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I present the effective potential at three-loop order for a general renormalizable theory, using the MS
renormalization scheme and Landau gauge fixing. As applications and illustrative points of reference, the
results are specialized to the supersymmetric Wess-Zumino model and to the standard model. In each case,
renormalization group scale invariance provides a consistency check. In the Wess-Zumino model, the
required vanishing of the minimum vacuum energy yields an additional check. For the standard model,
I carry out the resummation of Goldstone boson contributions, which provides yet more opportunities for
nontrivial checks, and obtain the minimization condition for the Higgs vacuum expectation value at full
three-loop order. An infrared divergence due to doubled photon propagators appears in the three-loop
standard model effective potential, but it does not affect the minimization condition or physical observables

and can be eliminated by resummation.
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I. INTRODUCTION

The effective potential [1-3] is a useful tool for under-
standing spontaneous symmetry breaking in quantum field
theories. It can be defined in perturbation theory, and
calculated, by expanding the scalar fields appearing in the
Lagrangian about constant background values ¢, and then
summing the one-particle-irreducible vacuum (no external
legs) Feynman diagrams, using propagator masses and
interaction vertices that depend on the background scalar
fields. The full two-loop effective potential has been
obtained for the standard model in the MS scheme and
Landau gauge by Ford, Jack, and Jones in Ref. [4], and in
general theories (including softly broken supersymmetric
ones, which use a different regulator based on dimensional
reduction) in Ref. [5]. The three-loop effective potential for
the standard model has been found in the approximation
that the QCD and top Yukawa couplings are larger than all
other couplings, in Ref. [6], and the four-loop contribution
only at leading order in QCD [7].

One application of the effective potential is to study the
stability properties of our vacuum state in the standard
model [3,8-31] and extensions of it. This has attracted great
interest recently due to the apparent proximity of the Higgs
boson self-coupling to the critical value associated with
metastability.

Another important use of the effective potential is to
relate the vacuum expectation value (VEV) of the sym-
metry breaking scalar field(s) to the Lagrangian parameters,
including the negative Higgs squared mass parameter. Note
that the VEV can be defined as the value of the constant
scalar background fields that minimizes either the tree-level
potential or the full effective potential. Choosing the first
definition, with the VEV as the minimum of the tree-level
potential, has the advantages of providing gauge-invariant
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running masses, and allowing for checks in subsequent
calculations of other quantities by varying the gauge-fixing
parameter. However, it requires the inclusion of tadpole
diagrams in those calculations (see for example [32-37]),
which causes inverse powers of the Higgs coupling to
appear in perturbation theory.

By defining the VEV as the minimum of the full effective
potential, the sum of all tadpole graphs automatically
vanishes, and inverse powers of the Higgs self-coupling
do not occur, so that in calculations of other quantities,
perturbation theory converges faster. The price to be paid
for using this “tadpole-free” scheme is that the resulting
VEV is dependent on the gauge-fixing choice, and there-
fore so are the running MS masses of the particles. This is
of course not a real problem, because the VEV and the
running masses are not physical observables. Calculations
in this approach are simplest in Landau gauge, where there
is no mixing between Goldstone bosons and vector gauge
bosons and the gauge-fixing parameter is not renormalized.
(Reference [38] is a good example of using a tadpole-free
scheme but in Feynman gauge.) Although fixing to Landau
gauge precludes obtaining checks from varying the gauge-
fixing parameter, there are checks of similar power from
cancellations in observable quantities between Goldstone
bosons and the unphysical components of vector degrees of
freedom. The tadpole-free pure MS scheme has been used
to calculate the complex pole masses of the Higgs [39], W
[40], and Z [41] bosons, and the top quark [42], to full two-
loop order, in terms of the MS Lagrangian parameters,
using notation and computational methods consistent with
the present paper.

In this paper, I will obtain the three-loop effective
potential for a general renormalizable quantum field theory
in four dimensions, using Landau gauge fixing and the MS
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scheme [43,44] based on dimensional regularization [45—49].
In the following, 1/16x% is used as a loop expansion
parameter, so that the effective potential is written as:

1 1

@V(l) . 7€)

. — y(0)
Veir(¢) = VIV + (1672)

L e

(162)? )

As is well-known, the contribution V() is obtained as the
sum of one-particle-irreducible Z-loop vacuum Feynman
diagrams, using propagator masses and vertices that depend
on the constant background scalar field(s) ¢. First derivatives
of the effective potential correspond to tadpole diagrams
involving the scalar fields, and so working at the minimum of
V(¢) guarantees that the sum of tree-level and loop-corrected
tadpoles vanishes, and therefore tadpoles need not be
included in other calculations. The new results for the
contributions to V) will be presented in Sec. III. As
illustrative applications of the general results, I will special-
ize them to the cases of the supersymmetric Wess-Zumino
model and the standard model, in Secs. [Vand V respectively.
Many of the results obtained below are too lengthy to show in
print, and so are presented instead in ancillary electronic files
in forms suitable for use with computers.

An important way of checking a calculation of the
effective potential is by requiring renormalization group
invariance, provided that the pertinent beta functions have
already been calculated to the corresponding order by other
means. The requirement that V. does not depend on the
choice of the MS renormalization scale Q can be written as

dveff o i ﬁ o
00 = <Q3Q+2Xjﬁxax)veff—0- (12)

where X runs over all of the independent Lagrangian
parameters, including the background scalar field(s). The
beta function for a background scalar field ¢ is related to its
anomalous dimension y by f, = —¢y. The loop expansions
for the beta functions of X can be written:

1 (1) 1 (2) 1 3)
= + + + .- 1.3
Px 167:2'BX (167[2)2'BX (167[2)3'BX (1.3)
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Then it follows that at each loop order # = 1,2,3, ..., one
must have:
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This will be applied below as a check in both the
Wess-Zumino model and standard model.

II. CONVENTIONS AND SETUP

The conventions and notations for this paper related to the
effective potential and to two-component fermions generally
follow Refs. [5,50] respectively, with some minor cosmetic
variations. After expansion about the constant background
scalar field(s), the Lagrangian can be written without loss of
generality in terms of real scalars R}, real vectors A#¢, and
left-handed two-component fermion fields y;, with back-
ground-field-dependent masses and interaction couplings.
(In many cases, complex bosonic fields with well-defined
charges could be used, but in order to present results in a
general way, | take advantage of the fact that they can always
be decomposed into real and imaginary parts.) For fermion
fields that carry conserved charges, it is most convenient to
use pairs of 2-component left-handed fields y; and yp with
opposite charges and therefore a purely off-diagonal Dirac
mass M!"", so that the common squared mass for both fields
is M? = M2 = |M""|>. This means that the two-component
fermion fields are always squared mass eigenstates but
sometimes not mass eigenstates.

The squared-mass eigenstate fields are therefore labeled
by indices j, k, [, m, n, p for real scalars, a, b, c,d, e, f for
real vectors, and I, J, K, L for two-component fermions,
with the understanding that I’, J/, K’, L’ are used to denote
the corresponding mass partners when they form a Dirac
pair, and with I’ = I for a fermion with a Majorana-type
mass. As a convention, repeated indices are always taken to
be summed over.

The most general interaction Lagrangian for a renorma-
lizable theory can be written in terms of background-
field-dependent couplings as (using a metric of signature
- 4, +, +):

1. 1 . 1, . B )
E = —glykleRle - ﬂ/yklijRleRm — 5 (YJIJRJ'II/III/] + C.C.) + g?JAﬂal//TIGMl//‘] - gajkAMaRjaMRk

. o , ,
_ ZgahjkAzAﬂhRij _ 5gulz/A;:Aﬂij _ gahcAyaAvbaﬂA;

Here A/ and /¥ are real scalar interactions that are totally
symmetric under interchange of all indices, Y/!/ are
Yukawa couplings that are symmetric under interchange
of I, J, and gj,” are vector interactions with fermions, and

1
_ ZgubegcdeAuuAubA;Az? _ gahcAyawbgﬂa—)c‘ (2.1)

|

g“*, g®ik and g*PJ are vector interactions with scalars, and
g% are vector self-interactions. Note that the sign of g**
has been flipped compared to the notation of Ref. [S]; this
has no impact on the results of that reference, because at

ajk, abjk
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two-loop order ¢**¢ only appears in pairs. Because the
scalars and vectors are real, the heights of their indices have
no significance, and are chosen for typographical conven-
ience. As a convention, flipping the heights of all fermion
indices corresponds to complex conjugation, so that

Y= "), (2.2)
My =M, (23)

and
g1 = (g’)". (2.4)

All of the couplings with names involving g have their
origin as gauge couplings. In Landau gauge, the ghost
fields w* and @“ are massless. Note that the vector cubic,
vector quartic, and vector-ghost-antighost interactions are
all written in terms of a common, totally antisymmetric,
¢-dependent, coupling g**¢. The vector-vector-scalar cou-
plings ¢°%/ are symmetric under interchange of the vector
indices a, b, and the vector-scalar-scalar couplings g*/* are
antisymmetric under interchange of the scalar indices j, k.
Note also that the vector-vector-scalar-scalar couplings are
not independent; they can always be written in terms of the
vector-scalar-scalar couplings, according to

gebik = qail gkl 4 gakl ghii, (2.5)

1. 1.
V@ = T (A2 fsss (s ke 1) + gﬂ”kkfss(j, k)

1 . )
+ EYj”leijFS(I’ J.J)
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Reference [5] did not mention or exploit this fact, as it leads
to only a slight simplification at two-loop order, but it is
used extensively below.

In the following, the names of fields or the corresponding
indices will be used as synonyms for the corresponding
squared mass arguments used in loop integral functions.
For example, we can write the well-known 1-loop effective
potential in the MS scheme and Landau gauge as simply

= f(D) =2 _fID+3) fv(a). (26)
where
2
flx) = xA(x)/4 —x*/8 :Z(ln(x) 3/2),  (2.7)
Fol) = AC)/4 -+ 22124 = () - 5/6). (28
Here
In(x) = In(x/Q?) (2.9)

where Q is the MS renormalization scale, x is the squared
mass argument, and

A(x) = xIn(x) — x (2.10)

is a one-loop integral basis function (which was denoted by

J(x) in Ref. [5]). The two-loop contribution to the effective
potential is

1 : 7y .
* 4 (YY" MMy +ce)fpps(1J, )

1 1, 1 1 ,
+Z(Qa’k)2fvss(a7j,k) +Z(gab’)2fvvs(a,b,1) +§glng[fFFV(I J,a) +291 Yg MMy frrv(1]. a)

1
+ _2 (gabc)zfgauge(a’ b, C>’

in terms of two-loop integral functions fggg, fss,» frrss
Sikss fvsss fvvss frrvs JEry, and foqee that were
originally computed (in a different notation) by Ford,
Jack, and Jones in Ref. [4] in the context of the standard
model. They were given in Ref. [5] in the context of a
general renormalizable theory, in the notation of the present
paper, with one exception; in Eq. (2.11) above, I have used
Eq. (2.5) to combine the terms that involved the functions
fssy and fyg in Ref. [5], by defining a new function

= fosy(0, 2.%) + fys(x,y) + fys(x. 2).
(2.12)

frss(x,9,2)

(2.11)
|
Explicitly,
fvss(x,y,2) = [=A(x,y, 2)I(x,y,2) + (y = 2)*1(0, y, 2)
+ (2x =y + 2)A(x)A(y)
+ (2x +y = 2)A(x)A(z)]/x + A(y)A(2)
+2(y+z—x/3)A(x) + 2x[A(y) + A(2)]
(2.13)
for x # 0, and
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I(x,y,2)

H(u,v,w,z,y, z)

FIG. 1.
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EROROROD);

G(w,u, z,0,7)

u Z,Y,V U 2, Y,V

The topologies for the 2-loop and 3-loop basis vacuum integral functions used in this paper. The large dot in F(u, z,y, v)

corresponds to a derivative with respect to the u squared mass argument. The function F(u, z,y, v) is the same as F(u, z, y, v) but with a
subtraction to render it infrared finite in the limit # — 0. In each case, counterterms have been included to make the integrals finite as the
ultraviolet regulator ¢ — 0. See Ref. [51] for the precise definitions and more information.

Fvss(0,y,2) =3(y +2)1(0,,2) + 3A(y)A(2)
—27A(2) + (y + 2)2,

— 2yA(y)
(2.14)

where I(x,y,z) is a two-loop basis integral used in
Refs. [4,5], and defined in the latter reference in the
notation appropriate for the present paper, and

Mx,y,z)=x 4y + 22 =2xy—2xz—2yz  (2.15)

is the usual triangle function.

