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Extensions beyond the standard model allow for a gauge singlet scalar to be kinetically coupled with the
Higgs. We consider kinetic mixing between a dark scalar gauge singlet nearly degenerate with the Higgs,
focusing on the dynamical aspects of the mixing phenomena. The renormalization program is carried out
by obtaining the one-loop effective action which yields an effective non-Hermitian Hamiltonian to study
the dynamics of mixing. The scalar Higgs becomes a coherent superposition of the mass eigenstates, thus
kinetic mixing leads to oscillations and common decay channels in striking similarity with neutral meson
mixing. Near degeneracy yields an enhancement of the kinetic coupling. For small kinetic mixing we find
that the mass eigenstates feature different lifetimes which result in a wide separation of time scales of
evolution along with important coherence aspects from dark scalar-Higgs interference. The wide separation
of scales is manifest as displaced decay vertices which could potentially be a telltale experimental signal of
kinetic mixing.
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I. INTRODUCTION, MOTIVATION AND GOALS

Although the standard model is successful as a descrip-
tion of particle physics on solid experimental grounds, it is
clear that an explanation for dark matter must be sought in
extensions beyond the standard model (SM). There are
many different alternative proposals for such extensions
postulating the existence of one or more new particles that
could provide a suitable explanation for dark matter. One
such extension posits the existence of a dark sector, namely
one or more new particles which are singlets under
SUð3Þc × SUð2Þ ×UYð1Þ and do not couple directly to
the gauge bosons of the standard model. A sterile neutrino
describes a simple dark sector, but there are many other
possible alternatives (for recent reviews see [1,2]). While
preliminary searches for dark sector signals at BABAR [3]
and BESIII [4] did not report evidence, search programs to
probe dark sectors at the LHC are ongoing and various
recent studies propose new search directions [1,2,5] along
with complementary searches at other experimental facili-
ties in various regions of parameters [6–8].
Dark sector particles are envisaged to couple to standard

model degrees of freedom via a portal [1,2] the nature of
which depends on the spin of the dark particle: a vector
portal is associated with dark photons, a see-saw type
mechanism for neutrino mass generation is associated with
sterile neutrinos, a simple Higgs portal posits a cubic and
cuartic coupling of a dark scalar to the SUð2Þ ×UYð1Þ
gauge singlet Φ†Φ where Φ is the Higgs doublet. Direct
detection searches at LUX [9] and XENON [10] put severe
constraints on the simplest Higgs portals.

Motivated by the potential as a dark matter candidate and
the current and forthcoming experimental efforts to eluci-
date new physics in the dark sector, we focus here on a
different portal for a dark scalar, which in an effective low
energy description, gives rise to a kinetic mixing between
the gauge singlet dark scalar and the Higgs degree of
freedom of the standard model. Such a coupling emerges
naturally in Randall-Sundrum models of extra dimensions
[11]. Breakdown of scale invariance in these models by the
presence of two branes leads to a dilatonlike degree of
freedom, the radion, which acquires a mass through
stabilization [12]. The coupling of the Higgs to gravity
yields a kinetic mixing between the radion (an SUð2Þ ×
UYð1Þ gauge singlet) and the Higgs [13–19] therefore the
radion is a dark scalar candidate via a Higgs portal with
kinetic mixing. The radion mass is not constrained by the
scale of compactification, instead it depends on the
stabilization scale [12], therefore it may be considered a
free parameter. This dilatonlike scalar field might well be
the lightest particle emerging from higher dimensional
extensions beyond the standard model. There is a rich
phenomenology of radion-Higgs mixing with ongoing
searches at the LHC [14–16,18–26]. Here we focus on
very different aspects of kinetic mixing between a dark
scalar and the Higgs, namely dynamical aspects in the case
of very small kinetic mixing of nearly degenerate radion
(dark scalar) and Higgs fields. To the best of our knowledge
dynamical aspects of kinetic mixing have not yet been
explored but are complementary to the phenomenology of
radion-Higgs mixing motivated by current and future
searches at the LHC and linear colliders. The analysis of
Ref. [25] suggests that the LHC constraints on the radion
mass Mχ are weaker for Mχ ≲ 134 GeV, suggesting that
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perhaps the radion and the Higgs are very nearly degenerate
in mass. In Ref. [23] an analysis of LHC data rules out a
large region of kinetic couplings and radion masses,
leaving, however, a small region for the nearly degenerate
case with very small kinetic mixing coupling that is not
excluded and where the LHC constraints are weaker. This is
precisely the region of radion mass and kinetic coupling
that we focus on in this study. The more recent analysis in
Ref. [18] studies LHC constraints for the radion mass in the
region 300 GeV ≤ Mχ ≤ 1 TeV, far larger than the scale
that we consider in this article.

A. Goals

Along with the motivation from dark matter and searches
for new physics at the LHC and future colliders, there is an
inherent fundamental motivation to study the dynamics in
the case when mixing arises via a kinetic term. The kinetic
coupling offers a novel manifestation of mixing, different
from the usual momentum independent case such as in
neutrino mixing, that could yield fundamentally new
insights into dynamical aspects of mixing phenomena such
as oscillations and coherence. In this article we focus on the
case in which the radion and Higgs fields are nearly
degenerate with very small kinetic mixing coupling a
possibility that is motivated by the analysis and results
of Refs. [20,23,25] suggesting weaker constraints from
LHC data in this region of parameters.
Our main goal is to describe the dynamical aspects of

nearly degenerate dark scalar (the radion) kinetically mixed
with the Higgs establishing an analogy with both neutrino
and neutral meson mixing. In particular we seek to under-
stand the following aspects: (a) the nature of the mass
eigenstates, their masses and lifetimes, (b) renormalization
aspects: kinetic mixing requires a novel renormalization
program, (c) aspects of coherence manifest in oscillatory
behavior of probabilities as a consequence of interference
effects, these are more relevant in the nearly degenerate
case, (d) space-time propagation of the corresponding mass
eigenstates and, in particular, their decay dynamics and
channels studying possible telltale signals such as displaced
decay vertices, seeking to establish potential experimental
signals of the dark sector.

II. MODELS, FIELD REDEFINITION
AND MASS MATRICES

Kinetic mixing between a gauge singlet scalar and the
Higgs field emerges in the low energy limit of Randall-
Sundrum [11] inspired higher dimensional models, where
the dilaton field acquires a mass through stabilization [12].
In these models the radion (proportional to the dilaton) is
the scalar singlet kinetically coupled to the Higgs. After
spontaneous symmetry breaking the effective radion-Higgs
coupling is given at the bilinear level by

Lkm ¼ −ε∂μϕ∂μχ; ð2:1Þ

we refer to χ as the dark-scalar (radion) and ϕ as the
Higgs fields. As discussed above these models yield a rich
phenomenology [13–20]. We note, without justification of
its origin, that a similar tree-level coupling is obtained by
coupling an SUð3Þc × SUð2Þ ×UYð1Þ scalar singlet χ to
the standard model Higgs doublet Φ via a dimension five
operator,

Lkm ¼ −
1

Λ
ð∂μχÞΦ†ðDμΦÞ þ H:c:; ð2:2Þ

where Dμ is the SUð2Þ ×UYð1Þ covariant derivative and Λ
a high energy scale much larger than the electroweak scale.
Upon symmetry breaking and in the unitary gauge it
follows that

Lkm ¼ −ε∂μχ∂μϕ −
ϕ

Λ
∂μχ∂μϕ; ε ¼ v

Λ
≪ 1 ð2:3Þ

where ϕ is the standard model Higgs field. The last term
featuring a cubic coupling between the Higgs and the
radion field may lead to new interactions suppressed by the
ratio of the typical energy scale of the process to the high
energy scale Λ. We are not aware of current bounds on or
phenomenological studies of such coupling. A study of
possible bounds on this coupling from LHC data is beyond
the scope of this article.
Within the radion model1

ε ≃ 6ξγ; γ ¼ v=Λχ ; ð2:4Þ

where v is the Higgs vacuum expectation value, Λχ is the
vacuum expectation value of the radion field [13,16,17] and
ξ the coupling to gravity. Conformal coupling corresponds
to ξ ≃ 1=6. In this model the radion couples to the standard
model (SM) degrees of freedom with the interaction
Lagrangian between ϕ; χ and fermions and massive vector
bosons given for one fermionic species and one massive
vector boson by [13,16,17]

LI ¼ −
�
Yψ̄ψ −

M2
V

v
VμVμ

�
ðϕþ γχÞ; ð2:5Þ

where Y is the Yukawa coupling. We consider the case ξ ≃ 1
with ε ≪ 1 and v=Λχ ≪ 1 therefore ε ≃ γ, since this is the
region of parameter space in which the latest constraints [20]
from LHC data along with earlier constraints [23,25] allow
for a radion nearly degeneratewith theHiggs with very small
radion-Higgs mixing. Consequently we begin our study by
first neglecting the radion coupling to fermions and vector
bosons in the interaction Lagrangian (2.5) as it is suppressed

1We are considering the case ε ≪ 1 therefore neglected a
correction to the kinetic mixing from radion field redefinition.
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by v=Λχ ≪ 1. In Sec. VI we discuss the radiative corrections
arising from the coupling of the radion to the (SM) degrees of
freedom and their consequences.
We consider the model defined by the Higgs field ϕ

Yukawa coupled to one fermionic species and kinetically
coupled to a dark scalar field χ. The simpler case of a
Yukawa coupling will highlight the main physical aspects
relevant for our study and will be generalized later to
include the contributions to the Higgs self-energy from
standard model degrees of freedom (see Sec. VII).
The Lagrangian density of this model is2

L ¼ 1

2
ð∂μϕÞ2 þ

1

2
ð∂μχÞ2 − ε∂μϕ∂μχ −

1

2
M2

ϕϕ
2

−
1

2
M2

χχ
2 þ ψ̄ði∂ −mψ Þψ − Yψ̄ϕψ : ð2:6Þ

Without loss of generality we take ε > 0.3 We will first
study the free case Y ¼ 0 to discuss the main aspects of the
diagonalization of the kinetic mixing. Thus, first consider

