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We study the chiral Ising, the chiral XY, and the chiral Heisenberg models at four-loop order with the
perturbative renormalization group in 4 − ϵ dimensions and compute critical exponents for the Gross-
Neveu-Yukawa fixed points to order Oðϵ4Þ. Further, we provide Padé estimates for the correlation length
exponent, the boson and fermion anomalous dimension, as well as the leading correction to scaling
exponent in 2þ 1 dimensions. We also confirm the emergence of supersymmetric field theories at four
loops for the chiral Ising and the chiral XY models with N ¼ 1=4 and N ¼ 1=2 fermions, respectively.
Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and
Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of
topological insulators.
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I. INTRODUCTION

Critical phenomena near continuous phase transitions
constitute one of the cornerstones of our modern under-
standing of quantum field theory, condensed matter physics
and statistical field theory [1,2]. Near a continuous phase
transition the free energy of a physical system exhibits a
scaling form [3], so that the specific heat or the correlation
length show a power-law behavior characterized by uni-
versal critical exponents. For example, in a thermal
transition, the correlation length diverges as

ξ ∼ jtj−νð1þ Cjtjω þ � � �Þ;

where t ¼ ðT − TcÞ=Tc is the reduced temperature meas-
uring the distance from the transition at critical temperature
Tc. In a quantum phase transition [4], where T ¼ 0, the
reduced temperature is replaced by another measure for the
distance from the transition, e.g., the deviation from a
critical coupling. The correlation length exponent ν and the
subleading exponent ω are universal numbers which are
identical for a number of phase transitions as specified by
symmetry and dimensionality, defining a universality class.
Prime examples for critical behavior are the three-

dimensional (3D) OðNÞ universality classes that can be
experimentally studied by various important phase tran-
sitions such as the liquid-gas transition in simple gases, the
superfluid transition in liquid Helium or the Heisenberg
transition in ferromagnets. From the theoretical side, the
development and comparison of different methods has led
to an impressive convergence across different theoretical
approaches for the OðNÞ universality classes. For example,
for the Z2 or Ising universality class, corresponding to the

N → 1 limit of the OðNÞ models, there is a three digit
agreement for the correlation length exponent νIsing ≈ 0.630
across the available theoretical methods [5–9] including the
renormalization group (RG), numerical Monte Carlo (MC)
approaches, and the conformal bootstrap.
In the last years, Dirac and Weyl semimetals [10,11]

have emerged as ubiquitous phases of matter in condensed-
matter physics, providing prime systems to explore funda-
mental properties of particles in unprecedented ways, and
beyond the realm of high-energy physics. In Dirac systems
the quasirelativistic energy dispersion leads to universal
properties such as, e.g., a linearly vanishing density of
states at the Fermi level and the concomitant thermody-
namic properties and various response functions. Under
specific circumstances, for example when interactions or
disorder are sufficiently strong, Dirac and Weyl systems are
believed to undergo second order quantum phase transi-
tions from their semimetallic phase to different types of
order [12–24]. Relevant order parameters cover a broad
range of suggestions, for example staggered density wave
phases, antiferromagnetic states, superconducting orders,
and more exotic phases.
The critical behavior of a universality class is governed

by the dimensionality, symmetry and relevant degrees of
freedom of a physical system. While the critical behavior of
the three-dimensional OðNÞ universality classes can be
conveniently described in terms of purely bosonic field
theories, the presence of symmetry-compatible chiral
fermions, as in Dirac and Weyl systems, severely modifies
the critical exponents and therefore defines a novel uni-
versality class [25]. At present, experimental realizations of
these quantum transitions are still lacking. However, in
systems like graphene, artificial graphene or cold atoms,
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related transitions have already been studied [26,27] and it
can be expected that these quantum phase transitions will
be accessible in the near future.
From a general point of view, these Dirac systems close to

a phase transition can effectively be described in terms of
quasirelativistic chiral Dirac fermions coupled to a bosonic
order parameter which—depending on the transition—can
have different numbers of components and symmetries. This
defines a general class of Gross-Neveu-Yukawa (GNY)
models. For example, the simplest of these models—the 3D
chiral Ising model—with one real scalar field describes the
universality class of the interaction-induced quantum tran-
sition toward a charge density wave (CDW) of electrons on
the 2D honeycomb lattice that breaks the (Ising) sublattice
symmetry [14].
A precise determination of the universality classes of the

3D GNY models in terms of quantitative critical exponents
has been prevented for quite some time due to the lack of
suitable methods. Recently, however, there have been
various developments that encourage to pick up on that
task again:

(i) Numerical approaches have found a fermion repre-
sentation allowing for a sign-problem free calculation
of the semimetal-to-CDW and related transitions of
fermions on the honeycomb lattice [28–32].

(ii) The conformal bootstrap has been developed to
determine critical exponents for the OðNÞ models
to unprecedented precision and is now extended to
fermionic systems [33–36].

(iii) Nonperturbative field-theoretical methods like the
functional renormalization group (FRG) have
achieved the maturity to provide quantitative esti-
mates for critical exponents [37–41].

(iv) The perturbative renormalization group (pRG) has
been formalized to a level that allows for feasible
higher-loop calculations for these models [42–44].

However, despite this recent progress in MC simulations
and the application of field-theoretical methods, the dis-
crepancies between the results for the GN critical expo-
nents have not been resolved and differences still show up
in the first relevant digits. Concerning the pRG it can be
stated that, with a few exceptions [42–44], most of the
universality classes of the GNY models are only known up
to two-loop order and no information about the behavior of
higher-loop orders is available. This leaves quite some
room for improvement on the estimates for critical expo-
nents coming from the pRG.
In this work we considerably extend on previous

calculations of critical exponents within the pRG by
providing the full analytical expressions for the beta and
gamma functions for three representative Gross-Neveu-
Yukawa models for general number of fermion flavors N at
four-loop order in 4 − ϵ dimensions. The models are chosen
to represent a class quantum transitions relevant to two-
dimensional chiral Dirac systems and will be introduced in
the next section. We calculate the inverse correlation length

exponent ν−1, anomalous dimensions ηϕ; ηψ and the sub-
leading exponent ω to order Oðϵ4Þ and present numerical
estimates for the most relevant cases.
The rest of the paper is organized as follows. After

introducing the three different models in Sec. II, we specify
the RG procedure and the employed computer algebraical
tools in Sec. III. In Sec. IV we present the full set of four-
loop RG functions for each of the models. Critical
exponents to order ϵ4 are presented in Sec. V, where we
also discuss applications and numerical evaluations of our
results and employ simple Padé resummations for the
universal critical exponents. Finally, we draw our conclu-
sions. Lengthy expressions for the four-loop contributions
are given in a set of appendices.

II. MODELS AND APPLICATIONS

Interacting Dirac fermions in two spatial dimensions can
undergo a variety of quantum phase transitions towards
ordered states with different symmetry breaking patterns
[12–24]. While there is a huge variety of different possible
states accompanied by individual subtleties, the general
universal critical behavior can be captured by a general
class of relativistic Gross-Neveu-Yukawa models. In this
description, the Dirac fermions couple to the order param-
eters via Yukawa couplings and the order parameters are
written in terms of bosonic fields with a corresponding
number of components and symmetries. More explicitly,
we discuss three specific models [25]:
(1) The chiral Ising model where chiral Dirac fermions

couple to a single-component real-valued order
parameter with a discrete Z2 symmetry.

(2) The chiral XY model where chiral Dirac fermions
undergo continuous Uð1Þ symmetry breaking as
described by a complex order parameter. This model
is closely related to the bosonized version of the
Nambu-Jona-Lasinio (NJL) model [45].

(3) The chiral Heisenberg model where SUð2Þ sym-
metry is broken. Here, the chiral Dirac fermions
couple to an order parameter which is represented by
a three-component vector.

Explicitly, we describe the quantum critical points of
interacting Dirac semimetals in 2þ 1 dimensions by the
following general form of the total action,

S ¼
Z

dτdD−1xðLψ þ Lψϕ þ LϕÞ: ð1Þ

The first term in the action is the fermionic kinetic term in
Euclidean spacetime

Lψ ¼ ψ̄ðxÞ=∂ψðxÞ; ð2Þ

where we define =∂ ¼ γμ∂μ and use a four-dimensional
representation of the Clifford algebra, i.e., fγμ; γνg ¼
2δμν14, with μ; ν;¼ 0; 1;…D − 1. The results on the RG
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beta and gamma functions are independent from the explicit
choice of the representation of the Clifford algebra as their
derivation only makes use of the anticommutation relation
and the trace over the identity matrix. Therefore, we do not
give an explicit representation, here and in the following,
and only note that different physical applications comewith
various explicit representations of the Clifford algebra, see
for example Refs. [46] and [43]. The conjugate of the Dirac
field is given by ψ̄ ¼ ψ†γ0. We generalize the model by
introducing a number of N fermion flavors of the four-
component Dirac fermions, i.e. the fermion also carries a
flavor index i where ψ ¼ ψ i and i ∈ f1;…; Ng. For nota-
tional simplicity, we will suppress the flavor index in the
following.
Further, we will have to define the Yukawa interaction

represented by Lψϕ and the purely bosonic part Lϕ

including a boson kinetic term and interactions. In the
following, we employ Lorentz-symmetric kinetic terms in
all considered Lagrangians, i.e. we set the boson velocity to
the same value as the Fermi velocity vB ¼ vF ¼ 1. This
generally provides us with a Lorentz-invariant form of the
total action, which, however, is not dictated a priori as the
effective GNY models considered here, typically have their
origin in a non-Lorentz-invariant lattice description. In fact,
the Lorentz symmetry near fermionic quantum critical
points with equal velocities for fermions and bosons has
been argued to emerge naturally in the deep infrared regime
in a large class of Yukawa theories of the same kind, even if
vF ≠ vB on intermediate scales [47–49].

