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Perturbation theory of thermodynamic potentials in QCD at T > Tc is considered with the non-
perturbative background vacuum taken into account. It is shown that the colormagnetic confinement in the
QCD vacuum prevents the infrared catastrophe of the perturbation theory present in the case of the free
vacuum (the “Linde problem”). A short discussion is given of the applicability of the nonperturbative
formalism at large T and of the relation with hard-thermal-loop theory. The observation of Linde, that the
terms OðgnÞ; n > 6 contribute to the order Oðg6Þ, is confirmed also with the account of the colormagnetic
confinement, and it is shown that the latter ensures that these terms are IR convergent. To make these terms
summable, an integral equation is formulated for the ladder graphs, which allows us to define the sum of the
Oðg6Þ terms via a nonsingular kernel. It is argued that the purely nonperturbative term without gluon
exchanges may dominate for T < 600 Mev.
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I. INTRODUCTION

The Linde problem in thermal QCD has a long history;
see [1,2] and references therein. It has occurred in thermal
perturbative QCD, where similarly to QED, the originally
massless constituents (gluons) acquire effective perturba-
tive mass operators mðTÞ, which regulate the convergence
of gn terms and of the whole perturbative series.
Correspondingly, the colorelectric screening mass
mDðTÞ, obtained from Π00ðTÞ (similarly to the QED case),
starts from gT; however, the colormagnetic screening mass
does not exist perturbatively [1,2] (again, as in QED), and if
introduced effectively as Oðg2TÞ, the perturbative series is
not defined at the order g6 [problem (1)]. Linde also states
that the higher order diagrams contribute to the same order
[problem (2)].
Meanwhile the effective perturbative theory of thermal

QCD [hard-thermal-loop (HTL) theory] was developed in
[3,4], using the colorelectric mDðTÞ and the resummation
technique through order g2, g3, g4, g5, which appears to be
quite successful; see [5] for a review. The nonperturbative
nature of the magnetic scale g2T, which appears necessarily
at Oðg6Þ, can be connected to the 3D Yang Mills theory;
see, e.g., [6].
A natural question arises, how can this situation be

explained and treated in a 4D approach to QCD, where
nonperturbative (NP) physics (including confinement) is
taken into account?
In what follows we shall consider the NP approach to

QCD, developed in [7–12]. For an alternative approach
see [13,14].
Most effects in QCD at low and intermediate energies

cannot be explained without NP dynamics, which enters in
the theory, e.g., via the string tension σ, or a mass of some
meson ðρ; KÞ, or else the constant ΛQCD, entering in αsðQÞ.

The approach of the NP vacuum, ensuring confinement and
stabilizing perturbation theory, was developed in [7] for
QCD at zero temperature T, and in [8,9] for T > 0; see
reviews [10,11] for T ¼ 0 and [12] for T > 0. The problem
of the confinement and deconfinement is treated in our
approach, called the field correlator method (FCM),
taking into account two kinds of colorelectric correlators
DEðzÞ; DE

1 ðzÞ ∼ hEiðxÞEiðyÞi, and two kinds of colormag-
netic, DHðzÞ; DH

1 ðzÞ ∼ hHiðxÞHiðyÞi, where the first ones
ðDE;DBÞ are of purely non-Abelian character, while
DE

1 ; D
H
1 exist also in QED.

Assumed in [8] and later confirmed on the lattice [15],
the non-Abelian colorelectric correlator DEðzÞ vanishes
together with confinement at Tc, while all others stay
nonzero for T > Tc, in particular the non-Abelian color-
electric correlator DE

1 , responsible for the nonzero
Polyakov lines, while the non-Abelian colormagnetic
correlator DHðzÞ ensures the magnetic confinement for
the motion in the spatial planes. This property was studied
in the FCM formalism in [16], and analytically and
numerically in a different approach in [17]; see also [18]
for later developments.
As a result of magnetic confinement there appears the

spatial string tension, which defines the area law of the
spatial projection of any Wilson loop in 4D,

hWðCÞi ¼ exp ð−σsA3DðCÞÞ; σs ¼
1

2

Z
d2zDHðzÞ: ð1Þ

Moreover, DHðzÞ can be calculated via the gluelumps
[19], known both analytically [20] and on the lattice [21],
which yields the relation

ffiffiffiffiffiffiffiffiffiffiffi
σsðTÞ

p
¼ cσg2ðTÞT; ð2Þ
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where cσ is of a NP origin, as shown in the Appendix A.
This coincides with the lattice data results [22], where cσ ¼
0.566� 0.013.
The two-loop approximation is generally used for

g2ðTÞ [23].
One can now consider any QCD diagram and the whole

perturbative series as being immersed in the NP vacuum,
so that all closed loops in the 3D space are covered by the
confining film, and for 4D loop the confinng film covers the
3D projection of the loop. This fact as we shall argue,
defines the main features of thermal QCD dynamics.
Namely, as we show below, the spatial Wilson loops not

only serve as a cutoff factor at the distance Xmax ∼ 1ffiffiffiffi
σs

p , but

due to Eq. (2) this cutoff depends on gðTÞ and converts the
perturbative OðgnÞ term into Oðg6Þ (problem 2 of Linde).
Exactly the same situation would occur if instead of spatial
confinement one introduces the magnetic mass of gluons.
Then again Eq. (2) implies that the magnetic mass mH