L0½ϕ; χ� ¼
1

2
ð∂μϕÞ2 þ

1

2
ð∂μχÞ2 − ε∂μϕ∂μχ

−
1

2
M2

ϕϕ
2 −

1

2
M2

χχ
2; ð2:7Þ

and the field redefinitions

ϕ ¼ 1ffiffiffi
2

p ðαþ βÞ χ ¼ 1ffiffiffi
2

p ðα − βÞ: ð2:8Þ

The resulting Lagrangian becomes

L0 ¼
1

2
ð∂μαÞ2 þ

1

2
ð∂μβÞ2 −

ε

2
½ð∂μαÞ2 − ð∂μβÞ2�

−
1

2

�
M2

ϕ þM2
χ

2

�
α2 −

1

2

�
M2

ϕ þM2
χ

2

�
β2

−
�
M2

ϕ −M2
χ

2

�
αβ ð2:9Þ

Now introduce the rescaled fields

α
ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
¼ A β

ffiffiffiffiffiffiffiffiffiffiffi
1þ ε

p ¼ B; ð2:10Þ

leading to

L0 ¼
1

2
ð∂μAÞ2 þ

1

2
ð∂μBÞ2 −

M2
A

2
A2 −

M2
B

2
B2 −M2

ABAB;

ð2:11Þ

where

M2
A¼

M2
ϕþM2

χ

2ð1−εÞ ; M2
B¼

M2
ϕþM2

χ

2ð1þεÞ ; M2
AB¼

M2
ϕ−M2

χ

2
ffiffiffiffiffiffiffiffiffiffiffi
1−ε2

p :

ð2:12Þ

We note that to avoid tachyonic instabilities and/or fields
with negative norms the kinetic mixing parameter is con-
strained to be ε < 1. However, we are interested in the weak
kinetic mixing case with ε ≪ 1.
After the kinetic mixing is eliminated by the above field

redefinition, we now have two canonical scalar fields with a
nondiagonal mass matrix. Thus the next step is to diago-
nalize the mass matrix

M¼
�

M2
A M2

AB

M2
AB M2

B

�
¼1

2
ðM2

AþM2
BÞI

þ1

2
½ðM2

A−M2
BÞ2þ4ðM2

ABÞ2�
1
2

�
cosð2θÞ sinð2θÞ
sinð2θÞ −cosð2θÞ

�
;

ð2:13Þ

where

cosð2θÞ ¼ M2
A −M2

B

½ðM2
A −M2

BÞ2 þ 4ðM2
ABÞ2�

1
2

;

sinð2θÞ ¼ 2M2
AB

½ðM2
A −M2

BÞ2 þ 4ðM2
ABÞ2�

1
2

: ð2:14Þ

This mass matrix can be diagonalized by a unitary
transformation,

M ¼ U−1ðθÞ
�
M2

1 0

0 M2
2

�
UðθÞ; ð2:15Þ

where

M2
1 ¼

1

2
fM2

A þM2
B þ ½ðM2

A −M2
BÞ2 þ 4ðM2

ABÞ2�
1
2g ð2:16Þ

M2
2 ¼

1

2
fM2

A þM2
B − ½ðM2

A −M2
BÞ2 þ 4ðM2

ABÞ2�
1
2g ð2:17Þ

and the rotation matrix

UðθÞ ¼
�

cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
: ð2:18Þ

In terms of the fields ϕ1;ϕ2 that describe the mass
eigenstates �

ϕ1

ϕ2

�
¼ UðθÞ

�
A

B

�
; ð2:19Þ

2We canonically normalized the kinetic term of χ by a field
redefinition [13,16,18].

3The Lagrangian is invariant under ε → −ε; χ → −χ
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the Lagrangian density (2.7) becomes

L0 ¼
1

2
ð∂μϕ1Þ2 þ

1

2
ð∂μϕ2Þ2 −

1

2
M2

1ϕ
2
1 −

1

2
M2

2ϕ
2
2 ð2:20Þ

and the original fields ϕ; χ are related to the fields that
create the mass eigenstates ϕ1;2 as�

ϕ

χ

�
¼

�
y1 y2
h1 h2

��
ϕ1

ϕ2

�
; ð2:21Þ

where

y1¼
1ffiffiffi
2

p
�
cosðθÞffiffiffiffiffiffiffiffiffi
1−ε

p þ sinðθÞffiffiffiffiffiffiffiffiffiffi
1þε

p
�
; y2¼

1ffiffiffi
2

p
�
cosðθÞffiffiffiffiffiffiffiffiffiffi
1þε

p −
sinðθÞffiffiffiffiffiffiffiffiffi
1−ε

p
�

ð2:22Þ

h1¼
1ffiffiffi
2

p
�
cosðθÞffiffiffiffiffiffiffiffiffi
1−ε

p −
sinðθÞffiffiffiffiffiffiffiffiffiffi
1þε

p
�
; h2¼−

1ffiffiffi
2

p
�
cosðθÞffiffiffiffiffiffiffiffiffiffi
1þε

p þ sinðθÞffiffiffiffiffiffiffiffiffi
1−ε

p
�
;

ð2:23Þ

these coefficients obey

y21 þ y22 ¼ h21 þ h22 ¼
1

1 − ε2
: ð2:24Þ

This coincides with the field redefinitions and rotations
introduced in Refs. [13,16].
Turning on the Yukawa coupling in (2.6) and writing ϕ in

terms of the mass basis ϕ1;ϕ2 is clear that the Yukawa
interaction in the basis of “mass eigenstates” becomesLY ¼
−Yψ̄ðy1ϕ1 þ y2ϕ2Þψ and bothmass eigenstate fields feature
Yukawa vertices. This implies that at one loop there will be
ϕ1 − ϕ2 mixing arising from a self-energy diagram, namely
the mass eigenstates couple to a common intermediate state
channel. This situation is similar to neutral meson mixing
such as K0 − K̄0 mixing, where weak interactions lead to a
common intermediate state. Although we focus simply on a
Yukawa interaction, this conclusion holds for all the cou-
plings of theHiggs field to the other degrees of freedomof the
standard model.
The one-loop self energy from the fermion-antifermion

intermediate state features ultraviolet divergences that yield
important mass and wavefunction renormalization effects.
Rather than studying renormalization in the mass basis, it
proves more illuminating to obtain the effective action by
integrating out the Fermion fields.

III. EFFECTIVE ACTION AND
RENORMALIZATION

The effective action for the scalar fields can be system-
atically obtained by carrying out the path integral over the
Fermi field. In this path integral the scalar ϕ is a passive field
acting just like an external field. Consider the functional

Z½ϕ� ¼
Z

Dψ̄Dψei
R

d4xL½ψ̄ ;ψ ;ϕ� ð3:1Þ

with

L½ψ̄ ;ψ ;ϕ� ¼ ψ̄ði∂ −mψÞψ − Yψ̄ϕψ ; ð3:2Þ

then

Z½ϕ�
Z½0� ¼ eiδSeff ½ϕ�; ð3:3Þ

where δSeff ½ϕ� is the contribution to the scalar effective action
from integrating out the Fermionic degrees of freedom. The
total effective action is given by

Seff ¼ S0½ϕ; χ� þ δSeff ½ϕ�; S0½ϕ; χ� ¼
Z

d4xL0½ϕ; χ�

ð3:4Þ

where L0½ϕ; χ� is given by (2.7).
Normal ordering the Yukawa interaction so that

hψ̄ψiψ ¼ 0 where hð� � �Þiψ is the expectation value in
the noninteracting Fermion vacuum we find up to order Y2

Z½ϕ�
Z½0� ¼ 1 −

i
2

Z
d4x1

Z
d4x2ϕðx1ÞΣðx1 − x2Þϕðx2Þ þ � � �

ð3:5Þ

where the one-loop self energy

iΣðx1 − x2Þ ¼ Y2hψ̄ðx1Þψðx1Þψ̄ðx2Þψðx2Þiψ
¼ ð−1ÞY2Sðx1 − x2ÞSðx2 − x1Þ ð3:6Þ

and Sðx − yÞ is the Fermion propagator in position space.
Therefore up to one-loop (OðY2Þ) we find

δSeff ½ϕ� ¼ −
1

2

Z
d4x1

Z
d4x2ϕðx1ÞΣðx1 − x2Þϕðx2Þ ð3:7Þ

Obviously the effective action is nonlocal in position
space but becomes local in momentum space, introducing
the Fourier transforms

ϕðxÞ ¼
Z

d4p
ð2πÞ4

~ϕðpÞe−ip·x ð3:8Þ

and similarly for χðxÞ the total effective action up to one
loop is given by

DANIEL BOYANOVSKY and JUNMOU CHEN PHYSICAL REVIEW D 96, 096007 (2017)

096007-4



Seff ½ϕ; χ� ¼
Z

d4p
ð2πÞ4

�
1

2
~ϕð−pÞ½p2 −M2

ϕ − ~ΣðpÞ� ~ϕðpÞ

þ 1

2
~χð−pÞ½p2 −M2

χ �~χðpÞ − ε~χð−pÞp2 ~ϕðpÞ
�
;

ð3:9Þ

where for one flavor, and accounting for Nc ¼ 3 colors the
one loop self-energy is given by

~ΣðpÞ ¼ −3iY2

Z
dDq
ð2πÞD

× Tr

�
qþmψ

q2 −m2
ψ þ i0þ

qþ pþmψ

ðqþ pÞ2 −m2
ψ þ i0þ

�
:

ð3:10Þ

We calculate this self-energy in dimensional regularization
in D ¼ 4 − ϵ; ϵ → 0 with the result

~ΣðpÞ ¼ 3 ~Y2

4π2

Z
1

0

dxΔ½x; p�
�
3

�
2

ϵ
− γ þ ln½4π� þ 1

3

�

− 3 ln

�
Δ½x; p�
μ2

��
ð3:11Þ

where

Δ½x;p� ¼m2
ψ −p2xð1− xÞ− i0þ; ~Y2 ¼ Y2μ−ϵ; ð3:12Þ

and μ is a renormalization scale. This self-energy features
an imaginary part for p2 > 4m2

ψ , namely the fermion-
antifermion threshold with

Im ~ΣðpÞ ¼ −
3 ~Y2

8π
p2

�
1 −

4m2
ψ

p2

�3
2

Θðp2 − 4m2
ψÞ: ð3:13Þ

The real part of ~ΣðpÞ is obtained by replacing Δ½x; p� →
jΔ½x; p�j in the argument of the logarithm in (3.11).