A. Chiral Ising model

The first model of the class of Gross-Neveu-Yukawa
theories we discuss is the chiral Ising model. It is
represented by the Lagrangian

LχI ¼ Lψ þ gϕψ̄ψ þ 1

2
ϕðm2 − ∂2

μÞϕþ λϕ4; ð3Þ

and includes a real scalar field with one component ϕ. The
model can be considered to result from a Hubbard-
Stratonovich decoupled four-Fermi interaction and lies in
the same universality class as the purely fermionic GN
model [50] for (space-time) dimensions 2 < D < 4. The
Lagrangian in Eq. (3) is renormalizable in D ¼ 4 − ϵ
dimensions. The scalar field couples to the fermions with
the Yukawa coupling g and has a quartic coupling λ.
This version of the Gross-Neveu-Yukawa models has a

number of interesting applications depending on the
number of fermion flavors N. For an eight-component
spinor ψ (N ¼ 2) it describes the quantum critical point of
the semimetal-insulator transition in graphene, where the
ordered state corresponds to a sublattice symmetry broken
insulating state with charge order—the CDWorder [14]. In
the case N ¼ 1, we deal with a system that lies in the same
universality class as spinless fermions on the honeycomb

lattice with strong repulsive interactions, also undergoing a
semimetal-insulator transition which has been intensely
studied, recently, by a broad range of different methods,
i.e., quantumMonte Carlo (QMC) simulations [28–32], the
functional renormalization group [37,38] (FRG), perturba-
tive RG approaches [44,45], and the conformal bootstrap
[36]. For N ¼ 1=4, it has been argued that supersymmetry
emerges at the quantum critical point which might be
relevant at the boundary of a topological phase as discussed
in Ref. [51]. Finally, the replica limit of this GNY model,
N → 0, was suggested to describe the transition from a
relativistic semimetallic state to a diffusive metallic phase
in 3D Weyl semimetals [23].

B. Chiral XY model

The second model we discuss is the chiral XY model
where the chiral Dirac fermions ψ undergo continuous U(1)
symmetry breaking as described by the complex order
parameter ϕ ¼ ϕ1 þ iϕ2. The complete Lagrangian is
decomposed as

LχXY ¼ Lψ þ Lϕ;χXY þ Lψϕ;χXY ð4Þ

with the fermionic part Lψ , cf. Eq. (2). The bosonic part of
the action reads

Lϕ;χXY ¼ j∂μϕj2 þm2jϕj2 þ λjϕj4; ð5Þ

and the Yukawa interaction Lψϕ is

Lψϕ;χXY ¼ gψ̄ðϕ1 þ iγ5ϕ2Þψ
¼ gðϕψ̄Pþψ þ ϕ�ψ̄P−ψÞ; ð6Þ

where P� ¼ 1
2
ð1� γ5Þ.

Applications of this model in the condensed-matter
context can be found in the quantum critical behavior of
superconducting states in graphene where the number of
fermion flavors is N ¼ 2, see, e.g., Ref. [46], where also an
explicit choice for the Clifford algebra is discussed.
Further, the case N ¼ 2 is relevant to a Kekulé valence
bond solid transition in graphene [52–54] which is
described by a complex order parameter, however, with
a discrete Z3 symmetry. In the this scenario it was argued
that at the QCP the Z3 gets enhanced to an emergent Uð1Þ
symmetry leading to a set of critical exponents that is
shared with the N ¼ 2 chiral XY model [55–57]. Another
intriguing scenario where the chiral XY model is relevant
are the surface states of three-dimensional topological
insulators where emergent supersymmetry has been con-
jectured at the quantum critical point [43,46,58]. This
implies a field content with fermion flavor number
N ¼ 1=2. The chiral XY model shares the symmetries
of the bosonized version of the Nambu-Jona-Lasinio (NJL)
model, also referred to as the Nambu-Jona-Lasinio-Yukawa
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(NJLY) model, which has recently been discussed
in Ref. [45].

C. Chiral Heisenberg model

One of the best candidates for an interaction-induced
semimetal-insulator transition of the electronic quasi-
particles in graphene (N ¼ 2) is the transition towards
an antiferromagnetic spin-density wave (AF-SDW) state
[12,14,15,59–62] which has been suggested to be acces-
sible by application of biaxial strain [63,64]. In the
low-energy effective field-theoretical description this cor-
responds to a SU(2) symmetry breaking transition with a
Heisenberg order parameter field ϕ⃗ having three real
components. The corresponding full model is referred to
as the chiral Heisenberg model [25,37] with the bosonic
kinetic Lagrangian explicitly reading

Lϕ;χH ¼ 1

2
ϕ⃗ðm2 − ∂2

μÞϕ⃗þ λðϕ⃗ · ϕ⃗Þ2: ð7Þ

Accordingly, the Yukawa coupling is written as

Lψϕ;χH ¼ gϕ⃗ ψ̄ ðσ⃗ ⊗ 12NÞψ : ð8Þ

Similar to the other models, the ordered phase of the chiral
Heisenberg model is characterized by a finite expectation
value of the bosonic field which here corresponds to the
spontaneous breaking of spin-rotational symmetry. Note,
that we have directly introduced the generalization to
arbitrary number of fermion flavors in the Yukawa inter-
action. With this generalization, ψ and ψ̄ have 2N compo-
nents for each spin projection and the graphene case is
covered by N ¼ 2. The explicit implementation of the
flavor number is straightforward, as for the derivation of the
results only the Clifford algebra and the product dγN is
required, where dγ is the dimension of the representation of
the gamma matrices.

III. RENORMALIZATION GROUP AND
TECHNICALITIES

For the renormalization group analysis in 4 − ϵ dimen-
sions, we introduce the bare Lagrangian. To that end, we
replace the fields and couplings in the Lagrangian from
Eq. (1) with their bare counterparts

ψ →ψ0; ϕ→ϕ0; g→ g0; λ→ λ0: ð9Þ

We discuss the explicit construction for the chiral Ising
model and note that the constructions for the chiral XYand
the chiral Heisenberg model work accordingly. The renor-
malized chiral Ising model Lagrangian reads

L ¼ Zψ ψ̄=∂ψ −
1

2
Zϕð∂μϕÞ2 þ Zϕ2

m2

2
ϕ2

þ Zϕψ̄ψgμϵ=2ϕψ̄ψ þ Zϕ4λμϵϕ4: ð10Þ

Here, we have introduced the energy scale μ parametrizing
the RG flow. The wave function renormalization constants
Zψ and Zϕ relate the bare and the renormalized Lagrangian
by rescaling the fields according to ψ0 ¼

ffiffiffiffiffiffi
Zψ

p
ψ and

ϕ0 ¼
ffiffiffiffiffiffi
Zϕ

p
ϕ. For the integration over D ¼ 4 − ϵ dimen-

sional spacetime we introduce the rescaling

g2 → g2μϵ; λ → λμϵ; ð11Þ

which leads to explicit μ dependencies in L. For notational
simplicity, we further introduce the squared Yukawa
coupling y ¼ g2, see Ref. [44].
The RG scale dependence of the renormalized quantities

can be derived from the following relations between the
bare and the renormalized mass term, the Yukawa coupling
and the quartic coupling,

m2 ¼ m2
0ZϕZ−1

ϕ2 ; ð12Þ

y ¼ y0μ−ϵZ2
ψZϕZ−2

ϕψ̄ψ ; λ ¼ λ0μ
−ϵZ2

ϕZ
−1
ϕ4 : ð13Þ

Employing a chain of sophisticated tools developed for
higher-loop calculations in the context of the standard
model of particle physics, we evaluate the renormalization
group constants

Zψ ; Zϕ; Zϕ2 ; Zϕψ̄ψ ; Zϕ4 ; ð14Þ

up to four-loop order. Therefore, we use dimensional
regularization (DREG) and the modified minimal subtrac-
tion scheme (MS). The tool chain of computer programs
operates as follows:
(1) QGRAF [65] generates the complete sets of Feynman

diagrams.
(2) Q2E and EXP [66,67] are used to map all Feynman

diagrams on one-scale massive tadpole integral
topologies and to generate diagram source files.

(3) FORM [68–70] is used to process the diagram source
files. It performs the traces over the Clifford algebra,
reduces the SUð2Þ color amplitudes (in case of the
chiral Heisenberg model) with the package COLOR

[71] and rewrites the amplitudes in terms of massive
tadpole integrals with different powers of propaga-
tors. Finally it replaces all integrals by their tabulated
reduction to a set of nineteen known master inte-
grals [72].

(4) The reduction to master integrals is performed by
CRUSHER [73] and relies on integration-by-parts
identities relating integrals with different propagator
powers through a system of coupled equations to
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each other. The system of equations can be solved
with the Laporta algorithm [74] such that all
appearing integrals can be written in terms of a
linear combination of a finite number of master
integrals.

For the computation of the renormalization constants we
employ the method introduced in Ref. [75]. Explicitly, we
assign a mass regulator to all propagators and reduce the
calculation to the evaluation of one scale tadpole topol-
ogies. Up to three loops we checked our results against
MATAD [76].
The total number of diagrams calculated at four-loop

level is 31671 for the chiral Ising and Heisenberg model.
For the chiral XY model we implemented two independent
setups using the Feynman rules that can be derived from the
first or the second line of Eq. (6), i.e., employing a complex
scalar and a Dirac fermion or a real scalar representation
and left- and right-handedWeyl fermions. The total number
of diagrams amounts to 188531 for the first setup and to
7384 for the second one whereas the results for the
renormalization constants completely agree. This is a
nontrivial check for our setups up to four loops.

