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We evaluate the two-photon exchange correction to the elastic electron-proton scattering cross section
within a dispersive framework. Besides the elastic contribution, we account for all πN intermediate state
contributions using the phenomenological MAID fit as an input. We develop a novel method for the
analytical continuation of the two-photon exchange amplitudes into the unphysical region and generalize
our previous work to the momentum transfer region 0.064 GeV2 ≲Q2 ≲ 1 GeV2. We compare our results
with recent OLYMPUS, CLAS and VEPP-3 data as well as with empirical fits and estimates in the forward
angular region.
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I. INTRODUCTION

The first measurements of the proton electromagnetic
structure in terms of form factors (FFs) were performed
by Hofstadter’s group [1,2] using elastic scattering of
electrons on protons under the assumption of the
exchange of one virtual photon [3]. These experiments
demonstrated that the proton has a finite size and
allowed us to extract the Dirac FF FD and Pauli FF
FP of the proton from cross section measurements at
different electron scattering angles [2]. This method has
been refined over the years by many experiments.
Currently, the most precise measurements of the proton
FFs at low momentum transfer, and its charge and
magnetic radii were performed by the A1 Collaboration
at MAMI, Mainz [4,5]. The knowledge of the proton
FFs reached a subpercent level accuracy yielding a
proton charge radius from the electron-proton scatter-
ing: RE ¼ 0.879ð8Þ fm [4,5]. However, later reanalyses
of the MAMI data gave different results in the range
0.84 fm≲ RE ≲ 0.89 fm [6–13], mainly originating
from the data extrapolation from the lowest accessible
value of Q2 ¼ 5 × 10−3 GeV2 down to Q2 ¼ 0. Besides
this extrapolation issue, measurements of FFs with
subpercent level accuracy raise the question of the
theoretical control over corrections to the reaction
formalism, notably radiative corrections. The leading
radiative corrections which require a hadronic model for
an estimate, and are thus not solely calculable in QED,
are due to two-photon exchange (TPE) between the
lepton and nucleon.1 The extraction of the charge

radius, which relies mainly on forward angle elastic
scattering data, does not show a significant model
dependence for these TPE corrections. However, the
value of the magnetic radius, which relies on backward
scattering angle information, depends significantly on
the applied TPE model [5]. Besides this open question,
the magnetic FF value extracted in Refs. [4,5] is system-
atically 2% larger for Q2 ≳ 0.2 GeV2 when compared to
results from previous measurements. These issues require
us to reduce the model dependence in the treatment of TPE
corrections to the elastic electron-proton scattering.
The recent extractions of the proton charge radius from

the Lamb shift measurements in muonic hydrogen [17,18]
resulted in a significant discrepancy in comparison with
measurements with electrons [4,5,19], see Refs. [18,20,21]
for recent reviews. In view of this discrepancy, the higher-
order corrections to the Lamb shift were examined in detail
by many groups. In particular, the TPE proton structure
correction was scrutinized over the past decade [22–35].
The TPE correction contributes at present the largest
theoretical uncertainty when extracting the charge radius
from theLambshift data, thus limiting its accuracy.However,
its size is about ten times smaller than the observed
discrepancy [27].
The precise knowledge of the elastic proton FFs, and its

charge andmagnetic radii is also of paramount importance in
view of forthcoming high-precise measurements of the 1S
hyperfine splitting by the CREMA Collaboration [36],
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1The value of the two-photon exchange contribution depends
on the applied radiative corrections and differs between the
traditional Mo and Tsai [14] versus Maximon and Tjon [15]
prescriptions. In the soft-collinear effective field theory approach
[16], a renormalization analysis was performed allowing us to
systematically compute and resum large logarithms at momentum
transfers Q2 ≫ m2
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FAMUCollaboration [37,38], and a planned J-PARC experi-
ment [39]. These new experiments aim to measure the
1S hyperfine splitting to 1 ppm accuracy largely exceeding
the theoretical knowledge of the leading proton structure
correction due to TPE [40–53], which was estimated to
be 213 ppm in Ref. [49] and 102 ppm in Ref. [53]. The
uncertainty coming from the elastic proton structure of
48 ppm [53] can be further reduced by new measurements
of the electromagnetic FFs at lowQ2 [54] and by reanalyzing
the existing experimental data with improved treatment of
TPE and higher-order QED radiative corrections.
A second open question in the description of the proton

electromagnetic structure arose in the beginning of this
century after the realization that the polarization transfer
from a longitudinally polarized electron to the proton, in the
elastic scattering process, provided an alternative method to
access the proton elastic FFs [55–58]. The ratio of the
electric over magnetic FFs GEp=GMp was measured at the
Jefferson Lab in the scattering on the polarized proton and
by the detection of the recoiling proton’s polarization, see
Ref. [59] for a recent review. It was found that the measured
ratio decreases approximately linearly with increasing
momentum transfers [60–63] for Q2 ≳ 1 GeV2, in contra-
diction with the traditional extraction from unpolarized
cross section measurements [3], which shows an approx-
imately constant behavior for the GEp=GMp ratio.
Apparently, the precise account of higher-order radiative
corrections is necessary when going to larger momentum
transfers. The unaccounted contribution from the hard two-
photon exchange process was proposed as an explanation
of this discrepancy [64,65], which triggered a lot of
research activity over the past years.
In the relatively largemomentum transfer region, the TPE

correction was calculated theoretically [65–73] and studied
experimentally [74–83], see Refs. [84,85] for reviews.
Recently, three dedicated experiments confirmed the rel-
evance of the TPE correction showing a deviation of the
positron-proton to electron-proton elastic scattering cross
section ratio from unity within 2σ–3σ (statistical and
uncorrelated systematic errors). The measurements have
been performed at VEPP-3 [86], by the CLASCollaboration
at JLab [87–89], and by the OLYMPUS Collaboration at
DESY [90], see Ref. [91] for the most recent review of these
experiments and a discussion of results.
At low momentum transfers, the leading term in the

momentum transfer expansion of the TPE correction to the
unpolarized electron-proton scattering cross section arises
from the scattering of the relativistic massless electron on a
point charged target [92], which is known as a Feshbach
result. The subleading terms in the corresponding momen-
tum transfer expansion of theTPE correction are due to finite
size effects in the proton intermediate state, and due to
inelastic intermediate states, see e.g., Ref. [93]. Besides the
leading term, proportional toQ, coming from the Feshbach
correction, the expansion for the elastic (i.e., proton)

intermediate state contains Q2 ln2Q2 and Q2 lnQ2 terms.
The leadingmodel-independent correction from all inelastic
intermediate states is of order Q2 lnQ2, as first obtained in
Ref. [93], and subsequently reproduced within dispersion
relations [94]. Besides the leading inelastic corrections, the
unpolarized proton structure function contribution, which
enters at order Q2, was evaluated in Refs. [33,95].
When going to larger momentum transfers, the TPE

correction to the unpolarized elastic electron-proton scat-
tering cross section was early on approximated as a nucleon
box diagram with monopole FFs, which were evaluated
using standard four-point integrals in Ref. [65]. This model
was generalized to the case of the narrow-Δ intermediate
state in Ref. [96] with subsequent evaluations in
Refs. [8,97,98]. Higher intermediate states were included
in the work of Ref. [99], and a partial cancellation between
the contributions from spin-1=2 and spin-3=2 resonances
was found. However, the hadronic model calculations of
Refs. [8,65,96–99] are based on the substitution of the off-
shell vertex by its on-shell form unavoidably introducing
model dependence. Such procedure can also result in
pathological behavior as is, e.g., the case for the TPE
Δ-box contribution in the high-energy (HE) forward limit
(ε → 1) which diverges, violating unitarity [98,100].
The imaginary part of the TPE amplitudes can be obtained

