y=-1) (M —-2)/4] +1
Z, (y=1) [(M—3)/4] +1
Zy (y =—0) L(M—1)/4]
Zy (y = 1) 2[(M -4)/6] +2
Zs (y = e7) 2[(M -2)/6] +1
Zs (y = €13) [(M-4)/6] +1
Zs (y = &P3) [(M—-2)/6]+1
Zg (y = &%) |M/6]

Zs (y = e*i/?) [(M-4)/6] +1
Zs (y = 1) [(M-2)/6]

It seems that the 72/Z; orbifold has the zero-mode
structure different from the other orbifolds. The numbers
of zero-modes on T?/Zy with N = even have the
structure with the period N for M. That is, the number
of zero-modes increases by one when we replace M by
M + N. On the other hand, the number of zero-modes
on T?/Z; has the structure with the period 6, and the
number of zero-modes increases by 2 when replace M
by M + 6. Such a structure of T?/Z is similar to one of
T?/Z¢ and seems to be originated from the T2/Z
orbifold. At any rate, the deep reason why the 7%/Z
orbifold has a different structure is not clear. It is
important to study its reason further.

The number of Zy invariant zero-modes depends on
nontrivial Scherk-Schwarz phases and discrete Wilson
lines. Thus, our results imply that the number of Z
invariant zero-modes is universal over all of T?/Z, orbi-
folds if we choose proper conditions on Scherk-Schwarz
phases and discrete Wilson lines.

VI. CONCLUSION

We have studied 72/Z, orbifold models with magnetic
flux. We used the modular transformation to define the

wh (wh)* =yl M (7, 2) -y hmaM (7, 7)

= N2. e—ZﬂqM(Imz)z/Imr .9 |:‘I_M

] (gMz, qM7) - 9 {q(’)”} (—gMz, —gM?%).

PHYSICAL REVIEW D 96, 096011 (2017)

orbifolds. Then, we have computed zero-mode wave
functions with each eigenvalue of the Z, twist. We have
shown the zero-mode numbers. It is found that the
number of the Zy invariant zero-modes is universal
among different 7%/Z, orbifolds, and it can be obtained
by |[M/N| + 1 except one case in the T?/Z; orbifold.
The zero-mode number of the Dirac operator on 72 is
given by M. Our result would correspond to such
an index.

We can write wave functions analytically for fixed M.
Thus, we can compute 3-point couplings and higher
order couplings. Hence, our results would be useful to
further phenomenological applications. One can also
apply our method to not only zero-modes, but also
higher modes.
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APPENDIX A: NORMALIZATION OF
WAVE FUNCTION AND INNER
PRODUCT OF y AND y

In this appendix, we show computations on normali-
zation N of wave functions and the relations (20) and
(21). The computation on normalization is useful for
computation of the relations (20) and (21). Now, we
compute

/T dzdzy? (), (A1)

where

/Tz dzdz =AA'd(Rez)/oldG$—j), (A2)

with A = 472 R?Imz. The product of the wave functions,
wl (y*)* is written explicitly,

k

The product of theta functions includes the following terms depending on Rez and Imz:

n

Z Z e27zi{(q+;4+n)—(q%+n’)}Rez . e—27z{(q¢h+n)+(qLM+n’)}Imz.

(A4)

Then, the integration over Rez leads to the Kronecker delta, 6;/(g)1nk/(qm)+n- Thus, we obtain
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0

Furthermore, we can find

1 .
/ d(RCZ)l//J’qM (T, Z) . W—k,—qM<i.’ Z) — NZZ —ZﬂqMImr(nJquJrhm) .