A. Renormalization

The real part of the self-energy features ultraviolet
divergences (a pole in ϵ) that yield mass and wave function
renormalization, the latter from the term proportional to p2

in Δ½x; p�. We renormalize on the mass shell of the Higgs
field for ε ¼ 0, by writing

Re½ ~Σðp2Þ� ¼ Re½ ~ΣðM2
ϕRÞ� þ ðp2 −M2

ϕRÞRe½ ~Σ0ðM2
ϕRÞ�

þ Re½ ~Σfðp2Þ� ð3:14Þ

where ~Σ0ðM2
ϕRÞ ¼ ∂ ~Σðp2Þ=∂p2jp2¼M2

ϕR
. The twice sub-

tracted real part of the self energy is finite in the limit
ϵ → 0 and given by

Re½ ~Σfðp2Þ�≡ Re½ ~Σðp2Þ� − Re½ ~ΣðM2
ϕRÞ�

− ðp2 −M2
RÞRe½ ~Σ0ðM2

ϕRÞ�: ð3:15Þ

For p2 ≃M2
ϕR it follows that

Re½ ~Σfðp2Þ�
p2 → M2

ϕR

							!Oððp2 −M2
ϕRÞ2Þ: ð3:16Þ

The mass renormalization condition is

M2
ϕ þ Re½ ~ΣðM2

ϕRÞ�≡M2
ϕR; ð3:17Þ

and introducing the (on-shell) wave function renormalization

Z−1
ϕ ¼ 1 − Re½ ~Σ0ðM2

ϕRÞ�; ð3:18Þ

along with the renormalized field

ϕR ¼ ϕffiffiffiffiffiffi
Zϕ

p ; ð3:19Þ

renormalized mixing parameter

εR ¼ ffiffiffiffiffiffi
Zϕ

p
ε; ð3:20Þ

and the definition

~Σfðp2Þ≡ Re½ ~Σfðp2Þ� þ iIm½ ~Σðp2Þ�; ð3:21Þ

the effective action (3.9) becomes

Seff ½ϕ;χ�¼
Z

d4p
ð2πÞ4

�
1

2
~ϕRð−pÞ½p2−M2

ϕR−Zϕ
~Σfðp2Þ� ~ϕRðpÞ

þ1

2
~χð−pÞ½p2−M2

χ �~χðpÞ−εR ~χð−pÞp2 ~ϕRðpÞ
�
:

ð3:22Þ

The factor Zϕ multiplying ~Σf is absorbed into the
renormalization of the Yukawa coupling

~YRZY ¼ ~Y
ffiffiffiffiffiffi
Zϕ

p
Zψ ð3:23Þ

where ZY ≃ ð1þOðY2Þ þ � � �Þ corresponds to vertex
renormalization and Zψ ≃ ð1þOðY2Þ þ � � �Þ to Fermion
wavefunction renormalization. Therefore, up to one loop
order Zϕ

~Σf → ~Σf where in ~Σf the coupling ~Y2 → ~Y2
R.

Finally we choose the renormalization scale μ2 ¼ M2
ϕR in

(3.10) according to on-shell renormalization.
Thus we recognize that the effective action yields a clear

renormalization procedure since only the Higgs field ϕ
undergoes radiative corrections from standard model inter-
actions, whereas the χ field is “dark” or “sterile” in the
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sense that it does not couple to the standard model degrees
of freedom.
There is a clear advantage of the approach to renorm-

alization via the effective action. For consider the alter-
native of first carrying out field redefinition and
diagonalization at the level of the bare action and writing
the Yukawa coupling in terms of the bare mass eigenstates.
This results in mixed vertices, leading to six renormaliza-
tion conditions: three mass renormalizations and three
wave function-type renormalization conditions, arising
from the divergence proportional to p2 in the self-energy.
Two of the three mass renormalization conditions corre-
spond to a mass renormalization of the bare masses and one
corresponds to a mass-mixing term. Two of wave-function
renormalization conditions correspond to the wave function
renormalizations of the mass eigenstate fields, and one to a
kinetic mixing term between the bare fields. This term leads
to a new field redefinition that accounts for the renorm-
alization of the kinetic mixing. Obviously this alternative
manner is much less clear and cumbersome, but ultimately
must yield the same results.
This method of renormalization via the one-loop effec-

tive action bypasses the more complicated renormalization
prescription with mixing [27–29], with the new complica-
tions associated with the kinetic mixing term.

B. Time evolution: no mixing, εR = 0

Anticipating the discussion of the time evolution for
kinetically mixed fields, we first discuss how to extract the
effective Hamiltonian in the simpler case of εR ¼ 0.
For εR ¼ 0 (no mixing) the χ field is free and decouples.

The renormalized field ϕR features a propagator

Gϕðp2Þ ¼ −i
p2 −M2

ϕR − ~Σfðp2Þ : ð3:24Þ

As a consequence of the on-shell renormalization and the
mass-shell behavior of Re½ ~Σfðp2Þ� given by (3.16) it
follows that near the mass shell

Gϕðp2Þ
p2 → M2

ϕR

							! −i
p2 −M2

ϕR − iIm½ ~ΣfðM2
ϕRÞ�

: ð3:25Þ

For M2
ϕR ≫ m2

ψ Eq. (3.13) yields

Im½ ~ΣfðM2
ϕRÞ� ¼ −MϕRΓϕ; Γϕ ¼ 3 ~Y2

R

8π
MϕR; ð3:26Þ

where Γϕ is the decay width at rest of the Higgs scalar
(assuming MϕR ≫ mψ ) into f̄f. Therefore, in absence of
kinetic mixing with the dark sector, the renormalization via
the effective action yields a Breit-Wigner propagator for the
Higgs field ϕ near its mass shell

Gϕðp2Þ
p2 → M2

ϕR

							! −i
p2 −M2

ϕR þ iMϕRΓϕ
: ð3:27Þ

The main advantage of this renormalization program at
the level of the effective action is that neglecting the
imaginary part of the self-energy along with kinetic mixing
(εR ¼ 0), the renormalized field ϕR creates a single particle
state with the physical renormalized mass and unit ampli-
tude (unit residue at the pole in the propagator). The
amplitude of the single particle state of momentum k at
time t > 0 is given by the inverse Fourier transform in p0 of
the propagatorGϕðp2 ¼ p2

0 − k2Þ. This is dominated by the
complex pole in the lower half p0 plane, namely

Gðt; kÞ ¼
Z

dp0

2π

e−ip0t

p2
0 − E2

k þ iMϕRΓϕ
∝ e−iEkte−

Γk
2
t;

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

ϕR

q
; ΓϕðkÞ ¼

MϕR

Ek
Γϕ; ð3:28Þ

the decay rate ΓϕðkÞ includes the time dilation factor
1=γðkÞ ¼ MϕR=Ek. Anticipating the treatment of the time
evolution in the case of mixing in the next section, we
rederive the above result from the effective action for ϕ for
εR ¼ 0,

Seff ½ϕ� ¼
1

2

Z
d4p
ð2πÞ4

~ϕRð−pÞ½p2 −M2
ϕR − ~Σfðp2Þ� ~ϕRðpÞ:

ð3:29Þ

The equation of motion for the Fourier transform ~ϕRðpÞ in
momentum space is

½p2 −M2
ϕR − ~Σfðp2Þ� ~ϕRðpÞ ¼ 0; ð3:30Þ

since ~Σfðp2Þ ∝ ~Y2
R ≪ 1 in perturbation theory the solution

is p2 ¼ M2
ϕR þOð ~Y2

RÞ therefore for single particle states of
momentum k we write p0 ¼ Ek þ δωk with δωk ∝ ~Y2

R the
equation of motion (3.30) becomes to leading order in ~Y2

R

δωk
~ϕRðpÞ ¼ H ~ϕRðpÞ; H ¼

~Σfðp2 ¼ M2
ϕRÞ

2Ek
: ð3:31Þ

In terms of the Fourier transform in time, δωk → i ∂
∂t namely

δωk is associated with the slow time evolution of the
amplitude through the perturbative self-energy after taking
out the trivial phase e−iEkt. Therefore Eq. (3.31) becomes a
Schroedinger-like equation for the slow time evolution of
the single particle amplitude,
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i
∂ ~ϕRðk; tÞ

∂t ¼ H ~ϕRðk; tÞ;
H ¼ Re½ ~Σfðp2 ¼ M2

ϕRÞ� þ iIm½ ~Σðp2 ¼ M2
ϕRÞ�;
ð3:32Þ

H is a non-Hermitian effective Hamiltonian. Because we
renormalized on-shell it follows from (3.21), (3.16), (3.26)
that the slow time evolution of the amplitude obeys

i
∂ ~ϕRðk; tÞ

∂t ¼ −
i
2

MϕR

Ek
Γϕ

~ϕRðk; tÞ; ð3:33Þ

namely

~ϕRðk; tÞ ¼ e−
ΓϕðkÞ

2
t; ð3:34Þ

which coincides with (3.28) after restoring the fast phase
e−iEkt. This formulation of the time evolution is equivalent
to the Wigner-Weisskopf method ubiquitous in the treat-
ment of the time evolution of neutral meson mixing
[30–37].

IV. MIXING: EFFECTIVE HAMILTONIAN

Our strategy to treat the kinetic mixing now begins by
writing the total effective action (3.22) as

Seff ½ϕ; χ� ¼
Z

d4p
ð2πÞ4

�
1

2
~ϕRð−pÞ½p2 −M2

ϕR� ~ϕRðpÞ

þ 1

2
~χð−pÞ½p2 −M2

χ �~χðpÞ − εR ~χð−pÞp2 ~ϕRðpÞ

−
1

2
~ϕRð−pÞ ~Σfðp2Þ ~ϕRðpÞ

�
: ð4:1Þ

treating the term ~ϕRð−pÞ ~Σfðp2Þ ~ϕRðpÞ as a perturbation and
diagonalizing the first two line in (3.22) by following the
same procedure described in Sec. II for the casewhereY ¼ 0
but now in terms of the renormalized mass, field and mixing
parameter. The diagonalization of the first two line in (4.1)
follows the same steps as in Sec. IIwith the final result for this
contribution to the effective action given by Eq. (2.19) but
nowM1,M2 and ~ϕ1; ~ϕ2 are all in terms of ϕR;Mϕ;R; εR. The

“interaction term” ~ϕRð−pÞ ~Σfðp2Þ ~ϕRðpÞ is now written in

terms of the mass eigenstate fields ~ϕ1; ~ϕ2 using the relation
(2.21), namely

~ϕRðpÞ ¼ y1 ~ϕ1ðpÞ þ y2 ~ϕ2ðpÞ ð4:2Þ

where y1, y2 are given by (2.22) but in terms of the
renormalized parametersMϕR; εR. The total effective action
in momentum space in the renormalized ϕ1 − ϕ2 basis is
given by