In the following, I will present the three-loop contribu-
tion to the effective potential in terms of three-loop vacuum
integral functions using the notation of Ref. [51], which
also provides a computer code 3VIL for their numerical
evaluation' using the differential equations method. The
basis integral functions consist of a 1-loop integral A(x)
already given above in Eq. (2.10), the two-loop integral
I(x,y,z) mentioned in the previous paragraph, and three-
loop integral functions H(u,v,w,x,y,z), G(w,u,z,v,y),
and F(u,z,y,v), corresponding to topologies shown in
Fig. 1. For convenience, it is also useful to define a related
function

F(u,z,y,v) = F(u,z,y,v) + In(u)I(v,y,z)  (2.16)

which is finite in the limit # — 0, and an integral
E(u,z,y,v) given by Eq. (2.40) in Ref. [51], which
corresponds to the same topology as F(u,z,y,v) but
without a derivative with respect to u. In the following, I
will employ F(u,z,y,v) instead of F(u,z,y,v) when the
first argument does not vanish, and otherwise use
F(0,z,y,v). Technically, E(u, z, v, v) is not a basis integral
because it can be written as a linear combination of F (or F)
integrals with the same arguments in different orders, but it

'See also Refs. [52,53] for a different approach to numerical
computation of the 3-loop vacuum basis integrals, based on
dispersion relations. Also, Refs. [54-73] found a variety of
important special analytical cases that have been incorporated
into 3VIL.

is convenient to use E to express some quantities in
simplest form. Each of the basis integral functions is
defined to include counterterms that make them finite
and independent of the ultraviolet dimensional regulariza-
tion parameter e, but dependent on the MS renormalization
scale Q. This simplifies the presentation of results in the
MS scheme, as € never appears. Consult Ref. [51] for the
precise definitions of the basis integrals, and more
information.

It is also convenient, when dealing with Feynman
diagrams with “doubled propagators” (i.e., two propagators
that carry the same momentum) to define functions by:

Aw,x)=[A(w)=AX)]/(x—w) (x#w),
(2.17)
I(w,x,y,2)=[I(w,y,2) =1(x,y,2)]/(x=w) (x#w),
(2.18)

~G(x,u,z,y,0)]/(x~=w)
(2.19)

K(w,x,u,z,y,v)=[G(w,u,z,y,v)
(x#w).

In each case, the first two arguments w, x are the squared
masses of the doubled propagators. When the squared
masses for double propagators coincide, these functions
become:

Ax, x) = —%A(x), (2.20)

- 0
I(x,x,y,2) = —al(x,y,z), (2.21)

0
K(x,x,u,z,y,v) = —aG(x, U,z,y,0), (2.22)

The necessary derivatives in Egs. (2.20)—(2.22) can be
expressed in terms of the basis functions as:
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d
aA(x) =1+A(x)/x,

ox
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9 pryz) = {r=y =9, y,2) —Ax) —A(y) —A(z) + x +y + 2] = 24(y)A(2)

+ (x =y +2)AX)A(y)/x + (x +y — 2)A(x)A(z)/x} /A(x, y, 2),

%G(x, u, z,y,0) = [(x —u—2)/A(x,u,z) + (x —v —y)/A(x,v,y) = 1/x]G(x,u,z,y,v)

Al +u=2)A(2) + (x + 2= w)A(u) + x(u + 2 = x) (x, v, y)

+ 2x[x? + x(20 + 2y — u — z) — 2uv — 2uy — 2vz — 2yz — 8uz|/3
+ulx+z—u)F(u,v,y,2) + z(x+u—2)F(z,u,v,y)}/xA(x, u, z)
+H{[(x+v-y)A>Y) + (x+y - v)A(v) +x(v +y —x)[I(x, u, )

+2x[x? + x(2u + 2z — v — y) = 2uv — 2uy — 2vz — 2yz — 8vwy|/3

+o(x+y—v)F(v,u,y,2) +y(x +v=y)F(y,u,v,2)}/xA(x,v,y)

(2.23)

(2.24)
+u(u—z—-x)A(u)/4+z2(z —u—x)A(z)/4 4+ x(u+ z — x)[A(v) + A(y)]
To(v=y=x)A)/4+y(y - v=x)AW)/4+x(v +y - x)[A(u) + A(2)]

(2.25)

— (Tx +2u +2v + 2y + 27)/3x.

Special cases that arise when the A(x, y, z) denominators vanish can be obtained as smooth limits of the above. Of particular

importance are the following:

%I(x, 0,x)=2 fol(x, 0, z)] . = —A(x)?/x%, (2.26)
%G(% 0.2,0.y)| _ = [F(x.0.0,5) = F(0.x,0,3)]/2x + {[(v = y)* = 2*|A()I (x, v, y) /2%
+[3x% —4x(v+y) + (v = )Y (x,0.9)/2+ [(v =y = 0)A(v) + (v = v = X)A(y)
+x(x = v = y)AX)?/x + 2A(0)A(Y) + 2(x = y)A(Y) + 2(x — v)A(v)
+ (70% + 7y* + 18vy + 10xv + 10xy — 17x%) /8]A(x) + x(v + y — x)[A(v) + A(Y)]
—2xA()A(y) + x[5x% — 4x(v + y) — v* — y? — 100y]/3}/xA(x, v, y), (2.27)
and
% G(x,0.y,0,y)[,—, = 1 = F(0,0,x,x)/x — A(x)/x. (2.28)

It is often important to have expansions of the integral
functions when one or more of the squared mass arguments
is small. In the following I will regulate infrared diver-
gences in massless vector bosons by giving the propagator
a small squared mass (rather than using dimensional
regularization for the infrared divergences, which can cause
confusion with the ultraviolet divergences). Goldstone
bosons also have squared masses that can be consistently

treated as small compared to those of other particles. The
expansions of the basis integrals in a small squared mass o
(taking 0 < x,y,z..., where x,y,z... are other pertinent
non-zero squared masses in the diagram) can be accom-
plished using the differential equations that the basis
integrals satisfy, which were given in [51]. As an example,
for the 2-loop basis integral function, one can find through
order & that, for x # y:
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1(8,x.y) = 1(0,x,y) + 8[—(x + y)1(0.x,y) = 2A(x)A(y) + (3x — y)A(x)
+ (3y = x)A(y) = (x + )’/ (x = y)* + 8In(5)A(x, )
+ & [=2xy1(0,x,y) — (x + y)A(x)A(y) + (Txy — x* = 2y*)A(x)/2
+ (Txy = 2% = y*)A(y)/2 + (x +y)(2xy — 5x* = 5y%) /4] / (x — y)*

+&In(8)[(x* = y*)/2 + xA(y) = yA()]/ (x = y)* + O(8)

and

(2.29)

1(8,x,x) = 1(0,x,x) + (8/x)[4x + 3A(x) + A(x)?/2x — (x + A(x))In(8)]

+ (8/x)2[~11x/18 — A(x)/6 + xIn(8) /6] + O(5),

(2.30)

1(8,0,x) = 1(0,0, %) + (8/x)[x + 2A(x) + A(x)?/2x — A(x)In(5)]

+ (8/x)*[~5x/4 — A(x)/2 + xIn(8) /2] + O(&?),

(2.31)

1(8,8,x) = 1(0,0,x) + (8/x)[22x + 4A(x) + A(x)?/x — 2A(x)In(5)]

+ (8/x)%[(28, = 5/2)x + A(x) + A(x)?/x — (x + 2A(x))In(8) + xIn*(6)] + O(5°),

1(6,8,8) = 6[3V/3Ls, — 15/2 + 6In(5) — 3In*(8)/2].

1(0,8,8) = 8[=5 + 4In(6) — In?(5)],

1(0,0,8) = 8§[-5/2 = &, + 2In(8) — In?(8) /2],

1(0,0,0) = 0,

where Ls, = — [/ *dxIn[2sin(x/2)] ~0.6766277376064358.
A large number of similar expansion formulas for the
3-loop basis integrals, including all of the ones necessary
for results below, are given in an ancillary electronic file
provided with this paper, called expzero.anc [108]. In
general, the functions I, F, G, and H have smooth limits as
0 — 0, with expansion terms that are powers of ¢ that may
be multiplied by polynomials (of up to cubic order) in
In(5). The expansion of the function F contains a In(§) as
the leading behavior for § — 0 if (and only if) the first
argument is J, as can be seen from Eq. (2.16).
The limits for small § of A(5,5) and I(5,6,x,y) and
K(8,8,u,v,x,y) have logarithmic infrared singularities,
because they also involve doubled propagators with the
same momentum and the same small squared mass &.
Assuming that either x or y and either # or v are large
compared to J, one has:

A(8,8) = —In(s), (2.37)

1(5,6,x,y) = —In(8)A(x,y) + -, (2.38)

(2.32)
(2.33)
(2.34)
(2.35)

(2.36)

K(8,8,u,v,x,y) = —In(8)A(u, v)A(x,y) +---,  (2.39)

where the ellipses refer to terms that are finite as 6 — 0. The
expansions needed for the cases that occur in the standard
model, through order & for I, F and F functions, through
order * for I and G functions, and through order §° for K
and H functions, are given in expzero.anc [108].
Further expansion cases as may be needed for more general
theories can be obtained by using the differential equations
given in Ref. [51].

Finally, it is important to note that the loop integral
basis functions satisfy certain identities when the squared
mass arguments are not generic, either because some of
them are equal to each other, or vanish. (These identities
can be discovered by requiring smooth limits of derivatives
of the integral functions as the arguments approach
the non-generic configurations.) Some identities of this
type were given in Eqgs. (5.79)—(5.80) and (5.82)—(5.86) of
Ref. [51]. Other identities that are used in the following
are

096005-6



EFFECTIVE POTENTIAL AT THREE LOOPS

PHYSICAL REVIEW D 96, 096005 (2017)

F(x,x.y,y) = (x/y = D[F(x,0,0,y) + 1(0,x,y) + A(y) — 2y(3]
+[A()/y = A(x) /210, x,y) + A(X)[A(y)* [y + A(x) = 2A(y)

+ 3x?/4y —9x/2 + 2y]/x — 2x* /3y + 10x/3 + 2y,

G(0,0,0,x,y) = —=F(0,0,x,y) +21(0,x,y) + A(x) + A(y) —4x/3 — 4y/3,

G(y,0,0,0,x) = G(x,0,0,0,y) + (x — y)[F(x,0,0,y) + 1(0,x,y) + A(x)A(y)/x

+ [1/4 +3x/4y + (1 + &)y/x]A(x) = [2 + x5 /y]A(Y),

G(x,0,y,0,y) = (y = x)[F(x,0,0,y)/y + F(0,0,x,y)/x] + 2A(x)A(y)/x

+ [(3xy/4 — y* = 3x*/4)A(x) — (x — y)*A(y)]/xy

(2.40)

(2.41)
+2y83 = 2(x + 5y)/3]/y + A(x)A(y)[A(y) — A(x)]/ (2xy)

(2.42)
+[B—x/y—(1/x+ 1/y)A()(0,x,y) + [y — A(x) — A(y)/3]A(y)*/xy

(2.43)

+2(x% + 2xy = 7y%) /3y + 2(y* + 6xy — 3x%){3/3x.

In addition, one can express the following 1-scale integrals
in terms of {, and {3 and powers of A(x), with rational
coefficients, using the analytical formulas collected in
section V of Ref. [51]: 1(0,0,x), 1(0,x,x), F(x,0,0,0),

F(x,0,0,x), F(x,x,x,x), F(0,0,0,x), F(0,0,x,x),
G(0,0,0,0,x),  G(0,0,0,x.x),  G(0,0,x0,x),
G(x,0,0,0,0), G(x,0,0,0,x), G(x,0,x,0,x), and

G(0,x,x,x,x). The existence of these identities means
that the presentation of results for any specific theory (for
example, the standard model) in terms of the basis
functions is far from unique; the basis is overcomplete
when the arguments are not generic.

III. THREE-LOOP CONTRIBUTIONS
TO THE EFFECTIVE POTENTIAL

A. Feynman diagrams

In this Sec. I present the results for the three-loop
contribution to the effective potential for a general renor-
malizable quantum field theory. The 1-particle-irreducible
Feynman diagrams for the three-loop effective potential
have the topologies shown in Fig. 2. To distinguish the
different diagrams, each topology is associated with a letter
E, G, H, J, K, or L, and then subscripts S, V, F, F, or g
are applied, corresponding respectively to real scalar,
real vector, helicity-preserving fermion, helicity-violating

QOB e

E1234 G12345 Hi23456

fermion, or ghost propagators, in the order designated by
the numbering in Fig. 2. The helicity-violating fermion
propagators each contain a mass insertion of the type M,y
or M'"', as described in Ref. [50]. To illustrate this labeling
scheme, Fig. 3 shows the Feynman diagrams corresponding
to diagrams Hppsypp and Kyygspp. For each diagram,
there is a corresponding loop integral function, which one
can compute in terms of the basis functions discussed in the
previous section after including the MS counterterms. The
squared mass arguments are given in the same ordering as
the corresponding subscripts.

However, the correspondence between Feynman dia-
grams and loop integral functions is not one-to-one,
because in some cases involving vector bosons it is
convenient to define loop integral functions that combine
the effects of more than one Feynman diagram, by
exploiting the constraints implied by the underlying
gauge invariance that is associated with vector fields in
renormalizable theories. For example, because of the
relation between the vector-scalar-scalar couplings g“*
and the vector-vector-scalar-scalar couplings g**/* given
in Eq. (2.5), it is convenient to define a single function
Kssssy (i, v,w,x,y,z) that combines the effect of the
Feynman diagram labeled Kgqgqqy with the one labeled
Jsssy- (For this reason, there is no function Jggggy below.)

1
) ©CO
2

K123456

J12345 L1234

FIG. 2. The Feynman diagram topologies contributing to the 3-loop effective potential, with numerals indicating the ordering of
subscripts denoting propagator types (S, F, F, V, or g) as well as the ordering of the corresponding squared mass arguments.
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N -

Humoy pr(tv,w, 2, y, 2) Kyvssrr(z,w,u,z,y,v)
FIG. 3. Examples of the Feynman diagram labeling scheme
used in this paper, for the diagrams with loop integral functions
denoted Hppoypi(u, v,w,x,y,2) and Kyysspp(x, w,u,z,y, ).
Solid lines with arrows represent helicity-preserving fermion
propagators. Solid lines with a dot and clashing arrows represent
a helicity-violating fermion propagator. Dashed lines indicate a
real scalar propagator, and wavy lines stand for real vector
propagators. The squared masses are denoted by u, v, w, x,y, z as
labeled.