IV. BETA AND GAMMA FUNCTIONS

The beta functions for the squared Yukawa coupling y
and the quartic scalar coupling λ are defined as the
logarithmic derivatives with respect to the scale μ to be

βy ¼
dy

d ln μ
; βλ ¼

dλ
d ln μ

: ð15Þ

The relation to the renormalization constants is derived
from Eqs. (12)–(13) and we work with rescaled couplings
y=ð8π2Þ → y and λ=ð8π2Þ → λ. For the Yukawa coupling
and the quartic scalar coupling at four-loop order we
expand the full expressions according to the scheme

βy;X ¼ −ϵyþ βð1LÞy;X þ βð2LÞy;X þ βð3LÞy;X þ βð4LÞy;X ; ð16Þ

βλ;X ¼ −ϵλþ βð1LÞλ;X þ βð2LÞλ;X þ βð3LÞλ;X þ βð4LÞλ;X ; ð17Þ

where we have defined the functions βðiLÞx;X with x ∈ fy; λg
specifying the coupling, i ∈ f1; 2; 3; 4g specifying the
contribution to the flow of the coupling x at loop order i
andX specifying the consideredmodel X ∈ fχI; χXY; χHg.
Further, the anomalous dimensions are defined as the
logarithmic derivatives of the wave function renormaliza-
tions of the fermion and the boson fields and of the quadratic
operator ϕ2, i.e. γx ¼ d lnZx=d ln μ for x ∈ fψ ;ϕ;ϕ2g and
read

γψ ;X ¼ γð1LÞψ ;X þ γð2LÞψ ;X þ γð3LÞψ ;X þ γð4LÞψ ;X ; ð18Þ

γϕ;X ¼ γð1LÞϕ;X þ γð2LÞϕ;X þ γð3LÞϕ;X þ γð4LÞϕ;X ; ð19Þ

γϕ2;X ¼ γð1LÞ
ϕ2;X þ γð2LÞ

ϕ2;X þ γð3LÞ
ϕ2;X þ γð4LÞ

ϕ2;X: ð20Þ

The beta functions are used to calculate the renormalization
group fixed points and together with the anomalous dimen-
sions provide estimates for universal critical exponents, i.e.
the inverse correlation length exponent ν−1, the subleading
exponent ω and the anomalous dimensions of the fermions
and the bosons, ηψ and ηϕ, respectively.
In the next section, we provide the full analytical

expressions up to four-loop order for each of the introduced
models. We have chosen a normalization of the couplings
that allows to easily compare contributions to the beta
functions across models. For example, for all models, the
one-loop beta functions for the Yukawa coupling and the
quartic boson coupling can be written as

βð1LÞy;X ¼ ð3 −M þ 2NÞy2; ð21Þ

βð1LÞλ;X ¼ ð36þ 4MÞλ2 þ 4Nyλ − Ny2; ð22Þ

where M is the number of Goldstone modes in the
symmetry broken phase of the corresponding model, i.e.,
M ¼ 0 for the chiral Ising model, M ¼ 1 for the chiral XY
model and M ¼ 2 for the chiral Heisenberg model. For
clarity, however, we list all the beta and gamma functions
separately in the following.

A. Chiral Ising model

For the chiral Ising model, the loop contributions to the
beta function of the Yukawa coupling up to three-loop order
explicitly read [44]

βð1LÞy;χI ¼ ð3þ 2NÞy2; ð23Þ

βð2LÞy;χI ¼ 24yλðλ − yÞ −
�
9

8
þ 6N

�
y3; ð24Þ

βð3LÞy;χI ¼ y
64

ð1152ð7þ 5NÞy2λþ 192ð91 − 30NÞyλ2

þ ð912ζ3 − 697þ 2Nð67þ 112N þ 432ζ3ÞÞy3
− 13824λ3Þ: ð25Þ

Here ζz is the Riemann zeta function. Accordingly, the
contributions to the beta function for the quartic scalar
coupling are given by

βð1LÞλ;χI ¼ 36λ2 þ 4Nyλ − Ny2; ð26Þ

βð2LÞλ;χI ¼ 4Ny3 þ 7Ny2λ − 72Nyλ2 − 816λ3; ð27Þ
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βð3LÞλ;χI ¼ 1

32
ð6912ð145þ 96ζ3Þλ4 þ 49536Nyλ3

− 48Nð72N − 361 − 648ζ3Þy2λ2
þ 2Nð1736N − 4395 − 1872ζ3Þy3λ
þ Nð5 − 628N − 384ζ3Þy4Þ: ð28Þ

The four-loop order contributions are quite lengthy and are
given in Appendix A. For the contributions to the gamma
function corresponding to wave function renormalization of
the fermion derivative term, we find

γð1LÞψ ;χI ¼
y
2
; ð29Þ

γð2LÞψ ;χI ¼ −
y2

16
ð12N þ 1Þ; ð30Þ

γð3LÞψ ;χI ¼
y3

128
ð48ζ3 þ 4Nð47− 12NÞ− 15Þ þ 6λy2 −

33λ2y
2

:

ð31Þ

The gamma function corresponding to the wave function
renormalization of the derivative term of the scalar order
parameter reads

γð1LÞϕ;χI ¼ 2Ny; ð32Þ

γð2LÞϕ;χI ¼ 24λ2 −
5Ny2

2
; ð33Þ

γð3LÞϕ;χI ¼ −216λ3 þ 1

32
Ny3ð48ζ3 þ 200N þ 21Þ

þ 30λNy2 − 90λ2Ny: ð34Þ

Finally, the scaling of the quadratic scalar operator is given
by the following contributions to the gamma function γϕ2;χI,

γð1LÞ
ϕ2;χI

¼ −12λ; ð35Þ

γð2LÞ
ϕ2;χI

¼ 144λ2 − 2Nyðy − 12λÞ; ð36Þ

γð3LÞ
ϕ2;χI ¼

3

2
Ny2λð24N − 120ζ3 − 11Þ − 6264λ3

− 4Ny3ð4N − 9þ 3ζ3Þ − 288Nyλ2: ð37Þ

The four-loop order contributions are displayed in
Appendix A.
This completes the set of beta and gamma functions that

are required to determine the fixed-points and the critical
exponents for the chiral Ising model. Our expressions fully
agree up to three loops with the ones from our Ref. [44].
Upon setting y ¼ 0, the beta function for the quartic
coupling also agrees with the four-loop results for the real

scalar ϕ4 theory with Z2 or Ising symmetry [77]. As a
further check we later compare our four-loop results for the
critical exponents ηϕ, ηψ , 1=ν and ωwith the large-N results
of the GN model from Refs. [78–84] and find them
to agree.

1. Remarks on emergent supersymmetric theory

For N ¼ 1=4, the field content of the chiral Ising model
is compatible with an emergent supersymmetry scenario as
discussed in Ref. [51]. Up to three loops all supersymmetric
relations hold exactly [43–45]. At fourth order the naïve
N ¼ 1=4 limit yields a violation of the superscaling
relations, because the beta functions for the couplings y
and λ are not equal upon the rescaling y → 8λ. This implies
that one of the supersymmetric scaling relations [85,86]
between the critical exponents will also be violated at
fourth order in ϵ. However, the original SUSY Lagrangian
containing a two-component Majorana fermion as the
superpartner of a single real scalar was formulated in D ¼
3 dimensions [35,51]. Up to three loops, one may perform a
D ¼ 4 − ϵ dimensional calculation with a four-component
Dirac fermion and formally continue the results toN ¼ 1=4.
At four-loop order, however, we proved by explicit calcu-
lation that the differences in the γ algebra in the underlying
four-dimensional and three-dimensional cases manifest in
the renormalization of the fermion-fermion-scalar vertex.
This can be explained as follows:
When dimensional regularization is used, the spacetime

dimension D becomes noninteger and the basis of γ-
matrices needs to be extended to an infinite-dimensional
set [42,87]

ΓðkÞ
μ1μ2…μk ¼

1

k!
γ½μ1γμ2 � � � γμk� for k ≥ 0; ð38Þ

where the square brackets denote the antisymmetrization.
Furthermore, we follow the usual procedure [88] and
impose the restriction that when ϵ → 0 the familiar rela-
tions, which are valid in D ¼ 4 or D ¼ 3, are restored. For
example, when the spacetime dimensionD is an integer, the
product in Eq. (38) in which each γ matrix occurs only once
plays a special role and we denote it by

ΓðDÞ
μ1μ2…μD ≡ ~γD ¼ γ1γ2 � � � γD: ð39Þ

For the matrices ~γD it holds

~γ2D ¼ α2DI with

αD ¼ 1 for D ¼ 0; 1 mod 4;

αD ¼ i for D ¼ 2; 3 mod 4: ð40Þ

Thus, for D ¼ 4 the more familiar γ5 is recovered through
the relation γ5 ¼ ~γ4. When continuing to D ¼ 4 − ϵ or
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D ¼ 3 − ϵ we maintain all the properties of the matrices ~γ4
and ~γ3 from the underlying integer dimensions.
The general strategy is to decompose products of γ

matrices by the iterative use of the following identities

γμΓ
ðkÞ
μ1μ2…μk ¼ Γðkþ1Þ

μμ1μ2…μk þ
Xk
i¼1

ð−1Þiþ1δμμiΓ
ðk−1Þ
μ1μ2…μi−1μiþ1…μk ;

ΓðkÞ
μ1μ2…μkγμ ¼ Γðkþ1Þ

μ1μ2…μkμ þ
Xk
i¼1

ð−1Þn−iδμμiΓðk−1Þ
μ1μ2…μi−1μiþ1…μk :

ð41Þ

For k ¼ 1 one obtains the simple relation

γμγν ¼ Γð2Þ
μν þ δμνI ¼

1

2
ðγμγν − γνγμÞ þ δμνI; ð42Þ

where I is the identity matrix. Another useful result is

γμΓðkÞγμ ¼ ð−1ÞkðD − 2kÞΓðkÞ ð43Þ

from which it follows

TrðΓðkÞÞ ¼ 0 for ΓðkÞ ≠ I; ~γD;