Seff ½ ~ϕ1; ~ϕ2� ¼
1

2

Z
d4p
ð2πÞ4 f

~ϕ1ð−pÞ½p2 −M2
1� ~ϕ1ðpÞ

þ ~ϕ2ð−pÞ½p2 −M2
2� ~ϕ2ðpÞ

− y21 ~ϕ1ð−pÞ ~Σfðp2Þ ~ϕ1ðpÞ
− y22 ~ϕ2ð−pÞ ~Σfðp2Þ ~ϕ2ðpÞ
− 2y1y2 ~ϕ1ð−pÞ ~Σfðp2Þ ~ϕ2ðpÞg: ð4:3Þ

The effective action (4.3) is fully renormalized and
general up to quadratic order in the fields, with the only
condition that jεRj < 1 to avoid tachyonic instabilities and
negative norm states. In this article we focus on the case
when the kinetic mixing is very small, and the Higgs and
the dark scalar are nearly degenerate, namely we consider

M2
ϕR ≃M2

χ ; εR ≪ 1: ð4:4Þ

It is convenient to introduce the following parameters

M2 ¼ M2
ϕR þM2

χ

2
; δ ¼ M2

ϕR −M2
χ

M2
ϕR þM2

χ
;

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2R þ δ2

q
; η; jδj ≪ 1; ð4:5Þ

in terms of which we find to leading order in εR, δ

M2
1 ¼ M2½1þ η�; M2

2 ¼ M2½1 − η� ð4:6Þ

M2
ϕ;R ¼ M2½1þ δ�; M2

χ ¼ M2½1 − δ� ð4:7Þ

cosð2θÞ ¼ εR
η
; sinð2θÞ ¼ δ

η
: ð4:8Þ

For fixed δ as εR → 0 it follows that θ → signðδÞπ=4.
At this point one can proceed to obtain the 2 × 2

propagator matrix in momentum space, the time evolution
is then obtained by diagonalizing this matrix and finding
the complex poles of the diagonalized propagator. The time
evolution is then obtained by performing the Fourier
transform in p0, just as described in the previous section.
The complex poles at E�ðkÞ − iΓ�ðkÞ=2 with E2

�ðkÞ ¼
k2 þM2

� yield a sum of exponentials e−iE�ðkÞte−Γ�ðkÞt=2

with coefficients determined by the residues at the poles. In
the nearly degenerate case one can take a common rapid
phase by writing E�ðkÞ ¼ ĒðkÞ þ ΔE�ðkÞ in terms of the
average mass with jΔE�ðkÞj ≪ ĒðkÞ and Γ�ðkÞ thus
describing the slow time evolution. Instead of this pro-
cedure, we obtain directly the time evolution from the
equations of motion, following the steps of the previous
section.
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The equations of motion now become

½p2−M2
1� ~ϕ1ðpÞ−y21 ~Σfðp2Þ ~ϕ1ðpÞ−y1y2 ~Σfðp2Þ ~ϕ2ðpÞ¼ 0

ð4:9Þ

½p2 −M2
2� ~ϕ2ðpÞ− y22 ~Σfðp2Þ ~ϕ2ðpÞ− y1y2 ~Σfðp2Þ ~ϕ1ðpÞ ¼ 0:

ð4:10Þ

The fast time evolution is associated with the scale M2,

therefore it proves convenient to write M2
1 ¼M2þ

ΔM2; M2
2¼M2−ΔM2 withΔM2 ¼ M2η andwritep0 ¼

Ēk þ δωk; Ēk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
where δωk ∝ ΔM2; ~Σfðp2 ¼

M2Þ describes the slow time evolution. Just as we argued
in the casewithoutmixing, taking δωk → i∂=∂t the equations
of motion (4.9), (4.10) become a Schroedinger-type equation
for the slow time evolution of coupled channels, namely

i
∂
∂t

� ~ϕ1ðk; tÞ
~ϕ2ðk; tÞ

�
¼ H

� ~ϕ1ðk; tÞ
~ϕ2ðk; tÞ

�
; H ¼

�
H11 H12

H21 H22

�
;

ð4:11Þ

where

H11 ¼
1

2Ēk
½ΔM2 þ y21 ~ΣfðM2Þ� ð4:12Þ

H22 ¼
1

2Ēk
½−ΔM2 þ y22 ~ΣfðM2Þ� ð4:13Þ

H12 ¼ H21 ¼ y1y2
~ΣfðM2Þ
2Ēk

: ð4:14Þ

This is an equation for the amplitudes, akin to the effective
evolution with a non-Hermitian effective Hamiltonian for
amplitudes obtained in theWigner-Weisskopf formulation of
neutral meson mixing [30,32–35,37]. The equivalence
between this formulation in terms of the effective non-
hermitian Hamiltonian for the amplitudes (Wigner-
Weisskopf) and the time evolution obtained from the
diagonalization and Fourier transform of the mixed propa-
gator has been established in Refs. [29,31].
With the definition of ~ΣfðpÞ given by (3.21) and with the

on-shell renormalization conditions leading to (3.16) it
follows that

Re½ ~ΣfðM2Þ� ∝ ~Y2
Rδ

2M2; ð4:15Þ

where we used (4.7). Since ΔM2 ¼ M2η it follows that for

jδj ≪ 1 the contribution from Re½ ~ΣfðM2Þ� can be

neglected, furthermore for M2 ≫ m2
ψ we find from (3.13)

Im½ ~ΣfðM2Þ� ¼ −
3 ~Y2

R

8π
M2: ð4:16Þ

Hence, defining

g1;2 ¼ y1;2

� ffiffiffi
3

p
~YRffiffiffiffiffiffi
8π

p
�
; ð4:17Þ

the matrix elements of H simplify to

H11 ¼
M2

2Ēk
½η − ig21� ð4:18Þ

H22 ¼
M2

2Ēk
½−η − ig22� ð4:19Þ

H12 ¼ H21 ¼
M2

2Ēk
½−ig1g2�: ð4:20Þ

where η has been defined in (4.5). In obtaining (4.18),
(4.19) we neglected contributions of the form (4.15) which
are subleading in the near degeneracy limit jδj ≪ 1,
however they can be incorporated straightforwardly away
from this limit.
The effective Hamiltonian H can be written as

H¼ 1

2
ðH11 þH22ÞIþ

1

2
½ðH11 −H22Þ2 þ 4H2

12�
1
2

�
C S

S −C

�
ð4:21Þ

where

C ¼ H11 −H22

½ðH11 −H22Þ2 þ 4H2
12�

1
2

;

S ¼ 2H12

½ðH11 −H22Þ2 þ 4H2
12�

1
2

; C2 þ S2 ¼ 1: ð4:22Þ

Introducing

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ C
2

r
; s ¼ Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ CÞp ; c2 þ s2 ¼ 1;

ð4:23Þ

the effective Hamiltonian H can be diagonalized,

H ¼ U−1
�
λþ 0

0 λ−

�
U ð4:24Þ

where the complex eigenvalues are
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λ� ¼ 1

2
ðH11 þH22Þ �

1

2
½ðH11 −H22Þ2 þ 4H2

12�
1
2

≡ ΔE� − i
Γ�
2
; ð4:25Þ

and

U ¼
�

c s

−s c

�
; U−1 ¼

�
c −s
s c

�
; ð4:26Þ

because H is non-Hermitian, it follows that U−1 ≠ U†. The
solution of the effective Schroedinger equation (4.11) is
given by

� ~ϕ1ðk; tÞ
~ϕ2ðk; tÞ

�
¼

�
c −s
s c

��
Vþðk; 0Þe−iλþt
V−ðk; 0Þe−iλ−t

�
; ð4:27Þ

where

�
Vþðk; 0Þ
V−ðk; 0Þ

�
¼

�
c s

−s c

�� ~ϕ1ðk; 0Þ
~ϕ2ðk; 0Þ

�
: ð4:28Þ

Therefore the slow time evolution of the amplitudes is
given by

~ϕ1ðk; tÞ ¼ ~ϕ1ðk; 0Þ½c2e−iλþt þ s2e−iλ−t�
þ ~ϕ2ðk; 0Þcs½e−iλþt − e−iλ−t� ð4:29Þ

~ϕ2ðk; tÞ ¼ ~ϕ2ðk; 0Þ½s2e−iλþt þ c2e−iλ−t�
þ ~ϕ1ðk; 0Þcs½e−iλþt − e−iλ−t�: ð4:30Þ

The full time evolution is obtained by multiplying the
above amplitudes by the common overall phase e−iĒkt.
These expressions are similar to those of two-flavor
oscillations in neutrino mixing, with twomajor differences:
(i) the eigenvalues λ� are complex, indicating decay of the
amplitudes and (ii) the amplitudes ~ϕ1ðk; 0Þ; ~ϕ2ðk; 0Þ are not
independent, they are determined from the initial ampli-
tudes for the Higgs and dark scalar.
From the relation (2.21) we find the amplitudes as a

function of time of the original Higgs and dark scalar fields,
namely

~ϕðk; tÞ ¼ y1 ~ϕ1ðk; tÞ þ y2 ~ϕ2ðk; tÞ ð4:31Þ

~χðk; tÞ ¼ h1 ~ϕ1ðk; tÞ þ h2 ~ϕ2ðk; tÞ: ð4:32Þ

Finally, we must obtain the initial amplitudes ~ϕ1;2ðk; 0Þ
from the initial amplitudes of the Higgs ϕ and dark scalar χ
fields. This is achieved by inverting the transformations
(2.8), (2.10), (2.19). We consider the case in which
~ϕðk; 0Þ ≠ 0; ~χðk; 0Þ ¼ 0 to describe an experimental setting

in which a collision has produced a Higgs particle as an
initial state, we find

~ϕ1ðk; 0Þ ¼ ~ϕðk; 0ÞF1;

F1 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − εR
2

r
cosðθÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ εR

2

r
sinðθÞ

�
~ϕ2ðk; 0Þ ¼ ~ϕðk; 0ÞF2;

F2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ εR
2

r
cosðθÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εR

2

r
sinðθÞ

�
: ð4:33Þ

Combining (4.29), (4.30), (4.33) with (4.31), (4.32), and
restoring the fast phase e−iĒkt we find