D ∼ffiffiffiffiffi
σs

p
as a cutoff parameter makes the four-loop integral

convergent, which resolves what can be called problem 1 of
Linde, as will be clarified below. This is a purely NP result,
irrespective of the appearing g2 factor. Problem (2) of Linde
[see (iii) in [1] on p. 290], that the sum of the infinite ladder
of gluon loops with n > 4 contributes to the same order
g6T4, also occurs in this case of magnetic mass.
However, the notion of magnetic mass (or any other

effective mass) is irrelevant in the case of confinement,
since gluons are connected by the confining string, which
constitutes the greater part of the total energy (mass) of the
system in contrast to the free motion of a gluon with any
effective mass.
Coming back to the results of the perturbation theory and

comparing HTL results with the lattice calculations, one
can conclude that the Oðg6Þ term is basically important for
T ≤ 0.5 GeV (see, e.g., Fig. 1 of [6]). As a result a new
HTL version appeared in [24], called “the Oðg6Þ fitted”
HTL contribution, as well as “the Oðg6Þ fitted þ nonpert.”
version. As we shall show below, the Oðg6Þ terms indeed
contain the whole series OðgnÞ; n > 6, as was shown by
Linde [1], but in addition the colormagnetic confinement
makes these terms finite and summable via the solution
of an integral equation. All this makes our analysis and
discussion of the Linde problems even more timely and
relevant.
The paper is organized as follows. In the next section we

describe qualitatively the possible solution of the problem.
In Sec. III we write the general background field formalism
for the thermodynamic potential, define its perturbation
series, and study the gluonic multiloop diagram with spatial
(magnetic) confinement. We define its infrared and ultra-
violet properties, showing that indeed the presence of σs
prevents the IR divergence of any diagram, and formulate
the integral equation for the sum of ladder graphs contrib-
uting to the order Oðg6Þ.

Section IV is devoted to the summary and prospectives.
In Appendix A a detailed derivation is given of σs

in terms of gluon propagators and gluelumps, while
Appendix B contains a detailed version of the kernel with
colormagnetic confinement.

II. QUALITATIVE ANALYSIS OF THE
PERTURBATIVE DIAGRAMS

Coming back to Linde problem (1), the standard per-
turbation theory (without nonperturbative background),
which proceeds essentially in 3D, becomes infrared diver-
gent, starting with the sixth order in g [1,2]. In essence, the
problem occurs due to very weak falloff of the gluon
propagator in 3D without σs, e.g., in the x-space

Gðx; yÞ ∼ T
πjx − yj ; jx − yj ≫ 1=T: ð3Þ

Let us now consider an nth order diagram of the thermal
perturbation theory; an example of this diagram for n ¼ 8
is shown in Fig. 1. One can count the number of gluon
propagators, Eq. (3), in the diagram: Nprop ¼ 3n

2
.

The number of vertices with derivatives ∂
∂xi at each vertex

is n, and the number of space integrals d3xðiÞ
T in each vertex is

n; however, one integral yields the overall volume, so that
the amplitude can be written as

An ∼ gn
Yn
i¼1

Z
d3xðiÞ

T
∂

∂xðiÞ
YNprop

k¼1

GðkÞðxðiÞ − xðjÞÞ ∼ V3

T
Ān:

ð4Þ

As a result one obtains the spatial dimension of the
amplitude Ān in terms of an overall upper limit of 3D
coordinate X,

Ān ¼ gnX
n
2
−3T

n
2
þ1: ð5Þ

It is clear from (5) that Ān is IR divergent for n ≥ 6, in
agreement with Linde problem 1 [1].
Now let us take into account the spatial (colormagnetic)

confinement in 3D, which can be introduced in (4) in the
form of the area law factor hWðCÞi ¼ expð−σsSminÞ, as

FIG. 1. The eighth order graph with the crossed rectangle under
study.
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in (1) with the minimal surface Smin ¼ A3DðCÞ, covering all
diagrams in Fig. 1. For us it is only important that Smin be
quadratic in coordinates xðiÞ; xðjÞ, and consequently it
behaves at large X as Smin ∼ X2. Being positive definite,
it makes the hWðCÞi the real cutoff function, as proposed in
[25], and can make the spatial integrals converge, namely,

ĀðconfÞ
n ¼ gnT

n
2
þ1

Z
ðdXÞn2−3 expð−σsjXj2Þ: ð6Þ

It is clear that by introducing the dimensionless coor-
dinate Y ¼ ffiffiffiffiffi