solely from the on-shell information by unitarity relations.
Assuming the analyticity, the real part can then be recon-
structed exploiting dispersion relations. Such approach for
the TPE amplitudes was proposed in Refs. [101,102]. The
proton intermediate state (elastic) contributionwas studied in
Ref. [102] and generalized to the case of spin-3=2 particles in
Ref. [103]. Higher spin-1=2 and spin-3=2 resonances were
also accounted for inRefs. [104,105] exploiting the empirical
multipoles for pion electroproduction. In the developed
approach of Refs. [102–105], the experimental input was
reparametrized as a sum of monopole FFs reducing the
calculation to the evaluation of one-loop box diagrams as it is
done in the hadronic models.
The data-driven dispersion relation approach, aimed at

evaluating the dispersive integral directly from the exper-
imental input, was presented in Ref. [106] for the elastic
intermediate state TPE contribution and generalized to the
case of the narrow-Δ TPE in Ref. [100]. Within a dispersive
framework one requires also the knowledge of the imagi-
nary part of the TPE amplitudes outside the physical region
for ep → ep scattering. For one-particle intermediate
states, the method of the analytical continuation of the
TPE amplitudes into the unphysical region was described
in Refs. [100,106].
A first step to extend such dispersive approach beyond

narrow resonances was performed in Ref. [107]. In that
work, the full πN intermediate state TPE contribution,
see Fig. 1, was evaluated at low momentum transfer
Q2 ≲ 0.064 GeV2, where the analytical continuation of
TPE amplitudes into the unphysical region is not required.
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Such approach allows us to account for all known πN
resonances with spins 1=2; 3=2; 5=2; ... as well as nonreso-
nant πN states. The pion electroproduction amplitudes
from the MAID2007 fit [108,109] were used as input in
Ref. [107] to evaluate the imaginary parts of the TPE
amplitudes [68]. It was found that the account for a πN
intermediate state at low momentum transfer within the
subtracted DRs improves the agreement with fits to the
experimental data [107].
In the present work, we extend the dispersion relation

formalism of Ref. [107] to the momentum transfer range
0.064 GeV2 ≲Q2 ≲ 1 GeV2. As a necessary step, we
develop and test a novel method for the analytical con-
tinuation of the TPE amplitudes, which allows us to
reconstruct the imaginary parts, exploiting the most recent
pion electroproduction amplitudes from the MAID2007 fit
[108,109] as input, without having to approximate the
resonance production FFs by sums of monopoles.
Subsequently, we compare the sum of elastic and πN
intermediate state TPE corrections to recent experimental
data as well as to the total TPE contribution in the near-
forward approximation of Ref. [95].
The paper is organized as follows: The general formal-

ism of the elastic electron-proton scattering and of TPE
corrections to observables are described in Sec. II. The
model calculation of the Δð1232Þ resonance contribution is
given in Sec. III. We study the Δð1232Þ resonance in the
simplified hadronic model in Sec. III A, compare it with the
unitarity relations in Sec. III B and to the dispersion relation
approach in Sec. III C. Using this model calculation as a
test case, we develop a novel method for the analytical
continuation of the TPE amplitudes into the unphysical
region in Sec. III D. In the following Sec. IV, we apply this
method to evaluate the πN contribution, using the phe-
nomenological πN electroproduction multipoles from the
MAID2007 fit as input, to the imaginary parts of TPE
amplitudes. We determine the corresponding TPE correc-
tions to observables. We compare our results with recent
OLYMPUS, CLAS and VEPP-3 data and with polarization
transfer measurements in Sec. V. We also provide a
comparison with the empirical fits of Refs. [4,5] and total
TPE calculation in the forward angular region of Ref. [95].
We provide our conclusions and outlook in Sec. VI.

II. ELASTIC ep SCATTERING AND TPE
CORRECTION

The elastic electron-proton scattering process: eðk; hÞþ
pðp; λÞ → eðk0; h0Þ þ pðp0; λ0Þ, where k; p; k0; p0 denote
the participating particles momenta, hðh0Þ the incoming
(outgoing) electron helicities and λðλ0Þ the corresponding
proton helicities respectively, see Fig. 2, is completely
described by 2 Mandelstam variables. Conveniently, we
work with the squared momentum transferQ2 ¼ −ðk − k0Þ2
and the squared energy in the center-of-mass (c.m.) reference
frame s ¼ ðpþ kÞ2.
The symmetry between the s and u channels can easily

be incorporated introducing the crossing-symmetric kin-
ematical variable ν:

ν≡ ðs − uÞ=4; ð1Þ
where u ¼ ðk − p0Þ2. In the experimental analyses, it is
convenient to introduce the photon polarization parameter
ε, which indicates the degree of the longitudinal polariza-
tion of the virtual photon:

ε ¼ ν2 −M4τPð1þ τPÞ
ν2 þM4τPð1þ τPÞ

; ð2Þ

with the proton mass M, and τP ≡Q2=ð4M2Þ. It varies
between ε ¼ 0 for backward scattering and ε ¼ 1 for
forward scattering.
The elastic e−p scattering with massless leptons is

completely described by three independent Lorentz-
invariant amplitudes [64]:

T ¼ e2

Q2
ūðk0; h0Þγμuðk; hÞN̄ðp0; λ0Þ

×

�
γμGMðν; Q2Þ − Pμ

M
F 2ðν; Q2Þ

þ γ:KPμ

M2
F 3ðν; Q2Þ

�
Nðp; λÞ; ð3Þ

where the averaged momentum variables are P ¼
ðpþ p0Þ=2; K ¼ ðkþ k0Þ=2; u (ū) is the initial (final)
electron spinor; N (N̄) is the initial (final) proton spinor;
γ:a≡ γμaμ; and e > 0 is the proton charge. In the follow-
ing, we consider also the amplitudes G1 and G2, defined by

FIG. 1. TPE graph with πN intermediate state. FIG. 2. Elastic electron-proton scattering.
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G1 ≡ GM þ ν

M2
F 3; ð4Þ

G2 ≡ GM − ð1þ τPÞF 2 þ
ν

M2
F 3: ð5Þ

In the approximation of one-photon exchange (OPE),
these amplitudes are equivalent to the magnetic G1γ

1 ¼
G1γ
M ¼ GMðQ2Þ and electric G1γ

2 ¼ GEðQ2Þ≡GMðQ2Þ−
ð1þ τPÞF2ðQ2Þ proton FFs, where F2ðQ2Þ ¼ F 1γ

2 is the
Pauli FF. The amplitude F 3 vanishes in the OPE approxi-
mation: F 1γ

3 ¼ 0.
In presence of TPE, the e−p→e−p elastic scattering cross

section receives corrections which can be expressed as

σ ¼ σOPEð1þ δ2γÞ; ð6Þ

where σOPE is the cross section in theOPE approximation. In
terms of the invariant amplitudes, the TPE correction δ2γ to
the unpolarized e−p cross section at the leading order in
α≡ e2=4π ≃ 1=137 is given by [107]

δ2γ ¼
2

G2
M þ ε

τP
G2

E

�
GMℜG2γ

1 þ ε

τP
GEℜG2γ

2

þ GMðε − 1Þ ν

M2
ℜF 2γ

3

�
; ð7Þ

where the superscript 2γ on the invariant amplitudes
indicates their TPE contributions.
Other accessible observables, which are influenced by the

real parts of the TPE amplitudes, are double polarization
observables with a polarization transfer from the longitu-
dinally polarized electron to the recoil proton. The longi-
tudinal polarization transfer asymmetry is defined as

Pl ¼
dσðh ¼ þ; λ0 ¼ þÞ − dσðh ¼ þ; λ0 ¼ −Þ
dσðh ¼ þ; λ0 ¼ þÞ þ dσðh ¼ þ; λ0 ¼ −Þ ; ð8Þ

and the transverse polarization transfer asymmetry is
given by

Pt ¼
dσðh ¼ þ; S0 ¼ S⊥Þ − dσðh ¼ þ; S0 ¼ −S⊥Þ
dσðh ¼ þ; S0 ¼ S⊥Þ þ dσðh ¼ þ; S0 ¼ −S⊥Þ