~ϕðk; tÞ
~ϕðk; 0Þ ¼ e−iĒkt½Aϕe−iλþt þ Bϕe−iλ−t� ð4:34Þ

~χðk; tÞ
~ϕðk; 0Þ ¼ e−iĒkt½Aχe−iλþt þ Bχe−iλ−t�; ð4:35Þ

where

Aϕ ¼ y1F1c2 þ y2F2s2 þ csðy1F2 þ y2F1Þ ð4:36Þ

Bϕ ¼ y1F1s2 þ y2F2c2 − csðy1F2 þ y2F1Þ ð4:37Þ

Aχ ¼ h1F1c2 þ h2F2s2 þ csðh1F2 þ h2F1Þ ð4:38Þ

Bϕ ¼ h1F1s2 þ h2F2c2 − csðh1F2 þ h2F1Þ: ð4:39Þ

One finds the identities

y1F1 þ y2F2 ¼ 1; h1F1 þ h2F2 ¼ 0; ð4:40Þ

which yield

Aϕ þ Bϕ ¼ 1; Aχ þ Bχ ¼ 0: ð4:41Þ

The “disappearance” Pϕ→ϕðtÞ and “appearance”
Pϕ→χðtÞ probabilities are given by

Pϕ→ϕðtÞ ¼




 ~ϕðk; tÞ~ϕðk; 0Þ





2 ð4:42Þ

Pϕ→χðtÞ ¼




 ~χðk; tÞ~ϕðk; 0Þ





2: ð4:43Þ

It is convenient to use εR and η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2R þ δ2

p
as param-

eters, furthermore taking ϕ as the standard model Higgs
with Mϕ ¼ 125 GeV it decays into quark-antiquark pairs
via the Yukawa couplings to the lower mass quarks, hence
the largest Yukawa coupling consistent with Higgs decay
is that of the bottom quark, with 3 ~Y2

R=8π ≃ 4 × 10−5.
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We consider εR ≪ 1, and the degenerate δ ¼ 0 or the near
degenerate cases jδj ≪ 1, therefore η ≪ 1. Furthermore, for
δ ≠ 0 we will also consider the case where the dark scalar χ
is heavier than but nearly degenerate with the Higgs,
namely δ < 0. In this case we find, in terms of εR, η

cosðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ εR

η

�s
; sinðθÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

εR
η

�s
;

ð4:44Þ

therefore, for fixed δ < 0 it follows from (2.22) that y1, y2
are odd and even functions of εR respectively, conse-
quently, for δ ≠ 0 (namely η > εR) it follows that y1 < y2.
If ϕ is heavier than χ then sinðθÞ changes sign and

the odd/even properties of y1, y2 as functions of εR are
reversed.
Before studying particular cases, we note that

εR ¼ 0; δ ≠ 0 corresponds to θ ¼ −π=4, yielding

y1 ¼ 0; y2 ¼ 1; h1 ¼ 1; h2 ¼ 0;

F1 ¼ 0; F2 ¼ 1; ð4:45Þ

which leads to ~ϕ2¼ϕ; ~ϕ1¼χ and g1¼ 0;β¼ 0;c¼ 1;s¼ 0.
These values yield Aϕ ¼ 0; Bϕ ¼ 1;Aχ ¼ Bχ ¼ 0. Clearly
this is simply the limit in which the kinetic mixing
vanishes, the mass eigenstate ~ϕ2 is the Higgs field and
~ϕ1 is the uncoupled dark scalar field. The rotation by θ ¼
−π=4 obviously undoes the (unitary) transformation (2.8).

V. TIME EVOLUTION: LONG AND SHORT
LIVED MODES, OSCILLATIONS AND

DISPLACED VERTICES

It is straightforward to study the general cases numeri-
cally, however, there are two relevant cases that can be
studied analytically and offer detailed insights into the
dynamics.

A. Case I: η ≫ g21;2
More precisely this case corresponds to

3 ~Y2
R

8π
≃ 4 × 10−5 ≪ η ≪ 1 ⇒ g21;2=η ≪ 1 ð5:1Þ

where g1;2 are given by (4.17). To leading order in g1;2=η
we find

S≃−iβ; C≃ 1þ β2

2
; β ¼ g1g2

η
¼ 3 ~Y2

R

8πη
y1y2 ≪ 1

ð5:2Þ

s≃ − i
β

2
; c ≃ 1þ β2

8
; ð5:3Þ

along with the eigenvalues

λþ ≃
M2

2Ēk
½η − ig21�; g21 ¼

3 ~Y2
R

8π
y21 ð5:4Þ

λ− ¼ M2

2Ēk
½−η − ig22�; g22 ¼

3 ~Y2
R

8π
y22: ð5:5Þ

WithΔE�;Γ� defined by Eq. (4.25), these are given, in this
case by

ΔEþ ¼ M2

2Ēk
η; ΓþðkÞ ¼

M2

Ēk
g21 ð5:6Þ

ΔE− ¼ −
M2

2Ēk
η; Γ−ðkÞ ¼

M2

2Ēk
g22; ð5:7Þ

the inequality (5.1) physically means that
ΔE�ðkÞ ≫ Γ�ðkÞ, namely in terms of the poles in the
propagator, the difference in the real part of the poles is
much larger than the individual (and sum of the) widths.
Therefore the complex poles in the propagator are spec-
trally resolved and describe well separated resonances.
It is convenient to introduce the dimensionless variable

τk ¼
M2

Ēk
t ¼

ffiffiffiffiffiffiffi
M2

p
γ̄k

t ð5:8Þ

where γ̄k is the average Lorentz time dilation factor, in
terms of which the probabilities are given by

Pϕ→αðtÞ ¼ jAαj2e−g21τk þ jBαj2e−g22τk þ 2e−ðg21þg2
2
Þτk=2

× f½ARαBRα þ AIαBIα� cosðητkÞ
þ ½AIαBRα − ARαBIα� sinðητkÞg; ð5:9Þ

where R, I stand for the real and imaginary parts respec-
tively and α ¼ ϕ; χ respectively. We note that ητk ¼ ½ðM2

1 −
M2

2Þ=2Ēk�t and g21;2τk ≡ Γþ;−ðkÞt where Γ�ðkÞ given by
(5.6), (5.7) are the decay rates of the corresponding mass
eigenstates including the (average) time dilation factor. The
oscillations in (5.9) are a result of interference between the
mass eigenstates, reflecting the fact that mixing between
the Higgs and the dark scalar entails that the Higgs field is
a coherent superposition of mass eigenstates, just like
“flavor” states in neutrino oscillations.
In the limit (5.1) described by Eqs. (5.2)–(5.3), the terms

with s2, c2 are real and only the terms with the product
cs ≃ −iβ=2 are imaginary. This substantially simplifies the
expressions for the probabilities.
Before we engage in a numerical study of time evolution

of the probabilities, it is illuminating to understand ana-
lytically some limiting cases. We consider the case M2

χ ≥
M2

ϕ corresponding to δ ≤ 0.
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1. εR ≪ 1, δ= 0

This case corresponds to the Higgs and dark scalars
being degenerate, we refer to this as the resonant case. With
η ¼ εR ≪ 1 we find to leading order in εR that y1 ¼ y2 ¼
h1 ¼ h2 ¼ F1 ¼ F2 ¼ 1=

ffiffiffi
2

p
yielding g1 ¼ g2. Kinetic

mixing splits the degeneracy of the mass eigenstates
because η ¼ εR ≠ 0 but in this case with η ≫ g21;2 both
mass eigenstates feature the same decay rate Γþ ¼ Γ− ¼
Γϕ=2 where Γϕ ¼ 3 ~Y2

RMRϕ=8π is the Higgs decay rate into
the f̄f channel. While this resonant case is interesting
because it results in an enhancement of the kinetic coupling
as the degenerate mass eigenstates feature the same decay
widths, it is experimentally ruled out because in this case
the Higgs mode features half the lifetime of the standard
model Higgs.

2. εR ≪ 1, jδj ≃ εR
In this case the Higgs and dark scalars are nearly but not

degenerate. For jδj ≃ εR it follows that η ≃ εR, this inter-
mediate parameter range must be studied numerically. As
an example, the probabilities Pϕ→ϕ and Pϕ→χ for εR ¼
10−3; η ¼ 2 × 10−3 are displayed in Figs. 1, 2. These
parameters describe the almost degenerate case with
Mχ=Mϕ ¼ 1.002. Figures 1, 2 reveal the short and long

time scales along with the oscillatory behavior, with
g21 ¼ 2.7 × 10−6; g22 ¼ 3.73 × 10−5, the time scale for decay
of dark-like mode ( ~ϕ1) is ≃14 times longer than that of the
Higgs-like mode ( ~ϕ2). For these parameters we find
jAϕj2 ¼ 4.88 × 10−3; jBϕj2 ¼ 0.871, namely the probability

FIG. 1. Pϕ→ϕðtÞ, the solid line corresponds to εR ¼ 10−3; η ¼ 2 × 10−3, the dashed line shows Higss decay without mixing (εR ¼ 0).
The rightmost figure displays the dynamics on the longest time scale. The lowest figure displays Pϕ→χðtÞ.

FIG. 2. lnðPϕ→ϕðtÞÞ, the solid line corresponds to
εR ¼ 10−3; η ¼ 2 × 10−3, the dashed line shows Higss decay
without mixing (εR ¼ 0).
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for the dark-like mode (jAϕj2) is much smaller than that for
the Higgs-like mode (jBϕj2).
For comparison, Fig. 1 for Pϕ→ϕ also displays Higgs

decay without kinetic mixing corresponding to εR ¼ 0.
Figure 2 shows lnðPϕ→ϕðtÞÞ vs. τk to display more clearly
the separation of scales in the almost degenerate case. Note
the scale on the horizontal axis, the oscillation period
corresponds to δτk ≃ 2π=η ≃ 103, with τk given by Eq. (5.8)
this oscillation time scale is ≳103 longer than the Higgs

oscillation time scale ≃1=
ffiffiffiffiffiffiffi
M2

p
. On this scale the natural

Higgs oscillation occurs on a scale τk ≃ 1 and the Higgs
lifetime (without mixing) is τk ≃ 104. This is precisely the
nature of the slow time evolution captured by the effective
Wigner-Weisskopf Hamiltonian with matrix elements
(4.18)–(4.20).