Trð~γDÞ ¼ 0 for D even: ð44Þ

Therefore, when one performs traces over products of γ
matrices without ~γD, one picks out the coefficient of the
identity matrix and (ifD is odd) of the matrix ~γD. As can be
understood from Eq. (43) the trace over a chain of three
different γ matrices will be set to zero inD ¼ 4. InD ¼ 3 it
holds the relation

TrðγμγνγρÞ ¼ �iεμνρTrðIÞ; ð45Þ

where εμνρ denotes the Levi-Civita tensor in three dimen-
sions. WhenD is continued toD ¼ 4 − ϵwithin DREG the
properties of an even dimensional spacetime are preserved
and the trace over a chain of three different γ matrices also
vanishes. In our setup we slightly modify DREG and apply
a semi-naïve regularization prescription [89] for ~γ3 con-
sisting in the formal replacement

TrðγμγνγρÞ ¼ �i~εμνρTrðIÞ þOðϵÞ: ð46Þ

The object ~εμνρ has some similarities with the three-
dimensional Levi-Civita tensor: (i) it is completely anti-
symmetric in all indices; (ii) when contracted with a second
one of its kind we demand the following result

~εμνρ ~εμ0ν0ρ0 ¼ δ½μ½μ0δ
ν
ν0δ

ρ�
ρ0�; ð47Þ

where the square brackets denote complete antisymmetri-
zation. When D ¼ 3, ~εμνρ resembles the three-dimensional

Levi-Civita tensor. To avoid confusion we call this pre-
scription DREG3.
As the Eq. (46) can only be defined up to an ambiguity of

order OðϵÞ, we made sure that the four-loop diagrams
containing two fermion chains each made up of at least
three different γ matrices contribute at most simple poles in
ϵ. Sample diagrams are shown in Fig. 1. After taking into
account these contributions the renormalization constant
for the fermion-fermion-scalar vertex gets an additional
contribution proportional to the number of fermions N that
we marked with the label Δ3 in Eq. (A1) and that restores
the supersymmetric relations.
As a cross check of themethodwe implemented theSUð2Þ

spin algebra as an explicit representation of the Clifford
algebra in D ¼ 3 dimensions for the four-loop diagrams.
With this approach we obtained complete agreement for the
contributions labeled withΔ3 in the previous setup. It is also
important tomention that togetherwith SUSY restoration the
numerical values of the couplings at the fixed point change
too and the critical exponents satisfy all the superscaling
relations as will be discussed in the next section.

B. Chiral XY model

In this section, we give the RG beta and gamma
functions for the chiral XY model. Again, we forward
the lengthy four-loop contributions to the appendix, cf.
Appendix B. The contributions to the beta function of the
Yukawa coupling up to three-loop order explicitly read

βð1LÞy;χXY ¼ ð2þ 2NÞy2; ð48Þ

βð2LÞy;χXY ¼ 32λ2yþ
�
7

2
− 6N

�
y3 − 32λy2; ð49Þ

βð3LÞy;χXY ¼ 1

8
ðNð52N þ 15Þ − 227Þy4

þ 24λð5N þ 6Þy3 − 120λ2ðN − 3Þy2:
− 320λ3yþ 6ζ3ðN þ 1Þy4: ð50Þ

The contributions to the beta function for the quartic scalar
coupling are

FIG. 1. Sample diagrams contributing to the fermion-fermion-
scalar renormalization in D ¼ 3 dimensions. The scalar field is
denoted ϕ and the Majorana fermions Ψ.
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βð1LÞλ;χXY ¼ 40λ2 þ 4Nλy − Ny2; ð51Þ

βð2LÞλ;χXY ¼ 2Nyð−40λ2 þ 2y2 þ λyÞ − 960λ3; ð52Þ

βð3LÞλ;χXY ¼ 39488λ4 þ 1

8
Nð53 − 154NÞy4

þ 1808λ3Nyþ 2λ2Nð509 − 60NÞy2
− 12ζ3ðNy2ð−68λ2 þ y2 þ 7λyÞ − 2048λ4Þ

þ 1

4
λNð512N − 1339Þy3: ð53Þ

For the contributions to the gamma function of the wave
function renormalization of the fermion derivative term, we
obtain

γð1LÞψ ;χXY ¼ y; ð54Þ

γð2LÞψ ;χXY ¼ −
y2

4
ð6N þ 1Þ; ð55Þ

γð3LÞψ ;χXY ¼ −
1

16
ð2Nð6N − 37Þ þ 35Þy3 þ 3ζ3y3

þ 16λy2 − 44λ2y; ð56Þ

The gamma function which corresponds to the wave
function renormalization of the derivative term of the
complex order parameter reads

γð1LÞϕ;χXY ¼ 2Ny; ð57Þ

γð2LÞϕ;χXY ¼ 32λ2 − 3Ny2; ð58Þ

γð3LÞϕ;χXY ¼ −320λ3 þ 6ζ3Ny3 þ 1

8
Nð64N − 27Þy3

þ 40λNy2 − 120λ2Ny; ð59Þ

The scaling of the wave function renormalization of the
squared mass term of the complex order parameter field is
given by the contributions

γð1LÞ
ϕ2;χXY

¼ −16λ; ð60Þ

γð2LÞ
ϕ2;χXY ¼ 32λð6λþ NyÞ; ð61Þ

γð3LÞ
ϕ2;χXY ¼ −4ð2336λ3 þ Nð6N − 11Þy3 þ 96λ2Ny

þ 6ζ3Ny2ð8λþ yÞ þ λNð25 − 12NÞy2Þ: ð62Þ

The four-loop order contributions are displayed in
Appendix B. This completes the set of beta and gamma
functions that are required to determine the fixed-points
and the critical exponents for the chiral XY model.

We compare these results on the two-loop level, with
the ones for the NJL-Yukawa model as given in Ref. [45]
and confirm, that they are in complete agreement. Further,
in the case N ¼ 1=2, we check that at the three-loop level
all the beta and gamma functions coincide with the ones
given previously in Ref. [43]. For y ¼ 0, we recover the
corresponding four-loop expressions for the bosonic ϕ4

theory with Oð2Þ symmetry [77]. Further, consistency
checks based on exact results for the critical exponents
and SUSY relations for the case N ¼ 1=2 can be found in
the results section. Let us mention at this point, that there
is no additional contribution when going from D ¼ 4 − ϵ
to D ¼ 3 − ϵ spacetime dimensions, because diagrams
similar with those shown in Fig. 1 do not exist in the
chiral XY model. Therefore, the SUSY relations can be
easily obtained from our results via the formal limit
N ¼ 1=2.

C. Chiral Heisenberg model

For the chiral Heisenberg model, the contributions to the
beta function of the Yukawa coupling explicitly read

βð1LÞy;χH ¼ ð1þ 2NÞy2; ð63Þ

βð2LÞy;χH ¼ y

�
40λ2 þ

�
47

8
− 6N

�
y2 − 40λy

�
; ð64Þ

βð3LÞy;χH ¼ 1

64
ð608N2 þ 278N − 2731Þy4

þ 9

4
ζ3ð7 − 2NÞy4 þ 150λðN þ 1Þy3

þ 5λ2ð89 − 30NÞy2 − 440λ3y ð65Þ

Accordingly, the contributions to the beta function for the
quartic bosonic coupling are

βð1LÞλ;χH ¼ 44λ2 þ 4Nyλ − Ny2; ð66Þ

βð2LÞλ;χH ¼ Nyð−88λ2 þ 4y2 − 3λyÞ − 1104λ3; ð67Þ

βð3LÞλ;χH ¼ 48184λ4 þ 1

32
Nð365 − 604NÞy4

þ 1

16
λNð2360N − 6339Þy3

þ 3ζ3ð9472λ4 þ Ny2ð212λ2 − 4y2 − 19λyÞÞ

þ 1

2
λ2Nð3067 − 264NÞy2 þ 2068λ3Ny: ð68Þ

For the gamma function corresponding to wave function
renormalization of the fermion derivative term, we find

γð1LÞψ ;χH ¼ 3y
2
; ð69Þ
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γð2LÞψ ;χH ¼ −
9

16
ð4N þ 1Þy2; ð70Þ

γð3LÞψ ;χH ¼ 3

128
yðð−48N2 þ 404N − 183Þy2

− 3520λ2 þ 240ζ3y2 þ 1280λyÞ: ð71Þ

The gamma function contributions to the wave function
renormalization of the boson derivative term read

γð1LÞϕ;χH ¼ 2Ny; ð72Þ

γð2LÞϕ;χH ¼ 40λ2 −
7Ny2

2
; ð73Þ

γð3LÞϕ;χH ¼ −440λ3 þ 15

2
ζ3Ny3 þ 1

32
Nð312N − 131Þy3

þ 50λNy2 − 150λ2Ny: ð74Þ

Finally, the scaling of the wave function renormalization of
the squared mass term of the bosonic order parameter field
is given by the following contributions

γð1LÞ
ϕ2;χH

¼ −20λ; ð75Þ

γð2LÞ
ϕ2;χH ¼ 240λ2 þ 2Nyð20λþ yÞ; ð76Þ

γð3LÞ
ϕ2;χH

¼ −12920λ3 þ 8Nð7 − 4NÞy3 − 480λ2Ny

− 36ζ3Ny2ð5λþ yÞ þ 5

2
λNð24N − 89Þy2: ð77Þ

All four-loop order contributions are given in Appendix C.
We benchmark our results on a two-loop level with the

ones given in Ref. [25]. We have detected a mismatch,
which is hard to track down, as in Ref. [25] only the final
results are listed for the chiral Heisenberg model.
Eventually, the mismatch only shows up in the ϵ2 coef-
ficient of the inverse correlation length exponent, cf.
Sec. V C. All the other exponents agree up to two-loop
order. After careful cross-checking we are confident that
the results presented here are correct.