There are numerous similar cases where the contribution of
a diagram with a vector-vector-scalar-scalar interaction is
combined with the contribution from a related diagram with
a pair of vector-scalar-scalar interactions to give a single
loop integral function. Furthermore, because of the fact that
the vector quartic interaction and the vector-ghost-antighost
interaction are determined by the triple vector coupling, as
seen in Eq. (2.1), the effects of the diagrams labeled

PHYSICAL REVIEW D 96, 096005 (2017)

Hyyyyvy, Hygggvgs Hyggvyy, and parts of Gyyyyy and
Eyyyy can always be combined into a single function that I
call Hgyge- The other parts of diagrams Gyyyyy and
Eyyyy, together with the contributions of diagrams
KVVVVVV’ KVVggggv KVVVVgg’ KgggVVg’ JVVVVV’ JVVggVa
and Lyyyy can always be combined into a single function
to be denoted K gyqc. Similarly, I define a function Hyyyee s
that combines the effects from the diagrams Hyyyyyg and
Ggyyyy; a function K, g that combines the effects of
diagrams Kyygyyy, Kyysyg and Jyyygy; a function
K gauge,ss that combines the contributions from Kyygsyy,
Kyvyssgg Jvvssvs Jvvvvss Jyvges, and Lyyyg; a function
K gquge, pr that combines diagrams Kyyyyrp, Kyyprgg. and
Jyvrry; and a function Ky, 77 that combines diagrams
Kyyyvirs KyviFgg and Jyyppy.

Finally, note that there are two diagrams, Gygsgg and
Gyssyy, which one can draw and for which the couplings
exist, but for which the corresponding loop integrals vanish
identically.

Taking into account the above considerations, I find that
the three-loop contributions to the MS renormalized
Landau gauge effective potential for a general renormaliz-
able theory can be expressed in terms of only 89 distinct
loop integral functions:

Hgsssss,  Ksssssss  Jssssss Gssssss Lsssss  Esssss  Hpprssss  Hpppssss  Hrrsser
Hppssips  Hppssers  Hppssirs  Kssssers  Kssssirs Krrrsses  Krressis

Krprsses  Krresses Krrprssis  Kssrrrrs  Ksspriis  Ksspprrs  JIsserss  Jssirss
Hggsssv,  Hyysssss  Hssyvsss  Hyyyssss  Hsssyvy,  Hyyssys.  Hssyvvv,

Hgyyysy, Ksssssvs  Kssssvv.  Ksssvvss  Kyysssss  Ksssvvv,  Kvyssvys,

KSSVVVVv KVVSVVS? JSSVSS? JSSVVS? GVSVVSv Hgauge,S» Kgauge,S» Kgauge,SS’
Hrpyvrrs  Hppyviees  Hrepvvers  Hepvvies  Hreeevvve  Heppvevs  Kerevyr,
Krrevves  Kirrvvre  Kirivves  Keppvves  Kyverer,  Kyverrrs  Kvviirrs
Kowgerrs  Kougefis  Hrrsvers  Hppsvirs  Hppsvirs  Hrpsvers  Hipsviis
Hpppysss  Hrpppvsss Hpprvsss Hrprsvys  Hrepesvvs  Hippsvvs  Krrrsvrs
Krrrsves  Krrrsves  Krresves  Krrrsves  Krprrsves  Ksssvrr,  Ksssvrrs

Kssvvrr, KSSVVFF’ Kyvyssrr, KVVSSFF? Kyysvrr, KVVSVFFv Hgaugw Kgauge' (31)

It remains to give V) by providing expressions for these
89 functions in terms of the basis functions described in the
previous section, with arguments that are MS squared
masses (and, implicitly, the renormalization scale Q),
and also to provide the coefficients of these 89 functions
in V) in terms of the MS couplings appearing in Eq. (2.1).
Regarding the first task, many of the expressions for the 89
loop integral functions in terms of basis integrals are

extremely complicated and not of much use to the human
eye. All of these results are therefore presented in an
ancillary electronic file called functions.anc [108]
distributed with this paper, suitable for inclusion in sym-
bolic manipulation code or numerical computer programs.
Only the first 24, relatively simple, functions in Eq. (3.1),
corresponding to the diagrams that do not involve vector
propagators will be given in the text below.
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The formula for V) in terms of the 89 functions listed in
Eq. (3.1) is split up below as:

v =vP v 4 vd L vE L vE v 3.2

. . . 3 .
contains only scalar interactions, Vg 12 contains

scalars and fermions only, VS& contains only scalars and

where V(S3)

PHYSICAL REVIEW D 96, 096005 (2017)
vectors (and ghosts), VI(S‘), contains only fermions and vectors
(and ghosts), fo}v contains scalars, fermions, and vectors

(and ghosts), and VE}” contains only vectors and ghosts.

B. Pure scalar contributions

The pure scalar contributions to the three-loop effective
potential can be written as:

1 . . 1 .. .
V?) = ﬁAlkmﬂkl"ﬂﬂ”m"pl‘lssssss(J', k,l1,m,n,p) +Rﬂﬂmﬂkl"’l’"”ﬂkﬂ”{ssssss(]3 k,l,m,n, p)

1. ) 1., ..
+ g/IjknnljlmlklmJSSSSS(jv k, 17 m, I’l) + gijklljmnlklmnGSSSSS(j’ k, l, m, I’l)

6

where the scalar field indices j, k, [, m, n, p are also used to
represent the MS background-field-dependent squared
masses. The loop integral functions appearing in
Eq. (3.3) are easy to write in terms of the basis integrals:

Hggssss(u, v,w,x,y,2) = —H(u, v,w,x,y,2), (3.4)
Ksssss(u,v,w,x,v,2) = =K(u,v,w,x,y,z),  (3.5)
Jsssss(w, X, v, y,u) = A(“)T(W’ X, 0,y), (3.6)

1 ... . 1 . .
+ l—ﬂjkllﬂjkmmLssss(j, k,l,m)+ Eﬂjklmi]klmEssss(L k. l,m),

3 1 . . ! .
VéF) :E(’UHYJUYMKYHK’MKK +c.c)Hpppsss(1,J, K, j. k1)

(3.3)

Gsssss(w,u,2,y,v) = G(w,u,z,y,v), (3.7)
Lgsss(w, x,u,v) = —A(M)A(U)A(W, x), (3.8)
Egsss(u,z,y,v) = —E(u,z,y,v). (3.9)

C. Scalar and fermion contributions

The contributions involving scalars and fermions (but
not vectors or ghosts) can be written as:

1 ; ; 4 < . 1 .
+g(i]klyjllykj KY”KMH/MJJ’MKK’+C-C')HFFFSSS<I7J’K7]7k7l)+ZYk”YkKLYj1LYjJKHFFSSFF(I’J’Jvka7L)

1 1 ’ .
+§(YkIijKLYj1L/YjJKIMKK MLL +C’C‘)HFFSSFF(I’J7J7k7K’L)

1 - / .
+§Yk”YkKLYjIL’Yﬂ KMy M"Y H ppgspp(1.J. ),k K, L)

1

1

Sy I 87 . 1 ] 1 .
+§(YkIJYkKLYJIL YJJ K M”/MJJ/MKK/MLL/—|—C.C.)HFFSSFF(I,J,],k,K,L)+Zl'llm/1klmYJ]JYkIJKSSSSFF(],k,l,m,[,])

. . 1y . 1 : .
+§(iﬂmlklm YIYM T My My +c.c.)Kssspr (k. Lm,1,J) +§YJIKY]'JKY1¢1L YYEK prpsse (10, K, j kL)

1 . . 7 7 . 1 . i ! .
+§YJIKY]JK YkILYkJL’MKK’MLL KFFFSSF(I’JvK’J’kvL) "'EYJIKY/'JKY“ LYkJ’LMII’M” KFFFSSF(LJ’K’J’]{’L)

+ (YIKYHKYRILY 3 Myp Mg +c.¢.) K pppgse(1.J. K. j.k.L)

1 : . ! ! rr/ .
+Z(YJIKYNK YMLYN LM My MM g +c.c)Kpppssi(I,J,K, j.k,L)

1 . . . ) . o .
+§Y]IJYkIJ(Y']KL YkKL +C.C.)KSSFFFF(],](,I,J,K,L) +ZY]IJYk1J(Y']KLYkKL MKK/MLL/+C.C.)KSSFFFF(],k,],J,K,L)

1 . 1y : 2 .
+—(Y]IJYkIJ M]]/MJJ/+C.C.)(YJKLYkKL MKK/MLL/+C'C'>KSSFFFF(.]’k’I"]7K’L)

16

1 . . 1 . . (i .
g Y Y  ssips (kL) +-g Y YHT My My o) gspis(ok LI D).

(3.10)
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I find that the loop integral functions appearing in Eq. (3.10) are, in terms of the basis integrals:
Hpppsss(u.v,w,x,y,2) = (u+v —x)H(u, v,w,x,y,2) + Gw, u,z,v,y) = G(y, v, w, x,2) = G(z, u, w,x,y), (3.11)
Hpppsss(u,v,w,x,y,2) =2H(u, v,w, x,y,2), (3.12)

HFFSSFF(“’ 'U, W"x’ y’ Z) = (uy + UZ - W'x)H(u’ 1}, W’ x’ y’ Z) - uG(”? 'U, x’ Wa Z) - vG(”’ u? x’ Wa Y) + WG(W’ u7 Za U’ y)
+xG(x,u,v,y,z) — yG(y,v,w,x,2) —2G(z,u,w,x,y) — E(u, v,y,z) + E(v,w,x,2)
+ E(u,w,x,y), (3.13)

Hppssi p(u, v,w,x,v,2) = (u+v—x)H(u,v,w,x,y,2) + Gw,u,z,v,y) = Gy, v,w,x,2) — G(z, u,w, x,y), (3.14)

Hppsspp(u, v,w,x,y,2) = (v —=w—=x+2)H(u,v,w,x,y,2) = G(v,u, x,w,y) + Gw, u,z,v,y) + G(x,u, v,y,2)

- G(z,u,w,x,y), (3.15)

Hp psspp(u,v.w.x,,2) = 2H(u, v, w. X, y. 2), (3.16)
Kgssspr(x,wou,z,y,0) = [v+y— (w+x)/2|K(x,w,u,z,y,v) + G(w,u,z,y,v)/2 + G(x,u,z,y,v)/2

—[A(v) + AW (x, wou. 2). (3.17)

Ksssr p(xw,u,2,y,0) = 2K (x, w,u,2,, v), (3.18)

Kpppsse(x,w,u,z2,y,0) = (X2 + w? + 2uv — 2uy — 207 + 2yz + uw + vw
+ux+ovx—wy—xy—wz—xz)K(x,w,u,z,y,v)/4
+(+z—u—v—w—-—x)[Gw,u,z,y,v) + G(x,u,z,y,v)]/4
+(u+w=2)A(w) =AW (x,w,u,z)/2
+ (v +w=y)A®) - AR (x.w,v.9)/2+ E(u,v,y.2)/2
+[A() =A@ (4, x,2)/2 + [A(z) = A(u)I (v, x, y)/2
+A(x,w)[A(z) — A(u)][A(y) - A(v)]/2, (3.19)

~— —

u

Krpppssp(x,w,u,2,y,0) = (w+ x)K(x,w,u,2,y,v) = G(w,u,z,y,v) = G(x,u,2,y,v), (3.20)

K ppssp(x,w,u, 2,9, 0) = {(W?x + wx? + 2uwx + 20wx — 2wxy + uvw + uvx — uwy
— uxy — owz — vxz — 2wxz + wyz + xyz)K(x, w, u, z, y, v)
+ (uv —wx —uy — vz + yz)[G(x, u, 2, y,v) + G(w, u, z,y,v)]
+2(v—y)[uF(u,v,y,2) —2F(z,u, v,y) + [A(u) — A(2)]I(v, x, )]
+2(u—2)[wF(v.u.y.2) = yF(y.u.v.z) + [A(v) = A(y) I (u. x. 2)]
+2x(u+w=2)[A(v) — A(y) I (W, x, u, z)
+2x(v+w—y)[A(u) — AT (w, x, v,y)
+2[xA(w, x) + A(x)][A(v) = AW)][A () - A(2)]
+ (u=2)yA(y) = vA(0)]/2 + (v = y)[2A(2) — uA(u)]/2
+4(v—y)(u—2)(u+v+y+2z)/3}/4wx, (3.21)

Keppssr(x,wou,z,y,0) = [v—y+ (w+x)/2]K(x,w,u,z,y,v) = G(w,u,z,v,y)/2 — G(x,u,z,v,y)/2
+ [A(v) =AW (x, w, u, 2), (3.22)
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Kpppsse(xowou,z,y,0) = 2K(x, w,u,2,y,v), (3.23)

Kssrprr(t,wou,2,y,0) = [(w+x)(u+v+y+2) =2+ z)(v +y) —w? = x}K(x,w,u,z,y,v)/2 — E(u,v,y,2)
+wH+x—u—v—-y—-2[Gw,u,z,y,v) + G(x,u,z,y,v)]/2
+ (u—w+2)[A(v) + AW (w.x, u,2) + (v = w + ¥)[A(w) + A(2) T (w, x, v, )
+ [A(v) + AW) (u, x. 2) + [A(u)] + A(2) 1 (v, x, y)
—A(w.x)[A(u) + A(2)][A(v) + A(y)]. (3.24)

Kssprip(x,w,u,z2,y,0) = (W+x = 2u —22)K(x,w,u, z,y,v) — G(w,u, z, v,y) — G(x,u, z, v,y)

+2[A(u) + AR (x. Wy, ), (3.25)

Kssprrr(x.wou.z,y.0) = —4K(x,w.u. 2.y, v), (3.26)
Jssrps(x,wo v, v,u) = A(u){(w —v — ) (x,w,y,v) = I(v,x,y) + A(x, w)[A(v) + A()]}. (3.27)
Tsseps(xw,y, v, u) = =2A(u)I(x, w, y,v). (3.28)

These can also be found in the ancillary electronic file functions.anc [108].