; ð9Þ

with the spin direction of the recoil proton S0 ¼ �S⊥ in the
scattering plane transverse to its momentum direction.
In this work, we also discuss the ratio of polarization

transfer asymmetries, which is measured experimentally
[76]:

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τPð1þ εÞ

2ε

r
Pt

Pl
¼ GE

GM
þℜG2γ

2

GM
−
GE

GM

ℜG2γ
1

GM

þ 1 − ε

1þ ε

GE

GM

ν

M2

ℜF 2γ
3

GM
: ð10Þ

III. Δð1232Þ CONTRIBUTION

In this section, we study the prominent Δð1232Þ reso-
nance contribution to TPE amplitudes for elastic electron-
proton scattering. First, we describe a model calculation of
the narrow-Δ TPE correction [96]. This model will firstly
serve the purpose to provide a detailed comparison with the
dispersion relation (DR) approach [100,103]. Afterwards,
we develop a new method for the analytical continuation of
the imaginary parts of the TPE amplitudes outside the
physical region for the ep → ep scattering process. Wewill
test this new method on the example of the Δ resonance
contribution, where we know the amplitudes both in the
physical and unphysical regions from the direct loop
calculation. Once this method has been tested on the
Δ-intermediate state, we can be confident to apply it for
the πN intermediate state contribution to the TPE ampli-
tudes in Sec. IV.

A. Box graph model

In this section, we use a box graph model to evaluate the
narrow-Δ contribution to the TPE correction in the elastic
electron-proton scattering at low momentum transfer,
see Fig. 3.
To model the γ�N → Δ vertex, we restrict ourselves to

the leading magnetic dipole transition,

Γαμ
NΔ ¼

ffiffiffi
2

3

r
3ðM þMΔÞG�

MðQ2Þ
2MððM þMΔÞ2 þQ2Þ ε

αμρσðpΔÞρ ~qσ;

~q ¼ pΔ − p; ð11Þ
using the on-shell magnetic transition FF G�

MðQ2Þ, in the
Jones-Scadron convention [110], where MΔ is the Δ mass.
In this model, the helicity amplitudes corresponding with

the TPE direct and crossed box graphs can be expressed as

T2γ
direct ¼ −ie4

Z
d4k1
ð2πÞ4 ūðk

0; h0Þγν
γ:k1

k21 −m2
γμuðk; hÞ

×
1

ðk1 − K − q
2
Þ2ðk1 − K þ q

2
Þ2

× N̄ðp0; λ0Þðγ0Γβν
NΔγ

0Þ† γ:Pþ γ:K − γ:k1 þMΔ

ðPþ K − k1Þ2 −M2
Δ

×

�
−gβα þ

1

3
γβγα

�
Γαμ
NΔNðp; λÞ; ð12Þ

FIG. 3. Direct and crossed TPE diagrams with Δ-intermediate
state in the elastic ep scattering.
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T2γ
crossed ¼ −ie4

Z
d4k1
ð2πÞ4 ūðk

0; h0Þγμ
γ:k1

k21 −m2
γνuðk; hÞ

×
1

ðk1 − K − q
2
Þ2ðk1 − K þ q

2
Þ2

× N̄ðp0; λ0Þðγ0Γβν
NΔγ

0Þ† γ:P − γ:K þ γ:k1 þMΔ

ðP − K þ k1Þ2 −M2
Δ

×

�
−gβα þ

1

3
γβγα

�
Γαμ
NΔNðp; λÞ; ð13Þ

where P and K are defined as in Sec. II and m denotes the
mass of the electron. In Eqs. (12) and (13), the simplified
form of the vertex made it possible to replace the projection
operator on the spin-3=2 states in the Δ propagator by

ΠβαðpΔÞ ¼ −gβα þ
1

3
γβγα þ

p̂ΔγβðpΔÞα þ ðpΔÞβγαp̂Δ

3p2
Δ

→ −gβα þ
1

3
γβγα: ð14Þ

We next evaluate the TPE invariant amplitudes from the
helicity amplitudes of Eqs. (12) and (13) [107]. In the
γ�N → Δ vertex of Eq. (11), the magnetic transition Jones
and Scadron FFG�

MðQ2Þ is expressed in terms of the proton
and neutron elastic Pauli FFs Fp

2 and F
n
2 , respectively, using

a large-Nc theory relation [111]:

G�
MðQ2Þ ¼ G�

Mð0Þ
μp − μn − 1

ðFp
2 ðQ2Þ − Fn

2ðQ2ÞÞ;

G�
Mð0Þ ¼ 3.02; ð15Þ

Fp
2 ðQ2Þ ¼ μp − 1

ð1þ τPÞð1þ Q2

Λ2Þ2
;

μp ¼ 2.793; Λ ¼ 0.843 GeV; ð16Þ

Fn
2ðQ2Þ ¼ μn

ð1þ τPÞð1þ Q2

Λ2Þ2
�
1þ ðaþ bÞτP

1þ bτP

�
;

μn ¼ −1.913; a ¼ 1.25; b ¼ 18.3; ð17Þ

where the neutron electric FF is taken from Ref. [112].
For the neutron magnetic, proton electric, as well as proton
magnetic FFs a dipole form is assumed.
To calculate the invariant amplitudes, we use the four-

point integrals from LoopTools [113,114]. We confirm that
the box graph with Δ-intermediate state is free of infrared
divergencies, as is expected. We checked numerically that
the amplitudes G2γ

1 ;G2γ
2 ;F 2γ

2 vanish in the limit Q2 → 0 at a
fixed value of ν, whereas the amplitudes G2γ

M;F
2γ
3 behave as

a lnQ2 þ b, where a and b are constants, in agreement with
the low-Q2 limit of Ref. [115] and the results reported in

Ref. [107]. In the following sections, we compare this
model calculation, with one-loop integrals evaluated using
LoopTools, to the dispersion relation evaluation.

B. Unitarity relations

In this section, we check numerically that the imaginary
parts of the TPE amplitudes in the box graph model of
Sec. III A are reconstructed by unitarity relations. We also

FIG. 4. Imaginary parts of the narrow-Δ contribution to the
TPE amplitudes as a function of the crossing-symmetric variable
ν in the physical and unphysical regions. The result of the direct
box graph model evaluation is compared with the result obtained
from the unitarity relations for Q2 ¼ 0.624 GeV2. The vertical
line corresponds with the boundary between physical (ν > νph)

and unphysical (ν < νph) regions, with νph¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðQ2þ4M2Þ

p
=4

≈0.402GeV2.
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compare the narrow-Δ model with a weighted-Δ model, as
well as with the leading pion electroproduction multipole

Mð3=2Þ
1þ contribution, obtained from data.
To write down the unitarity relations directly for ℑT2γ

direct
from Eq. (12), we exploit Cutkosky’s rules by putting the
intermediate state on its mass shell, i.e., replacing the
intermediate electron and Δ propagator denominators in
the loop integral by

1

k21 −m2
→ ð−2πiÞδðk21 −m2ÞΘðk01Þ; ð18Þ

1

ðPþ K − k1Þ2 −M2
Δ

→ ð−2πiÞδððK þ P − k1Þ2 −M2
ΔÞΘð

ffiffiffi
s

p
− k01Þ: ð19Þ

Performing the integration over the electron energy and
absolute value of the momentum, we obtain for the
imaginary part of the TPE amplitude ℑT2γ

direct:

ℑT2γ
direct ¼

α2ðs −M2
ΔÞ

4s

Z
dΩ1

ðk1 − K − q
2
Þ2ðk1 − K þ q

2
Þ2

× ūðk0; h0Þγνγ:k1γμuðk; hÞN̄ðp0; λ0Þðγ0Γβν
NΔγ

0Þ†
× ðγ:Pþ γ:K − γ:k1 þMΔÞ

×

�
−gβα þ

1

3
γβγα

�
Γαμ
NΔNðp; λÞ; ð20Þ

where the integration runs over the intermediate electron
angles Ω1.
We checked explicitly that the imaginary parts of the