σs
p

X, one obtains the following representation

for ĀðconfÞ
n ,

ĀðconfÞ
n ¼ gnT

n
2
þ1ð ffiffiffiffiffi

σs
p Þ−ðn2−3ÞJn; ð7Þ

where Jn is a dimensionless converging integral.
Now taking into account Eq. (2),

ffiffiffiffiffi
σs

p ∼ g2ðTÞT, one
obtains finally

ĀðconfÞ
n ¼ g6T4Cn; Cn ¼ JnðcσÞ3−n

2: ð8Þ

Equation (8) exemplifies the second part of the Linde
problem: all the series with n ≥ 6 contribute to the Oðg6Þ
term.
Note that we have not introduced above the magnetic or

any other mass parameters for gluons, since in the case of
confinement the notion of mass can be ascribed only to the
given string state, containing two (or more) gluons, con-
nected by the adjoint string.
Nevertheless, if we introduce the effective mass of the

gluon instead of confinement, mmagðTÞ, then the gluon
Green’s function acquires a factor expð−mmagjx − yjÞ,
and these factors can be assembled in the total
factor expð−mmag

P
i;jjxi − xjjÞ, which would replace

expð−σsjXj2Þ in (6).
As a result one obtains instead of (7) the representation

ĀðmassÞ
n ¼ g2T

n
2
þ1ðmmagÞ−ðn2−3ÞJðmassÞ

n ; ð9Þ

and assuming for mmag the form of magnetic mass mmag ¼
cmg2T, one again comes to the result (8). In this way one
obtains that both spatial confinement and magnetic mass
yield the same qualitative result: the sum of all gn terms
with n ≥ 6 contributes to theOðg6Þ term, in agreement with
the problem 2 of Linde [1], and in both cases the space
integrals converge. In the next section we shall make our
arguments more concise, developing a special representa-
tion for a four-point (or three-point) diagram with confine-
ment taken into account.

III. BACKGROUND PERTURBATION THEORY
IN MAGNETIC CONFINEMENT

In this section we exploit the background perturbation
theory, developed in [8,9], to study soft and hard regimes of
the internal integrations and to demonstrate the role that is
played in this process by the magnetic confinement. Since
we are mostly interested in the high T gluon contributions,
we confine ourselves to the case of pure gluodynamics.
We split the gluonic field Aμ into the NP background Bμ

and the perturbative part aμ,

Aμ ¼ Bμ þ aμ; ð10Þ

and the partition function Z can be written as a double
average, using the ’t Hooft identity [8,9]

Z≡ hhexpð−SðBþ aÞÞiaiB; ð11Þ

where the action S contains the standard gluon, ghost,
and gauge-fixing terms and in particular the triple vertices
a3, a2B.
The inverse gluon propagator can be written as

G−1 ¼ −D2ðBÞab · δμν − 2gFc
μνðBÞfacb; ð12Þ

where

ðDλÞca ¼ ∂λδca − igTb
caBb

λ : ð13Þ

In what follows we shall for simplicity neglect the gluon
spin term—the last term on the rhs of (12) [the latter gives a
correction to spatial (magnetic) confinement], and then the
gluon propagator can be written as

ð−D2Þ−1xy ¼ hxj
Z

∞

0

dtetD
2ðBÞjyi

¼
Z

∞

0

dtðDzÞwxye−KΦðx; yÞ; ð14Þ

where

K ¼ 1

4

Z
s

0

dτ
�
dzμ
dτ

�
2

; Φðx; yÞ ¼ P exp ig
Z

x

y
Bμdzμ;

ð15Þ
and a winding path measure is

ðDzÞwxy ¼ lim
N→∞

YN
m¼1

d4ζðmÞ
ð4πεÞ2

×
X∞

n¼0;�1;::

Z
d4p
ð2πÞ4 e

ipð
P

ζðmÞ−ðx−yÞ−nβδμ4Þ: ð16Þ

In the free case, Bμ ≡ 0, one obtains the gluon
propagator
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Gðx; yÞ → ð∂2Þ−1xy ¼
X

k¼0;�1;…

Z
Td3p
ð2πÞ3

e−ip⃗ðx⃗−y⃗Þ−i2πkTðx4−y4Þ

ðp⃗2 þ ð2πkTÞ2Þ :

ð17Þ

At large distances the zero mode (k ¼ 0) yields the
behavior shown in (3) and this is the origin of the IR
divergence of higher order gn contributions to the free
energy, as was shown in [1], while magnetic confinement,
contained in Φðx; yÞ, cuts off all divergences, as will be
demonstrated below.
One can easily find the lowest order (one-loop) NP

contribution to the free energy

Fgl
0 ðBÞ ¼ T

�
1

2
log detG−1 − log det ( −D2ðBÞ)