D. Scalar and vector (and ghost) contributions

The contributions that involve both scalars and vectors, but not fermions, are written as:

1. . 1 )
VE:\} = Z/Vkmflkl"galjgam"Hsssssv(J'v k.1, m,n, a) + 5ﬂk[mgabkgajmgbl]vassss(av b,j k1, m)

1 . . . 1 . S .
+ ggajmgb’kgaklgblmHssvvss (j.k,a.b,l,m) + 6ijklgabjgbckgmvavsss(a, b,c.j. k1)

1 . _ | Lo .
+ 6Qab‘ga]kghklng’Hsssvvv(]’ k.l,a,b,c)+ Egahkgh”g‘”lg ®Hyyssys(a, b, j k. c.l)

1 . . ) 1 . . .
+ 5gaCkgad/gde!ijkHssvvvv(]’ k,a,b,c, d) + gga”gabkgdeQCdkHsvvvsv(J7 a,b,c,k, d)

1 . . 1 . )
+ Z/Vlmflklmga]"ga"kKsssssv(J'7 k.l,m,n, a)+ gﬂjlmﬁklmgawgakassssvv(j, k,l,m,a,b)

1 . . _
—gY kgbk" Q”mlghlmK vyssss(a, b, j k.1, m)

1
+ — gl gk ghimgPmkK sssyvs(j k.1 a, b, m) + 16

4

1 . . Lo .
+ ZgajlgalkgbcjgbCkKsssvvv(]’ k.l,a,b,c)+ Zgajkgbk’ga gP“'Kyyssys(a. b, j.k.c.l)

1 . o . 1 . .
+ EgabjgakaCdJQLdkKssvvvv(]y k.a,b,c,d)+ Zgangwgadkghdkl{vvsvvs(a, b,j.c,d.k)

1. ) ) 1 ) ) . 1 ek bil .
+ Zl’kmmgaﬂgalkfssvss(b k.a,l,m)+ ggab’gahki’kufssvvs(]’ k.a,b,1)+ Egah’!] kil g MGy syys(a, j. b, e, k)

1 o 1 o ,
+ 4gabdgbcegac‘jgde]Hgaugc.s(a’ b, c, d, e,j) + 4gacdgbcdgae]gbengaugeys(a, b’ c, d’ e,j)

1 : .
4 2 gaCdgdegajkgbk]Kgauge,SS(av b’ c, d’ . k) (329)

The loop integral functions appearing here are presented explicitly in the ancillary electronic file functions.anc [108],
in computer-readable form. Many of them are quite lengthy.
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E. Fermion and vector (and ghost) contributions
The contributions involving fermions and vectors (but not scalars) are written as:

3 1 ! !
V;-‘), = Zg?ngKg(II{JgngFFVVFFU’J’ a,b.K.L)+ gt gi- gl g MK My Hppyyrpp(1.J,a.b. K L)

1 i ! 1 ! U ! !
+= 7L9?<L ggKgl}/IM” MLL’HFFVVFF(I’J’ a, va»L) +_92192{(97K gl}l MII’MH MKK’MLL HFFVVFF(IvJ’av b’K’L)

2 4
i . c . . c U d
+ggub‘gﬁlglKQ%JHFFFvvv(LJyK’a’byC)+lgab°93]91Kg§/K M’ My Hpppyyy(1,J,K,a,b,c)
1 1 ! !
+EQ?KQ?(JQ?LQZIKFFFVVF(LJyK’a9b,L> +§9?K93K 9 P Mg ME K pppyyr(1,J.K a.b, L)
1 ! ! d d
+59?KQHKJQIZJ Q?LMH M;yKeppyyr(I,J,K,a,b,L)+ (Q?KEﬁK 9219?/LM” Mgk +c.c.)Kpppyyr(l.J.K,a,b,L)
1 ! ! U ! 1
+Z(97K97K PEGEMT M MMy +c.c)Kpppyyi(l.J. K, a.b,L) +197[Q?JQZK9?(LKVVFFFF(CL b,1,J,K,L)
1 ! ! 1 2 ! ! !
+§9‘J119?J91‘1K92{< MKK’MLL KVVFFFF(a’ b,I,J,K,L) "‘19‘}191]/1 QZKQZ{( MII’MH MKK’MLL Kyyir *F(a,b,l,J,K,L)
1 n ~ 1 . n U !
+Zgucdgdeg‘L]llg?JKgauge,FF(a’ b’ ¢, d,[,.l) +Z.gmdgb6dgf;lg§/1 MII’MJJ Kgauge.FF(a’ b’ ¢, d’Iﬂ,)' (330)

Again the loop integral functions appearing here are presented explicitly in the ancillary electronic file functions. anc [108].

F. Scalar, fermion, and vector contributions

The contributions that involve all three of scalars, fermions, and vectors are
3 1 al a . . al .a iJK' ! .
Vfwgv :EQJIQKL Yl Y’ Hppsvpe(1J, j.a, K, L) + g5 i Y jyp YK Mo MM Hppsypp(1,J, .0, K, L)
1 ! U .
+3 (G5 Y Yy MY MEE - c.c ) Hppsyrp(1J.ja.K L)

1 ! ! .
+§(97192KY]'1L’YJ‘J'KM” M*EE +c*c-)HFFSVFF<I7J7]vavK’L)

1 A ! ! . - ai a i .
+§9§19?(LY"1L YjJ’K’MII’MJJ MEK M Hppsypp(l,J,j,a,K,L)+ig ]kQJIYkIKY]JKHFFFVSS(LJv K.a,j.k)
+ (igajkgleleYjJ’K’MH,MKK/ +C-C')HFFFVSS(LJ’K’a7jvk) + ig”jkgflYMKYjJ’KMu’M”/HFFFvssU’J7K7avj7k)
. - . 1 . .. .
+ (gab]g(;(lglfKYj” My +c.c.)Hpppsyy(I1,J,K, j,a,b) +§(gabjggkgllm Y Mg +c.c.)Hpppsyy (1,7, K, j,a,b)
1 : 11 U . ;7 .
+ = (g g YT My My MR - c.c)Hpppsyy (1K, joa.b) + i gt YI'™®Y kK pppsyr(1.J.K . j.a. L)
S (gt gt YIRY IR My M+ c.)K prrsyr (L0, K joa, L) + gt g YjI/KYjJ’KMII’M”,KFFFSVF(IaJaK’j’a»L)

(92’197L Yﬂ/KYjJKIMII’MKK’ +c.c.)Kpppsyr(1.J.K, j.a,L)
(gi’gﬁfJYj’/KYjJKMn/ML” +c.c.)Kpppsve(l.J.K, j.a,L)
1

i , . 1 . ; .
(9" g YIRY R M My M g g MEE +C-C'>KFFFSVF(I’J’Kv]’a’L)+EgajlgalkY]”YkIJKSSSVFF(Lk’ l,a,1,J)

. . ! d . 1 -7 -7 .
+— g4k g i g4l M M K yysspr(a,b,j ok, 1,0) +Egm]ghc‘]gglg?JKVVSVFF(av b,j,c,1,J)

+Egangijgglgljy/I/Mll’MJJ/KVVSVF‘F(a’ b,j.c,1,J). (3.31)
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As before, the loop integral functions appearing here
are presented explicitly in the ancillary electronic file
functions.anc [108].

G. Pure vector and ghost contributions

Finally, the contributions that involve only vector bosons
and ghost fields can be written in terms of a couple of loop
integral functions:

1
3
Vi/) :ﬁgabdgbcegacfgdengauge(a’b’c’d’e’f)

1 ' ! ae e
+Egacd9md9 fgh ngauge(a’b9C1d9e’f)'

(3.32)
These contributions vanish except when the gauge sym-
metry associated with the vectors is non-Abelian and (at
least partly) spontaneously broken by the scalar back-
ground fields. The loop integral functions appearing here
are again presented explicitly in the ancillary electronic file
functions.anc [108].

H. Comments on the general results

Equations (3.3)—(3.32) constitute the complete MS three-
loop effective potential contributions for a generic renor-
malizable quantum field theory with Landau gauge fixing.
However, for the specialization to any particular theory
with massless gauge bosons, there is still a little processing
to do in order to obtain the effective potential in practice.
This is because each loop integral function involving a
vector field with squared mass x will contain a factor of
1/x, which naively might appear to be have a pole
singularity in the massless limit. This is due to the structure
of the Landau gauge vector propagator proportional to

n p*p*
p’+x p(pP+x)’

(3.33)

(using a metric of signature —, +, +, +) where the second
term has a partial fraction decomposition proportional to

PHYSICAL REVIEW D 96, 096005 (2017)

Massless gauge bosons, with their potential infrared prob-
lems, are treated here by putting x = § and taking the limit
6 — 0. The factors of 1/§ actually always cancel in the limit,
leaving behind either a finite result or singularities in each
diagram that are at most logarithmic in 6. However,
demonstrating this starting from the general loop integral
functions appearing in the ancillary file functions.anc
[108], and finding the limits, requires using the expansions
of the basis integrals in small squared masses, as given in the
ancillary file expzero. anc [108]. This can be performed
systematically on a case-by-case basis, as will be done below
for the example of the standard model. While the pole
singularities in & always cancel at the level of the loop
integral functions, logarithmic singularities as 6 — 0 can
occur, but only when there is a doubled propagator, which
means the diagram topology is K, J, or L (see Fig. 2) with the
first two squared mass arguments both equal to 8. The In(5)
singularities can then be obtained with the help of expansion
formulas of the type in the ancillary file expzero.anc
[108]. Cancellations of the infrared singularities associated
with massless vector bosons in the full effective potential
occurs after summing the contributions of distinct diagrams,
as will be illustrated below for the standard model.

Note also that the function Kz pggp(x, w,u,z,y,v) in
Eq. (3.21) contains a factor 1/wx, which naively might
appear to be singular when either w or x approaches O.
However, this is illusory; Kpppsse(8, w,u,z,y,v) and
Krprsse(x.6.u,2,y,v) and Kpppgep(6.0,u.2,y,v) are
each finite as 6 — 0, as one can check by using the
expansions given in the ancillary file expzero.anc
[108]. Furthermore, this function appears in V) multiplied
by /wx [because of the fermion mass insertions multi-
plying it in Eq. (3.10)]. Therefore, it does not contribute at
all when w and/or x is zero. More generally, the contribu-
tion from every integral function with an F' subscript listed
in Eq. (3.1) vanishes when the corresponding fermion
squared mass is taken to 0. Also, Kpprssr(6,6,u,2,y,v)
and K pppssi(6,6,u,2,y,v), etc., have no In(8) singular-
ities. There are no infrared problems associated with
massless fermions.

For checking purposes, it is useful to be able to take
derivatives of the loop integral functions with respect to the

l (2; — %) ) (3.34) MS renormalization scale Q. First, for the basis functions
X\p~+x p and related functions, one has from Ref. [51]:
|
QiA(x) =-2x (3.35)
00 - '
Qiﬁ(x )=2 (3.36)
aQ 9 y - ) -
0
Qgp1(ry.2) = 2[Alx) + AY) +Ale) —x =y -2, (3.37)
0 - -
Q@I(w,x,y,z) =24 2A(w,x), (3.38)
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0
Q@E(W, x,y.2) = 2[A(W)A(x) + A(W)A(y) + A(W)A(z) + A(x)A(y)
+A(x)A(z) + A(Y)A(2) + wx + wy + wz + xy + xz + yz]
+ (w=2x—=2y =22)A(w) + (x = 2w — 2y — 22)A(x) + (y — 2w — 2x — 22)A(y)
+ (z=2w —2x = 2y)A(z) — 9(W* + x* + y* + 22) /4, (3.39)
0
Q@F(w, x,y,2) =2[-A(x) —A(y) —A(z) + x +y + z—w]A(w)/w + Tw/2, (3.40)
0 -
Q@F(W, x,v,2) =2[Ax) + A(y) + A(z) —A(w) —x —y —z—I(x,y,2)] + Tw/2, (3.41)
0
Q@G(v, w,x,v,2) =2[[(v,w,x) +I(v,y,2) + A(w) + A(x) + A(y) + A(z) + v] — 4w+ x+y + 2), (3.42)
QiH(u v,w,x,y,2) = 12¢ (3.43)
8Q ,UO W, X, Y,2) = 3, .
0 - -
Q@K(u, v,w,x,y,2) =2[[(u,v,w,x) + I(u,v,y,2) — 1], (3.44)
|
These results can now be applied to obtain the Q derivatives _ 9 242
of the 89 integral functions of Eq. (3.1). Again the results I=m>+ym +y°¢°/2, (44)
are rather lengthy, and so are consigned to an ancillar
e g Y y = (m+yp)>. (4.5)

electronic file QdQ.anc [108] provided with this paper.