V. CRITICAL EXPONENTS

The four-loop beta functions allow the determination of
the RG fixed points of the system order by order in ϵ up to
Oðϵ4Þ. At the one-loop level, the beta functions for y and λ
give rise to four different fixed points: the unstable Gaußian
fixed point with vanishing coordinates ðy�; λ�Þ0 ¼ ð0; 0Þ,
the unstable bosonic Wilson-Fisher fixed point
ðy�; λ�ÞWF ¼ ð0; ϵ=ð4M þ 36ÞÞ, and a pair of fully non-
Gaußian fixed points (NGFP)

ðy�; λ�Þ� ¼
�

ϵ

3þ 2N −M
;

1
8
ð3 − 2N −M � sÞϵ

ð3þ 2N −MÞðM þ 9Þ
�
;

where

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4Nð33þ NÞ þ 20NM þM2 − 6M

q
: ð78Þ

From the pair of NGFPs, the one with the negative solution
has a negative quartic coupling. In the following, we do not
discuss this fixed-point. We note, however, that it has been
considered in the context of conformal field theories
[36,45]. Here, we study the stable positive solution from
Eq. (78), only, which we solve order by order in ϵ.
The universal critical exponents which we determine,

here, are the (inverse) correlation length exponent ν−1, the
anomalous dimensions of bosons and fermions, ηϕ and ηψ ,
respectively, as well as the subleading exponent ω. To
obtain the fermion and boson anomalous dimensions, we
evaluate the gamma functions γψ and γϕ at the correspond-
ing NGFP, i.e.,

ηψ ¼ γψðy�; λ�Þ; ð79Þ

ηϕ ¼ γϕðy�; λ�Þ: ð80Þ

The RG beta function of the dimensionless mass term ~m2 ¼
μ−2m2 follows from Eq. (12) and reads

β ~m2 ¼ ð−2þ γϕ − γϕ2Þ ~m2: ð81Þ

This beta function is used to extract the inverse correlation
length exponent with the relation

ν−1 ¼ θ1 ¼ −
dβ ~m2

d ~m2

����
ðy�;λ�Þ

¼ 2 − ηϕ þ ηϕ2 ; ð82Þ

where, in agreement with the previous notation, we have
defined ηϕ2 ¼ γϕ2ðy�; λ�Þ.
Eventually, we access the subleading exponent ω as the

smaller eigenvalue of the stability matrix M, i.e., the
matrix of first derivatives of the beta functions with respect
to the couplings, evaluated at the stable fixed point

M ¼

0
BB@

∂βy
∂y

∂βλ
∂y

∂βy
∂λ

∂βλ
∂λ

1
CCA
��������
y�;λ�

: ð83Þ

Then, the smaller eigenvalue ω corresponds to the less
irrelevant RG direction and the larger eigenvalue, which we
call ω0, is more irrelevant. For the corrections to scaling, the
less irrelevant contribution is more important and therefore
we will only list ω from now on.
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Next, we evaluate the beta and gamma functions for
different explicit choices of fermion flavor number N to
provide explicit results for the inverse correlation length
exponent, subleading exponent and the fermion and boson
anomalous dimensions. The full expressions with arbitrary
N can be given analytically, however, they are very lengthy
and we therefore do not display them, here. Instead, we
have prepared Supplemental Material with the full expres-
sions of the critical exponents for general N in three
separate files for the three separate models [90].

A. Chiral Ising model

Here, we discuss the most important cases of the chiral
Ising model, i.e. the semimetal-CDW transition in graphene
(N ¼ 2), the semimetal-insulator transition of spinless
fermions on the honeycomb lattice (N ¼ 1) and the
emergent SUSY scenario ðN ¼ 1=4Þ. Finally, we also
comment on the limit N → 0.
For N ¼ 2, the numerical evaluation of the critical

exponents provides the following series in ϵ,

1

ν
≈ 2 − 0.9524ϵþ 0.007225ϵ2 − 0.09487ϵ3 − 0.01265ϵ4;

ηϕ ≈ 0.5714ϵþ 0.1236ϵ2 − 0.02789ϵ3 þ 0.1491ϵ4;

ηψ ≈ 0.07143ϵ − 0.006708ϵ2 − 0.02434ϵ3 þ 0.01758ϵ4;

ω ≈ ϵ − 0.3525ϵ2 þ 0.4857ϵ3 − 1.338ϵ4: ð84Þ

The full analytical expression for this series is given in
Appendix A. We note that the second order coefficient in
the series for the inverse correlation length exponent and
in the one for the fermion anomalous dimension seem to be
accidentally small.
To obtain first estimates for the critical exponents for the

physical case of (2þ 1) dimensions, we employ simple
Padé approximants and note that a more thorough analysis
of resummations and interpolations is underway. The
results from the Padé estimates are listed in Table I, together
with the estimates from other approaches, i.e., the 2þ ϵ
expansion [42,91], the functional RG [39], the conformal
bootstrap [36], and quantum Monte Carlo [28]. We have
chosen to display the symmetric Padé approximant P½2=2� as
well as P½3=1� for comparison. The results from the other
available Padé approximants, i.e., P½4=0�; P½1=3�; P½0=4�, are
distributed in a larger interval, tentatively contain poles in
D ∈ f2; 4g for some of the critical exponents or are ill-
defined. This observation proliferates to the other values of
N studied here as well as to the chiral XY and chiral
Heisenberg model. Therefore, we do not display them in
the following, except for special cases. We postpone a more
thorough study of this matter to future work. In summary,
we can see that for N ¼ 2, the estimates of the field-
theoretical approaches agree rather well for the inverse
correlation length exponent and the boson anomalous

dimension, in particular when focusing on the two different
ϵ expansions. On the other hand, the uncertainty in the
determination of the fermion anomalous dimension
remains rather large. The quantum Monte Carlo results
for 1=ν and ηψ are also quite far from the other approaches
and it will be an interesting task to track the origin for that
difference in the future.
In Table I, we have also listed the results for the intensely

studied N ¼ 1 case. The Padé approximants for critical
exponents which contain a pole in the interval D ∈ f2; 4g
should be interpreted carefully andwe therefore refrain from
displaying them in the tables. We find that for the inverse
correlation length exponent all the Padé approximants have
poles in D ∈ f2; 4g, except for P½0=4�, which we have
additionally listed in Table I. Comparisons to the other
approaches are also listed in Table I, exhibiting good
agreement for the boson anomalous dimension. The results
for 1=ν, however, are scattered over a rather large interval.
Here, the estimates from the two different RG approaches
[39] are located approximately half way between the
estimates from quantum Monte Carlo [30] and the con-
formal bootstrap [36].
As already pointed out, for N ¼ 1=4 the field content of

the chiral Ising model is compatible with an emergent

TABLE I. Chiral Ising universality in D ¼ 3: Inverse correla-
tion length exponent 1=ν and anomalous dimensions ηϕ and ηψ
for bosons and fermions, respectively. In this work, we provide
results within the (4 − ϵ) expansion to Oðϵ4Þ. We do not give
values for critical exponents where the Padé approximant con-
tains a pole in the intervalD ∈ ½2; 4�. To obtain the values for 1=ν
from the QMC results, we have performed simple numerical
inversions of the values for ν given in the corresponding
references.

N ¼ 1=4 1=ν ηϕ ηψ ω

this work, P½2=2� 1.415 0.171 0.171 0.843
this work, P½3=1� 1.415 0.170 0.170 0.838
FRG [40] (Regulator 1) 1.385 0.174 0.174 0.765
FRG [40] (Regulator 2) 1.395 0.167 0.167 0.782
conformal bootstrap [35] 0.164 0.164

N ¼ 1 1=ν ηϕ ηψ ω
this work, P½2=2� � � � 0.4969 0.0976 0.779
this work, P½3=1� � � � 0.4872 0.0972 0.760
this work, P½0=4� 1.101 � � � � � � � � �
FRG [39] 1.075(4) 0.5506 0.0645
conformal bootstrap [36] 0.76 0.544 0.084
Monte Carlo [30] 1.30 0.45(3)
Monte Carlo [31] 1.14 0.54(6)

N ¼ 2 1=ν ηϕ ηψ ω
this work, P½2=2� 0.931 0.7079 0.0539 0.794
this work, P½3=1� 0.945 0.6906 0.0506 0.777
(2þ ϵ), (ϵ4, Padé) [42] 0.931 0.745 0.082
FRG [39] 0.994(2) 0.7765 0.0276
conformal bootstrap [36] 0.88 0.742 0.044
Monte Carlo [28] 1.20(1) 0.62(1) 0.38(1)

ZERF, MIHAILA, MARQUARD, HERBUT, and SCHERER PHYSICAL REVIEW D 96, 096010 (2017)

096010-10



supersymmetric model. After taking into account the
contributions occurring solely in the D ¼ 3 computation,
we find for the critical exponents the following series

1

ν
¼ 2 −

4ϵ

7
−
ϵ2

49
þ
�
60ζ3
2401

−
29

4802

�
ϵ3

þ ð−40ζ3 − 5000ζ5 þ 14π4 − 141Þϵ4
67228

þOðϵ5Þ; ð85Þ

η ¼ ϵ

7
þ 2ϵ2

49
þ
�

29

2401
−
120ζ3
2401

�
ϵ3

þ ð40ζ3 þ 5000ζ5 − 14π4 þ 141Þϵ4
33614

þOðϵ5Þ; ð86Þ

with η ¼ ηψ ¼ ηϕ and

ω ¼ ϵ −
3ϵ2

7
þ
�
282ζ3
343

þ 129

686

�
ϵ3

þ ð329π4 − 42660ζ3 − 158400ζ5 − 9075Þϵ4
48020

þOðϵ5Þ:
ð87Þ

Thus, the superscaling relation [85,86]