PHYSICAL REVIEW D 96, 096011 (2017)

! d ImZ z :e—anMImr n+ +}:‘r’” § : ImZ —Zﬂqumf(nqthjLi'r’;r)
Imz Imr
0 n n

Then, we find the normalization factor (17).
Similarly, we compute

where

The product of the theta functions includes the following
terms depending on Rez:

27i{l-M(I'+;)}Rez_
B

The integration over Rez leads to the Kronecker delta,
O¢.m¢ +k Thus, we obtain

(A9)

1 .
/ Re(z)y/M -yt M

0

_ eQﬂlM NZ

—2amm } : o~ 2MImz(I4) | p=4xM (I+5)Imz
]
(A10)

In addition, we can integrate this over Im(z) similar to
Eq. (A6). Then, we can derive

/dZdZ)(j’M(Z,T) (WM (z,7))" = €27, (A11)

That is nothing but the relation (20).
Also we can obtain the complex conjugate of Eq. (A11),

[ dzrp ) My = (ar2)

and this is nothing but the relation (21).

(AS)
/ e-ratimes
s x6
) - (WM (z,7))", (A7)
o) ofmm  w

APPENDIX B: COMPUTATION OF (D)3

In this section, we give the computation on (Di y)? fora

generic even number M. First, we can obtain

Dl D, — %Zﬁémnm%)
k

1 _
Z &l (k+j+£)—
= em
M T

£(2j+2)]

= (1 + i)efl=7@i+0)], (B1)

1
V2M

We have used the Landsberg-Schaar relation (54). Then, we
can compute

J k —£(2j+E)++2¢m
Dy s D% s D I+ E il 2 !

ROV
1

=—=(1+1i)d;,

7 (B2)

_ ,mi/4

Again, we have used the Landsberg-Schaar relation (54).
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APPENDIX C: EIGENVECTORS IN Z,
ORBIFOLD MODELS

In this section, we give explicitly Z, eigenvectors for
M =2,...,12. These eigenvectors are represented in the
basis > M ayp*M. The Z, even states, (y/M + yM=/M),
correspond to the Z, eigenstates with eigenvalues y = 41,
while Z, odd states, (/¥ —yM=/"M) correspond to the Z,
states with eigenvalues y = £i. Thus, w®¥ does not
correspond to eigenstates with Z, eigenvalues y = =i,
but always appears as eigenstates with Z, eigenvalues
y = =£1. Similarly, when M is even, y™/>" corresponds to
only Z, eigenvalues y = £1. The other modes appear
in all of the eigenstates with eigenvalues y = +1, +i.
For all the cases with M =4n,4n+ 1,4n+ 2,4n + 3,
there are (n+ 1) independent eigenstates with y = 1.
It seems convenient to use the basis such that only one
of aj,ay,---a,, is nonvanishing in > Y71 "M, that is,

(Clo, 1,0, ...,0,0,an+1, Cln+2, ceey aM—l)?
((10,0, 1,0, ""Ovan+17 Apis ey aM_l),

(a0509""0’lvan+l’an+2""’aM—l)’ (Cl)

. PHYSICAL REVIEW D 96, 096011 (2017)

where the other coefficients, ay and a,.,, ..
determined by eigenvector equations.

Similarly, when there are m independent modes, it
seems convenient to use the basis such that only one
of ay,a,,---a, is nonvanishing. The fluxes can be
classified as M =4n,4n+ 1,4n + 2,4n + 3. For such
classes, we show explicitly eigenvectors in the basis

M- Vaw®™ in what follows. As said above, the
coefficients a; other than a;,a,,---a, can be written
by linear combinations of ay,a,,---a,. The eigenvec-
tors for M = even are relatively simple, while some of
eigenvectors for M = odd are written by lengthy linear
combinations. In such cases, we omit writing them
explicitly and just denote LP;(a;,a,, --a,). At any
rate, LP;(a;,a,,---a,) can be computed by use of
eigenvector equations.

L ay ] are

1. M=4n+2ne”Z

eigenvalue: +1
M =2

(ag.ar.) « (V2+ Day.ay).

1 1
(ag.ay,ay, a3, a4, as) (E (\/601 + 2+ \/6)02), ar, az,5 (2- \/8)01 + \/gaz), a, 01),

M =10

(ags ... ag) (%((1 —V2-V5+V10)a; + 2+ V10)a, + (=1 + V2 + V5)as),

(=2 =V10)a, + (2 =2v2 =2V5 + V10)as),

— (=24 5V2+2V5=V10)a;, + (=10 = 2V/10)a, + (8 = 5v2 = 2v/5 + V10)a3).