IV. THE WESS-ZUMINO MODEL

In this section, we consider as an example (and a
confidence-building consistency check) the supersymmet-
ric Wess-Zumino model [74,75], with superpotential (for a
review, see [76]):

W="02+ 203,

042 (4.1)

with real mass and coupling parameters m and y. The chiral
superfield @ contains a 2-component fermion y and a
complex scalar field that one can write as

¢+ (R+il)/V2, (4.2)
where ¢ is a constant background field and R, I are
canonically normalized real scalar fields. In the following,
depending on context, the names of the component
quantum fields will also be used as synonyms for their
field-dependent squared masses:

R = m? + 3ym¢ + 3y*¢?*/2, (4.3)

The nonvanishing interaction couplings of the fields R, I, v
are given by

ARRRR — I — 33RRIL — 332 /2 (4.6)
ARRR — 33RIT — 3y(m 4 yeh) /\/2, (4.7)
YR = y/V/2, (4.8)
Yl = iy/V2, (4.9)

and permutations AR/R! = JRUR — JIRRI _ jIRIR _ JIIRR _

ARRIL qnd MR — pHIR — JRII There are no vector fields in
the Wess-Zumino model.
The tree-level potential for the background field ¢ is
VO = ¢?(m + yp/2)%. (4.10)
Plugging into the results of Egs. (2.6), (2.11), (3.3), and
(3.10) above gives the effective potential contributions at

one, two, and three-loop orders for the Wess-Zumino
model:
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D = F(R) + £(1) = 20w, @1
V® = y2[3f5s(R.R)/16 + 3f55(1.1)/16 + fs5(I.R)/8 + 3y fsss(R. R, R)/8 + wsss(I.1.R) /8 + frps(w,w.R)/4
+ fresuyw, D[4+ wipps(w.w, R) /4 —wiprs(y.w,1)/4], (4.12)

VO = y42[27H rprarr/32 + Higrir/32 + Hirrr/8 + 81K grrrrr/64 + 9K griirr/32 + Krrinr/64 + Kiiirir/ 16
+ Hy g rrg i/ 16 = Hy g rgp /8 + Hy g i1pg /16 + Hygp rrr/4 — Hy g ir/4 + K rrrry i/ 16 + K grizg /16
= Kiirg /8 + Krrgpippio/ 16 + Kiigpig /16 + Kiy g reig /8 = Kig1rp /4 + Kpig 117/ 8]

+ Y w(27Grrrrr/32 + 3Grurr/16 + Gririr/8 + 3G rinir/32 4 27J rrrrr/32 + 9J rrrrr/32 + 3J rriir /32
+Jgrir/32 + 3T 11ri/16 + J 111rr /16 + Hyyrrpp /4 + Hyyrig /4 — Hyyirg g /4 — Hyyirgg /4 + Hyprrys /8

+ Hyirya /4 + Hygingg /8 + 3H yyorrr/4 — Hyyarit/4 + Hyypiir/2 + OKrrrryy /16 + Krrinyy /16

+ Kty /8 + Krryyiio/8 = Kinyyiip/8 + Kyyigrri /8 = Kyyiuirg /4 + Kyyigig /8 + Ky igyrry /8

+ Kygyiry 4+ Kyigyiny /8 + Kgyiarry /2 + Koyriy /2 = Kgyiry /2 = Kgyginy /2 + 3 rry g r/16

+ ey 1/16 = J 1155 /16 = 3 11551/ 16] + Y [H o mRyns /16 = Hopiryns /8 + Hopy11/ 16 + K Ry /16

+ K ity / 16 + Koppyrry /8 + Kyiry /4 + Kyyiny /8 + L rgrr/64 + L1111 /64 + 3L 1111/ 32 + Lyjre/64

+ Lggir/64 + 3Lggir/32 + 3Ergrr/64 + 3E1111/64 + Eprr/32 + 3J rryyr/ 16 + J Rryay1/ 16 + J11y4yr/ 16

+ 3‘]”1/”//’/16]' (4.13)

In the latter equation, I have used a short-hand notation, such that, for example, Hrgr;r = Hsssss(I, I, R, R, 1, 1)

and Kl/_/x//y_/RIq/ = KFFFSSF (l//’ v, y, Rv I’ l//)
As a nontrivial consistency check, consider the renormalization group scale invariance condition for the effective
potential, as expressed by Eq. (1.4), with X =y, m, ¢. From” Refs. [77,78],

AV 3y = B j2m = =3 1 = ¥2/2, (4.14)

B J3y = B [2m =~ [ = —y*/2, (4.15)

B3y = B j2m =~ 1 = (3¢5/2 + 5/8)y°. (4.16)

Using Eqgs. (4.14)—(4.16), one finds from Eq. (4.10):

> A 8% VO = 3247 (m + yg/2)?, (4.17)
X

> A a% VO = 2 (m + v/ 2)% (4.18)
X

Zﬁx —v = (3¢5 +5/4)y°¢* (m + y¢/2)?, (4.19)

and from Eq. (4.11), also using Egs. (2.23):

Zﬂx 2y y2(m? + 3ymep + 3y*¢? /2)A(R) + y*(m® + ymep + y*¢* /2)A(I) = 2y*(m + y)*A(y), ~ (4.20)

S A7 a% VW = —yH(m? + 3ymep + 3y*¢*/2)A(R) = y* (m* + ym¢ + y*§* /2)A(I) + 2y*(m + yp)*A(y),  (4.21)
X

*Some other references had given incorrect results for the 3-loop beta functions of the Wess-Zumino model.
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and from Eq. (4.12), also using Egs. (2.23) and (2.24):

4

PHYSICAL REVIEW D 96, 096005 (2017)

1o} 7
SRS VE) = B (=30m v IR.R.R) + (6 + 10ym + 547wy R)
X

8

— (- YPIR,LT) = (20 + 2ymep + Y42 (. 1) + 3A(R)?/2

+3A(1)?/2 + A(R)A(I) — 4A(R)A(w) — 4A(D)A(y) + 4A(w)?]
+ y*(m* + 3ym + 3y*$* /2)A(R) + y* (m* + ym¢p + y*§* /2)A(I)
= 2y*(m + yp)*A(y) — Yo (m + y/2)*. (4.22)
Meanwhile, from Egs. (4.11), (4.12), and (4.13), using Egs. (3.35)—(3.44), one obtains:
0 % VI = 2% (m + y/2)?, (4.23)
Q;Q VO = 2 (2 4 ymep + Y 2)AU) — ¥ (2 + Iymp + 3742 2)A(R) + 25 (m + v PA(w)
+ ' (m + yp/2)?, (4.24)
4
02V = (o - 2ymp + g 1) — (60 + 10ymg -+ 53¢ (.. R)
+3(m + yp)2I(R,R.R) 4 (m + yp)2I(R,I,1) — 3A(R)%/2 — 3A(1)?/2
— A(R)A(I) = 4A(w)* + 4A(p)A(R) + 4A(w)A(I)]
—Y°* (m + yp/2)* (355 + 1/4). (4.25)

Now Eqgs. (4.17)—(4.25) can be plugged in to verify that
Eq. (1.4) indeed holds for each of Z =1, 2, 3.

As another check, recall that at a supersymmetric
minimum of the tree-level potential, the full effective
potential must vanish at each order in perturbation theory
[79]. There are two supersymmetric minima of V(©),
namely ¢ =0 and ¢ = —2m/y. At each of these, one
has equality of the field-dependent squared masses:
x=R=1=wy=m? It is now straightforward to plug
this into Eqgs. (4.11), (4.12), and (4.13), to verify that each
of VIV, V2 and V©) also vanishes at the supersymmetric
minima. This relies on non-trivial cancellations between the
different loop integral functions defined in Egs. (3.4)—(3.9)
and (3.11)—(3.28), which become apparent upon putting
everything in terms of the basis integral functions
H(x,x,x,x,x,x), K(x,x, x,x,x,x), G(x,x,x,x,%),
F(x,x,x,x), I(x,x,x), I(x,x,x,x), A(x), and A(x, x).

V. THE STANDARD MODEL

A. Standard model effective potential
at three-loop order

In this section, I will consider the complete three-loop
effective potential for the standard model as another
application of the general results. The full two-loop
effective potential for the Standard Model was found in

|
Ref. [4]. The leading three-loop parts, in the limit that the
QCD coupling and the top-quark Yukawa coupling are
large compared to all other couplings, were found in
Ref. [6]. The four-loop contribution at leading order in
QCD is also known [7].
The tree-level potential for the standard model is given by
V=A+md®+ ADTD)?, (5.1)
where A is a field-independent constant energy density
necessary for renormalization scale invariance, m? is a
negative Higgs squared mass parameter, and A is the
Higgs self-coupling. The Higgs complex doublet scalar
field is

o <[¢+H—(|—;jG°]/\/§>’ (5.2)

where ¢ is the constant background field, H is the Higgs
boson field, and G° and G* are Goldstone bosons. The
¢-dependent squared masses of the Higgs boson and the
Goldstone bosons (both neutral and charged) are

H = m? + 3142, (5.3)

G = m? + A¢?, (5.4)
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and the other nonzero squared masses are

1= yid*/2, (5.5)
W = g*¢?/4, (5.6)
Z=(g"+g%)¢*/4, (5.7)

where y, is the top-quark Yukawa coupling and ¢, ¢ are the
electroweak gauge couplings. The Yukawa couplings of the
bottom quark and other fermions are quite negligible, and are
therefore taken to vanish.

The field content of the electroweak standard model with
ng generations, compatible with the conventions of Sec. II,
is

Real scalars: H,GY, Gg, G, (5.8)

2-component fermions: t,7,b,b,7,%,v,
+(ng—1) x (u,it,d,d, e, ,v,),
(5.9)

Real vectors: y,Z, Wg, W, (5.10)
Here we have written the complex Goldstone scalar bosons
and W vector bosons in terms of real components as
G* = (Gg £iG;)/V2 and W* = (W £ iW,)//2. The
unbarred fermion fields are SU(2), doublets, and the
barred fermion fields are SU(2); singlets. (Not shown
explicitly are the color multiplicity for quarks, or the
massless gluon vector fields.)

To facilitate an automated calculation of the 3-loop
effective potential, it is useful to have at hand a list of
the nonvanishing field-dependent couplings of these mass
eigenstate fields. There are scalar cubic interactions of the
type A/*:

AHHH — 6], (5.11)

JHG'G" — JHGRGr — JHGIGI — 24 (5.12)

and scalar quartic couplings of the type A%
JHHHH _ lGOGOGOGO — )GrGrGrGr — )GiG,G,G; — 64,
(5.13)
/IHHGOGO — JHHGRGr — JHHG/G; — }LGOGOGRGR _ AGOGOG,G,

= A0rOrGIG1 = 2), (5.14)
as well as permutations determined by the symmetry under
interchange of any two scalars. The nonvanishing Yukawa
couplings of the type Y/ are given by

PHYSICAL REVIEW D 96, 096005 (2017)
YHIT — _yGrbt — _;jyGtt — ;yGibi — y,/\/i (515)

which are symmetric under interchange of the last two
(fermionic) indices. (All Yukawa couplings other than for
the top-quark are neglected.) The interactions of the
electroweak vector bosons with the quarks and leptons
are given by couplings of the type ¢¢/:

g = (~1;9 + Yfg’z)/\/g2 +g%  (5.16)
97 = —Qfg’z/\/g2 +9°% (5.17)
g/ = —¢! = -0Qye, (5.18)
where
e zgg’/\/g“rg’z, (5.19)

and O, =2/3and Q;, =-1/3 and O, =0 and Q, = —1,
and [, =1,=1/2and I, =1,=-1/2,and Y, =Q,—1;
for each f, and

gyt = gut =gl = g)* = —g/2, (5.20)
g = =gy = g = =g/ = —ig/2.  (5.21)

There are also vector-vector-scalar couplings of the type
bj
g,

GGk — gWiGi — gedh /2, (5.22)
GPWVrGr = gZWiG1 — _(/eh /2, (5.23)
GVeWeH — WiWiH — 201> (5.24)

7P = (P + ¢2)p/2, (5.25)

with symmetry under interchange of the first two (vector)
indices. The vector-scalar-scalar couplings of the type g%/
are

GOrGr = ¢, (5.26)
FH =\ /@ 1 g2)2, (5.27)
FGrGr — (2 — g/z)/<21 [P + 9/2), (5.28)

gVrGrG" = gWrHGr — WiG/G® — (WiGrH — /2 (529)

with others determined by the antisymmetry with respect to
interchange of the last two (scalar) indices. There are also
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vector-vector-scalar-scalar couplings of the type g/,
determined in terms of these by Eq. (2.5). Finally there
are the totally antisymmetric vector-vector-vector cou-
plings defined by:

gV = e, (5.30)

gV = g [\ ¢ + ¢*. (5.31)

PHYSICAL REVIEW D 96, 096005 (2017)

The tree-level and one-loop contributions to the effective
potential are

VO = A + m2¢?/2 + 1¢* /4, (5.32)
VI =3£(G) + f(H) = 12£(1) + 6fv(W)
+3fv(2), (5.33)

with functions f(x) and fy(x) defined in Egs. (2.7) and
(2.8). The two-loop contribution is given by [4]:

3
Ve = 1/1[ ss(H, H) +2fss(G, H) + 5f55(G,G)| + 322§ [f sss(H, H, H) + f555(G, G, H)]

3y
2
(> —g%)*

+

fres(t,t, H) + tfpps(t,t, H) + fres(t,t,G) = tfpps(t. 1, G) + 2f pps(0, 1, G)] +

7+ g?
8
2 g4¢2

fvss(Z.G. H)

+ 55 fvss(Z,.G,G) + 9_2 [fvss(W.G, H) + fyss(W.G.G)| + %fvss(o’ G,G) +vavs(W’ W, H)

8(¢° +9°) 4
(92 +g/2>2¢2 2¢2

+ 16

e
fvvs(Z,Z,H) +T [ fyvs(W,Z,G) + ¢ fyys(0. W,G)| — [463 + 4€*/3]tf 5 py(2,1,0)

+ GBS rrv(0,6. W) + (4ng = 3) fppy (0.0, W)] /2 + [(9g" — 6¢79* + 17¢*) frry(1. 1. Z)
+89%(39* — g )tf pry(1.1.Z) 4+ ((24ng — 9)g* + 6979 + (40ng — 17)g*) frrv(0.0.2)] /24(4* + ¢?)