1

ν
¼ D − η

2
; ð88Þ

exactly holds up to fourth order in ϵ. Numerically we obtain

1

ν
¼ D − η

2
≈ 2. − 0.571429ϵ − 0.0204082ϵ2

þ 0.0239998ϵ3 − 0.0596477ϵ4: ð89Þ

Padé approximants for the critical exponents in 2þ 1
dimensions are given in Table I. We observe a good
agreement between the available estimates from the con-
formal bootstrap approach [35], the FRG [40] and our
results.
Finally, we would like to comment on the replica limit

for our GNY model, N → 0, which has been argued to be
applicable to the transition from a relativistic semi-metallic
state to a diffusive metallic phase in a 3D Weyl semi-metal
[23]. A four-loop expansion of the purely fermionic Gross-
Neveu model in D ¼ 2þ ϵ exhibits large Oðϵ4Þ contribu-
tions when compared to the three-loop contributions [42].
This is attributed to the fact that the limit N → 0 suffers
from the lack of multiplicative renormalizability yielding
contributions from evanescent operators [23,42]. It was
argued in Ref. [23] that this problem can be circumvented
by considering the GNY model in the same limit. At one-
loop order the N → 0 limit of the GNY model gives
rise to a NGFP which is nontrivial in both couplings
ðy�; λ�Þþ ¼ ðϵ=3; ϵ=36Þ. This is exactly the fixed point

which has been considered in Ref. [23]. We remark,
however, that for N → 0 the beta function βλ;χI and the
gamma functions γϕ;χI; γϕ2;χI completely decouple from the
fermionic sector order by order in the loop expansion as
every term proportional to the squared Yukawa coupling y
comes at least with a factor N. Therefore, the critical
exponents ν−1; ηϕ and ω are identical to the ones obtained
for the purely bosonic Ising field theory [77] which we
confirm by evaluating our equations in this limit to order
Oðϵ4Þ. These exponents are amended by a nontrivial
fermion anomalous dimension, which we display here for
the sake of completeness,

1

ν
¼ 2 −

1

3
ϵ −

19

162
ϵ2 þ

�
4ζ3
27

−
937

17496

�
ϵ3

þ ð771120ζ3 − 4665600ζ5 þ 11664π4 − 124285Þ
9447840

ϵ4

þOðϵ5Þ; ð90Þ

and

ηϕ ¼ 1

54
ϵ2 þ 109

5832
ϵ3 þ

�
7217

629856
−
4ζ3
243

�
ϵ4 þOðϵ5Þ;

ð91Þ

ηψ ¼ 1

6
ϵþ 31

648
ϵ2 þ

�
1475

34992
−
2ζ3
27

�
ϵ3

þ ð1944000ζ5 − 338580ζ3 − 5832π4 − 8465Þ
9447840

ϵ4

þOðϵ5Þ: ð92Þ

Due to the effective relativistic invariance of this model the
dynamical critical exponent is z ¼ 1. Together with the
conventional Ising critical exponent which is known with
great accuracy, this is in stark contrast to numerical data
[22,92].We therefore conjecture that the universality class of
the semimetallic state to a diffusive metallic phase in a 3D
Weyl semimetal is likely to be different than the one from the
replica limit of the chiral Ising model.

B. Chiral XY model

In the chiral XY model there are two specific values for
the number of fermion flavors N which are relevant to
condensed-matter applications, i.e., the quantum transition
of surface states in topological insulators [43,46,58] as
covered by the choice N ¼ 1=2 and the superconducting
transition in graphene [46] where N ¼ 2. Further, the
case N ¼ 2 is relevant to a Kekulé transition in graphene
[52–55] which is described by a complex Z3 order
parameter [56,57], however, exhibits emergent Uð1Þ
symmetry at the QCP.
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Here, we start with the discussion of N ¼ 1=2 which has
been conjectured to exhibit an emergent supersymmetry at
the QCP. We find the critical exponents

1

ν
¼ 2 − ϵþ ϵ2

3
−
�
2ζ3
3

þ 1

18

�
ϵ3

þ 1

540
ð420ζ3 þ 1200ζ5 − 3π4 þ 35Þϵ4 þOðϵ5Þ; ð93Þ

ηϕ ¼ ηψ ¼ ϵ=3þOðϵ5Þ; ð94Þ

and for the subleading exponent

ω ¼ ϵ −
ϵ2

3
þ
�
2ζ3
3

þ 1

18

�
ϵ3

−
1

540
ð420ζ3 þ 1200ζ5 − 3π4 þ 35Þϵ4 þOðϵ5Þ: ð95Þ

For this case, there is a supersymmetric scaling relation
[93], connecting the correlation length exponent and the
subleading exponent, reading

ν−1 ¼ 2 − ω: ð96Þ

Comparing the above equations, we confirm that this
relation is exactly fulfilled order by order in the ϵ expansion
through four loops.
Further, as in the case of the chiral Ising model, we

provide Padé approximants to obtain estimates for the
critical exponents inD ¼ 2þ 1. These are listed in Table II
together with the result from the conformal bootstrap
approach [94] exhibiting good agreement between the
different methods for N ¼ 1=2. We also note that the result
for the anomalous dimensions ηϕ ¼ ηψ ¼ 1=3 agrees
exactly with the one-loop result up to Oðϵ4Þ. This is in
agreement with SUSY nonrenormalization theorems [95].
For N ¼ 2 the numerical evaluation of the critical

exponents gives

1

ν
≈ 2 − 1.2ϵþ 0.1829ϵ2 − 0.3515ϵ3 þ 0.5164ϵ4;

ηϕ ≈ 0.6667ϵþ 0.1211ϵ2 − 0.005048ϵ3 þ 0.1938ϵ4;

ηψ ≈ 0.1667ϵ − 0.02722ϵ2 − 0.05507ϵ3 þ 0.04202ϵ4;

ω ≈ ϵ − 0.3783ϵ2 þ 0.6271ϵ3 − 1.853ϵ4: ð97Þ

The corresponding Padé approximants are shown in
Table II and the full analytical expressions can be found
in Appendix B. As before, we only give the results for the
Padé approximants P½2=2� and P½3=1� which, in the case of
the chiral XY model, do not show any poles forD ∈ f2; 4g
for investigated values ofN. In Table II, we also provide the
estimates from the functional RG [57] and recent quantum
Monte Carlo calculations [55]. Again, the results for the
inverse correlation length exponent agree reasonably well
within the different RG approaches, however, there is a
rather large difference when compared to the QMC results.
It will be interesting to see estimates from the conformal
bootstrap approach for this case.

C. Chiral Heisenberg model

Finally, we discuss the chiral Heisenberg model for
eight-component spinors, i.e. N ¼ 2, which corresponds to
the field-theoretical formulation of the antiferromagnetic
transition of interacting electrons on the honeycomb lattice
as relevant to graphene and related materials. For the
inverse correlation length exponent, the boson and fermion
anomalous dimension and the subleading exponent, we
find the numerical results

1

ν
≈ 2 − 1.527ϵþ 0.4076ϵ2 − 0.8144ϵ3 þ 2.001ϵ4;

ηϕ ≈ 0.8ϵþ 0.1593ϵ2 þ 0.02381ϵ3 þ 0.2103ϵ4;

ηψ ≈ 0.3ϵ − 0.05760ϵ2 − 0.1184ϵ3 þ 0.04388ϵ4;

ω ≈ ϵ − 0.4830ϵ2 þ 0.9863ϵ3 − 2.627ϵ4: ð98Þ
The full analytical expressions are given in Appendix C.
We note that the second order coefficient of the inverse
correlation length exponent is different from the one given
by Rosenstein, cf. Refs. [25,37]. After careful checks,
doing two independent calculations and exploiting two
different ways for determining the renormalization constant
for the mass term, we come to the conclusion that our
results are correct. Let us also notice that a mistake in the
two-loop calculation usually shows up as non-local or
divergent contributions to the beta-functions or the anoma-
lous dimensions at three and four loops. Our results do not
contain such problematic contributions, that reassures the
consistency of our results. Furthermore, we verified that
when changing the underlying SUð2Þ symmetry to Uð1Þ
symmetry we recover the results for the chiral Ising model.
The expressions for the boson and fermion anomalous
dimensions agree with the two-loop results from Ref. [25].

TABLE II. Chiral XY universality inD ¼ 3: Inverse correlation
length exponent 1=ν and anomalous dimensions ηϕ and ηψ for
bosons and fermions, respectively. In this work, we provide
results within the (4 − ϵ) expansion to order Oðϵ4Þ.
N ¼ 1=2 1=ν ηϕ ηψ ω

this work, P½2=2� 1.128 1=3 1=3 0.872
this work, P½3=1� 1.130 1=3 1=3 0.870
conformal bootstrap [94] 1.090 1=3 1=3 0.910

N ¼ 2 1=ν ηϕ ηψ ω
this work, P½2=2� 0.840 0.810 0.117 0.796
this work, P½3=1� 0.841 0.788 0.108 0.780
functional RG [57] 0.862 0.88 0.062 0.878
Monte Carlo [55] 1.06(5) 0.71(3)
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In Table III, we provide estimates for the critical
exponents in D ¼ 2þ 1 dimensions from Padé approx-
imants. Also, we list the values found by other approaches,
i.e., a recent functional RG calculation [41] and the
quantum Monte Carlo approach [62] to the semimetal-
insulator transition of interacting lattice electrons with
massless Dirac-like dispersion relations. We observe that
the different approaches do not show a satisfactory agree-
ment for the critical exponents. The deviation of the
estimates for the inverse correlation length exponent
between the pRG and FRG approaches are of order 20%
and the distance to the QMC result is even bigger.
Alternatively, the inverted series of ν−1 can also be

considered in order to obtain a more direct estimate for the
correlation length exponent. The series reads

ν ≈ 0.5þ 0.3818ϵþ 0.1897ϵ2 þ 0.2706ϵ3 − 0.1768ϵ4:

The Padé approximants for the series in ν evaluated at ϵ ¼
1 are also given in Table III. We note that this improves the
comparison with the FRG approach which also agrees well
on the boson anomalous dimension. On the other hand it
does not resolve the rather large difference to the numerical
estimate from the QMC simulations.

