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The flavor problem, neutrino physics, and the fermion mass hierarchy are important motivations to
extend the Standard Model to the TeV scale. A new family nonuniversal extension is presented with three
Higgs doublets, one Higgs singlet, and one scalar dark matter candidate. Exotic fermions are included in
order to cancel chiral anomalies and to allow family nonuniversal U(1), charges. By implementing an
additional Z, symmetry, the Yukawa coupling terms are suited in such a way that the fermion mass
hierarchy is obtained without fine-tuning. The neutrino sector includes Majorana fermions to implement
the inverse seesaw mechanism. The effective mass matrix for Standard Model neutrinos is fitted to current
neutrino oscillation data to check the consistency of the model with experimental evidence, obtaining that
the normal-ordering scheme is preferred over the inverse ones, and the values of the neutrino Yukawa

coupling constants are shown. Finally, the &7 — zu lepton-flavor-violation process is addressed with the
rotation matrices of the CP-even scalars, left- and right-handed charged leptons, yielding definite regions
where the model is consistent with CMS reports of BR(h — 7).
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I. INTRODUCTION

Although the Standard Model (SM) [1-3] has been
successful in explaining the experimental low-energy
observations in particle physics, there is some theoretical
and observational evidence that suggests an underlying
beyond-the-Standard Model (BSM) extension. Two of
these pieces of evidence are the fermion mass hierarchy
problem and the neutrino oscillation. In the hierarchy
problem [4], the mass of the fermions and their mixing
requires arbitrary fine-tuning of the Yukawa coupling
constants. Some approaches in the framework of BSM
extensions involves schemes to explain this puzzle in the
framework of zero-texture structures of the Yukawa matri-
ces [5,6]. Moreover, in these schemes, the neutrino oscil-
lation problem could be addressed, obtaining satisfactory
models of flavor physics.

The confirmation of neutrino oscillations and the
massive nature of neutrinos as well as their mixing angles
have been widely confirmed by precision measurements
done by a huge number of experiments [7-28].
References [29,30] show the most recent fit from the
experimental data. The massive nature of neutrinos moti-
vates different scenarios BSM in which the origin of
the smallness of their masses could be understood. The
preferred mechanism to obtain small masses is the seesaw
mechanism (SSM) [31-35], which introduces new
Majorana fermions with their corresponding mass terms
in the Lagrangian in such a way that the enormous scale of
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their masses (10'* GeV) suppresses the electroweak ones,
yielding small neutrino masses of the active neutrinos at
the eV scale. However, the large scale of the Majorana
neutrinos is unreachable by current or future high-energy
experiments. There exists another mechanism, the inverse
SSM [36-39], which introduces additional neutrinos that
reduce the Majorana mass scale to the experimentally
accessible energies. Also, a Majorana neutrino could induce
matter-antimatter asymmetries through the [lepfogenesis
mechanism [40].

On the other hand, there are different models BSM with
extended scalar sectors. The interest in these type of
extensions has grown since the detection of the Higgs
boson at the ATLAS [41] and CMS [42] experiments at the
LHC, the best known being the two-Higgs-doublet model
(2HDM), which introduces two charged H*, one CP-odd
A, and two CP-even h and H scalar bosons by proposing
the existence of a second Higgs doublet [43]. Such models
arise naturally in supersymmetric extensions. Also, 2HDM
yield scenarios in which the large hierarchy between the ¢
and b quarks can be understood by proposing a vacuum
hierarchy between the two doublets [44]. Other models
extend to the next-to-minimal 2HDM (N2HDM) by adding
to the minimal 2HDM a scalar SM singlet, which could
yield the spontaneous symmetry breakdown (SSB) of
additional U(1) gauge symmetries. Another scenario pro-
poses an additional scalar field as a candidate for dark
matter (DM) [45-51], which does not receive a vacuum
expectation value (VEV).