3. εR ≪ jδj ≪ 1

This nearly degenerate case describes a broader region
of parameters with εR ≪ η ≪ 1 allowing us to imple-
ment useful approximations and provide an analytic treat-
ment. As an example of this case, we note that for Mχ ¼
130; 135 GeV and εR ¼ 10−3 one obtains η ≃ 0.039; 0.077
respectively. We find

y1 ≃ F1 ≃
εR
2η

≪ 1; y2 ≃ F2 ≃ 1þOðε2R=ηÞ

h1 ≃ 1þOðε2R=ηÞ; h2 ≃ −
εR
2η

≪ 1; ð5:10Þ

thus we refer to ~ϕ1 as the dark-like (χ-like) mode and ~ϕ2 as
the Higgs- like (ϕ-like) mode, with

g21 ≃
3 ~Y2

R

8π

�
εR
2η

�
2

ð5:11Þ

g22 ≃
3 ~Y2

R

8π
: ð5:12Þ

The result (5.11) is important: just on the basis of mixing
with a parameter εR onewould expect that the decay rate for
the χ-like mode would be suppressed by a factor ε2R with
respect to that of the ϕ-like mode, however, when the Higgs
and dark scalar are nearly degenerate and εR ≪ 1 there is an
enhancement of the χ-like rate by a factor 1=η2 ≫ 1.
In this limit there is a wide separation of the time

scales of decay of the mass eigenstates because
g21 ≃ g22 × ðεR=2ηÞ2 ≪ g22.
Figure 3 shows lnðPϕ→ϕðtÞÞ vs. τk for εR ¼ 10−3 with

η ¼ 0.077 corresponding to Mχ ¼ 135 GeV. For this case
g21 ≃ 2 × 10−9; g22 ≃ 4 × 10−5. Larger values of η lead to a
wider separation of the time scales but also to faster
oscillations which average out the oscillatory component.
In the case of Fig. 3 with εR=η ¼ 0.013 ≪ 1 and jAϕj2 ¼
1.8 × 10−9 ≪ jBϕj2 ≃ 1 the main features of the persistence

probability (5.9) with α ¼ ϕ are much easier to understand:
at early time the Higgs-like mode represented by the direct
term proportional to jBϕj2 dominates until a time τ�k ≃
lnðjBϕ=Aϕj2Þ=g22 at which this term becomes of the same
order as the oscillatory term. For τk > τ�k the oscillatory
term dominates, this is the interference between the Higgs
and dark-like modes, but this oscillatory contribution
decays with e−g

2
2
τk=2 since g22 ≫ g21, finally for τk ≫ 2=g22

the dark-like mode, represented by the direct term
jAϕj2e−g21τk dominates, this term is nearly constant up to
τk ≈ 1=g21 ≃ 1010. In the units displayed in Fig. 3 the Higgs
lifetime is τk ≃ 2 × 104.
Consider an intermediate time scale such that

1=g22 ≪ τk ≪ 1=g21; ð5:13Þ

during this time scale Pϕ→ϕ ≈ jAϕj2 ≃ ðε=2ηÞ4 is nearly a
constant and begins to decay on the much longer time scale
1=g21. This delay translates into a spatial pattern as a
displaced decay vertex. This is similar to the phenomenon
of regeneration in the neutral Kaon system which features a
short and a long lived mass eigenstate [36].

B. Case II: η ≪ g21;g
2
2

This case corresponds to

3 ~Y2
R

8π
≃ 4 × 10−5 ≫ η; ð5:14Þ

this inequality also implies that both εR, jδj ≪ 10−5. Unless
there is a fine tuning that makes Mχ ≠ Mϕ but keeping
jMχ −MϕRj=ðMχ þMϕRÞ ≃ 10−5, we assume that this

FIG. 3. lnðPϕ→ϕðtÞÞ, the solid line corresponds to εR ¼ 10−3;
η ¼ 0.077, corresponding Mχ ¼ 135 GeV, g11 ≃ 2 × 10−9;
g22 ≃ 4 × 10−5, the dashed line shows Higss decay without mixing
(εR ¼ 0). At early times the Higgs-like mode dominates, at
intermediate times the interference between Higgs and dark-like
modes dominates and the dark-like mode dominates at late times
(see text).
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parameter range corresponds to the degenerate case δ ¼ 0,
namely η ¼ εR, again allowing useful approximations and
an analytic treatment. We note that with η ¼ εR ≠ 0
although Mχ ¼ MϕR, the mass eigenstates are split by
the kinetic mixing. With δ ¼ 0 and η ¼ εR ≪ 1 we find to
leading order that y1 ¼ y2 ¼ F1 ¼ F2 ¼ 1=

ffiffiffi
2

p
, and

g21 ¼ g22 ¼ g1g2 ≡ g2 ¼ 3 ~Y2
R

16π
: ð5:15Þ

We recognize in this degenerate case that M̄2 ¼ M2
ϕR; Ēk ¼

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

ϕR

q
and

g2
M2

2Ek
¼ ΓϕðkÞ

4
ð5:16Þ

where ΓϕðkÞ is the Higgs decay rate into f̄f in the
laboratory frame. It is convenient to introduce

κ ¼ εR
g2

≪ 1; ð5:17Þ

in terms of which we find to leading order

λþ ¼ −i
ΓϕðkÞ
2

�
1 −

κ2

4

�
; λ− ¼ −i

κ2ΓϕðkÞ
8

; ð5:18Þ

along with

C ¼ iκffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p ; S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p ; ð5:19Þ

leading to

Aϕ ≃ 1þ κ2

4
; Bϕ ≃ −

κ2

4
: ð5:20Þ

Therefore, λþ corresponds to the Higgs-like mode and λ− to
the dark-like mode.
To leading order in κ the real part of the eigenvalues λ�

vanish, in terms of the poles in the propagator, this means
that the real part of the complex energies is the same for
both, in this case the resonances are spectrally unresolved
because the difference in the real parts is much smaller than
the widths. This situation is similar to that in the K0 − K̄0
system where the real part of the difference in complex
energies is of the same order as the sum of the widths [36].
Space-time evolution: displaced vertices Consider that in

a collision a Higgs particle is created at an initial time
t ¼ 0, this state will evolve in space and time as a coherent
superposition of the (unstable) mass eigenstates. In order to
study the space-time evolution let us restore the fast
evolving phase e−iĒkt in Eq. (4.34) so the Higgs amplitude

)4.34 ) in momentum space is given by

~ϕðk; tÞ ¼ ~ϕðk; 0Þ½Aϕe−iEþðkÞte−
ΓþðkÞ

2
t þ Bϕe−iE−ðkÞte−

Γ−ðkÞ
2

t�;
ð5:21Þ

where

Ēk þ λ� ≡ E�ðkÞ − i
Γ�ðkÞ
2

: ð5:22Þ

The space-time evolution is best understood in terms of a
wave packet description [31]. Consider that the initial
amplitude describes a Gaussian wave packet narrowly
localized in momentum space around a wave vector k⃗0,
namely

ϕðk⃗; 0Þ ¼ N e
−ðk⃗−k⃗0Þ2

2σ2
P ð5:23Þ

where σP ≪ jk0j is the width in momentum space and N a
normalization factor. For a narrow wave packet the Fourier
transform in k is performed by expanding the various
quantities around k⃗0 up to second order and carrying out the
Gaussian integrals. We find

ϕðx⃗; tÞ ≃ Neik⃗0·x⃗
�
Aϕe−iEþðk0Þte−

Γþðk0Þ
2

te
−ðx⃗−V⃗þðk0ÞtÞ2

2σ2
X

þ Bϕe−iE−ðk0Þte−
Γ−ðk0Þ

2
te

−ðx⃗−V⃗−ðk0ÞtÞ2
2σ2

X

�
ð5:24Þ

where V⃗�ðk0Þ are the group velocities given by

V⃗� ¼ k⃗0
E�ðk0Þ

; ð5:25Þ

N is a normalization factor, σX ¼ 1=σP is the localization
length in coordinate space. To obtain (5.24) we have
neglected the time dependence on σX from dispersion
and spreading, as well as subleading terms proportional
to ~Y2

R. This space-time amplitude describes two localized
wave packets moving with slightly different group veloc-
ities, the amplitude of each decays with the corresponding
lifetimes Γ�ðk0Þ. The space-time persistence probability is
given by

Pϕ→ϕðx⃗; tÞ ¼ jϕðx⃗; tÞj2 ¼ jϕþðx⃗; tÞj2 þ jϕ−ðx⃗; tÞj2 þ Iðx⃗; tÞ
ð5:26Þ

where in obvious notation jϕ�ðx⃗; tÞj2 are the direct terms
and the interference contribution is given by
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Iðx⃗; tÞ ¼ N2e
−ðx⃗−V⃗þðk0ÞtÞ2

2σ2
X e

−ðx⃗−V⃗−ðk0ÞtÞ2
2σ2

X e−
Γþðk0ÞþΓþðk0Þ

2
t

× ½½ARϕBRϕ þ AIϕBIϕ� cos½ðEþ − E−Þt�
þ ½AIϕBRϕ − ARϕBIϕ� sin½ðEþ − E−Þt��: ð5:27Þ

This interference term is a hallmark of coherence, which is
suppressed by two sources of decoherence: (i) the decay
with the average of the rates of the two mass eigenstates and
(ii) decoherence from the separation of wave packets and
suppression of their overlap. This latter effect arises from
the fact that the wave packets evolve with slightly different
group velocities separating as time evolves. The overlap
vanishes when the distance between the centers is larger
than the width of the wave packets, this happens for
t > tcoh where

tcoh ≃
σX

jV⃗−ðk0Þ − V⃗þðk0Þj
: ð5:28Þ

This latter source of decoherence is similar to the
decoherence of neutrino oscillations in the wavepacket
formulation [38–40].
Case I: (η ≫ 10−5) In this case the results (5.4), (5.5)

imply that to leading order EþðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

1

p
;E−ðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
2

p
, therefore the difference in group velocities

becomes

jV⃗−ðk0Þ − V⃗þðk0Þj ¼
k0

Ēðk0Þ
M2

Ē2ðk0Þ
η: ð5:29Þ

The time scale for decoherence by wave packet separation
is given by

tcoh ≃
σXĒ3ðk0Þ
k0M2η

ð5:30Þ

Therefore the interference term vanishes at a time scale tdec
given by the smallest between tcoh and the inverse of the
average decay rate of the two mass eigenstates. For t ≫ tdec
only the direct contribution from the mass eigenstate with
the longest lifetime survives in the persistence probability.
For εR ≤ η this is the mass eigenstate corresponding to λþ,
namely for t ≫ tdec