2 g4

e
+ Efgauge(W7 W? O) =+ ngauge(w’ W’ Z>’

where ng = 3 is the number of quark and lepton gener-
ations. This result for V() for the standard model is an
example of the application of the general result in
Eq. (2.11), using the couplings listed above. It is written
here in terms of the functions fgg(x,y), fsss(x,y,2),
Frrs(x.y.2)s fres(x.y.2), fyvs(x,y.2), frev(x,y.2),
frrv(x.y.2), and feee(X,y, z) defined in Ref. [5], and
the function fyg(x,y, z) defined in Egs. (2.12)—(2.13) of
the present paper, replacing the functions fg¢gy and fyg
of Ref. [5].

The three-loop effective potential contribution in the
standard model can now be obtained by applying the

Hppyyrr(0,0,0,0,0,0),
Krprsve(t,1,1,G,0.1),
Krppsvr(t, t,1,G,0,1),
Krrrsvr(t 1,1, H,0,1),
Kippyve(t1,1,2,0,1),
Kreppyyre(t,1.1,2,0,1),
Kpppyyr(t t,1,0,W,0),
Krpryvr(0,0,0,W,0,0),

Krrryvr(0,0,0,0,0,0),
Krprsve(t.t,1.H,0,1),
Krppsve(tit,1,H,0,1),
Kpppsvr(t,1,0,G,0,1),
Kippyyr(t.t,1,0,W,0),
Krppyvr(t.1,1,0,0,1),

Keppyvr(t,1,1,0,0,1),

Krrrvyr(0,0,0,Z,0,0).

(5.34)

couplings given above in Egs. (5.11)—(5.29) to the general
forms of Eqgs. (3.4)—(3.32). The resulting expression con-
tains 536 integral functions of the 89 types in Eq. (3.1) with
specific assignments of squared mass arguments H, G, f,
W, Z, and 6 (used as an infrared regulator for the squared
masses of gluons, photons, and quarks and leptons other
than the top quark). The 536 functions are given, expanded
in § to retain the In(5) terms, but dropping all terms of
order 4, in an ancillary electronic file distributed with this
paper, called SMV3functions.anc [108]. Of these 536
functions, the following 23 vanish identically in the limit
0—0:

Kyyrrrr(0,0,0,0,0,0),
Krprsvr(1,1,0,G,0,1),
Krrrsvr(t,1,1,G,0,1),
Kprrsyr(0,0,1,G,0,0),
Kippyve(t,1.1,0,0,1),
Kpppyvr(t.t,1,Z,0,1),
Krpryyvr(0,0,1, W,0,0),
(5.35)
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The coefficients of the nonvanishing 513 functions that
remain, and thus the expression for V3, are given in
another ancillary electronic file called SMV3 .anc [108].
These coefficients are built out of couplings g3, ¢, ¢, ¥, 4,
and the background Higgs field ¢. In the text below,

I will discuss explicitly the parts of V) that are leading
|

PHYSICAL REVIEW D 96, 096005 (2017)

order in QCD, and also the parts involving infrared
logarithms In(5), where & is used for the gluon and
photon squared masses. (There are no In(5) infrared
divergences due to massless fermions, as discussed in

subsection III H.)
Consider the contribution proportional to g3. It is

1
V@ = ¢iN, CF{( CG/2)[ Hppyypp(t,1,0,0,8,1) = 2tH ppyypp(,1,0,0,8,1) + tH ppyypp(,1,0,0, 2, 1)

+[22HFF vir(t,1,0,0,1, I)] + CrpltKpppyyp(t,1,1,0,0,1) + 2K p ppyye(t, 1,1,0,0,1)]

+Cg EHFFFVVV(L 1,1,0,0,0) — tHpp pyyy(t,1,1,0,0,0) +1Kgauge~FF(0’0’0’ 0.1.1) _%tKgauge»FF(o’O’ 0,0,1,1)
+ TelKyyprpr(8,8,t,t,1,1) = 2tK yyppp p(8,0, 6, 1,1, 1) + PKyyrppp(8,6,6, 1,1, 1))

+2(2nG = DT E[Kyyrrer(0,0,0,0,2.1) — tKyyper (0.0,0,0,1,1)] } (5.36)

where C;=N.=3 and Cr=4/3 and Tp=1/2
for QCD, and n; =3 for the standard model. In the
following, I will leave ng arbitrary, to allow for more
informative comparisons. In writing Eq. (5.36), I have
taken advantage of the fact that K ppryyp (2, 1,1,0,0, 1) and
Kippyyp(t,1,1,0,0,1) and Kz 7 pyyp(t, 1, 1,0,0, ¢) happen
to vanish, even though those functions do not vanish for
general squared-mass arguments. The remaining loop
integral functions for the special squared mass arguments
appearing in Eq. (5.36) are also quite simple. The ones
without infrared gluon divergences (therefore setting
6 =0) are

HFFVVFF(tv t, 0, 0, t, t) - (225/2 - 208C3)t2 - 85tA<t)

+6A(1)?2 —10°H(0,1,1,1,0,1),
(5.37)

7(1,1,0,0,1,¢1) = (140/3 — 80(3)t — 40A(¢)
+ 12A(1)?/t — 6tH(0, t,1,,0, 1),

(5.38)

HFFVV

Hppyyrpp(t,1,0,0,1,1) = (3285 — 16)1 + 10A(1)
+6A(1)?/t + 6tH(0,1,1,1,0,1),

(5.39)
Hipy

vir(t,1,0,0,8,1) = 16/3 4+ 16{3 — 8A(1)/t

—10H(0,1,1,1,0,1), (5.40)

Kpppyvp(t,1,1,0,0,1) = 1461/3 — 60A(t) + 18A(1)/t

— 18A(1)3/7, (5.41)

Kippyyp(t,1,6,0,0,1) = =38/3 + 485 + 10A(r)/t

—12A(1)%/1 = 6A(1)3 /1,
(5.42)
Hpppyyy(1,1,1,0,0,0) = (24¢3 — 233/8)1% 4+ 117tA(1) /4
—27A(1)?/2. (5.43)

Hpppyyy(t,1,1,0,0,0) = (4805 — 136/3)1 + 45A(1)
—27A(1)*/t +3A(1)3 /7,

(5.44)

Kgange.rr(0,0,0,0, 1,1) = —28312 /6 + 401A(1) — 13A(1)?,
(5.45)

K e 7 7(0,0,0,0, 2, 1) = [(=296 — 2083)t + 281A(¢)
—97A(1)?/t + 26A(1)* /1] /3

(5.46)

gauge,

Kyyrrrr(0,0,0,0,2,1) = 4912 /6 — TtA(t) + 2A(1)%,
(5.47)

Kyyrrr(0,0,0,0,1,1) = [(56 + 32¢3)1 — 52A(1)
+20A(1)%/t — 4A(1)? /] /3,
(5.48)

while the ones that do individually have gluon infrared
divergences are
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Kyyrrrr(,6,t,1,1,1) = —(5+5683)1> —62tA(1)
—8A(1)>—8A(1)* /1

F122(1+A()/1)2n(5),  (5.49)

Kyypppp(8.6,1,0,1,1) = [—(8+280¢3)t — 340A(1)
—52A(1)?/t—28A(1)*/1*]/3
+12t(1+A(1)/1)*In(5),  (5.50)

!

4
93

PHYSICAL REVIEW D 96, 096005 (2017)

Kyyrppp(6,0,t,1,1,1) = —152/3 — 56(5 — 96A(t)/t
—36A(1)? /1> — 8A(1)3 /1
+12(1 +A(1)/£)*In(5). (5.51)

It is now clear that the In(8) contributions successfully
cancel when these results are put into Eq. (5.36). The
result is

V3 = 42[8131/9 — 84ng + (320 — 256n5/3)(; + (248n6/3 — 2834/3)A(1)/t

= g412[22429/9 — 644n;/3 — 512Lis(1/2)/3 + 641n%(2)[z> — In?(2)] /9

+ (1076 — 208n/3)In* (1) + (32n5/3 — 216)In’ (1)),

where the analytical results for A(z) and H(0,¢,1,1,0,¢)
have been used to obtain the last expression. This agrees

+ (428 — 112n5/3)A(1)*/ 1> + (32ng/3 — 216)A(1)* /> = 16H(0, ¢, 1,1,0,1)/3] (5.52)
+ 1762* /135 + (288 — 256n/3){5 + (325 + 568n5/3 — 7346/3)In(1)
(5.53)
2e*g*¢?
3 [Kyvsvrr(6,6,G, W, t,1)
- tKVVSVFF(59 57 G7 Wy ty t)]- (5.56)

with the result found (using different methods, and in
particular with dimensional regularization of infrared di-
vergences) in Ref. [6].

Having demonstrated that the infrared divergences asso-
ciated with doubled massless gluon propagators cancel, let
us now consider those coming from the massless photon.
First, from the results given in the ancillary electronic file
SMV3.anc and SMV3functions.anc [108], one finds
that V®) contains QED contributions exactly analogous to
the QCD ones mentioned above:

16e*
9 [KVVFFFF(57 5’ 11,1, t) - ZIKVVFFFF(év 67 11,1, t)

+ PKyypppp(8,6.1,1,1,1)], (5.54)

where 6 is now the infrared regulator squared mass of the
photon. The In(8) parts of this cancel in the same way as
in QCD.

There are also contributions (given in SMV3 . anc [108])
to V&) from diagrams involving the top quark, the W
boson, the charged Goldstone bosons, and doubled photon
propagators, which individually behave like In(5) as § — 0.
They can be grouped as:

4e*

T [Kgauge.FF(51 o,W,W.1, t) - ltKgauge.IE“F(57 o, W, W.1, t)]?
(5.55)

and

The In(5) infrared divergent parts of these contributions can
be extracted from the results given in the ancillary
electronic file SMV3functions.anc [108]:

K gauge rr (8,8, W, W, 1,1) ~ % [W + 6A(W)][t + A(t)]In(5),
(5.57)

K gouge 77 (8.6, W, W, 1,1) ~% [W+6A(W)][t +A(1)]In(5),
(5.58)

Kyvsvrr(6.5,G.W.1.1) N—%u —6A(G, W)|[1+A()]In(5),
(5.59)

vasvpp(é,é,G,W,t,t)~—4%[1 —6A(G, W)][t+A(1)]In(5).
(5.60)

The In(8) contributions in each of Egs. (5.55) and (5.56)
again are seen to cancel.

All other possible In(5) contributions are found
to vanish at the level of the functions given in
SMv3functions.anc [108], except for the following
contributions involving doubled photon propagators, W
bosons, and charged Goldstone bosons:
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4

e
K e (8.5 W W, W W)+ AWK e s(8.6.W. W, W.G)
+4W2Kyysyvs(8,6,G, W, W, G)]. (5.61)

The relevant infrared behaviors can again be extracted from
SMv3functions.anc [108]:

K gauge (8.6 W, W, W, W) ~13—6[W+6A(W)]2E(5) (5.62)
K qauge.s(6.6. W, W, W, G)
~ —33—2 [W + 6A(W)][1 - 6A(W. G)]In(5) (5.63)

3 - _
Kyysyys(6,6,G, W, W,G) ~ a [1 —6A(W,G))*In(5).
(5.64)

It follows that the infrared divergences from doubled
photon propagators do not cancel. The final result for

the infrared divergence, which comes entirely from
Eq. (5.61), can be simplified to:

V@) ~

2764 (WG ln(W/G)>2_ (5.65)

n(s).
16 W-G n(%)

While it might at first seem surprising that there is an
uncanceled QED infrared divergence in the three-loop
effective potential, it is important to remember that the
effective potential itself is not a physical observable.
(Recall that it is not even gauge invariant.) What is
important is that this infrared divergence does not infect
physical observables and closely related quantities. The key
property that guarantees this is that Eq. (5.65) is of second
order in G. As we will see in the next section, after the
necessary resummation of Goldstone boson contributions,
terms of higher-than-linear order in G do not affect the
minimization condition of the effective potential, nor
contribute to the value of the effective potential at its
minimum, and so can simply be dropped.