Regarding the Abelian extensions of the SM [52],
different issues can be addressed such as neutrino physics
[53-55], flavor physics [56-58], and DM phenomenology
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[59-64]. The direct consequence of adding an Abelian
gauge symmetry is the appearance of an additional neutral
gauge boson Z,, which may modify some electroweak
observables [65—67] through the mixing with the ordinary
Z, boson after two SSBs, the first one triggered by some
scalar singlet and the second one being the electroweak
SSB. There are other extensions which are nonuniversal,
i.e., they distinguish among families, with different phe-
nomenological consequences, such as quark mass hier-
archy to dark matter detection [68-72].

The main goal of this article is to obtain predictable mass
structures and parameters from the neutrino oscillation data
by introducing a nonuniversal anomaly free U(1)" exten-
sion with three Higgs doublets and one Higgs singlet. The
three doublets will generate the electroweak symmetry
breaking, while the singlet induces the U(1)" breaking
spontaneously. The fermion and gauge sectors are also
extended by new extra quarks and leptons (including
Majorana fermions) with a Z, symmetry and the Z’ gauge
boson with nonuniversal interactions. A scalar singlet

|
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without a vacuum expectation value is also included.
Section II presents the model, its particle content, and
the Yukawa Lagrangian. The bosonic sector of the model
is presented in Secs. Il and IV. In Sec. V, the mass
expressions for all fermions as well as their mixing angles
are obtained. Then, Sec. VI presents a procedure to test the
consistency of the model with current neutrino oscillation
data by fitting the Yukawa coupling constants of the
neutrino Yukawa Lagrangian, and Sec. VII explores how
adequate the model is in studying lepton flavor violation
(LFV) in Higgs decays. Finally, a discussion about the main
results and some conclusions are outlined in Sec. VIIL.

II. SOME REMARKS OF THE MODEL

The model proposes the existence of a nonuniversal
gauge group U(1)y of which the gauge boson and coupling
constant are Z, and gy, respectively. This additional
gauge symmetry introduces new triangle chiral anomaly
equations

[SUG)JPU()y = Ac =Y Xo, = > X,
0 0

[SUR),PU()y = AL = X, +3> Xq,
3 (@)

(U, PU()x = Ay =Y [¥2 X, +3Y5, Xg ] = > [Y2 Xy, +3Y% Xo,]

.0 Z,0
U1),[Uy]? = Ay = Z[Y;LX% +3Y0, X3 ] - Z[Y,;RXL%R +3Y0,X3,]
.0 Z,0
U] = Ax =Y X3, +3X3,] = > X3, +3X5,]
¢.0 .0
[Grav]?U(1)x = Ag = > _[X,, +3Xg,] = Y [Xs, +3Xg,], (1)
¢.0 .0

which can be solved by assigning nontrivial X-quantum
numbers to the fermions of the SM [68,72]. Nonuniversal
solutions emerge naturally if new quarks and leptons are
added with the condition that they must acquire masses at a
larger scale than the electroweak ones. All the new particles
are assumed to be singlets under the gauge SU(2), group.
So, they acquire masses by the VEV of a new Higgs singlet
(1HS) field, y, which has U(1), charge (X = —1/3) in such
a way that it spontaneously breaks the new gauge sym-
metry. Another scalar singlet ¢ identical to y but without a
VEV is introduced [69-71].

On the other hand, the fermion mass hierarchy can be
understood with a three Higgs doublet model (3HDM),
with  VEVs v, > v, > v; and the general constraint
v? = v} 4+ v3 + v}, with v =246 GeV the electroweak
breaking scale. The first VEV, v, can be associated with
the mass of the top quark ¢ at 10> GeV. Second, the tau

|

lepton 7 and the bottom quark b might acquire mass
through v, at 1 GeV. Third, the muon p and the strange
quark s may get mass by v; at the 10> MeV scale.
Furthermore, the charm quark ¢ and the first family
(u,d, e) could acquire mass through seesaw mechanisms
or radiative corrections in order to get smaller masses
without unpleasant fine-tuning procedures. Thus, the com-
bination among the 3HDM, the 1HS, and the requirement
of specific Z, transformations leads us to predictable mass
structures of the fermions.