�
; ð18Þ

which can be written as

hFgl
0 ðBÞi ¼ −T

Z
∞

0

ds
s
ξðsÞd4xðDzÞwxxe−KhtraΦðx; xÞiB

ð19Þ

and finally for the pressure Pgl ¼ − 1
V3
hFgl

0 ðBÞi,

Pgl ¼ ðN2
c − 1Þ

Z
∞

0

ds
s

X
n≠0

GðnÞðsÞ; ð20Þ

with

GðnÞðsÞ ¼
Z

ðDzÞwone−KhtraΦðx; xÞiB: ð21Þ

Φðx; xÞ contains colorelectric fields B4ðxÞ, which produce
Polyakov lines LadjðTÞ [9], and in addition also color-
magnetic fields, which are contained in the spatial Wilson
loop, htraΦsðCnÞiB ≡ hWsðCnÞi, which can be written in
terms of field correlators [7], as an integral over minimal
surface inside the loop C,

hWsðCnÞi ¼ tra

�
exp

�
ig
Z
C
Aμdzμ

��

¼ tra

�
exp

�
ig
Z

dsμνFμν

��
; ð22Þ

and using the cumulant expansion [7,11,19] and dropping
all cumulants except for the quadratic, one has

hWsðCnÞi

¼ exp

�
−
1

2

Z
S

Z
S
dsμνðuÞdsλσðvÞhFμνðuÞFλσðvÞi

�
:

ð23Þ
The form (23) contains only quadratic terms in Fμν

(the so-called Gaussian approximation). It can be argued

that higher order terms OðhFniÞ, n > 4, contain a small
parameter ðhFi2λ4Þn=2, where hFi is the gluonic condensate
hF2i ≈Oð0; 1 Gev4Þ, and λ ¼ 0.1 fm is the vacuum cor-
relation length [19]. Moreover, the Gaussian term (23) is
proportional to the quadratic Casimir operator C2ðjÞ.
The presence of higher CnðjÞ was not found on the lattice
withOð1%Þ accuracy; thus the Casimir scaling supports the
validity of the Gaussian approximation. For more discus-
sion see [10,11]. One may wonder, what kind of physics
can be obtained in principle from higher order terms?
It is shown in [10,11] that in the stochastic vacuum with
convergent cumulative series (for Fλ2 ≪ 1Þ the higher
order terms also contribute to the linear confinement.
Considering only spatial loops C and surface areas S for

k ¼ 0, i.e., the term without higher Matsubara frequencies,
one needs with colormagnetic correlators only,

g2

Nc
hHiðuÞHjðvÞi ¼ δijDHðu − vÞ þOðDH

1 Þ: ð24Þ

To find σs in (1) one can use the connection of DH

with the gluelump Green’s function [19], which, as shown
in the Appendix, can be written as

DHðzÞ ¼ g4ðN2
c − 1Þ
2

T2Gð2gÞ
3D ðzÞ; ð25Þ

where Gð2gÞ
3D is the two-gluon NP Green’s function in 3D.

As a result using (1) one can write the T-dependent part of
σs as

σsðTÞ ¼ g4T2c2σ; c2σ ¼
N2

c − 1

4

Z
d2zGð2gÞ

3D ðzÞ; ð26Þ

where cσ is a dimensionless number and a fully NP
quantity.
Insertion of htraΦi in (21) as an area law (1) yields a loop

graph of a gluon, where the string tension σs controls the
area inside the loop, so that the gluon cannot go far from the
initial point, the maximal distance being R≲ 1ffiffiffiffi

σs
p .

To this end one can explicitly calculate the integral
ðDz4Þwon in (21) and express GðnÞ via the 3D gluon Green’s
function G3ðsÞ,

GðnÞðsÞ ¼ 1ffiffiffiffiffiffiffiffi
4πs

p e−
n2

4T2sG3ðsÞLn
adj; ð27Þ

where Ladj is the Polyakov loop in the adjoint representa-
tion, so that the gluon pressure is (see [26] for more details)

Pgl ¼
ðN2

c − 1Þffiffiffiffiffiffi
4π

p
X

n¼0;1;2;…

Z
∞

0

ds

s3=2
e−

n2

4T2sG3ðsÞLn
adj: ð28Þ

In general, G3ðsÞ can be expanded in the series of 3D
eigenvalues in the CM confinement M2

ν ¼ aνσs,
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G3ðsÞ ¼
1ffiffiffiffiffi
πs

p
X

ν¼0;1;2

ψ2
νð0Þe−M2

νs: ð29Þ

In the free limit, σs → 0, one obtains Gð0Þ
3 ðsÞ ¼ 1

ð4πsÞ3=2,
and the gluon pressure tends to the Stephan-Boltzmann

limit, PSB
gl ¼ ðN2

c−1Þ
45

T4π2. An approximate form for G3ðsÞ
was found in [26] for the case of the linear confinement:

GðlinÞ
3 ðsÞ ≅ 1

ð4πsÞ3=2
�

M2
0s

shðM2
0sÞ

�
1=2

; M0 ¼ 2
ffiffiffiffiffi
σs

p
:

ð30Þ

Here M0 is the screening mass found in [16,27].
Insertion of (30) into (28) yields the gluon pressure

PðlinÞ
gl . This gluon pressure was compared in [26] with

accurate lattice data from [24], showing a good agreement.
This fact implies that the perturbative series for Pgl in
powers of gn, which we have disregarded up to now, should
give a numerical correction to the nonperturbative result.