TPE amplitudes in the direct loop diagram evaluation

FIG. 5. W integrand entering the imaginary parts of the TPE amplitudes for ν ¼ 2.725 GeV2 and for twoQ2 values:Q2 ¼ 0.05 GeV2

(left panels) andQ2 ¼ 0.624 GeV2 (right panels). The weighted-Δ result is compared with the fullMð3=2Þ
1þ πN multipole contribution, as

calculated from the MAID 2007 fit [108,109], which also includes nonresonant contributions.
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within the box graph model of Sec. III A are in agreement
with the unitarity relations of Eq. (20) in the physical region,
i.e., when the kinematics correspond to the geometrically
allowed configuration for the ep → ep process. Performing
the analytical continuation into the unphysical region by the
contour deformation method discussed in Refs. [100,106],
we evaluated the imaginary parts of the TPE amplitudes for
arbitrary values of the crossing-symmetric variable ν based
on the unitarity relation of Eq. (20). We refer the reader to
Refs. [106,107,115] for a detailed description of the unphys-
ical region for a narrow hadronic intermediate state. In Fig. 4
we show the comparison for the imaginary part calculated
from Eq. (20) through contour deformation with the direct
loop diagram evaluation from the box graph model expres-
sion of Eq. (12) for a narrow-Δ state using LoopTools

[113,114]. Using as an example the value of the momentum
transferQ2 ¼ 0.624 GeV2, corresponding with a kinematics
of the OLYMPUS experiment, we find a perfect agreement
between both calculations.
In order to compare the Δ calculation with the empirical

πN multipole evaluation, we also consider in the following
the more realisticΔ contribution weighted over the invariant
mass of the intermediate hadronic state: W2 ¼
ðPþ K − k1Þ2. In this case, the phase space integral entering
the ℑT2γ

direct in Eq. (20) gets replaced by

Z
dΩ1… →

Zffiffisp

Mþmπ

dWfðWÞ
Z

dΩ1…; ð21Þ

where the weighting function fðWÞ is given by the Breit-
Wigner form:

fðWÞ ¼ NΔ

W6

ðW2 −M2 þm2
πÞ2 − 4W2m2

π

ðW2 −M2
ΔÞ2 þM2

ΔΓ2
Δ

ΘðW −M −mπÞ:

ð22Þ

Furthermore, we use as parameter values the pion mass
mπ ≈ 0.135 GeV; the Δ mass MΔ ¼ 1.232 GeV, the Δ
width ΓΔ ¼ 0.117 GeV; and the normalization parameter
NΔ ¼ ðR∞

Mþmπ
fðWÞdWÞ−1. The weighting function of

Eq. (22) inherits the correct resonance shape and width as
well as the correct behavior near the pion-production thresh-
old W ¼ M þmπ . We adopt an overall prefactor W−6 in
order to have a comparable strength at the peak position as

theMð3=2Þ
1þ πN contribution [107], which is evaluatedwith the

MAID2007 fit [108,109] as an input. We show this com-
parison in Fig. 5, where the W distribution of the TPE
amplitudes is presented for ν ¼ 2.725 GeV2 and Q2 ¼
0.05 GeV2 for the weighted-Δ model and for the Mð3=2Þ

1þ
πN contribution. Both calculations show approximately the
same strength at the Δ-resonance position. The shift of
the peak position in the empirical MAID fit is understood to
be due to the unitarization between the resonant contribution
and nonresonant background, which are both present in the

Mð3=2Þ
1þ multipole.
In the following Fig. 6, we compare the imaginary parts

of TPE amplitudes as calculated using the narrow-Δmodel,
the weighted-Δ model, and using the dominant magnetic

dipole Mð3=2Þ
1þ πN contribution [107], which is evaluated

from the MAID2007 fit [108,109] as an input.
We see from Fig. 6 that at large values of ν, correspond-

ing to higher energies, the weighted-Δ model gives a result
similar to the narrow-Δ calculation. At lower ν, corre-
sponding to the Δ-resonance region, the weighted-Δ
calculation that accounts for the finite width effects is
expected to be more realistic and shows differences from

the narrow-Δ result. The leading Mð3=2Þ
1þ πN contribution

FIG. 6. Imaginary parts of the TPE amplitudes as a function of
the crossing-symmetric variable ν for Q2 ¼ 0.624 GeV2. The
narrow- and weighted-Δ calculations are compared with the full

Mð3=2Þ
1þ πN multipole contribution, which is evaluated from the

MAID 2007 fit.
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has a similar size, sign and behavior as the model-Δ
calculations. The difference is given mainly by the non-
resonant background contributions which are included in

the full Mð3=2Þ
1þ multipole result.

C. Dispersion relations at fixed Q2

In this section, we perform the dispersion relation
evaluation of the model-Δ TPE amplitudes and compare
the results to the box graph model of Sec. III A.
The TPE amplitudes G2γ

Mðν; Q2Þ;F 2γ
2 ðν; Q2Þ;G2γ

1 ðν; Q2Þ;
G2γ
2 ðν; Q2Þ are odd functions under crossing ν → −ν,

whereas the amplitude F 2γ
3 ðν; Q2Þ is even in ν. A general

analysis of helicity amplitudes for the ep → ep process
[73] shows that in the Regge limit ν → ∞, Q2=ν → 0 the
functions G1;2;F 3 vanish. Such high-energy behavior
allows one to write down the following unsubtracted
DRs at a fixed value of the momentum transfer Q2

[102,106,107]:

ℜGoddðν; Q2Þ ¼ 2ν

π
⨏
∞

νthr

ℑGoddðν0; Q2Þ
ν02 − ν2

dν0; ð23Þ

ℜF 2γ
3 ðν; Q2Þ ¼ 2

π
⨏
∞

νthr

ν0
ℑF 2γ

3 ðν0; Q2Þ
ν02 − ν2

dν0; ð24Þ

FIG. 7. Real parts of the TPE amplitudes as a function of the crossing-symmetric variable ν in the physical and unphysical regions for
Q2 ¼ 0.624 GeV2. We compare the direct loop diagram evaluation in the box graph model with narrow Δ to the calculation using
unsubtracted dispersion relations. The vertical line corresponds with the boundary between physical and unphysical regions, i.e.,
νph ≈ 0.402 GeV2.

TOMALAK, PASQUINI, and VANDERHAEGHEN PHYSICAL REVIEW D 96, 096001 (2017)

096001-8



where Godd denotes any amplitude odd in ν. The imaginary
part in Eqs. (23) and (24) is taken from the s-channel
discontinuity only. These DRs are valid for the contribution
of each intermediate state. In this section, we evaluate the
dispersive integral for the narrow-Δ inelastic contribution,
which starts from the Δ-production threshold νthr ¼
ðM2

Δ −M2Þ=2 −Q2=4.
The unsubtracted DRs as given by Eqs. (23) and (24) can

only be written down for the functions with an appropriate
HE behavior, when the contribution from the contour at
infinity vanishes. We will next discuss the HE behavior of
the TPE invariant amplitudes reconstructed within unsub-
tracted DRs and in the box graph model with the narrow-Δ
intermediate state.