Pϕ→ϕðx⃗; tÞ ≃ jϕþðx⃗; tÞj2 ¼ N2jAϕj2e
−ðx⃗−V⃗þðk0ÞtÞ2

σ2
X e−Γþðk0Þt:

ð5:31Þ

For Γþ ≪ Γ− this probability describes a decay vertex
displaced from the origin by a distance

Δx ≈
jVþðk0Þj
Γþðk0Þ

: ð5:32Þ

In the broad parameter range with jδj ≫ εR we can use the
results (5.11) to find that

Δx ≃ jVþðk0Þj
γ̄ðk0Þ
Γϕ

�
2η

εR

�
2

; ð5:33Þ

where Γϕ is the Higgs decay rate (at rest) in the f̄f channel
and we used Eq. (5.10) in the limit εR=η ≪ 1. This spatial
separation suggests a potential telltale signature of kinetic
mixing: two well separated decay vertices into the same
channels, the first corresponding to the decay of the Higgs-
like mode ~ϕ2 and the second displaced by a distance given
by (5.33) from the decay of the dark-like mode ~ϕ1. Taking
Γϕ ¼ 4 MeV as the total decay width of the standard model
Higgs (see Sec. VII), we find

Δx ≈ 2

�jVþðk0Þjγ̄ðk0Þ
10

�� jδj
10−1

�
2
�
10−6

εR

�
2

cm: ð5:34Þ

In the limit εR=η ≪ 1, namely η ≃ jδj, the relative
probability for the dark-like component to decay with a
displaced vertex is given by

R ≃
jAϕj2
jBϕj2

≃
�
10−1

δ

�
4
�
εR
10−6

�
4

× 10−21: ð5:35Þ

Thus we see that a larger displacement of the vertex implies
a much smaller probability, this trade-off between the decay
length and the probability suggests a challenging observa-
tional scenario for displaced vertices. As an example
consider Mχ ¼ 135 GeV;Vγ̄ ∼ 10 and εR ¼ 10−6 yielding
η ≃ jδj ≃ 0.077, Δx ≈ 1 cm and R ≃ 10−21.
Case II: (η ≪ 10−5) Considering the degenerate case

δ ¼ 0, the results (5.18) and (5.20) yield to leading order

Pϕ→ϕðx⃗;tÞ¼N2e−
ðx⃗−V⃗ðk0ÞtÞ2

σX

��
1þκ2

4

�
e−

Γϕðk0Þ
2

t−
κ2

4
e−

κ2Γϕðk0Þ
8

t

�
2

:

ð5:36Þ

The first and second terms in the bracket are identified as
the Higgs-like and dark-like modes respectively. In this
case the interference term is not oscillatory because to
leading order in κ the eigenvalues λ� are purely imaginary.
To this order the difference Eþ − E− ≃ 0. This case is
similar to K0K̄0 mixing where the real part of the difference
in the eigenvalues is smaller than (or of the same order as)
the difference in the imaginary parts and the interference
term does not feature an oscillatory component [32,34,36].
For κ ≪ 1 the dark-like mode dominates for t >
−4ðln κÞ=Γϕðk0Þ leading to a late decay with a vertex
displaced by
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Δx ≃ 8

�jVþðk0Þjγ̄ðk0Þ
10

��
10−10

εR

�
2

cm; ð5:37Þ

with a ratio of probabilities (for εR ≪ 2 × 10−5)

R ≃
�

εR
4 × 10−5

�
4

: ð5:38Þ

Again, as in the previous case there is a trade-off between
a larger displacement and a smaller probability.

VI. RADIATIVE CORRECTIONS FROM
RADION-(SM) COUPLING

As discussed in Sec. II within the radion model, the
radion features couplings to the standard model degrees of
freedom, its coupling to fermions and gauge vector bosons
is given by Eq. (2.5). We now extend the discussion of the
previous sections by including the radiative corrections
from this coupling. Following the steps in Sec. III leading
to the effective action we now find up to one fermionic and
vector boson loop in momentum space,

δSeff ½ϕ� ¼ −
1

2

Z
d4p
ð2πÞ4 f

~ϕð−pÞ ~ΣϕϕðpÞ ~ϕðpÞ

þ ~χð−pÞ ~ΣχχðpÞ~χðpÞ þ 2 ~ϕð−pÞ ~ΣϕχðpÞ~χðpÞg;
ð6:1Þ

where

~ΣϕϕðpÞ¼ ~ΣðpÞ; ~ΣχχðpÞ¼ γ2 ~ΣðpÞ; ~ΣϕχðpÞ¼ γ ~ΣðpÞ;
ð6:2Þ

and now ~ΣðpÞ is the one loop self energy including
fermions and vector bosons. Anticipating the necessity
for an off-diagonal mass term for renormalization, we add a
counterterm −χm2

ϕχϕ to the bare action, leading to the total
one loop effective action given by

Seff ½ϕ; χ� ¼
Z

d4p
ð2πÞ4

�
1

2
~ϕð−pÞ½p2 −M2

ϕ − ~ΣϕϕðpÞ� ~ϕðpÞ

þ 1

2
~χð−pÞ½p2 −M2

χ − ~ΣχχðpÞ�~χðpÞ

− ~χð−pÞ½εp2 þm2
ϕχ þ ~ΣϕχðpÞ� ~ϕðpÞ

�
: ð6:3Þ

As discussed in Sec. III the real part of the one loop self
energy requires two substractions, for the diagonal self-
energies we subtract on the (renormalized) mass shells
(before mixing), namely

Re½ ~Σϕϕðp2Þ� ¼Re½ ~ΣϕϕðM2
ϕRÞ�þ ðp2 −M2

ϕRÞRe½ ~Σ0
ϕϕðM2

ϕRÞ�
þRe½ ~Σf

ϕϕðp2Þ� ð6:4Þ

Re½ ~Σχχðp2Þ� ¼ Re½ ~ΣχχðM2
χRÞ� þ ðp2 −M2

χRÞRe½ ~Σ0
χχðM2

χRÞ�
þ Re½ ~Σf

χχðp2Þ�; ð6:5Þ

whereas for the off-diagonal term we subtract at p2 ¼ M2,

Re½ ~Σϕχðp2Þ� ¼ Re½ ~ΣϕχðM2Þ� þ ðp2 −M2ÞRe½ ~Σ0
ϕϕðM2Þ�

þ Re½ ~Σf
ϕχðp2Þ�; ð6:6Þ

so that Re½ ~Σf
ϕχðM2Þ� ¼ 0 and is finite for all p2. The self

energies Σf ¼ ReΣf þ iImΣ are finite. The renormalization
conditions for the diagonal components follow Eqs. (3.17)–
(3.18) for ϕ; χ respectively, whereas for the off-diagonal
component they become

m2
ϕχ þ Re½ ~ΣϕχðM2Þ� −M2Re½ ~Σ0

ϕχðM2Þ� ¼ ~mϕχ
2

εþ Re½ ~Σ0
ϕχðM2Þ� ¼ ~ε: ð6:7Þ

The first equation in (6.7) justifies the addition of the off-
diagonal mass counterterm to absorb a divergence of the
one loop self energy, and ~ε is an intermediate renormaliza-
tion. The interesting aspect of this analysis is that including
radiative corrections suggests that the most general tree
level action must include an off-diagonal mass term to
renormalize the divergences in the self-energies. Since our
focus is in understanding the consequences of kinetic
mixing, we set the intermediate parameter ~mϕχ

2 ¼ 0 by
adjusting the counterterm to cancel this self energy sub-
traction. The possibility of a nonvanishing off-diagonal
(renormalized) mass term while interesting is beyond the
scope of this article and is postponed to further study.
Finally the renormalization of the kinetic mixing is
achieved by

εR ¼ ffiffiffiffiffiffiffiffiffiffiffi
ZϕZχ

p
~ε: ð6:8Þ

Renormalizing the couplings by multiplicative renormali-
zation with the wave function renormalization constants
also suggests a renormalization of the parameter γ that
determines the couplings of the radion to the (SM) degrees
of freedom, which is neglected to the order that we study.
The final form of the effective action after renormalization
of couplings is now given by
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Seff ½ϕ; χ� ¼
Z

d4p
ð2πÞ4

�
1

2
~ϕRð−pÞ½p2 −M2

ϕR� ~ϕRðpÞ þ
1

2
~χRð−pÞ½p2 −M2

χR�~χRðpÞ − εR ~χRð−pÞp2 ~ϕRðpÞ

−
1

2
~ϕRð−pÞ ~Σf

ϕϕðp2Þ ~ϕRðpÞ −
1

2
~χRð−pÞ ~Σf

χχðp2Þ~χRðpÞ − ~χRð−pÞ ~Σf
ϕχðp2Þ ~ϕRðpÞ

�
: ð6:9Þ

We now proceed in exactly the same way as in Sec. IV by diagonalizing the first line (renormalized tree-level) and writing
the second line in terms of

~ϕRðpÞ ¼ y1 ~ϕ1ðpÞ þ y2 ~ϕ2ðpÞ; ~χRðpÞ ¼ h1 ~ϕ1ðpÞ þ h2 ~χ2ðpÞ ð6:10Þ

where y1;2; h1;2 are given by the same expressions as in Sec. II in terms of the renormalized parameters. We note that

~Σf
ϕϕðp2Þ ∝ Y2; α2w; ~Σf

χϕðp2Þ ∝ γY2; γα2w; ~Σf
χχðp2Þ ∝ γ2Y2; γ2α2w; ð6:11Þ

therefore to leading order in γ ≪ 1 we neglect the term in
~χR ~Σf

χχ ~χR in the effective action. We obtain the effective
Hamiltonian following the same steps as in Sec. IV. The
renormalization prescriptions described above entail that
the real part of the diagonal self energies are subleading as
in Sec. IV and that of the off-diagonal term vanishes when

evaluated at the scale M2. Using [see Eqs. (2.22), (2.23)]
which to leading order in εR become

h1 ¼ y2; h2 ¼ −y1 ð6:12Þ

and that the imaginary part of the one-loop self-energy on

the (near) mass shell scale M2 only receives a leading
contribution from the fermion-antifermion loop, it follows
that

Im½ ~Σf
ϕϕðM2Þ� ¼ −

3 ~Y2
R

8π
M2;

Im½ ~Σf
ϕχðM2Þ� ¼ γIm½ ~Σf

ϕϕðM2Þ�: ð6:13Þ

To leading order in γ we find that the matrix elements of the
effective Wigner-Weisskopf Hamiltonian (4.18), (4.19),
(4.20) now become

H11 ¼
M2

2Ēk
½η − iG2

1� ð6:14Þ

H22 ¼
M2

2Ēk
½−η − iG2

2� ð6:15Þ

H12 ¼ H21 ¼
M2

2Ēk
½−iG1G2�; ð6:16Þ

where to leading order in γ

G1 ¼ g1 þ
γ

2
g2; G2 ¼ g2 −

γ

2
g1: ð6:17Þ

We are now in position to assess the contribution from the
radion couplings to the standard model degrees of freedom
in the cases analyzed in Sec. V in the parameter range εR ≃
γ ≪ 1 as suggested by the analysis of LHC data in
Ref. [20]. For εR ≃ η ≪ 1 it follows that g1 ≃ g2 and the
terms proportional to γ ≪ 1 can be safely neglected. In the
case εR ≪ η ≪ 1 the results from Eq. (5.10) along with
g1=g2 ¼ εR=2η yield G2 ≃ g2 and G1 ¼ g1ð1þ ηγ=2εRÞ
which for γ ≃ εR and η ≪ 1 entails that to leading order
G1 ¼ g1, thus in this case the contribution from γ can also
be neglected. Finally in the case η ≪ g21; g

2
2 with y1 ≃ y2 the

contribution from γ can also be neglected. Therefore we
conclude that in all the cases of interest analyzed in the
previous section, and in the parameter range εR ≃ γ the
contributions from the couplings between the radion and
the standard model degrees of freedom can be safely
neglected.