Indeed, PðlinÞ
gl can be considered as the zeroth order term in

this series, which depends only on σsðTÞ and which
reproduces the Stefan-Boltzmann pressure in the limit
σs → 0; Ladj → 1, while higher order terms are the result
of the perturbation theory in the confining background.
One can now generalize this picture to the higher terms

in the perturbative series OðgnÞ, where these terms are
formed by applying the term L3 in the original QCD
Lagrangian

L3 ¼ g∂μaaνfabcabμacν ð31Þ

on any gluon line. As a result one obtains, e.g., the diagram
of Fig. 1 of the order g8. It is essential that each gluon
propagator Ga

μνðxðiÞ; xðkÞÞ≡ haaμðxðiÞÞabνðxðkÞÞi be propor-
tional to ΦðxðiÞ; xðkÞÞ, and the latter, after averaging over
background fields Bμ, in the product together with all the
other gluon propagators, forms the total Wilson loop
with the same outer contour Cn, but now with inner lines
dissecting it into a sum of pieces of area ΔAðiÞ,
A →

P
iΔAðiÞ. Each piece is subject to the area law

with the same σs, so that one obtains the factor
exp ð−σs

P
iΔAðiÞÞ, which prevents the escape of all gluons

from the center of the area, and in this way ensures infrared
stability.
One can say that each gluon is interacting with the

closest neighbor via linear confining interaction and there-
fore the distance between them is of the order of ð ffiffiffiffiffi

σs
p Þ−1.

Consider now the diagram of Fig. 1 without magnetic
confinement, where for each gluon line one can write the
free gluon Green’s function G0ðxi; xjÞ ¼ T

jxi−xjj, and at each

vertex xk the factor ΓabcðxkÞ ¼ gfabc ∂
∂xk þ perm, so that the

loop graph of Fig. 1 of the nth order can be written in a
shorthand manner as

AnðTÞ ¼
Yn
i<j¼1

Z
G0ðxi − xjÞG0ðx1 − x2ÞG0ðxn − xn−1Þ

×
Yn
i¼1

Γid3xi
T

¼
Z

Snðxn−1; xnÞG0ðxn−1; xnÞ
d3xn−1

T
d3xn
T

: ð32Þ

For the set of ladder diagrams of this type, one can write
the relation

Snþ2ðxn; xnþ1Þ

¼
Z

Snðxn−1; xnÞG0ΓðxnÞG0Γðxðnþ1ÞG0

d3xn
T

d3xnþ1

T
;

ð33Þ
and in general the total sum S̄ satisfies the integral
equation

S̄ðx; yÞ ¼ S0ðx; yÞ þ
Z

S̄ðx0; y0ÞKðx0y0jx; yÞ d
3x0d3y0

T2
;

ð34Þ

where S0 refers to the first few terms, while the kernel in the
pure perturbation theory Kpert from (33) is

Kpertðx0; y0jx; yÞ
¼ G0ðx − x0ÞΓðxÞG0ðx − yÞΓðyÞG0ðy − y0Þ: ð35Þ

The overall coordinate integration in (34) has the form

Z
Kpert

d3x0d3y0

T2
∼ g2T

Z
d3X
X2

ð36Þ

and is IR diverging at large X [Linde problem (1)].
Introducing, as in Sec. II, the cutoff factor due to magnetic
mass expð−mmagjXjÞ or due to confinement expð−σsjXj2Þ,
one obtains the convergent kernel Kconv ∼ K expð−σsjXj2Þ,
which yields in (33) the result

Kconv
d3x0d3y0

T2
∼ g2T

Z
e−σsjXj2

d3X
jXj2 ∼

g2Tffiffiffiffiffi
σs

p ∼Oð1Þ; ð37Þ

where we have used (26). This is problem (2) of Linde.
However, as we shall show our integral Eq. (30) with the

kernel Kpert, replaced by its convergent form, Kconv, is well
defined and can be solved, e.g., numerically.
At this point it is necessary to specify the kernelK ¼ Kconv

in (34) and the term S0ðx; yÞÞ. We start with the contribution
of S̄ to the gluon pressure, which can be written as
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Pgl ∼
T
V3

tr

�
S̄ðx; yÞG0ðx; yÞ

d4xd3y
T2

�
: ð38Þ

To specify the exact form of the confinement factor
in the Kconv written as Kconvðx0y0jx; yÞ ¼ Kpertðx0; y0jx; yÞ
Lðx0; y0jx; yÞ, i.e., one should realize, as discussed above,
that confinement enters in each loop of the leader diagram
as a piece of the area law factor expð−σsΔA3Þ.
As a result one obtains for each internal loop in the

ladder a converging factor ΔW ¼ expð−σsΔAðiÞÞ, where
ΔAðiÞ is a piece of surface, bounded by the gluon
propagators, connecting for points of this piece. This yields
for the converging factor L in Kconv the form