The chosen particle spectrum is presented in Table I,
in which three new quarks (7, J 1'2), two charged leptons
(€'?), and three right-handed neutrinos v%*" are introduced
such that the model is free from chiral anomalies. By
replacing the X charges shown in Table I in Eqgs. (1),
the complete set of chiral anomalies gets canceled
identically,
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TABLE I. Nonuniversal X quantum number and Z, parity for SM and non-SM fermions.
Bosons X+ Quarks X+ Leptons X+
Scalar doublets SM fermionic doublets
o= (ulls) 7 A= HE A=), o
Byt
- 2 — A +
D) = <hz+f§+ii72 +1/3 q% - (dZ)L ’ f};‘ B (eﬂ)L !
V2 + 3 + +
< +1/3 : 0 = (Y -1
O3 = <h3+{£33+i;13 / a = (lfP )L L (e )L
V2
Scalar singlets SM fermionic singlets
ul? +2/3+ ¢4 —4/3+
7= §1+v\/)(;'l§x —1/3+ u% +2/3_ (:‘/;e —1/3+
c —-1/3~ d,li;“ —-1/3~ eq —4/3~
Gauge bosons Non-SM quarks Non-SM leptons
WiW; 0to* T,Tg +1/37+2/3~ VRIINRHEE +1/3%0*
B, o+ 12 o+ glLe —1+
E, 0" j}f —1/3* &L & —2/3%
Ac=1-1 Lo =gl ® T+ L@ ®,Th + b g @7
—kp = q + q + q;
A = -2 +3(2/3), D 179L7*1 R2 2.7L22 R2 3]L33 R2
h gl ® h32q: ® hq
Ay = [-26/3 +3(2/3)] = [-56/3 + 3(4)], T IGaL Tk + 1590 0Tk + Iy a1 ®s T
2 2 2d. 3
Ay = [~44/9 +3(2/9)] — [-92/9 + 3(2)]. a1 sy + a7 @sdi + Ha s
Ay = [~89/27 + 3(1/9)] — [-161/27 + 3(1)], + 3] @yl + h3q} @ody + h3qi Dy
Ag = [-11/3+3(3)] - [-11/3+3(3)]. () + 9T Lo dy + 9T Lo dy + gl T 0" di

The Z, parities are also shown as superscripts in the X
charges. Note that, despite the scalar doublets @, and @5
having the same X charge, they have opposite Z, parity
such that their couplings to fermions are complementary.
The addition of right-handed neutrinos vy allows
Yukawa couplings with #; through ®; so as active
neutrinos get massive. However, the experiments suggest
that their masses are smaller than their charged lepton
partners by many orders of magnitude. This huge difference
could be explained by the well-known inverse SSM, which
is implemented here by introducing three Majorana fer-
mions, Az, which couple to vy via the scalar singlet y. The
existence of the corresponding Majorana mass term induces
the inverse SSM, yielding to three light and three quasi-
degenerated heavy neutrinos at the TeV scale. One impor-
tant consequence of the smallness of v5 is that the mass of
the Majorana neutrinos can be as low as the MeV scale.
The Yukawa Lagrangians of the model for the uplike,
downlike, neutral, and charged fermions are, respectively,
hguqid% UR

—Ly= h%uqi(b3“R héiqqu)ﬂ"R

h%ﬁq%dll up + huﬂiq’l ”R + hluq%q)l Ug
+ hquLcDZTR + thQL‘D1TR + 9. T Louk
+ 92T vy + 92T rouy+ 9,77 1T r+He., (3)

+RTE0 dy + TR0 b+ TR0

+g}(j\7_})(*t7}g +gjjj_%)(*J% +H.c., (4)
—Ly = W5l @3 + WO Dav + h5T 25 D

+ Wys £ Davy + WL E D3y + sy £ Dav

+g NVRC;(*N’ + %J\TRCMX/J\/,Q +H.c., (5)
—Lp = h5,07 Dse + WL O el + 57 Dael
+ B EL®sef + HLEL @1 Ep + Wl @1 E)
+ gleElr es + geinel + gleELxEl
+ gZSEL)(*Eﬁ + H.c., (6)
where ® = io,®@* are the scalar doublet conjuge}tes and the

Majorana mass components are denoted as MX[. The next
section presents the acquisition of masses in the fermion
sectors.