First, we discuss the possible HE behavior of the
amplitudes real parts reconstructed within the unsubtracted
DRs of Eqs. (23) and (24). We start with the case of the
odd amplitude Godd and assume in the following the HE
behavior of the imaginary part ℑGoddðν; Q2Þ≃ νβðc1 þ
c2 ln νþ c3ln2νÞ with the integer β ≤ 0, which is sufficient
for the convergence of the DR integral, keeping the squared
logarithmic term as a Froissart bound [116]. The corre-
sponding exponent ~β in the HE behavior of the odd

amplitude ℜGoddðν;Q2Þ≃ν ~βð~c1þ ~c2 lnνþ ~c3ln2νþ ~c4ln3νÞ,
which is reconstructed within the unsubtracted DR, in
general has the upper bound ~β ≤ −1 with the nonzero
coefficients ~c2; ~c3; ~c4 only for β ¼ −1 and can be constant
(logarithmic) only in the case of the logarithmic leading

FIG. 8. The same as Fig. 7, but for the difference between the calculations from the unsubtracted DR and the direct loop diagram
evaluation in the box graph model with narrow Δ.
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behavior of the imaginary part ℑGoddðν; Q2Þ ∼ ln ν
(ℑGoddðν; Q2Þ ∼ ln2 ν) respectively. We next turn to the
even amplitude. Similarly, we assume the HE behavior of
the imaginary part ℑF 2γ

3 ðν;Q2Þ≃νβðc1þc2 lnνþc3ln2νÞ
with the integer β ≤ −1. The HE behavior of the real part
of the even amplitude in the unsubtracted DR analysis is
expected to be vanishing. In general, the corresponding
exponent ~β in the HE behavior of the real part
ℜF 2γ

3 ðν; Q2Þ≃ ν~βð~c1 þ ~c2 ln νþ ~c3ln2νþ ~c4ln3νÞ has the
upper bound ~β ≤ −2 with nonzero ~c2; ~c3; ~c4 only for
β ¼ −2. The behavior of the imaginary part with β ¼ −1

is an exceptional case. The corresponding HE behavior of
the real part 1=ν (ln ν=ν) is possible when the imaginary part
behaves as ℑF 2γ

3 ðν; Q2Þ ∼ ln ν=ν (ℑF 2γ
3 ðν; Q2Þ ∼ ln2ν=ν2)

at high energies.
In the box graph model with the vertex of Eq. (15), the

high-energy behavior of the TPE amplitudes is given by

ℑG2γ
M;ℑF

2γ
2 ;ℑG

2γ
1 ;ℑG

2γ
2 ∼ const; ℑF 2γ

3 ∼
1

ν
; ð25Þ

ℜF 2γ
3 ∼ const; ℜG2γ

M;ℜG2γ
1 ;ℜG2γ

2 ∼ ν; ℜF 2γ
2 ∼

ln ν
ν
:

ð26Þ

The behavior of Eq. (25) ensures the integrals in Eqs. (23)
and (24) are convergent for all amplitudes.
However, the linear rise of the real parts ℜG2γ

1 ;ℜG2γ
2 at

high energies in the box graph model results in a linear
growth of the TPE correction to the unpolarized cross
section (δ2γ) and to the polarization transfer ratio Pt=Pl of
Eqs. (7) and (10):

δ2γðν → ∞Þ ∼ ν;
Pt

Pl
ðν → ∞Þ ∼ ν; ð27Þ

violating the unitarity conditions [98,100,115]:

δ2γðν → ∞Þ → 0;
Pt

Pl
ðν → ∞Þ → −

2M
Q

GE

GM
: ð28Þ

In contrast, theHE behavior of the TPE amplitudes evaluated
by unsubtracted DRs is in agreement with unitarity.

FIG. 9. Physical and unphysical regions of the TPE amplitudes
in the (Q2,

ffiffiffi
s

p
) plane of the ep → ep process. In the region

Q2 > Q2
ph, an analytical continuation into the unphysical region

is required.

FIG. 10. Physical and unphysical regions of the kinematical variables ν and Q2 (Mandelstam plot) for the elastic electron-proton
scattering. The hatched blue region corresponds to the physical region, the green-dashed and red-dotted lines give the elastic and the pion-
nucleon (πN) threshold positions in the s channel, the green dashed-dotted and red dashed-double-dotted lines correspond with the
threshold positions in the s channel of the states with the invariant masses W2 ¼ 1.607 GeV2 and W2 ¼ 2.107 GeV2 respectively.
The horizontal red curve at fixedQ2 ¼ 0.624 GeV2 illustrates the path of the dispersive integral correspondingwith the kinematics of Fig. 7.

TOMALAK, PASQUINI, and VANDERHAEGHEN PHYSICAL REVIEW D 96, 096001 (2017)

096001-10



In Fig. 7, we compare the box graph model result for the
real part of the TPE amplitudes to the unsubtracted DRs
result, see Eqs. (23) and (24), forQ2 ¼ 0.624 GeV2. As the
unsubtracted DR result is based on unitarity using on-shell
input information only in evaluating the imaginary parts,
and relies on analyticity to reconstruct the real parts, it gives
the correct result for the TPE amplitudes. The direct loop
diagram evaluation in the box graph model on the other
hand, although based on the same on-shell input for the
imaginary part is in general a model for the real part, as it
makes an assumption on the vertices for off-shell kinemat-
ics. We notice from Fig. 7 that only the amplitude F 2γ

2 is
correctly determined by the loop diagram evaluation in the
box graph model. The results for other amplitudes are in
clear disagreement. To provide more insights into these

discrepancies, we show the difference between the unsub-
tracted DRs calculation and the loop diagram evaluation of
the real parts within the box graph model in Fig. 8. Figure 8
reveals that the difference between both ways of evaluating
the odd amplitudes G1, G2 and GM is a linear function in ν

and the difference for the even amplitude F 2γ
3 is a constant.

We also checked that when we perform one subtraction in
the loop diagram evaluation all amplitudes in the box graph
model agree with a once-subtracted DR, when choosing the
same subtraction constant.

D. Analytical continuation into the unphysical region

In order to evaluate the dispersive integrals in Eqs. (23)
and (24) for the realistic πN intermediate state contribution,
we need to know the imaginary parts of the invariant

FIG. 11. The imaginary parts of the TPE amplitudes G2γ
1 ;G2γ

2 ;F 2γ
3 which are reconstructed by the fits of Eqs. (29)–(31) in comparison

with the results from the direct loop diagram evaluation in the box graph model with weighted Δ for the c.m. squared energies
s ¼ 1.607 GeV2 (left panels) and s ¼ 2.107 GeV2 (right panels). The vertical lines correspond with the boundary between physical and
unphysical regions, i.e., Q2

ph ≈ 0.329 GeV2 (left panels), and Q2
ph ≈ 0.714 GeV2 (right panels).
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amplitudes from the threshold energy, corresponding to
νthr ¼ Mmπ þm2

π=2 −Q2=4, upwards. The πN contribu-
tion was evaluated in Ref. [107] for the kinematics where
only the input from the physical region of the ep → ep
process is needed, which is possible when Q2 <
0.064 GeV2. At larger momentum transfers Q2 >
0.064 GeV2, the unphysical region starts to contribute to
the dispersive integrals. In this section, we describe the
procedure of analytical continuation of the imaginary parts
of the ep → ep TPE amplitudes into the unphysical
region from the knowledge of the amplitudes in the physical
region.
For a fixed value of s, the ep → ep TPE amplitudes will

receive contributions which lie outside the physical region
forQ2 ≥ Q2

ph ≡ ðs −M2Þ2=s. The boundary curve between

physical and unphysical regions for the TPE amplitudes is
shown in Fig. 9 in the ðQ2;

ffiffiffi
s

p Þ plane. We notice that at
relatively small momentum transfer values 0.064 GeV2 <
Q2 ≲ 0.5–0.6 GeV2, the dominant contribution from the
unphysical region entering the dispersive integrals origi-
nates from the πN threshold and the Δ-resonance regions.
Consequently, the procedure of analytical continuation can
be developed and tested on the example of the model-Δ
calculation of Secs. III A–III C, where we know the
imaginary parts exactly in both physical and unphysical
regions from the direct loop diagram evaluation. In order to
correctly reproduce the position of the inelastic πN cut and
to qualitatively account for the Δ-resonance width, we
study the weighted-Δ TPE correction with the weighting
function of Eq. (22).