Lðx0; y0jx; yÞ ¼ expð−σsΔAðx0; y0jx; yÞ: ð39Þ

It is clear that the form (39) is not easy to implement
numerically, and therefore we derive in Appendix B
another form with more explicit expressions.
Now one should take into account that the first terms of

Sn can be conveniently taken into account in (30) in S0,
S0 ¼

P
n¼2;4;6Sn, so that the formal solution of (30) can be

written in the operator form as S̄ ¼ S2 þ S4 þ S6
1−K̂, so that

the total ladder sum S̄ and the pressure

Pgl ¼ Pð0Þ
gl þ P6ð1 − K̂Þ−1;

Pð0Þ
gl ¼ PðlinÞ

gl þ P2 þ P4 ð40Þ

formally contain terms only up toOðg6Þ. Note that from the
calculation of the terms Oðg2Þ; Oðg4Þ, and Oðg6Þ in [6] one
can see alternating signs of these terms, which might imply
that the norm of K̂ is negative, and hence better con-
vergence in the last term of (40) (we have neglected the
terms that are odd in g for simplicity).
Note that the resulting form for S̄ or Pgl is the same, as in

the case of scattering amplitude for the strong interaction
kernel, when the perturbative series makes no sense.
Concluding this section we remark that the convergent

factor in the kernel expð−σsΔA3Þ was not formulated
explicitly in terms of integration parameters, and therefore
we define it in Appendix B in convenient variables.

IV. SUMMARY AND CONCLUSION

We have considered above gluon thermodynamics with
nonperturbative background fields, which ensure spatial
confinement due to colormagnetic correlators (24). As a
result one obtains the area law of the spatial Wilson loop
with the nonzero spatial string tension. Qualitatively it is
clear that all multigluon diagrams in 3D would be con-
vergent at large spatial distances, and this property was
used in [25] to argue that the Linde problem is absent in the
confining vacuum. In the present paper this qualitative
argument was given a more quantitative foundation.

Indeed, the explicit account of the spatial confinement
not only formally solves the Linde problem, but it is also
vitally important in the thermodynamics of the quark gluon
plasma (QGP), as was shown recently in the case of the
SU(3) [26,28], as well as in the case of nf ¼ 2þ 1
thermodynamics in the deconfined phase [29]. It was
demonstrated there that by taking into account correlator
DE

1 (which generates Polyakov lines) and DH for spatial
confinement one obtains good agreement with the most
accurate lattice data.
As we argued above, qualitatively one can exploit the

universal effective gluon mass mH
DðTÞ ≅ 2

ffiffiffiffiffiffiffiffiffiffiffi
σsðTÞ

p
instead

of spatial confinement with σsðTÞ as a first approximation
in the effective perturbation theory up to the g6 order.
From this point of view we have stressed the existence of

the effective screening mass parameter, which is of NP
origin and occurs due to magnetic confinement string
tension σs—this is the answer to what we call problem
1 of Linde. The second problem of Linde, the infinite gn

series with n ≥ 6 contributing to the order g6T4, is con-
firmed above in the NP approach.
As mentioned above, the whole dynamics of diagrams

with n ≥ 6 lies in the soft NP region, where the magnetic
confinement and not the gluon exchange mechanism plays
the most important role. It is an open question what is the
physical meaning of the sum of n > 6 NP terms with
magnetic confinement. One can connect it to the gg
amplitude in the case of two interactions in 3D, confining
Vconf and gluon exchange VOGE, but the answer is possible
to obtain using the integral Eq. (34) and its generalization.
Indeed, higher orders in VQGE, as we have seen, do not

involve higher orders in gn, but nevertheless this fact does
not imply the divergence of the sum, as is known from two-
potential scattering series, leading to the finite result. In the
literature there are other methods to deal with the resum-
mation problem; see, e.g., the review in the second reference
in [4], where the introduction of the gluon mass helps to deal
with the IR problem and to improve the convergence.
However, the physical essence of the Linde problem from
our point of view is connected to the lack of spatial
confinement and should be treated by its correct inclusion.
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APPENDIX A: CALCULATION OF THE SPATIAL
STRING TENSION

Calculation of the spatial string tension via two-gluon
Green’s function
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To calculate DHðzÞ one can use the technique developed
in [19] for DEðzÞ, which allows us to express it via the

two-gluon Green’s function Gð2gÞ
4D ðzÞ ¼ GðgÞ

4D ⊗ GðgÞ
4D, where

two gluons interact nonperturbatively.