(<24 2V3 +2v5 = VIO)a + (=2 = VI0)ay + (2= 2V2 = 2v/5 + VI0)ay), az, . )

(ap.ar.) x ((=V2+ Day.a)).

1
a, ay, dy,———— 24+ 2V2 +2v5-V10)a, +
1, 42,03 2+\/ﬁ(< ) 1
1
2(2 ++/10)
L
2+ 10
eigenvalue: —1
M=2
M=06

1 1
(aov ay, dp, as, dy, as) x <§ (_\/gal + (2 - \@)az), ar, 0235 ((2 + \/6)01 - \@az)’ as, a1>,
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=10

(do. ... a9) & G(—(l V) (=1 4+ VE)ay = (<24 VI0)as + (=1 = V2 + V3)as).
al,az,a3,(1+\/§)a1—|—a2 (+\/_)Cl';, ((l—f)al \/_az—l-(l—l—\/_—l—\/_)a;)
(1+v2)a; +a,— (1+ \6)03703702,01)

eigenvalue: +i
M = 2 nothing,
M =6

(aov a17a27a3’a4’a5) & (O’alﬂ <_1 + \/i)al’ov _(_1 + \/E)al’ _al)’

(ag, ..., ag) (O,al,az, (—2—|— \/5—|—\/§)al + (—\/g—i— 5-— \/§>a2,
! ((—5+ V5 +1/25 —5\/§)a1 +2(—ﬁ+ \/5—\/§)a2),0,

5-v5
_(\/17\[« 5+\/—+M)a1+2<—\/§+ s—fs)az)>,
(=254 VB)a + (V5415 VB) ) man-an ).

eigenvalue: —i
M = 2 nothing,
M=6

(ap.ay.az. a3, az, as) « (0,a;, (-1 = v2)a,,0,—(-1 = V2)a;, —ay),

v an) o (0.1 02, = (2454 VB )y = (V54 1/5- V5
L ((5-v5+1/35-5v5)a +2(v5+1/5-v5)a) 0
(G (5= E e vas-5vB)ars2 (Vi V5 VB)an) ).
~(~(2+ V5 VB)ar = (V54 V5= VB) ) - ).

2. M=4n

-5

eigenvalue: +1
M=4

(ag. ay, a5, a3) x (2ay + ay, ay, ay, ay),
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M =38

1 1
(ag, ..., a7) (al +(1+ \/i)az +—as,a;,a,, a3,

V2 V2

1 1
——a; + 1+\/§a ——a,a,a,a),
\/51 ( )2 \/5332 1

1
(ag,....an) (5((3 +V3)a, +2V3a;3 + (-1 +V3)ay),
1
ay.a;.as,ag.—ay + V3a, + 2a; — \/5045 (=14 V3)ay —2v3a; + (3 + V3)ay),
—a; + \/§a2 + 2(13 - \/§a4a Ay, ds, dy, al) .

eigenvalue: —1

M =4
(ag,ay,az,a3) x (=ay,ay,ay,a;),
M=2_8
(a. ..., a7) (_\/Eal +(1- \/i)az, ap, dp, dy,
V2a, + (1- \/Q)abal’a%al)v
M=12

1 2
ag, ..., d “1-—)a; +(1=V3)a +<1——)a,
(ao 11)°<<< \/§>1 ( )as /3 3
1
01,02,03,5(2\/501 + 3612 - 2\/§a3),al, (—1 + \/§)01 + (1 — \/§>a2 + as,ap,

1
g (2\/?(11 + 3a2 - 2\/§a3), as, dj, 611> .

eigenvalue: +i

M=4
(ag, ay,as,az) x (0,a,,0,—ay),
M =38
(ags....a7) « (0,ay,a,a; — V2a5,0,—(a; = V2a,), —ay, —ay),
M =12

(ag. ....ap;) « (0,ay,as, as, 2a; — ay — (1 +V/3)as,
—ay = (-1 =V3)as,0,a; + (-1 = V3)az, —2a; + a, + (1 + V3)az, —as. —az, —a).