FIG. 12. Same as Fig. 11, but for the real parts of the TPE amplitudes in the physical region.
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First, we evaluate the imaginary parts of the ep → ep
scattering amplitudes in the physical region for a fixed
value of s, corresponding to a fixed value of the lepton
beam energy in the lab frame, as a function of Q2 by using
the unitarity relations [68,107]. We then fit, for a fixed
value of s, the obtained Q2 dependence by a sum of the
leading terms in the Q2 expansion of the inelastic TPE
amplitudes [93–95,115]:

ℑG2γ
1 ðs;Q2Þ ∼Q2fðs;Q2Þ; ð29Þ

ℑG2γ
2 ðs;Q2Þ ∼Q2fðs;Q2Þ; ð30Þ

ℑF 2γ
3 ðs;Q2Þ ∼ fðs;Q2Þ; ð31Þ

with a form for the fitting function:

fðs;Q2Þ≡ a1ðsÞ þ a2ðsÞ lnQ2 þ a3ðsÞQ2

þ a4ðsÞQ2 lnQ2 þ a5ðsÞQ4 þ a6ðsÞQ4 lnQ2:

ð32Þ
The fit coefficients a1ðsÞ; ...; a6ðsÞ at a fixed value of s are
obtained for each amplitude separately. For relatively small
values of the c.m. energy, slightly above the pion-production
threshold sthr ¼ 1.152 GeV2, i.e., sthr ≤ s≲ 1.3 GeV2, the
fit for all amplitudes ℑG2γ

1 , ℑG
2γ
2 and ℑF 2γ

3 is well described
by two coefficients a1ðsÞ; a2ðsÞ only. For larger values of s:
1.3 GeV2 ≲ s forℑG2γ

1 ,1.3 GeV2 ≲ s≲ 1.9 GeV2 forℑG2γ
2 ,

and 1.3 GeV2 ≲ s≲ 1.8 GeV2 for ℑF 2γ
3 we perform a four-

parameter fit with coefficients a1ðsÞ; a2ðsÞ; a3ðsÞ; a4ðsÞ.
For even larger c.m. energies, i.e., s≳ 1.9 GeV2 for ℑG2γ

2 ,
and s≳ 1.8 GeV2 for ℑF 2γ

3 , we use the six-parameter
functional form of Eq. (32).
In the following we test this procedure of analytical

continuation for two values of s as a function of Q2.
The physical and unphysical regions for these two s values
are visualized in Fig. 10.
In Fig. 11, we compare, for two values of s, the analytical

continuation of the imaginary part of the TPE amplitudes as
reconstructed from the amplitudes in the physical region
only by the fits of Eqs. (29)–(31) with the box graph model
with a Δ-intermediate state weighted by the function of
Eq. (22). We notice a very good agreement between both
calculations up to Q2 values of at least Q2 ¼ 1 GeV2.
Using the imaginary parts of the TPE amplitudes

evaluated either from the exact direct loop diagram calcu-
lation in the box graph model, or from the analytical
continuation described above, we next perform the
dispersion integrals of Eqs. (23) and (24) to obtain the
real parts of the TPE amplitudes. In Fig. 12, we present
the thus obtained real parts of the TPE amplitudes in the
physical region. We notice from Fig. 12 that both ways of

evaluating the real parts are in a very good agreement over
the whole physical region of the scattering process.
Substituting the real parts into the cross section correction

expression of Eq. (7) we show our results for this observable
in Fig. 13. The comparison between the analytically

FIG. 13. The inelastic TPE correction of Eq. (7) to the
unpolarized e−p → e−p cross section for three values of Q2

evaluated within unsubtracted DRs from the analytically con-
tinued imaginary parts of the TPE amplitudes in comparison with
the similar evaluation (exact DR calculation), when the box graph
model with weighted Δ is used to obtain the imaginary parts of
the TPE amplitudes in the unphysical region. We furthermore
compare with the contribution from the physical region only, as
well as with the direct loop diagram evaluation of the real parts in
the box graph model with weighted Δ, as outlined in Sec. III A.
Upper plot: Q2 ¼ 0.3 GeV2, central plot: Q2 ¼ 0.6 GeV2, lower
plot: Q2 ¼ 1 GeV2.
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continued evaluation with the exact realization of the
dispersion relations (exact DR calculation), when taking
the imaginary parts of the box graph model with weightedΔ
both in physical and unphysical regions as an input, indicates
the very good quality of the method described above. To
illustrate the growing importance of the unphysical region
contribution with increasingmomentum transferQ2, we also
show the TPE correction coming from the physical region
only in Fig. 13. The unphysical region contribution becomes
more important for backward scattering kinematics, i.e.,
smaller ε values. In the vicinity of ε ¼ 0, the cancellation of
two infinitely large contributions from the physical and
unphysical regions takes place. Furthermore, we display the

results from the direct loop diagram calculation of the real
parts of theTPEamplitudes in theboxgraphmodel taking the
Δ-intermediate stateweighted by the function in Eq. (22). As
it was discussed in Sec. III C, the results of the loop diagram
evaluation for the real parts differ from the dispersive
evaluation and violate unitarity at high energies. For ε →
1 the cross section correction diverges as δ2γ → 1=

ffiffiffiffiffiffiffiffiffiffi
1 − ε

p
in

the box graph model.

IV. πN CONTRIBUTION

In this section, we generalize the method of analytical
continuation of Sec. III D to the case of the πN intermediate

FIG. 14. The imaginary parts of the TPE amplitudes G2γ
1 ;G2γ

2 ;F 2γ
3 from the πN (left panel) and weighted-Δ (right panel) intermediate

state contributions as reconstructed from fits of Eq. (33) for the c.m. squared energy s ¼ 1.607 GeV2. The analytical continuation of the
Δ-intermediate state amplitudes is compared with the exact result in the box graph model. The vertical lines correspond with the
boundary between the physical (Q2 < Q2

ph) and unphysical (Q2 > Q2
ph) regions: Q

2
ph ≈ 0.329 GeV2.
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state contribution relying directly on the empirical infor-
mation from the MAID 2007 fit [108,109].
As a guiding principle, we exploit the general form of

Eq. (32) to describe the Q2 dependence of the TPE
amplitudes at a fixed value of s and require the imaginary
part of the invariant amplitudes to vanish at threshold, i.e.,
ℑG2γðs ¼ sthr; Q2Þ ¼ 0, where G stands for G1, G2 or F 3. In
Fig. 14, we compare the πN intermediate state contribution
to the imaginary parts of the TPE amplitudes with the
weighted-Δ model of Sec. III. For the πN intermediate
state, we expect to have a similar shape as in the weighted-
Δ model calculation for the amplitudes ℑG2γ

2 and ℑF 2γ
3 , as

can be seen from the physical region in Fig. 14.
For the πN intermediate state contribution we have no

exact calculation to compare with when extrapolating into
the unphysical region. We will therefore estimate the
theoretical error of such extrapolation procedure by per-
forming two different fits, labeled by f1 and f2. The TPE
amplitudes ℑG2γ are then given by

ℑG2γðs;Q2Þ ¼ f1ðs;Q2Þ þ f2ðs;Q2Þ
2

� jf1ðs;Q2Þ − f2ðs;Q2Þj
2

; ð33Þ

where f1 and f2 have functional forms as in Eq. (32) with a
different number of nonzero parameters. The difference
between both fits f1 and f2 in Eq. (33) will define our
theoretical error band. We illustrate this procedure in
Fig. 14 for c.m. squared energy s ¼ 1.607 GeV2. For
comparison, we also provide the same realization for the
case of the weighted-Δ intermediate state. In the following,
we detail the form of the fit functions for the TPE
amplitudes ℑG2γ

1 ;ℑG2γ
2 ;ℑF

2γ
3 .