The starting point for the gluon propagator GðgÞ
4D is the

integration in the fourth direction in (14) with the exponent
K4 ¼ 1

4

R
s
0 dτðdz4dτ Þ2, which gives for the spatial loop with

x4 ¼ y4

J4 ≡
Z

ðDz4Þx4x4e−K4 ¼
X

n¼0;�1;…

1

2
ffiffiffiffiffi
πs

p e−
ðnβÞ2
4s

¼ 1

2
ffiffiffiffiffi
πs

p
�
1þ

X
n¼�1;�2

e−
ðnβÞ2
4s

�
: ðA1Þ

The second term in (A1) at large T ≫ 1
2
ffiffi
s

p yields 2
ffiffiffiffiffi
πs

p
T,

which gives J4 ¼ 1
2
ffiffiffiffi
πs

p þ T.

The same term that is linear in T is obtained using the
Poisson relation [8,9]. As a result the 4D gluon propagator
is reduced to the 3D one,

GðgÞ
4DðzÞ ¼ TGðgÞ

3DðzÞ þ K3DðzÞ; ðA2Þ
where K3DðzÞ does not depend on T. In what follows we
consider only the first term in (A2), keeping in mind that

GðgÞ
4DðzÞ at small T has a nonzero limit. Substituting this

term in the general expression for DEðzÞ ðDHðzÞÞ obtained
in [19], one has

DHðzÞ ¼ g4ðN2
c − 1Þ
2

hGð2gÞ
4D ðzÞi→ g4ðN2

c − 1ÞT2

2
hGð2gÞ

3D ðzÞi;
ðA3Þ

where Gð2gÞ
3D is the two-gluon Green’s function in 3D with

all interaction between gluons taken into account:

hGð2gÞ
3D i ¼ hGðgÞ

3Dðx; yÞGðgÞ
3Dðx; yÞiB: ðA4Þ

In terms of the gluelump phenomenology, studied in
[20,21], (A4) is called the two-gluon gluelump, computed
on the lattice in [21] and analytically in [20]. In our case
we are interested in the 3D version of the corresponding
Green’s function. Choosing in 3D the x3 ≡ t axis as the
Euclidean time, we proceed as in [16], exploiting the path
integral technique [7,30], which yields

Gð2gÞ
3D ðx − yÞ ¼ t

8π

Z
∞

0

dω1

ω3=2
1

Z
∞

0

dω2

ω3=2
2

ðD2z1ÞxyðD2z2Þxy

× e−K1ðω1Þ−K2ðω2Þ−Vt; ðA5Þ

where V includes a spatial confining interaction between
the three objects: gluon 1, gluon 2, and the fixed straight
line of the parallel transporter, which makes all

construction gauge invariant (see [19,20] for details). In
(A5), t ¼ jx − yj≡ jwj, and finally

σsðTÞ ¼
g4ðN2

c − 1ÞT2

4

Z
hGð2gÞ

3D ðwÞid2w: ðA6Þ

Constructing in the exponent of (A5) the three-body
Hamiltonian in the 2d spatial coordinates

Hðω1;ω2Þ ¼
ω2
1 þ p2

1

2ω1

þ ω2
2 þ p2

2

2ω2

þ Vðz1; z2Þ; ðA7Þ

one can rewrite (A5) as follows (see [30]):

Gð2gÞ
3D ðtÞ ¼ t

8π

Z
∞

0

dω1

ω3=2
1

Z
∞

0

dω2

ω3=2
2

×
X∞
n¼0

jψnð0; 0Þj2e−Mnðω1;ω2Þt: ðA8Þ

Here Ψnð0; 0Þ≡Ψnðz1; z2Þjz1¼z2¼0, and Mn is the eigen-
value of Hðω1;ω2Þ. The latter was studied in [20] in three
spatial coordinates. For our purpose here we only mention

that Gð2gÞ
3D ðzÞ has the dimension of the mass squared and the

integral in (A6) is therefore dimensionless. Hence one
obtains

ffiffiffiffiffiffiffiffiffiffiffi
σsðTÞ

p ¼ g2Tcσ þ const, as was stated above in
(3), where

c2σ ¼
ðN2

c − 1Þ
4

Z
d2whGð2gÞ

3D ðwÞi; ðA9Þ

and const is obtained from the second term in (A2).