As an aside, one could also eliminate the infrared
divergence in Eq. (5.65) by resumming photon self-
energies. Note that Eq. (5.65) comes from the 3-loop
representatives of the family of #-loop Feynman diagrams
that involve a ring of £ — 1 photon propagators that carry
the same momentum and connect £ — 1 one-loop subdia-
grams with either W, W~ or W=, GF internal lines. These
diagrams scale like 1/6°~3 for # > 3. Resumming these
diagrams to all orders in # would yield a contribution to
V. that cancels the three-loop infrared divergence in
Eq. (5.65) in the limit 6 — 0O:

PHYSICAL REVIEW D 96, 096005 (2017)

3
AV o5 ~ @f\/(Ay/m”Z)

—(16]T>3§A3[E(5)+2/3]+-~

(5.66)
where the ellipses represent contributions from four loops
and beyond, and

A, =3e*WGIn(W/G)/2(W - G). (5.67)
However, this resummation of photon self-energies is
actually an unnecessary complication. The key fact is that
with or without the photon ring resummation the contri-
bution is second order in G, and so has no effect on physical
quantities and can be dropped after Goldstone boson
resummation. Therefore, I prefer not to resum the photon
self-energies, for simplicity. In the next subsection, I will
discuss the expansion and resummation of the Goldstone
boson contributions, and explicitly derive the resulting
Higgs VEV minimization condition and find that it has no
infrared divergences [or spurious imaginary parts associ-
ated with In(G) when G is negative] of any kind.

As a check of the standard model result, consider the
renormalization group scale invariance conditions, which
take the form of Eq. (1.4) at each loop order Z = 1, 2, 3,
where X is summed over A,m?, 1, ¢3.9.¢,y, ¢, with
ﬂf;) =—y¢ where y is the scalar field anomalous
dimension. The necessary Q derivatives of the three-loop
integral functions are given in the ancillary electronic
file QdQ.anc [108]. The necessary three-loop beta func-
tions and anomalous dimension have been found in
Refs. [80-86],% except for the field-independent vacuum
energy A. From the ¢-independent parts of Eq. (1.4), I find
that:

Ay =2(m?), (5.68)

BY = 12 + 492 — 12)2)(m?)?, (5.69)

Y =1(19265-204)y263 + 153y} /4
(189/8—10883)y?g* — (73/8+20¢5)y7 g

(4215/32—51nG/2— 184’3)94

+(36¢3 —441/16)929’2+ (645 —233»/32—8511G/6)g’4

+1822)(m?)?. (5.70)

+
+

With this included, I have checked, using the Q deriva-
tives found in QdQ.anc [108], that Eq. (1.4) is indeed
satisfied by the result for V(® given in SMV3.anc and
SMv3functions.anc [108]. [Note that the coefficient

*Extensions to QCD 4-loop and 5-loop order will not be
needed here, but can be found in Refs. [7,87-93].
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of In(8) in Eq. (5.65) is independent of Q, so that while
Eq. (5.65) does contribute nontrivially to QaV®) /90, it
does so without producing a In(8) part.] This constitutes an
important consistency check.

B. Goldstone boson resummation of the
standard model effective potential

The three-loop standard model effective potential given
in the previous subsection suffers from two related prob-
lems associated with the Goldstone boson contributions.
First, the squared mass G can easily be negative at the
minimum of the (real part of the) effective potential,
depending on the choice of renormalization scale Q at
which it is evaluated. Due to the presence of In(G), the
usual effective potential then has an imaginary part even at
one-loop order. This imaginary part is spurious because it
does not correspond to a genuine physical instability.
Second, if one chooses a reasonable renormalization scale
such that G — 0, then there are In(G) singularities in the
three-loop effective potential and in the derivative of the
two-loop effective potential, and 1/G*~3 singularities in
the L-loop effective potential and the derivatives of the
(L — 1)-loop effective potential for L > 3. This was noted
in the context of the standard model at leading order in the
top-quark Yukawa coupling in Ref. [6] (see also [10,15]),
where it was somewhat melodramatically referred to as the
“Goldstone boson catastrophe.” In practice, one can usually
simply ignore the problem while maintaining good numeri-
cal accuracy, by choosing a renormalization scale such that
|G| is not too tiny, and dropping the imaginary part if G is
negative. However, this is clearly sub-optimal, and a
principled solution was given in Refs. [94,95], where the
problem was shown to be resolved by resumming the
leading Goldstone boson contributions to all orders, treat-
ing G as small compared to the other squared mass
parameters of the theory.

The basic idea is very simple: the effects of Goldstone
bosons with propagators with squared masses G are
reexpanded about a different squared mass G + A, which
vanishes at the minimum of the full effective potential; this
is the pole squared mass of the Goldstone boson in Landau
gauge, and therefore a good expansion point. This reso-
lution by resummation has the added benefit that it actually
makes it simpler in practice to implement the minimization
condition that relates the Higgs VEV to the Lagrangian
parameters. It can, and should, also be applied to other
calculations such as the pole squared masses of the physical
particles. For important further developments and related
perspectives, see Refs. [96-102].

To apply the Goldstone boson resummation procedure to
the full three-loop® standard model effective potential,
consider the ordinary effective potential in the form:

*The extension of this whole procedure to any given higher
loop order should be clear from the following.
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L VO(G)

Ver =V 6T

1
om0
1
i@

(5.71)
Here the dependence of each term on the Goldstone boson
squared mass G has now been indicated explicitly, with
the dependences on the other independent parameters
(93, 9.9y, 4, ¢2,Q) left implicit.5 Now one can resum
the contributions to all loop orders from diagrams that
consist of single rings of Goldstone boson propagators
punctuated by one-particle-irreducible subdiagrams that
feature larger masses, by writing

VI(G) - VIV(G +A) - Aa%w )(G)
1., 0
AN vI)(G 5.72
78 56 (G) (5.72)
where the quantity
A—1A+ 1A+ 1A+ (5.73)
T1ex2 T (1622 T (1622)2 '

will be given below, and is defined® by the properties that
G + A vanishes at the minimum of the full effective
potential, and each A, does not depend on G. Now we
can write, through three-loop order:

1 1 N
1% vO 4 yv(G+A) +—— V(G
eff = + 167[2 ( + ) + (1677.'2)2 ( )
1 0
s |VO(G) = By VI(G
( 2 { (G) - A, e (G)
1 O?
z (1)
2(A) 8G2V (G)], (5.74)
where we have defined
52 (6) = v 0 L
VEI(G)=VH(G) - A %V (G), (5.75)

Now one can continue the resummation procedure by
making the replacement:

Note that H = 2/14')2 + G, so that it is not an independent
parameter, and in the following OH/JG = 1. The other squared
mass parameters ¢, W, Z are independent of G.

°A warning about a notational switch: the A, in the present
paper are equal to what I called A, in Ref. [94]. The following
discussion could be equally well reformulated in terms of the
quantities called A, in Ref. [94], with results that are consistent
up to four-loop order contributions. However, that alternative
formulation is complicated slightly by the fact that the A, in the
notation of Ref. [94] depend on G, through their dependences on
H, so I omit it for simplicity.
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PO(G) > V(G + A) - A, ;G 72(G)
. )
—7® A=A —V©®
V(G +A) - 18GV (G)
o
A vi(G 5.76
+(4)? Ere (G). (5.76)
with the result
1.
‘ (). V()] )
Ve = V +16n2V (G+A) (16;;2)2V (G+A4)
1 .
70(6). 5.77
+(16ﬂ2)3 (G) (5.77)
where
VO(G)=VvO(G) - A, 9y (G) - AziV“)(G)
oG oG
+1(A) o vi(G). (5.78)
2 G '

Finally, we can replace G by G + A in the three-loop term,
since the difference is of four-loop order. Thus, the
resummed effective potential at three-loop order is

resummed
Veff

=Vv0O 4 vID(G + A)

1672
V(G + A)

(167%)?
1

(167°)3 V(G +a),

+

(5.79)

where the functions V* and V) are defined in terms of the
usual perturbatively calculated (non-resummed) quantities
by Eqgs. (5.75) and (5.78), respectively.

In order to construct the functions V) (G) and V3)(G)
from the results given in the previous subsection, one needs
Ay, Ay, ZVI(G), L v(G), and £ VP (G), which are
all straightforward to obtain from the one-loop and two-
loop order effective potentials. The results for A; and A,
have already been given in Egs. (4.19) and (4.20) of
Ref. [94], and are also provided in an ancillary electronic
file of the present paper called SMDeltas .anc [108]. For
example,

A, =31A(h) — 6y?A(1) + 3TQZA(W) + MA(Z)
+ (3g* +24%9 + g*)¢* /8. (5.80)
where
h=H-G = 24" (5.81)
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Also, one has the simple one-loop results:

0 3 1

56V (G) = A(G) + S A(H). (5.82)

@ 06y =211+ AG)/G+ L1t 4 A

oz V! (G) =3 [1 + A(G)/G) + 5 [1 + A(H)/H].
(5.83)

The expression for 9V(®)/0G is more complicated,
and is given in an ancillary electronic file
SMdv2dG.anc [108].

A crucial feature of V'mmed ig that in the expansions of
VNG + A), VO(G+A), and VO (G + A) for small
G + A, terms with In(G + A) do not appear until quadratic
order in G+ A. This can be seen by performing the
expansions for small G for basis integral functions that
have G as an argument, using the tools in the ancillary
electronic file expzero.anc [108]. The results can be
written in the form

vI(G) = vID(0) + GV (0) + O(G?), (5.84)
@(G) =V (0) + GV'(0) + O(G?),  (5.85)
3(G) = VI(0) + GV(0) + OG?),  (5.86)

where V()(0), v(V(0), V?(0), V?"(0), V3)(0), and
V37(0) do not depend on G. In particular, the cancel-
lations of the GIn(G) terms in V)(G), and the In(G),
GIn(G), and GIn?*(G) terms in V©®)(G), provide an
important check. Because of the absence of these terms
in Egs. (5.85) and (5.86), the resummed effective
potential Vieummed defined by Eq. (5.79), and its first
derivatives with respect to arbitrary parameters, are
finite and real at its minimum.

Note also that the expansions to linear order given in
Eqgs. (5.84)—(5.86), applied to Eq. (5.79), are sufficient
to produce the minimization condition for the Higgs
VEV valid through full three-loop order, because first
derivatives of terms of order (G + A)? or higher will
vanish there. Since the quadratic terms have been
dropped, the QED infrared divergence of Eq. (5.65)
does not appear.

The explicit one-loop and two-loop order results are

VI(0) = f(h) = 12f(1) + 6fv(W) +3fy(Z), (5.87)
vi(0) = A(h)/2, (5.88)
and
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A

357
PO(0) =3 4fss(ho ) + 320 oo b ) + Fos(0,0 )] + 2 [f st 1.1)
+tfrrs(t . h) + fres(1,1,0) = tfpps(1,1,0) + 2fFFS(Ov 1,0)]

7 +g fvss(Z,0,h) + é? 2_ gg,)z)fVSS(Z,O,O)
g g'¢y*
+Z [fvss(W,0,h) + fvss(W,0,0)] Jr—fvvs(W W, h)
2 2\2 42 22
vavs(z Z,h) +—¢szvvs(W Z.0) + ¢*fyys(0, W.0)]
- [49§+432/3]thFv<f 1,0) + ¢*Bf rrv(0. 1. W) + (4ng — 3) f ppy (0.0, W)] /2
+ (99" = 6479 + 179" frry (1, 1. Z) + 89* (39> = ¢*)tf v (1.1, Z)

+ ((24"0 —-9)g* +64°¢* + (40ng — 17)g"*) frrv (0,0, 2)]/24(g* + ¢*)
2 4

e g
— foauee (W, W,0) + ———~
+ D) fgduge( ) + 2(92 + g/Z)

+

+

fgauge(W’ w, Z) - AIA(h)/Z’ (589)

V(0) = 3y2(y2/4h — DI(h,t,1) + 3] /4 — A — ¢* /320 4 ¢* J16(g* = 22)|[I(h, W, W)
+3[(g° +9%)/8 = 2/2 = (¢ + ¢*)*/64A+ (¢ + ¢7)*/32(g" + ¢* = 24))[(h, Z,Z)
—3M(h,h,h)/2 + (64 +3g>/4) (0, h, W) + 34+ 3(5* + ¢*)/8]1(0, h, Z)
+[3(2¢° + ¢%)*/4(g* + g* )1 (0. W, Z) + {3[~ (> + ¢°)/ 162
— (P +9%)/8(F + g7 = 20) + (¢* — g* + 64°9%) /4(5* + §*)*|A(Z)?
= 3[¢?/84+ g /Mg = 22) + (¢* + 64797 +4d*)/2(4* + g*)*]A(W)?
+[3(8¢" + 8579 + g*)/(¢° + 97 JAW)A(Z) — (3y7/22)A(h)A(1)
+[3(¢° + ¢%)*/164(¢* + ¢* = 24)]A(h)A(Z) + [3¢" /82(g” — 24)]A(
+ (9 + 3y /2)A(1)> + 3A(h)* 4}/ ¢* — (3yi/20)A(1)
+3[(¢* + 9% (& + ¢ = 42)/324(g* + ¢ - 22)
- (79> +10g?) /4(g* + g*)]A(Z)
+3¢°(4?/164 — ¢°/8(g” = 22) — (6" + 64°g” + g*)/4(g” + ¢ )*]A(W)
+ [=3y4/4A+3y2/2 = 34— 3¢%/8 — ¢*/8 + (214* + 14¢7¢2 + T¢*) /64
=3(4* + 9%)*/32(g* + g% — 24) = 3¢*/16(g* — 24)|A(h)
+ [3yi +64° = 9¢*/8 + 39797 /8 + 3¢°/8(¢g* + ¢*) + 3¢°/16(5” + ¢°)*|¢*C,
3[yP /424yt = vt + 4307 + ¢°)/6 = (3¢° + 3g*g* + 34°g* + ¢°) /1282
+3¢°/32(g% = 2A) 4+ 3(¢ + ¢°)3/64(g* + g% — 24) + (814° + 158¢°¢
+110g%g™ + 2867 + ¢*)/96(5* + ¢*)*|¢*. (5.90)
|

h)A(W)