For the invariant amplitude ℑG2γ
2 in the region between

the threshold and Δ peak position, when sthr ≤
s≲ 1.5 GeV2, we use a two-parameter functional form
(with a3 ¼ a4 ¼ a5 ¼ a6 ¼ 0), and a four-parameter func-
tional form (with a5 ¼ a6 ¼ 0) in Eq. (33). For
s≳ 1.5 GeV2, we use four-parameter (with a5 ¼ a6 ¼ 0)
and six-parameter fits in order to have a similar Q2

dependence as in the weighted-Δ model calculation.
We next describe the fits for the imaginary part of the

amplitude ℑF 3. In order to satisfy simultaneously the
vanishing behavior near the threshold, when sthr ≤
s≲ 1.38 GeV2, and to have a good description of the
physical region, we use for ℑF 3 a three-parameter fit (with
a3 ¼ a5 ¼ a6 ¼ 0), and another three-parameter fit (with
a4 ¼ a5 ¼ a6 ¼ 0). For larger values of the c.m. energy

FIG. 15. The real parts of the TPE amplitudes G2γ
1 ;G2γ

2 ;F 2γ
3 from the πN intermediate state contribution as reconstructed from fits of

Eqs. (29)–(31), in comparison with the weighted-Δ box graph model result for the c.m. squared energies s ¼ 1.333 GeV2 (left panels),
s ¼ 1.607 GeV2 (middle panels) and s ¼ 2.107 GeV2 (right panels). The kinematical coverage corresponds to the physical region.
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(s > 1.38 GeV2), we describe the amplitude ℑF 2γ
3 by six-

parameter and four-parameter (with a5 ¼ a6 ¼ 0) fits.
We notice from Fig. 14, that the imaginary part of the

amplitude ℑG2γ
1 for the πN intermediate state has a different

Q2 dependence in the physical region as compared to the
weighted-Δ model. The difference originates from the
contributions of Born and vector meson terms in the πN
multipoles from the MAID fit as well as the subsequent
unitarization of these multipoles. Consequently, we cannot
fully rely on the weighted-Δ model reconstructing the
amplitude ℑG2γ

1 . For small values of the c.m. energy
sthr ≤ s≲ 1.5 GeV2, we choose a four-parameter form
(with a5 ¼ a6 ¼ 0) of the fitting function without Q2

multiplier in Eq. (29), and for 1.5 GeV2 ≲ s≲
1.75 GeV2 a five-parameter form (a6 ¼ 0) without Q2

multiplier in Eq. (29), and start fitting from Q2 ¼
0.06 GeV2 (Q2 ¼ 0.03 GeV2) respectively. In the region
1.75 GeV2 ≲ s≲ 2 GeV2 (s≳ 2 GeV2), we choose six-
parameter and four-parameter forms of the fitting function
without Q2 multiplier in Eq. (29) and use the numerical
evaluations as fit input starting from Q2 ¼ 0.06 GeV2

(Q2 ¼ 0) respectively.
The error bands resulting from the difference between

the two fits for ℑG1;ℑG2 and ℑF 3 are shown in Fig. 14 for
a value s ¼ 1.607 GeV2, slightly above the Δ-resonance
position.
Besides the uncertainty from the fit forms used in the

analytical continuation, the second largest uncertainty
comes from the region of large W. The MAID2007 fit
[108,109] is available for W < 2.5 GeV and qualitatively
describes resonances and background up to W0 ¼ 2 GeV.
We exploit the MAID parametrization up to W0 and
subsequently connect the end point of the W-integrand
FðWÞ to two functional forms:

FðWÞdW ¼ W2
0

W2
FðW0ÞdW; ð34Þ

FðWÞdW ¼ 1þ e
W0−W1

a

1þ e
2W−W0−W1

a

FðW0ÞdW; ð35Þ

with W1 ¼ 3 GeV and a ¼ 0.5 GeV. We take the calcu-
lation with the integrand of Eq. (34) as a central value, and
estimate the uncertainty coming from the large-W region as
the difference between the results of Eqs. (34) and (35). We
add the errors from the analytical continuation procedure
and resulting from the large-W extrapolation in quadrature.
In Fig. 15, we present the real part of the TPE amplitudes in
the physical region and compare them to the dispersive
evaluation of the weighted-Δ model.
The resulting cross section corrections are shown in

Fig. 16 in comparison to the weighted-Δmodel calculation.
The amplitude uncertainties to the unpolarized cross
section are added in quadrature. We see from Fig. 16 that

the πN TPE correction is always larger than the weighted-Δ
model TPE. However, the πN contribution has a similar
order of magnitude and shows an opposite sign at lowerQ2

and large ε.

V. RESULTS AND DISCUSSION

In this section, we provide a comparison of the
dispersion relation calculation of the πN intermediate state
contribution to TPE observables with recent experimental
results [86,89,90]. We also compare our results with
previous TPE estimates of inelastic intermediate states in
the near-forward approximation [95]. The latter calculation

FIG. 16. The πN intermediate state TPE correction to the
unpolarized cross section for elastic electron-proton scattering,
see Eq. (7), in comparison to the dispersive weighted-Δ model
TPE result. For the πN TPE result, the MAID fit is used up to
W ¼ 2 GeV, and the W > 2 GeV behavior is approximated by
Eqs. (34) and (35). Upper plot: Q2 ¼ 0.3 GeV2, central plot:
Q2 ¼ 0.6 GeV2, lower plot: Q2 ¼ 1 GeV2.
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provides an estimate of TPE corrections at low momentum
transfer and small scattering angles through the unpolarized
proton structure functions.
The TPE correction to the unpolarized cross section δ2γ

can be directly accessed from the ratio of the positron-
proton to electron-proton elastic scattering cross section
R2γ, in which it enters with different signs:

R2γ ¼
σðeþpÞ
σðe−pÞ ¼

1þ δodd þ δeven − δ2γ
1 − δodd þ δeven þ δ2γ

≈ 1 − 2δ2γ: ð36Þ

The approximation in the last step of Eq. (36) amounts to
neglect the higher-order contributions of the charge-even
radiative corrections δeven. Furthermore, we dropped the
charge-odd radiative corrections δodd, which are usually
directly applied to the data.
In recent years several new measurements of the ratio

of Eq. (36) were performedwith amuch improved precision

in comparison to the early experiments from SLAC [117].
These new data come from the VEPP-3 storage ring
in Novosibirsk [86], from the CLAS Collaboration at
JLab [87–89], and from the OLYMPUS experiment at
DESY [90].
In Fig. 17, we compare the dispersive evaluation of the

πN intermediate state TPE contributions with the data of
the OLYMPUS experiment [90], which measured the ratio
R2γ using a 2.01 GeV lepton beam. We also show the
Feshbach correction [92] corresponding with the scattering
on a heavy point charge, the elastic TPE, which includes
the full nucleon electromagnetic structure, and the total
TPE in the near-forward approximation of Ref. [95]. To
study the relative contribution of other channels, we present
the TPE correction in the near-forward approximation of
Ref. [95] based on the comparison when using the total
unpolarized proton structure functions as an input and
when using its counterpart from the MAID2007 fit
[108,109], which only includes the πN channel. To evaluate

FIG. 17. The DR result for the elastic TPE and for the sum of
the elastic and πN TPE contributions to the eþp over e−p elastic
scattering cross section ratio R2γ for lepton beam energy
ω ¼ 2.01 GeV, in comparison with the data from the Olympus
Collaboration [90]. We also show the Feshbach correction [92],
as well as the total TPE and the sum of the proton + πN
contributions in the near-forward approximation of Ref. [95].

FIG. 18. The DR result for the elastic TPE and for the sum of
the elastic þ πN TPE contributions to the eþp over e−p elastic
scattering cross section ratio R2γ in comparison with the sum of
elastic + weighted-Δ calculation of Sec. III, as well as with the
phenomenological fit of Ref. [5]. The central value of the elastic
contribution was used in this plot.