III. GAUGE BOSONS AND MASSES

The gauge bosons of the model comprise the vector
sector of the SM plus the additional E, gauge boson of the
Abelian extension U(1),. The gauge Lagrangian is
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1 1
— (W W,) — 2 B"B,, —

=
EE,,

(7)

[’Gauge =
where B, is the strength-field tensor of the E, gauge boson
B, =08 -0F,. (8)

The gauge boson masses, on the other hand, come from
the kinetic part of the Higgs Lagrangian

Kl _
Lifges = 22 (D40, (D,®) + 3 (D)" (D). (9)
where the covariant derivatives are
Dﬂ(I)i = aﬂéi - lgWM(Dl — l-g/YBﬂéi - igXXiEMq)i,
(10a)
igx —
Dy = O+ 3 B (10b)

By evaluating the Higgs fields at their VEVs, the gauge
boson masses appear. The mass of the W/T is

my == (v +v3 +13) = (11)

IS

where v is the complete electroweak VEV. Regarding
the neutral gauge bosons, the mass matrix in the basis
WB (B, W,,,_‘ ) is

|

Vu = ﬂ1q)Tq)1 —|—;4%(I>2(I)2 +//‘3q)3¢’3 +u )( x+ /1;(;(()(*)()2

+ /111(‘1)?(1)1)2 + ilZ(QI‘bl)((ng’z) -
+ A3 (D] @3) + Ay (@] D3) (PLD)) —

[2(®] ) (P30

A
X3 (@]®3) (0D

A. Minimization of the potential

The previous potential is minimized by differentiating
it with respect to each one of the VEVs and isolating the
quadratic constants p, where a,f =1,2,3,y. Thus, the
following constants are obtained,

- v, V2 f2 + v, 03f3
—pi = ;Alavg - % (16a)
frvv
~5 = ZAZQ i =T (16b)
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1 ¢ e %g/gx 2
Myomg| —99v* v —3ggx0? (12)
199xv* —599xv*  S9xv;

Its determinant is null as is hoped because of the existence
of a massless gauge boson, the photon A,. In addition, there
are two massive gauge bosons, the electroweak Z, at GeV
scale and the new Z;l at TeV,

2 /2 2.2 2
N 2 JIRY
_ I X

4 4eyy z

(13)

m% ~
The mass eigenstates Z, = (A,,Z,,Z,) are obtained as
Z,= RWUWB through the mixing matrix Ryo. In the

Cabbibo—Kobayashi—-Maskawa (CKM) parametrization,
its angles are

/ 2
3gv
tan&13 =0, tan923 ~ g

gxCwly

9

tan 0, = r (14)

2 b
and the first angle turns out to be the well-known Weinberg
angle tan 0! = 1.

IV. HIGGS POTENTIAL AND SCALAR MASSES

The scalar potential of the model is established
according to the U(1), charges and Z, parities shown in
Table 1. So, the most general potential invariant under the
Gsm ® U(1)y ® Z, symmetry is

Jfo s 3
—CINI) + H.c. o Dy + H.c.
1) + A (@D2) + Aoy (DL, ) (DLD3) — 2y (D] D) (D] D)
1)+ A (@10 (1 %) + Aoy (®5D2) (1 1) + A3, (®1D3) ().
(15)
— 2 = 3 A 2_f3vlv)( (16)
M3 = ; 3ala 2—1)3 C
2= Z w a_Ulvzfzz‘ZU1U3f3’ (16d)
x
where the constants Aa/, = Aﬁa are (i, j =1, 2, 3)
Aaa = ﬂam
Aij = (/111;' - %‘j)/2 (17)
Ai){ = /11'){/2.
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B. Charged scalar boson masses