These are included, along with the much more complicated  C. The standard model Higgs VEV at three-loop order

results for V) (0) and V¥/(0), in an ancillary electronic In this subsection, I discuss the application of the
file SMVresummedGexp.anc [108]. The results are  standard model three-loop effective potential to obtain
given in terms of basis loop integral functions, with squared ~ the minimization condition for the Higgs VEV v = ¢in
mass arguments £, t, W, Z, 0 and with coefficients built out given the Higgs squared mass parameter m2, or vice versa.
of g3, 9.4, v,, A, and ¢*. This condition is
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10
¢8¢ Véef%umnwdlt]ﬁ—’b‘ = 0’ (591)
which can be written as
- 1
G=m*+?=— ——A 5.92
m* + v ;(16 777 p ( )

This result can also be expressed as the relation between the

MS tree-level VEV
Viree = \/ _mz/l

and the VEV v defined as the minimum of the full effective
potential. One has:

(o]
Utree = E

/—1

(5.93)

(5.94)

>~ |

Using the expansions of Eq. (5.84)—(5.86) in Eq. (5.79) and
the fact that, by definition, G + A vanishes at the mini-
mum, we have through three-loop order:

PHYSICAL REVIEW D 96, 096005 (2017)

10 . N 10G o 10A
Ay =— =V 0) + V3 (0) S =+ V'(0) - —"
1 0A
+yvro)===2, 5.97
0 5% (597)
with ¢p = v. Now one can use:
10G
g 5.98
50 (5.98)
104, N
5 0b = [6AA(h) — 12y?A(t) + 357 A(W

+3(9* + 9*)A(Z)/2]/¢* + 122> — 6y7

+15¢%/8 + 5¢%¢”2 /4 + 5¢*/8 (5.99)

together with the derivatives of the two-loop and three-
loop basis functions as given in Ref. [51], to iteratively
evaluate A, A,, and A;. As mentioned above, the first
two were already given above in Egs. (4.19) and (4.20) of

10 ay 10G Ref. [94], and all three are given in the ancillary
A= *a*V (0) +V (0)787’ (5.95) electronic file SMDeltas.anc [108] distributed with
¢ o ¢ 99 e ;
the present paper. These results are given in terms of basis
19 . . 190G 104, functions with arguments £, ¢, W, Z, 0 and MS renormal-
Ay = 9% — Ve (0)+V(2)’(O)—a—+V“>’(0)—a— ) ization scale Q. The complete lists of the specific

b 0p ¢ O ¢ O . .
one-loop, two-loop, and three-loop basis functions

(5.96)  needed are
|
M = {A(h),A(1),A(W),A(Z)}, (5.100)
@ ={£,. 1(0,h, W), 1(0, h, Z), 1(0, £, W), I(0, W, Z), I (h, h, h),

I(h,t,0), I(h, W, W),[(h,Z,Z),1(t,1,Z),1(W,W,Z)}, (5.101)

G) = {¢5, F(h,0,0,1), F(h,0,0,W),
F(h,0,t,W), F(h,0,W, W),
F(h.h,Z.Z),
F(1,0,t,W),
F
F

(

( F(1,0.W.Z2),
(W.0,h.h), F(W,0,h.1),
(W.0,Z.Z), F(W.h,W.Z),
(Z,0,W,W),F(Z.0,W,Z),
(

(

(

(

~

F(0,0,h, W), F(0,0,h,2Z).
F(0,h,W,W),F(0,t,1,Z),

G(h,0,0,W.W).G(h.,0,0,Z.2),

F(h,0,0,Z),F(h,0,h, W),
F(h,0,W.Z),F(h,0,Z.Z),
F(h,t,t,Z),F(h, W,W,Z),F(1,0,0, W),
F(t.h,t,Z),F(t,t, W, W),
F(W,0,h,Z),
F(Z,0,h,h),
F(Z,0,2.7),
F(0,0,1, W),
F(0,W,W,Z),G(0,0,0,h,1),G(0,0,0,1,Z),
G(0,t,1,W,W),G(h,0,0,0,W),G(h,0,0,0,Z),

F(W,0,1,1),

F(0,0,1,7),

G(h,0,W.0,2),

F(h,0,h,Z),F(h,0,1,1),
F(h.h,t,1),F(h,h, W, W),
F(1,0,0,2), F(t,0,h, W),
F(t.t,2.7),F(W.0,0,2),
F(W,0,t,Z), F(W,0,W, W),
F(Z,0,h,W),F(Z,0,t,1), F(Z,0,1, W),
F(Z h,t,t),F(Z,h, W,W),F(0,0,h,1),
F(0,0,W,Z),F(0,h,t,1),

G(h,0.0, h, h),G(h,0,0,1,1),
G(h,0,W.h.h),G(h,0,W.1.1),
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Q

h,0,W.W,W),G(h,0,W.,Z,Z),G(h,0,Z,h,h),G(h,0,Z,t,1),G(h,0,Z, W, W),
h,0,Z2,Z.Z),G(h,h,h,h,h),G(h,h,h.t,1),G(h,h,h, W, W), G(h,h,h,Z,Z).
ht,t, W,W),G(h,t,t,Z,Z),G(h, W,W,Z,Z),G(1,0,0,0,W),G(2,0,0, h, 1),
t,0,0,t,2),G(t,0,W, h,t),G(¢,0,W,t,Z),G(t,h,t,1,Z),G(W,0,0,0, Z),
W,0,0,h,W),G(W,0,0,W.,Z),G(W,0,h,0,1),G(W,0,h,0,Z),G(W,0,h, h, W),
W.0,h,W.Z),G(W,0,1,0,Z),G(W,0,t,h, W),G(W,0,1, W, Z),G(W,0,Z, h, W),
W.0,Z,W,Z),G(W,h,W,W.,Z),G(Z,0,0,h,Z),G(Z,0,0,t,1),G(Z,0,0, W, W),
Z.0,h,0,W),G(Z.0,h,h,Z),G(Z,0,h,1,1),G(Z,0,h, W, W),G(Z,0,W, h, Z),
Z.0.W.1,1).G(Z,0,W,W,W),G(Z.h,Z.1,1),G(Z, h,Z,W,W),G(Z,t.t, W, W),
0,0,0,0,0,h),H(0,0,0,0,0,7),H(0,0,0,0,0, W), H(0,0,0,0,0, Z),

0,0,0,0,h, W), H(0,0,0,0,¢,1¢),H(0,0,0,0,¢, W), H(0,0,0,0, W, W),
0,0,0,0,W,Z2),H(0,0,0,h,t,t),H(0,0,0,h, W,W),H(0,0,0,h,Z,Z),
0,0,0,7,1,Z),H(0,0,0,W, W, Z), H(0,0, 1,0, W, W), H(0,0, h, h, W, W),
0,0,h,h,Z,Z),H(0,0,h, W,0,0), H(0,0,h, W,0,Z), H(0,0,h, W, W, Z),
0,0,h,7,0,0),H(0,0,h,Z,0,W),H(0,0,h, Z, W,W),H(0,0,2,0,1, W),
0,0,7,0,W,W),H(0,0,¢, h,t1t),H(0,0,¢, W,0,t), H(0,0,1,7,0,0),
0,0,7,Z,0,W),H(0,0,7,Z,W, W), H(0,0,W,0,W,Z), H(0,0, W, h, h, h),
0,0,W,h,Z,7),H(0,0,W,t,h,t),H(0,0,W,t,t,Z),H(0,0, W,W,0,0),
0,0,W,W,0,h),H(0,0,W,W,0,W),H(0,0,W,W,0,Z),H(0,0,W,W,h, W),
0,0,W,W,W,Z),H(0,0,W,Z,0,0), H(0,0, W, Z,0,h), H(0,0, W, Z., h, Z),
0,0,W,Z,t,t),H(0,0,Z,h,h,h),H(0,0,Z,h, W,W),H(0,0,Z,W,h, W),
0,0,72,7,0,0),H(0,0,Z,Z,0,W),H(0,0,Z,Z,W,W),H(0, h, h, W, h, W),
0.h.h,Z.h,Z),H(O,h,t.Z,t,1), H(O,h, W, W, W, h),H(O,h, W, W, W, Z),
0,h,Z,W,Z,W),H(0,h,Z,Z,Z,h),H(0,t,1,1,0,1),H(0,1,t,,h,t),
0,t,t,t,Z,1),H(0,1,t, W,0,W),H(0,1,t, W,h, W), H(0, 2,1, W, Z, W),
0.W,W,W.0,W),HOO,W,W,W,h,W),H(O,W,W.W.Z,W),HO,W.W.Z.h,Z),
0,W,Z,Z,W,W),H(h,h,h,h,h,h),H(h,h,t,h,t t),H(h,h, W,h, W, W),
hoh,Z,h,Z,Z),H(h,t,t,t,h,t),H(h,t,t,t,Z,1),H(h,t,Z,t,1,7),

hW, W W, h,W),Hh,W,W W, Z,W),Hh,W,Z,W,W,Z),
h.2,2,Z.h,2),H(t,t,Z,Z,1,1), HW,W,Z,Z,W,W)}. (5.102)

Q Q Q

Q Q

—_~ N =~ N N~ A~

G

TR R R TR RRRQ

T

(Recall that this choice of basis functions is not unique, because of the identities mentioned at the end of Sec. II.) The
form of the result is then

Ay =Y VTV + 3 PVTPTY 43 P14 3 eTTVTY
i ij i

i.j.k

E AT 4 T e 5109
i i
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with coefficients that are built out of g, g, ¢, y,, 4, and ¢,
and are given in SMDeltas.anc [108]. The result for
A5 extends the partial result (in the approximation that
g3.y> > ¢%, g%, 2) given in Eq. (4.21) of Ref. [94]. The
expression for A, is known at leading order in QCD only,
and was given in Eq. (5.5) [see also Egs. (4.39) and
(4.40)] of Ref. [7].

As a check, one can demand that Eq. (5.92) satisfies
renormalization group scale invariance. This condition
takes the form, for each loop order ¢:

0
0550 = ~2B) — 298 + 2¢* (B Jm?)
-1 a
+> [(ﬂf’:?/mz) - Zﬁg) a—X} Ason
n=1 X

(5.104)

where ¢ = v at the minimum of the potential, and X is
summed over g3, g, ¢, v, 4, and ¢. I have verified
Eq. (5.104) for each of £ = 1, 2, 3, using the results above.

VI. OUTLOOK

In this paper I have provided the results for the effective
potential at full three-loop order for a general renormaliz-
able theory, in the MS scheme and using Landau gauge
fixing. The results for the standard model provided in
Sec. V allow the most accurate theoretical determination
possible at this time for the relationship between the Higgs
VEV and the Lagrangian parameters, including the negative
Higgs squared mass parameter m?. In practice, this can be
used to eliminate m?> and G in favor of v (and H =
3Av% + m? in favor of h = 24v?), from other calculations in
which they appear. A study of the numerical impact of the
three-loop contributions is not given here, but will appear in
future work. This is also part of a larger program, as begun
in Refs. [39-42], to obtain high-precision results for the
pole masses of the standard model particles, and other
observables, in the tadpole-free pure MS scheme.

PHYSICAL REVIEW D 96, 096005 (2017)

In general, three-loop order contributions to the effective
potential can suffer from various kinds of infrared diver-
gences that arise due to doubled propagators carrying the
same momentum and small squared masses. The problem-
atic contributions associated with Goldstone bosons are
eliminated by resummation. The infrared divergences
associated with doubled gluon propagators cancel com-
pletely after including all diagrams at three-loop order.
I also found an uncanceled infrared divergence from
doubled photon propagators in the three-loop standard
model effective potential; this can be eliminated by
resummation of photon self-energies, but it is actually
benign even without doing so, provided that one resums the
Goldstone boson contributions.

One might also worry about the case of doubled massless
or light fermion propagators, for example in models of
supersymmetry breaking such as the O’Raifeartaigh model
[103] that feature massless goldstino fermions. However,
the results above show explicitly that, as suggested by
power counting arguments, there are no such infrared
divergences from massless fermions (no ‘““goldstino catas-
trophe”) at three-loop order.

The MS renormalization scheme based on dimensional
regularization does not respect supersymmetry when there
are gauge fields present. Therefore, the results given here
are not of direct applicability to softly broken supersym-
metric gauge theories, such as realistic supersymmetric
extensions of the standard model. Further work will be
needed in order to obtain the three-loop effective potential
in the DR’ renormalization scheme [104] based on regu-
larization by dimensional reduction [105-107], which is
appropriate for such theories.
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