VI. CONCLUSIONS

We have studied the chiral Ising, the chiral XY, and the
chiral Heisenberg model at four-loop order in D ¼ 4 − ϵ
space-time dimensions and have extracted the solutions of
the stable non-Gaußian fixed point as well as the corre-
sponding critical exponents to order Oðϵ4Þ. Further, we
have calculated simple Padé approximants to provide
estimates for the critical exponents in 2þ 1 dimensions.
The models investigated are relevant to quantum transitions
in a number of condensed-matter physics applications
recently discussed in the context of Dirac and Weyl
semimetals. For the first time, we give the full analytical
expressions for the beta and gamma functions for the
chiral Ising, XY, and Heisenberg models for general number
of fermion flavors N at the four-loop level. Explicitly, we

calculated the inverse correlation length exponent, the sub-
leading exponent, and the anomalous dimensions for bosons
as well as fermions for specific quantum phase transitions in
different condensed-matter and field-theoretical setups. The
relevant applications include interaction-induced transitions
in graphene and other Dirac materials, surface states of
topological insulators, and the emergence supersymmetric
quantum critical conformal field theories.
For the chiral Ising model at N ¼ 1=4, we observe good

agreement of the estimates for critical exponents across
different field-theoretical methods, including perturbative
RG, functional RG and the conformal bootstrap. For this
scenario, emergent supersymmetry at the quantum critical
point has been conjectured and, here, we have confirmed
that the supersymmetric scaling relations hold up to four-
loop order in the perturbative RG approach. For N ¼ 2, as
relevant for interacting electrons in graphene, the agree-
ment between the different renormalization group methods
turns out to be reasonable, however, the results from the
QMC simulations deviate significantly. Also, there is a
large difference as compared to recent conformal bootstrap
results which deviate from the QMC simulations even more
strongly. This issue remains to be resolved. The chiral XY
model at N ¼ 1=2 exactly fulfills the corresponding super-
symmetric scaling relation order by order and the critical
exponents are found to be in good agreement with the
conformal bootstrap results. For the chiral XY and
Heisenberg models at N ¼ 2, we observe again a reason-
able agreement between the different RG approaches at
least for some critical exponents, but a rather unsatisfactory
gap as compared to the lattice results.
It will be interesting to track down the origin of the

remaining deviations between the different approaches in
the future. One possible origin of the differences might be
effects from corrections to scaling [96,97] at least when it
comes to the comparison between the renormalization group
and the lattice methods. For example, a close to marginal
scaling of the difference between the boson and fermion
velocities which is generally nonvanishing in the lattice
approaches could be difficult to assess and have a strong
impact on the fitting procedure of the appropriate scaling
functions. Within the perturbative RG approach a thorough
analysis of resummation and interpolation techniques is
certainly required which we postpone to future work.
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TABLE III. Chiral Heisenberg universality in D ¼ 3: Inverse
correlation length exponent 1=ν and anomalous dimensions ηϕ
and ηψ for bosons and fermions, respectively. In this work, we
provide results within the (4 − ϵ) expansion to order ϵ4. We do not
give values for critical exponents where the Padé approximant
contains a pole in the interval D ∈ ½2; 4�. The values for 1=ν
printed in italic are simple numerical inversions of the values for ν
as given in the corresponding references.

N ¼ 2 1=ν ηϕ ηψ ν

this work (Padé [2/2]) 0.6426 0.9985 0.1833 � � �
this work (Padé [3/1]) 0.6447 0.9563 0.1560 1.2352
functional RG [41] 0.795 1.032 0.071 1.26
Monte Carlo [62] 0.98 0.20(2) 1.02(1)
Monte Carlo [96] 1.19 0.70(15) 0.84(4)
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APPENDIX A: FOUR-LOOP CONTRIBUTIONS FOR THE CHIRAL ISING MODEL

The four-loop contributions to the beta functions read

βð4LÞy;χI ¼ −
5

2
ζ5ð42N þ 43Þy5 þ ð32π4ð2N þ 3Þð18N þ 19Þ þ 40Nð8Nð44N − 899Þ þ 29721Þ þ 457935Þy5

7680

þ λ

8
ð8Nð12N − 683Þ − 2829Þy4 − 1

2
λ2ð4Nð6N þ 635Þ þ 4455Þy3 þ 36λ3ð8N − 455Þy2

−
1

8
ζ3y2ð−41472λ3 þ ð4Nð125N þ 331Þ − 5Þy3 þ 432λð12N þ 7Þy2 − 864λ2ð6N − 25ÞyÞ þ 14040λ4y;

þ Δ3Nð1þ 107ζ3 − 125ζ5Þy5; ðA1Þ

βð4LÞλ;χI ¼ 41472

�
−39ζ3 − 60ζ5 þ

π4

10
−
3499

96

�
λ5 þ 1

240
λNy4ð−60ζ3ð912N2 − 4156N − 4677Þ

þ 1200ζ5ð157 − 168NÞ − 4π4ð450N þ 41Þ þ 25ð4Nð337N þ 3461Þ þ 5847ÞÞ

þ Ny5ð480ζ3ð12Nð14N − 15Þ þ 277Þ þ 2400ζ5ð128N þ 65Þ þ 8π4ð64N − 77Þ þ 160Nð1289 − 386NÞ − 67095Þ
1920

þ 1

80
λ2Ny3ð835200ζ5 þ 1920ζ3ð3Nð4N − 61Þ þ 19Þ þ 72π4ð24N þ 31Þ − 40Nð288N þ 15649Þ þ 1057825Þ

þ 4

5
λ3Ny2ð−86400ζ5 þ 540ζ3ð4N − 69Þ þ 7890N − 288π4 − 72605Þ þ 36

5
ð−17280ζ3 þ 96π4 − 6775Þλ4Ny:

ðA2Þ

The symbol Δ3 should be set to Δ3 ¼ 1 in DREG3, e.g., together with N ¼ 1=4 the limit of an emergent supersymmetric
theory is recovered. For the generic case of DREG in D ¼ 4 − 2ϵ dimensions it holds Δ3 ¼ 0.
The four-loop contributions to the gamma functions read

γð4LÞψ ;χI ¼
y

393216

�
134479872λ3 þ y3

�
−884736ζ3 − 5

�
384ð256ζ5 − 893Þ þ 377339π4

90

�

þ 16N

�
−164352ζ3 þ Nð1536ð16ζ3 − 3ÞN − 74752Þ − 1536π4

5
þ 53440

�
þ 303611π4

18

�

− 288λy2
�
512ð93 − 32ζ3Þ þ 8

�
7424þ 927π4

4

�
N −

1

18
π4ð33372N þ 7079Þ þ 7079π4

18

�

þ 96λ2yð221184ζ3 þ 344064N − 656384Þ
�
; ðA3Þ

γð4LÞϕ;χI ¼ 14040λ4 þ 1

256
λNy3ð768ð16ζ3 − 83Þ − 19456NÞ þ 1

32
λ2Ny2ð256ð81ζ3 − 91Þ − 384NÞ þ 288λ3Ny

−
Ny4ð377856ζ3 þ 15360ð8ζ5 − 29Þ þ 4Nð162816ζ3 þ 256ð144ζ3 − 101ÞN þ 1536π4

5
− 54016Þ þ 1024π4Þ

24576
; ðA4Þ

γð4LÞ
ϕ2;χI

¼ 1728

�
18ζ3 þ

2π4

5
þ 187

�
λ4 þ 3

2
λ2Ny2

�
5760ζ3 þ 4ð−48ζ3 − 176ÞN þ 48π4

5
þ 3796

�

þ 1

64
Ny4

�
−5376ζ3 þ 10080ζ5 þ 2N

�
320ζ3 þ 4480ζ5 þ 64ð18ζ3 − 11ÞN þ 48π4

5
− 5208

�
−
224π4

5
− 2846

�

−
3

16
λNy3

�
−5120ζ3 − 5760ζ5 þ 4N

�
−672ζ3 þ 64ð2ζ3 − 1ÞN þ 16π4

3
− 1618

�
þ 184π4

5
þ 12989

�

þ 36ð96ζ3 þ 313Þλ3Ny: ðA5Þ
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1. Critical exponents for the chiral Ising model for N = 2

The full analytical expressions for the most important critical exponents for the chiral Ising model at N ¼ 2 read

1

ν
¼ 2 −

20ϵ

21
þ 325ϵ2

44982
−
ð271572144ζ3 þ 36133009Þϵ3

3821940612

þ ð73192843310400ζ3 þ 179520471709200ζ5 − 2472257012904π4 − 86141171013035Þϵ4
4175164363361040

þOðϵ5Þ; ðA6Þ

ηϕ ¼ 4ϵ

7
þ 109ϵ2

882
þ
�
1170245

26449416
−
144ζ3
2401

�
ϵ3

þ ð162669869280ζ3 þ 171915696000ζ5 − 1203409872π4 þ 102456536695Þϵ4
2407822585560

þOðϵ5Þ; ðA7Þ

ηψ ¼ ϵ

14
−

71ϵ2

10584
−
�
18ζ3
2401

þ 2432695

158696496

�
ϵ3

þ ð1155813964920ζ3 þ 515747088000ζ5 − 3610229616π4 − 556332486445Þϵ4
57787742053440

þOðϵ5Þ; ðA8Þ

ω ¼ ϵ −
533ϵ2

1512
þ
�
165ζ3
686

þ 6685099

34006392

�
ϵ3

þ ð−46250341862688ζ3 − 23579956863360ζð5Þ þ 119137577328π4 − 11065294400875Þϵ4
59438820397824