VII. DISCUSSION

(i) Generalization. We have obtained the effective
action and effective Hamiltonian by considering
solely a Yukawa coupling between the Higgs and
fermionic degrees of freedom of the standard model
to highlight the main conceptual steps. In the
previous section we also included the coupling of
the radion to (SM) degrees of freedom. However, we
can simply generalize the one loop effective action
by integrating out all the degrees of freedom that
couple to the Higgs and contribute to the Higgs self-
energy. All of these will contribute to mass and wave
function renormalization, however, only those cor-
responding to intermediate states with multiparticle
thresholds below the position of the renormalized
mass of the Higgs will contribute to the imaginary
part of the effective Hamiltonian. We can simply
include these in the one loop effective Hamiltonian
by replacing
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3 ~Y2
R

8π
→

ΓH

MϕR
ð7:1Þ

where ΓH ¼ 4 MeV is, now, the total Higgs decay
width. At the level of the propagator, it is tantamount
to replacing the one-loop self-energy with the full
self-energy, in principle to all orders in standard
model couplings.

(ii) Effective action vs. Wigner-Weisskopf method: In
the Wigner-Weisskopf approach to neutral meson
mixing, one obtains a Schroedinger like equation for
the amplitudes in the interaction picture by taking
transition matrix elements of the interaction Ham-
iltonian (in the interaction picture) [30–37]. Truncat-
ing the hierarchy of equations to the states that are
connected to the initial state by the interaction
Hamiltonian at a given order (typically second
order) yields an effective Schroedinger equation
for the amplitudes with a non-Hermitian Hamilto-
nian (for a detailed discussion see Refs. [32,34,37]).
The interaction via kinetic mixing does not lend
itself directly to such treatment. One can perform a
field redefinition and diagonalization of the resulting
mass matrix as described in Sec. II above, in which
case the standard model vertices in terms of the mass
eigenstates can be taken as the interaction Hamil-
tonian. However, while it is straightforward to
extract mass renormalization in this description, it
is less clear how to include wave-function renorm-
alization, which is a consequence of the momentum
dependent ultraviolet divergence of the fermionic
self-energy. Furthermore, as discussed in Sec. III
renormalization is more cumbersome in the mass
basis since there are several renormalization con-
ditions. The method described in Secs. III, IV in
terms of the equations of motion from the effective
action unambiguously and straightforwardly leads to
the Schroedinger-like equation for the renormalized
amplitudes in terms of a non-Hermitian Hamiltonian
with the fully renormalized masses, field amplitudes
and decay widths.

(iii) Kinetic vs.massmixing:After the transformation (2.8)
and the field redefinition (2.10) the Lagrangian at the
quadratic level is identical to two massive fields
coupled bilinearly with a mass mixing term (2.11).
Diagonalizing the mass matrix yields the mass eigen-
states. Although at first sight one would infer that
kinetic mixing is equivalent to mixing with an off-
diagonal mass matrix, in fact they are different. The
main difference is that in the case of kineticmixing, the
mass eigenstates arenotunitarily related to the original
fields because of the rescaling (2.10), whereas in mass
mixing, the fields that create the mass eigenstates are
unitarily related to the original fields.

(iv) Bounds on radion-Higgs mixing: Earlier analysis of
LHC data [23,25] revealed that the constraints for

radion-Higgs mixing with near degeneracy loosen
substantially for very small mixing and v=Λχ ≪ 1.
The most recent constraints [20] confirm and tighten
the earlier bounds, showing an allowed region of
parameter space for small mixing and v=Λχ ≪ 1. In
particular the most interesting region for displaced
vertices discussed in the previous section corre-
sponds to ε=η ≪ 1, which when combined with
v=Λχ ≪ 1 corresponds to the “conformal point”
investigated in detail in Ref. [20]. For this region
of parameters, Ref. [20] finds a wedge of allowed
region for radion-Higgs mixing which widens as Λχ

increases. This is precisely the region of parameters
in which our theoretical analysis focused, thus
lending support to the possibility that the dynamical
effects found in the previous sections could be
experimentally relevant.

(v) Displaced vertices at the LHC: The Atlas detector at
the LHC reported results of a search program for the
decay of long-lived neutral particles with displaced
vertices at

ffiffiffi
s

p ¼ 7; 8 TeV [41]. No significant
excess of events over background were found.
The benchmark scenario used for the analysis which
is more relevant to the discussion here, is that of
Ref. [42]. In this scenario the Higgs mixes with a
scalar (but not kinetically) which in turn decays into
a pair of new hadronic states, each one finally
decaying into b̄b pairs via a new gauge boson Z0
with a displaced vertex.

The scenario studied in the previous sections is
very different in that the initial Higgs is a coherent
superposition of a Higgs-like and a dark-like state,
with nearly the same masses but very different
lifetimes. This model is defined by only two
parameters: the strength of the kinetic coupling εR
and the mass of the dark scalar (radion) (encoded in
the degeneracy parameter δ). The benchmark model
used for analysis of the LHC data [42] features a
much richer dark sector with various new hadronic
resonances and gauge bosons with various new
couplings and masses, therefore introducing more
parameters, interactions and model dependence than
in the model that we study here.

Although experimentally both scenarios may
yield the same final state (b̄b → jets), physically
the processes are very different, hence using analysis
based on the benchmark model of Ref. [42] may not
be suitable for the mixing/oscillation case studied
here. The results for the displaced vertex (5.34) or
(5.37) and relative probability (5.35) or (5.38) for
cases I, II respectively, suggest that detection of
displaced vertices will be very challenging.

VIII. CONCLUSIONS AND FURTHER QUESTIONS

Motivated by higher dimensional extensions beyond the
standard model, in this work we studied the dynamical
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aspects of kinetic mixing between the Higgs particle and a
nearly degenerate SUð3Þc × SUð2Þ ×UYð1Þ singlet dark
scalar field. This is an alternative portal to degrees of
freedom beyond the standard model that may possibly be
suitable dark matter candidates. We focused on very small
kinetic mixing (motivated by weakly interacting dark
matter) and a dark scalar field nearly degenerate with
the Higgs field, a region of parameter space that has not yet
been excluded and is weakly constrained by LHC data
[20,23,25].
A further motivation is the realization that kinetic mixing

offers a fundamentally different scenario of mixing phe-
nomena which, by itself, merits a deeper study as a
complement to more phenomenological studies.
One of the main results of this work is the implementation

of the renormalization program directly from the effective
action. This is a new method that yields straightforwardly
and unambiguously fully renormalized Schroedinger-like
equations of motion for the amplitudes in terms of a non
hermitian effective Hamiltonian similar to the treatment of
neutral meson mixing.
Although we focused on a Yukawa coupling of the Higgs

field to fermionic degrees of freedom of the standard model
we argue that the method is more general.
Kinetic mixing of the Higgs with a nearly degenerate

dark scalar implies that the Higgs field is a coherent
superposition of the mass eigenstates leading to oscillations
and a common decay channel, again similarly to neutral
meson mixing. Small kinetic coupling and nearly degen-
erate dark and Higgs scalars imply that while the mass
differences of the mass eigenstates are small, their lifetimes
are very different. These features have important implica-
tions: in a collision experiment producing a Higgs particle,
the initial state evolves as a coherent superposition of the
mass eigenstates, leading to interference as a consequence
of mixing an decay of the different components with a wide
difference of the decay rates. The large difference in the
lifetimes of the mass eigenstates implies a delayed decay of

the dark-like component with a displaced vertex into the
same channels as those available for Higgs decay.
There are two relevant dimensionless parameters: εR is

the renormalized kinetic mixing parameter (2.3) and δ
given by (4.4) is a degeneracy parameter from which the
combination η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2R þ δ2

p
plays a fundamental role in the

description of the dynamics. We find two distinct regions of
parameters, (i) for η ≫ ΓH=MH, where ΓH, MH are the
width and mass of the Higgs, interference between the
dark-like and Higgs-like components give rise to oscilla-
tions in the “persistence” probability to find the Higgs-like
mode, and for εR ≪ η ≪ 1 there is an enhancement of the
effective kinetic coupling as a consequence of the near
degeneracy. (ii) for η ≪ ΓH=MH the interference term does
not feature oscillations as the oscillation frequency is much
smaller than the average width. In both cases we find a wide
separation of lifetimes between the Higgs-like and dark-
like modes. A wave-packet treatment yields a space-time
description of the delayed decay of the dark-like mode with
displaced vertices albeit with large vertex displacements
correlated with very small probabilities presenting a chal-
lenging observational scenario.
The phenomena discussed in this study, namely inter-

ference effects and displaced vertices, must be input in the
analysis of collider data to establish more firmly in forth-
coming experiments the possibility of dark scalar mixing
kinetically with the Higgs sector in the region of parameter
space studied here. While no excess signal over back-
ground has yet been found for displaced vertex events at the
LHC, the search will continue with Run II and future linear
colliders.
Kinetic mixing provides a novel scenario for mixing,

oscillations and displaced vertices opening new theoretical
and experimental possibilities.
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