FIG. 19. Comparison of the unsubtracted DR prediction for the elastic, the weighted-Δ and πN TPE correction for Q2 ¼ 0.206 GeV2

(left panel) with the data of Ref. [87] and for Q2 ¼ 0.85 GeV2 (right panel) with the data of Ref. [89].
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the elastic TPE we exploit the FF fit to the unpolarized and
polarization transfer world data [5] and the analytical
continuation method of Ref. [106] for the central value.
We estimate the 1σ uncertainty bands of the elastic TPE by
the difference when calculating the correction either with
the empirical FFs or with a dipole form for the proton FFs.
The IR divergences for all curves in Fig. 17 as well as for
other plots in this section were subtracted according to the
Maximon and Tjon prescription [15]. We see from Fig. 17
that all theoretical curves are in agreement with the
Feshbach correction in the forward limit ε → 1. Note that
in the ε > 0.8 region the OLYMPUS result is accidentally
close to the Feshbach correction. As was mentioned in
Ref. [95], the proton form factor effect and the inelastic
TPE contribution have different signs partially canceling
each other. The dispersive result for the sum of elastic and
πN contributions is 1% above the experimental data at
Q2 ≳ 0.624GeV2 (ϵ≲ 0.897) and is in agreement with
the data point at the lowest momentum transfer as well as
with the corresponding contribution in the near-forward
approximation at large ε. The near-forward total TPE of
Ref. [95], which uses the forward proton structure functions
as input to account for all inelastic intermediate states,
describes the measurements surprisingly well even at
relatively large momentum transfer beyond the expected
region of applicability of such calculation. The comparison
in Fig. 17 indicates that in the momentum transfer range
Q2 ≲ 1 GeV2 (ϵ≳ 0.809) the inelastic intermediate states
reduce the TPE ratio R2γ by around 1%–1.5%, of which
roughly half originates from πN intermediate states and
half from higher inelastic intermediate states.
In the following Fig. 18, we compare the dispersive

evaluations of the sum of elasticþ πN TPE with the sum of
elastic þ weighted-Δ TPE of Sec. III and the phenom-
enological fit of Ref. [5]. The phenomenological fit of
Ref. [5] provides a relatively good description of the
experimental data. For the theoretical estimates, we first
notice that all curves are in agreement with the Feshbach
correction in the forward limit ε → 1. Recently, the narrow-
Δ TPE correction was independently evaluated within a
dispersion relation framework in Ref. [100]. Our result for
the weighted-Δ TPE changes sign around ε ≈ 0.857 in
qualitative agreement with Ref. [100]. The account for the
full πN intermediate state contribution moves the unsub-
tracted DR prediction closer to the data points in compari-
son to the Δ calculation. We may conclude that the account
of higher intermediate states within the dispersive frame-
work is necessary to improve the description of data for R2γ.
The CLAS Collaboration has performed measurements

of R2γ at relatively small values of the momentum
transfer: Q2 ≈ 0.206 GeV2 [87] and Q2¼0.85GeV2 [89].
Neglecting the higher-order contributions of the charge-
even radiative corrections and exploiting the total charge-
even radiative correction factor from Ref. [87] δeven ≈ −0.2,
the TPE contribution can be extracted as [87]

δ2γ ≈
1 − R2γ

2
ð1þ δevenÞ: ð37Þ

In Fig. 19, we compare the elastic, the weighted-Δ and πN
TPE corrections with the data from CLAS.
The early CLAS measurements atQ2 ≈ 0.206 GeV2 [87]

show large uncertainties which do not allow us to make
strong conclusions. At this lowQ2 value, elastic, weighted-Δ
and πN TPE corrections are much smaller than 1%.
The follow-up CLAS experiment of Ref. [89] achieved

a precision below the 1% level as shown on Fig. 19
(right panel) for Q2 ¼ 0.85 GeV2. We notice that at
Q2 ¼ 0.85 GeV2, the account of the πN intermediate state
contribution to TPE amplitudes on top of the elastic TPE
improves the description of experimental data. Note, that
the weighted-Δ TPE correction is much smaller than the
πN TPE and changes sign in Fig. 19.
In Fig. 20, we compare the Q2 dependence of δ2γ for

VEPP-3 data [86] and CLAS data [89] with the elastic TPE
(central value), the sum of elastic þ πN TPE (central
value), and total TPE in the near-forward approximation.
We provide the kinematics of the CLAS data points [89] in
Table I. The CLAS values of δ2γ were obtained using
Eq. (37). We notice from Fig. 20 that the CLAS data points

FIG. 20. TPE correction measurements of Refs. [86,89] in
comparison with the elastic TPE (shown by squares), and the sum
of elastic þ πN TPE (shown by hollow triangles). For
Q2 < 0.5 GeV2, we also show the comparison with the total
near-forward TPE of Ref. [95] (shown by stars). The CLAS [89]
data points correspond to the kinematics of Table I. The VEPP-3
[86] data points correspond to Q2 ¼ 0.298 GeV2; ε ¼ 0.93;
Q2 ¼ 0.83 GeV2; ε ¼ 0.4; and Q2 ¼ 0.976 GeV2; ε ¼ 0.27.
The VEPP-3 data points were renormalized according to the
empirical fit of Ref. [5] by a procedure which is explained in
Ref. [86].

TABLE I. Kinematics of the CLAS experiment of Ref. [89].

ε 0.92 0.89 0.89 0.89 0.45 0.45 0.88
Q2, GeV2 0.23 0.34 0.45 0.63 0.72 0.89 0.89
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are in agreement with the total TPE correction in the near-
forward approximation. However, the VEPP-3 data point of
Ref. [86] at Q2 ¼ 0.298 GeV2 agrees with the total TPE
only after the renormalization procedure as it is described in
Ref. [86]. We perform the renormalization in Fig. 20
according to the empirical fit of Ref. [5]. Accounting
for the πN intermediate state within the dispersive frame-
work, the data are described better than by the elastic
contribution solely. However, the CLAS data point Q2 ¼
0.34 GeV2; ε ¼ 0.89 and all VEPP-3 data points differ
from the dispersion relation result by more than 1σ. An
additional correction of the same sign as the inelastic πN
contribution is needed to reconcile the difference between
theory and these data points. Multiparticle states TPE
contribution can at least partially reconcile this discrepancy.
Finally, the ratio Pt=Pl, Eq. (10), was measured at the

low momentum transfer region forQ2 ¼ 0.298 GeV2 [118]
and Q2 ¼ 0.308 GeV2 [119] in Hall A at JLab. In absence

of TPE corrections, the R ¼ −μp
ffiffiffiffiffiffiffiffiffiffiffiffi
1þε
ε τP

q
Pt
Pl

ratio at fixed

Q2 is ε independent. We compare the polarization transfer
data points to the elastic TPE and the sum of the elastic þ
πN TPE in Fig. 21. The calculation of TPE amplitudes was
performed at Q2 ¼ 0.3 GeV2 exploiting the proton elastic
FFs of Ref. [118] in Eq. (10). The account for the πN
intermediate state just slightly modifies the unsubtracted
DR prediction for the elastic contribution in the region of
available data, confirming the small value of TPE correc-
tion to the polarization transfer observables.

VI. CONCLUSIONS AND OUTLOOK

In this work we have accounted for the pion-nucleon
(πN) TPE correction within a dispersion relation frame-
work extending the kinematical coverage of Ref. [107] to
the momentum transfers 0.064 GeV2 ≲Q2 ≲ 1 GeV2. On
the example of a box graph calculation with a Δ-inter-
mediate state we have developed and successfully tested a
new method for the analytical continuation of the invariant
amplitudes into the unphysical region, which relies on the
knowledge of the imaginary parts in the physical region
solely. Generalizing the method to the πN intermediate
state, we evaluated the πN TPE contribution using the
MAID 2007 parametrization for the pion electroproduction
amplitudes as input and estimated uncertainties of our
method. We have made a comparison of the dispersion
relation results with recent measurements of the TPE
correction to the unpolarized elastic electron-proton scat-
tering cross section [86,89,90]. With account of the πN
intermediate state, the TPE correction comes closer to the
experimental data in comparison with the elastic contribu-
tion only confirming the cancellation between the inelastic
TPE and the proton form factor effects, which was
previously found in Ref. [95]. An additional correction
of the order of 1% is needed to describe the OLYMPUS and
VEPP-3 data points within the error bars. A near-forward
calculation in terms of inclusive proton structure functions
indicates that multiparticle intermediate states, especially
ππN, can be responsible for this difference. However, the
evaluated πN TPE correction can be now exploited for a
precise extraction of the proton magnetic radius and the
proton magnetic form factor at low values of Q2.
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