þOðϵ5Þ: ðA9Þ

APPENDIX B: FOUR-LOOP CONTRIBUTIONS FOR THE CHIRAL XY MODEL

The four-loop contributions to the beta functions of the chiral XY model read

βð4LÞy;χXY ¼ −
8

3
λ2ð6N2 þ 508N þ 1257Þy3 − 40ζ5ðN þ 1Þy5 þ 2

3
λð8Nð3N − 208Þ þ 99Þy4

þ 1

480
ð32π4ðN þ 1Þ2 − 20Nð4Nð3N þ 619Þ − 6703Þ þ 20295Þy5 þ 320

3
λ3ð4N − 215Þy2

− ζ3y2ð−6144λ3 þ ð6Nð5N þ 28Þ − 163Þy3 þ 32λð18N þ 11Þy2 þ 64λ2ð53 − 9NÞyÞ þ 21120λ4y; ðB1Þ

βð4LÞλ;χXY¼2ζ3ð−1052672λ5þNð22N2−56Nþ21Þy5þλNð2Nð285−62NÞþ557Þy4
þ32λ2NðNð5N−63Þþ25Þy3þ64λ3Nð16N−175Þy2−72704λ4NyÞ
þ10ζ5ð−311296λ5þNð16Nþ5Þy5þ8λNð7−12NÞy4þ1248λ2Ny3−8192λ3Ny2Þ

þ 1

240
ð20480ð64π4−23925Þλ5þNð8π4ð4N−7Þ−5ð4Nð436N−1977Þþ5229ÞÞy5

þ8λNð5Nð915N−36π4þ7910Þþ36π4þ16935Þy4þ8λ2Nð−600Nð8Nþ489Þþ8π4ð68Nþ69Þþ514455Þy3
þ512λ3Nð3505N−128π4−43845Þy2þ512ð384π4−28195Þλ4NyÞ: ðB2Þ

The four-loop contributions to the gamma functions read

γð4LÞψ ;χXY ¼ 1

2
ζ3y2ð192λ2 þ ð4N3 − 49N − 17Þy2 þ 64λyÞ þ 1

960
ð32π4ðN þ 1Þ − 20Nð6Nð3N þ 76Þ − 47Þ þ 20055Þy4

−
2

3
λð174N þ 143Þy3 þ 4

3
λ2ð168N − 277Þy2 − 20ζ5y4 þ

3040λ3y
3

; ðB3Þ
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γð4LÞϕ;χXY ¼ 21120λ4 þ ζ3Ny2ð576λ2 − ð4N2 þ 30N þ 31Þy2 þ 64λyÞ − 40ζ5Ny4 þ 1280

3
λ3Ny

þ 1

60
Nð15ðN − 38ÞN þ 4π4ðN þ 1Þ þ 3120Þy4 − 8

3
λNð38N þ 137Þy3 − 16

3
λ2Nð3N þ 130Þy2;

γð4LÞ
ϕ2;χXY

¼ 80ζ5Ny3ð16λþ 3Nyþ 2yÞ þ 4ζ3ð12800λ4 þ Nð2Nð6N − 5Þ − 17Þy4 − 32λðN − 6ÞNðN þ 2Þy3

þ 32λ2Nð77 − 3NÞy2 þ 1280λ3NyÞ þ 1

30
ð4096ð3765þ 8π4Þλ4 þ Nð4π4ðN − 7Þ − 20Nð48N þ 197Þ þ 405Þy4

þ 2λNð−8π4ð8N þ 11Þ þ 120Nð8N þ 225Þ − 56915Þy3 þ 64λ2Nð−660N þ 7π4 þ 5900Þy2 þ 503680λ3NyÞ:
ðB4Þ

1. Critical exponents for the chiral XY model for N = 2

The full analytical expressions for the most important critical exponents for N ¼ 2 in the chiral XY model read

1

ν
¼2−

6ϵ

5
þ823ϵ2

4500
þ
�

909821

12150000
−
5986ζ3
16875

�
ϵ3þð245618820ζ3þ1924948800ζ5−9697320π4þ347495879Þϵ4

3280500000
þOðϵ5Þ;

ðB5Þ

ηϕ ¼ 2ϵ

3
þ 109ϵ2

900
−
1363ϵ3

270000
þ
�
300977ζ3
2025000

þ 1103491

72900000

�
ϵ4 þOðϵ5Þ; ðB6Þ

ηψ ¼ ϵ

6
−
49ϵ2

1800
−
29737ϵ3

540000
þ
�
226913ζ3
4050000

−
1477451

58320000

�
ϵ4 þOðϵ5Þ;

ω ¼ ϵ −
227ϵ2

600
þ
�
ζ3
6
þ 4801

11250

�
ϵ3 −

ð1043012880ζ3 þ 270000000ζð5Þ − 1350000π4 þ 398475259Þϵ4
972000000

þOðϵ5Þ: ðB7Þ

APPENDIX C: FOUR-LOOP CONTRIBUTIONS TO CHIRAL HEISENBERG

The four-loop contributions to the beta functions read

βð4LÞy;χH ¼ −
5

2
λ2ð8N2 þ 508N þ 1949Þy3 þ 5

2
ζ5ð29 − 62NÞy5 þ 5

8
λð8Nð4N − 327Þ þ 1241Þy4 þ 20

3
λ3ð88N − 4475Þy2

−
ð96π4ð2N − 7Þð2N þ 1Þ þ 40Nð8Nð68N þ 3971Þ − 104923Þ þ 1096225Þy5

7680
þ 29000λ4y

þ 1

8
ζ3y2ð53760λ3 þ ð4Nð7N − 269Þ þ 1437Þy3 − 80λð36N þ 43Þy2 þ 160λ2ð18N − 193ÞyÞ; ðC1Þ

βð4LÞλ;χH ¼ 5

4
ζ5ð−3022848λ5 þ Nð128N þ 23Þy5 þ 36λNð11 − 24NÞy4 þ 9824λ2Ny3 − 75776λ3Ny2Þ

þ 1

4
ζ3ð−10631168λ5 þ Nð4Nð46N − 185Þ þ 251Þy5 þ λNð4Nð1283 − 268NÞ þ 4775Þy4

þ 32λ2NðNð44N − 449Þ þ 478Þy3 þ 64λ3Nð148N − 779Þy2 − 661504λ4NyÞ

þ 1

1920
ð2048ð6512π4 − 2473805Þλ5 − Nð320Nð243N − 1409Þ þ 88π4 þ 400085Þy5

þ 8λNð100Nð395N þ 2661Þ þ 4π4ð137 − 266NÞ þ 125685Þy4
þ 8λ2Nð−120Nð352N þ 23653Þ þ 8π4ð424N þ 315Þ þ 5249585Þy3
þ 512λ3Nð32410N − 1184π4 − 504075Þy2 þ 512ð3552π4 − 269585Þλ4NyÞ: ðC2Þ
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The four-loop contributions to the gamma functions read

γð4LÞψ ;χH ¼ 3

16
ζ3y2ð480λ2 þ ð16N3 − 235N − 56Þy2 þ 320λyÞ − 5

8
λð348N þ 293Þy3 þ 5

4
λ2ð336N − 467Þy2

þ ð96π4ð6N − 1Þ − 40Nð8Nð9N þ 310Þ þ 1525Þ þ 273125Þy4
5120

−
165ζ5y4

4
þ 2090λ3y; ðC3Þ

γð4LÞϕ;χH ¼ 29000λ4 − 55ζ5Ny4 þ 1

120
Nð3π4ð6N − 1Þ − 5Nð89N þ 773Þ þ 10885Þy4 − 5

3
λNð76N þ 299Þy3

þ 1

8
ζ3Ny2ð2880λ2 − ð4Nð4N þ 65Þ þ 265Þy2 þ 640λyÞ − 20λ2NðN þ 26Þy2 þ 1760

3
λ3Ny; ðC4Þ

γð4LÞ
ϕ2;χH ¼ 64

3
ð34975þ 74π4Þλ4 − 1

480
Nð16π4ð3N þ 29Þ þ 40Nð504N þ 737Þ − 43345Þy4

þ 5

2
ζ5Ny3ð720λþ 136Nyþ 13yÞ þ 1

48
λNð−8π4ð24N þ 25Þ þ 120Nð32N þ 991Þ − 263595Þy3

þ 10

3
λ2Nð−528N þ 4π4 þ 6593Þy2 þ 2ζ3ð40000λ4 þ Nð5Nð6N − 11Þ − 21Þy4 þ 20λNðNð11 − 4NÞ þ 53Þy3

þ 80λ2Nð64 − 3NÞy2 þ 3520λ3NyÞ þ 69580

3
λ3Ny: ðC5Þ

1. Critical exponents for the chiral Heisenberg model for N = 2

For N ¼ 2, we find the following critical exponents for the chiral Heisenberg model:

1

ν
¼ 2 −

84ϵ

55
þ 2576729ϵ2

6322250
þ
�
3834385959243

13808110112500
−
157961052ζ3
173861875

�
ϵ3

þ ð4419355262033682960ζ3 þ 16115053820113182000ζ5 − 91331632816626840π4 þ 11013561507164036543Þϵ4
12063041156482250000

þOðϵ5Þ; ðC6Þ

ηϕ ¼ 4ϵ

5
þ 4819ϵ2

30250
þ
�
48ζ3
625

−
476430591

6954475000

�
ϵ3

þ ð310739849149400ζ3 þ 194418190384000ζ5 þ 972090951920π4 − 350384810029259Þϵ4
1518892112375000

þOðϵ5Þ; ðC7Þ

ηψ ¼ 3ϵ

10
−
6969ϵ2

121000
þ
�
18ζ3
625

−
2128383117

13908950000

�
ϵ3

þ 3ð406214104344840ζ3 þ 194418190384000ζ5 þ 972090951920π4 − 606847185834529Þϵ4
12151136899000000

þOðϵ5Þ; ðC8Þ

ω ¼ ϵ −
11689ϵ2

24200
þ
�
27ζ3
250

þ 1191302179

1390895000

�
ϵ3

þ 3ð−28239146782436128ζ3 − 25857619321072000ζ5 þ 20413909990320π4 − 822859847457915Þϵ4
68046366634400000

þOðϵ5Þ:
ðC9Þ
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