096011-13



TATSUO KOBAYASHI and SATOSHI NAGAMOTO PHYSICAL REVIEW D 96, 096011 (2017)

eigenvalue: —i
M = 4 nothing,
M =38

(ag, ...,a7) « (0, ay, —\/Eal, —a;,0,a, \/_Z—al, —ay),

(Clo, ...,Clll) X (0,01,@2,—(1 + \/g)al - (1 + \/§>(12,
a,,a; + 2(12,0, —a| — 2612, —dj, (1 + \/g)al + (1 + \/g)az, —dj, _al)-

3. M=4n+3
eigenvalue: +1
M=3
(ag. a1, az) & (V3 + Day.ay.ay),
M="
(ag. ...,ae) x (LPy(ay,ay),ay,ay, LPs(ay, ay), LP3(ay, ay), ay, ay),
M=11

(ag, ..., a0) « (LPy(a1, az,a3), ai, az, az, LP4(a,, ay, az),

LPs(ay,ay,a3), LPs(ay,ay.a3), LPy(ay, ay, a3), as, ay, ay).

eigenvalue: —1

M=3
(ag.ay.a;) ((—\/§+ Day,ay,ay),
M=17
(ag. ....a¢) x (LPy(ay,ay),ay,ay, LP5(ay, ay), LP3(ay, a3), ay, ay),
M=11

(ag. ..., ay0) < (LPy(ay,ay,a3),ay, ay, a3, LP4(ay, a,, as),

LP5(a],az,a3),LP5(a1,az,a3),LP4(a1,a2,a3),a3,a2,a1).

eigenvalue: +i
M=3

(Clo, ap, aZ) 53 (01 ap, _al)7

(ag, ....ag) x (0,ay,a,, LP5(ay, ay), —LP5(ay, ay), —ay, —ay ),
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M=11

(ag ..., a19) x (0,ay,a,, a3, LP4(ay, ay, as), LPs(ay, a,, az),
—LPs(ay, ay,az),—LPy(ay, as, az), —as, —as, —ay).
eigenvalue: —i

M = 3 nothing,
M=1

(ag, ... as) < (0,a,LPy(ay), LP3(a;), —=LP3(a,), =LPs(a;). —a,),

(ag. ...,ay0) x (0,ay,a,, LP5(ay, a,), LPy(ay, a;), LPs(ay, ay),
—LPs(ay,ay),—LP4(ay, a,), —LPs(ay, ay), —as, —a,),

4. M=4n+1 where
eigenvalue: +1 5
M=5 LP,(a;) = - ai,
Al 145 -1/2(5+V5)
(ag, ay,ay, a3, a4) ( 3 (a +a2)’al’a27a2val>v
M=9
M=9
(ag, ...,ag) x (0,ay,a,, LP3(ay,a,), LP4(ay, a,),
(ag, ..., ag) o« (LPy(ay, az, a3), a, ay, as, —LPy(ay,ay),—LPs(a;, a3), —ay, —a;).
LPy(ay, ay), LP4(ay, ay), a3, az, ay). . .
eigenvalue: —i
eigenvalue: —1 M =5
M=5
(ag.ay,ay,as,a4) « (0,a;, LPy(a,), —LPy(a;), —a,),
(ag, a1, az.as.a) « (—V5+ )ay.ay,ay.ay. a)),
where
M=9
LP,(ay) 2
LP LP ) =~ o
(ag ag) « (LPy(ay.ay),ay,a, 3(ar, ay), 1+5+ 2(5+\/§)
LPy(ay,ay), LPy(ay, ay), a3, az, ay).
. ) M=9
eigenvalue: +i
M=5

(Clo, ...,618) X (O,al,az,LP3(al,02),LP4(a1,a2),

(ag.ay,ay,a3,a4) x (0,ay,LP;(a;),—LPy(ay),—ay), —LPy(ay,ay), —LP3(ay, ay), —ay, —a,).
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