APPENDIX B: ONE LOOP DIAGRAM WITH
CONFINEMENT

We now turn to the more formal procedure to define the
properties of the one-loop part of the complicated diagrams,
shown in Fig. 1 as a crossed rectangle. At each vertex of this
diagram the operator (31) enters, which generates 3g vertex
Γi with momentum operator pi, so that the quadratic loop
diagram in the 3D space can be written as

Gðpð1Þ; pð2Þ; pð3Þ; pð4ÞÞ

¼
Y4
i¼1

Γi

Z
∞

0

dsiðDzðiÞÞxðiÞ;xði−1Þe−KiΦðiÞeipðiÞxðiÞdxðiÞ:

ðB1Þ

Here we have introduced the phase factors

ΦðiÞðxðiÞ; xði−1ÞÞ ¼ PA exp

�
ig
Z

xðiÞ

xði−1Þ
Aμdzμ

�
; ðB2Þ

omitting for simplicity the gluon spin phase factor, origi-
nating from the last term in (24), since it is inessential in the
asymptotic limit for large jxðiÞ − xði−1Þj. Here ðDzðiÞÞ is
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ðDzðiÞÞxy ¼ lim
N→∞

YN
k¼1

d3ξðiÞðkÞ
ð4πεÞ2

d3qðiÞ

ð2πÞ4 e
iqðiÞð

P
k
ξðiÞðkÞ−ðx−yÞÞ;

Nε ¼ s: ðB3Þ

It is essential that the product of all phase factorsΦðiÞ in the
whole diagram of Fig. 1 should be averaged over vacuum
configurations, yielding 3D confinement, and each gluon
line is in adjoint representation, and can be represented as
the double fundamental line in the simple case of the large
Nc limit, so that one finally has a product of independent
closed fundamental lines, circumvented by a common line
in the outer contour. In the same large Nc limit the average
of this product can be represented as the product of
averages of individual loops times the average of the outer
contour, which yields the overall confining factor. In what
follows we shall be interested in the properties of one
rectangular loop and demonstrate its spatial convergence,
while the overall confining loop will exhibit additional
convergence.
The rather complicated calculations, given in Appendix B

of the paper [30] for the case d ¼ 4, can be done in an
analogous manner for the case d ¼ 3, and one obtains the
following form of the rectangular of Fig. 1 by taking into
account the spatial confinement,

G4ðpiÞ ¼ ð2πÞ3δð3Þ
	X

pðiÞ

Y4

i¼1

Z
d3qiΓi

q2i
I4ðbÞ; ðB4Þ

where

I4ðbÞ ¼
Z

d3P
ð2πÞ3

�
4π

σ

�
6

exp

�
−
2

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21b

2
2 − ðb1b2Þ2

q �

× exp

�
−
2

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23b

2
4 − ðb3b4Þ2

q �
; ðB5Þ

and bi are

b1 ¼ q1 − p2 − p3 þ P; b2 ¼ q2 − p3 þ P;

b3 ¼ q3 þ P; b4 ¼ q4 þ p4 þ P: ðB6Þ

One can check that at large momenta (the hard regime)
when b2i ≫ σ; i ¼ 1, 2, 3, 4,

I4ðbÞ →
Y

i¼1;2;4

δð3ÞðbiÞ; ðB7Þ

and the product of four factors d3qi is reduced to a single
integration d3q3, as it should be in the free case without
confinement.
As a result one has in (B4) for one loop in Fig. 1 the

combination d3q
Q

4
i¼1

Γi
q2i
, and for the whole chain of n

loops, as in Fig. 1, one obtains an estimate (see [1]):

MnðTÞ ∼ g2ðn−1Þ
�
T
Z

T

a
ffiffi
σ

p d3q

�
n q2ðn−1Þ

ðq2Þ3ðn−1Þ : ðB8Þ

Here we have used the hard limit condition, q ≥
a

ffiffiffi
σ

p
; a ≫ 1.

Integration in (B8) yields the result ðn > 4Þ

Mhard
n ðTÞ ∼ g2ðn−1ÞTnσ

4−n
2
s

an−4
∼

g6T4

ðcσaÞn−4
; ðB9Þ

where we have exploited (2). This, apart from the cσa
factor, is problem (2) of Linde [1]: all terms with n > 4

contribute to the order g6T4, however with decreasing
magnitude for cσa ≫ 1.
To complete our study we consider now the soft regime:

all momenta qi, pi in (B6) are small, qi, P≲ ffiffiffi
σ

p
. In this

case every loop integration d3q in (B8) is replaced by

d3q →
Y4
i¼1

d3qiI4ðbÞ ¼ σ3=2s f

�
qiffiffiffi
σ

p
�
; ðB10Þ

where f in (B5) yields a cutoff in the d3q integration in
(B8), and as a result one obtains in the soft regime

Msoft
n ðTÞ ∼ g2ðn−1ÞTnσ

4−n
2
s φn ∼ g6T4φn; ðB11Þ

where φn is a converging integral of dimensionless ratios
qi=

ffiffiffi
σ

p
. One can see that (B11) yields qualitatively the same

result as in (B9), for the order of magnitude estimates.
However quantitatively one should calculate nonperturba-
tively the whole series n ≥ 4 to recover the Oðg6Þ con-
tribution. This situation is similar to the solution of the
relativistic problem of two potentials: one confining and
another gluon exchange but without small parameters, and
one should sum up the series, or rather solve the corre-
sponding relativistic Hamiltonian equation [31].
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