The mass matrix of the charged bosons is obtained by calculating the Hessian matrix with respect to the charged
components of the Higgs doublets. In the basis ¢* = (¢7, ¢35, ¢7), it turns out to be

vifi
1 1;11)( _fzv)( —f31)){
1 ,
2 fov,v;
MC ~ Z —fz’l]l 11—)2( O 5 (18)
f3v,0;
_févl 0 é

where v, f; = v,f, + v3f3. Its determinant is null as it is hoped because of the existence of Gij, the Goldstone bosons of
W;—L. Additionally, there exist two physical charged bosons, Hi and H;, which acquire mass at the TeV scale.
The masses of the physical charged bosons are

m2 Nfz(li%-l-l}%)lix f3<v%+v§)v;(
Hi, ™

81]11)2 81)11]3
2002 1 121252 4 ,2,2\.2 (20,2 1 22)2,2
" [+ v3)7vy  fof3(0] —va03)y +f3(711 +v3)° (19)
64033 3203w, 03 64v3v3
The mixing matrix Rc diagonalizes the mass matrix M2 vifivy  _ fav, —fsv, —fin;
obtaining the mass eigenstates H* = R-¢*, which are "
expressed in the basis H* = (Gij, HE, H2). 1 i —fw, B0 fy
pressed in the basis (Gy, Hy ,Hy). Its corre 5 1 2Uy > 201
sponding mixing angles in the CKM parametrization are Miga = 4| _ fiv 0 Fav,01 Fa . (21
30y . 301
2 2 -
v v vifiv
an’0f, = —=, tan’05 = — _i 5. tan’d5; ~0.  (20) —fivi - favr o fam o
vy T )

where v, f; = v, f5 4+ v3 f3. Its determinant is null as is hoped

C. CP-odd boson masses because of the existence of G, and G, the Goldstone

The mass matrix of the CP-odd (pseudoscalar) bosons is
obtained by calculating the Hessian matrix with respect to
the CP-odd components of the Higgs doublets. In the basis

n = (n1.m.13,¢,), it turns out to be
|

5 Nfz(v% + v%)vl

bosons of Z, and Z,,, respectively. Additionally, there exist
two physical pseudoscalar bosons, A; and A,, which acquire
mass at the TeV scale.

The masses of the physical pseudoscalar bosons are

fS(U% + v%)v)(

my R
Ara 8v v,

8,13

. \/f%(v% + 3P0} fafa(vf = 3R} A0 + 0

2,2
64viv;

which are equal to the charged bosons masses at O(v?).
The mixing matrix R,y diagonalizes the mass matrix
M%dd, obtaining the mass eigenstates A = R qq#, Which
are expressed in the basis A = (G2, A, A,, G, ). More-
over, the diagonalization in this case is a little more
complicated because there are four bosons instead of
three in comparison with the charged scalar boson
sector. So, it was implemented an extended-CKM para-
metrization, which includes mixings with a fourth
component. Thereby, the corresponding mixing angles
are

22
3203 0,03 640303 (22)
2 2
v v
tan’0, = — - tan’0); = ———>—, (23a)
2.2 137~ 752 2>
ViCl4 Vi€ly T 103
v
tan’05; ~ 0, tan20, = -, (23b)
- v
X

2 2 podd
where ¢, = cos” 075°.

D. CP-even boson masses

The mass matrix of the CP-even (true scalar) bosons is
obtained by calculating the Hessian matrix with respect to
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the CP-even components of the Higgs doublets. In the basis
h = (hy, hy, h3,&,), the CP-even mass matrix is

5 My My
Meyen = ML M , (24)
hé &
where the blocks are defined as
A]lv% Apvivy Ao
Mhh = A]zU] (%) Azzv% A23’l}21]3 + M% (253)
Apzvivy Axzvpv3 A}ﬂ’%
Ay v1v, — ff"
Mye = | Agyvpv, =122 (25b)
Az, 030, — fff‘
v, fv
Mz = A, 02+ i1, (25¢)
41j){

The mixing matrix R..,, which diagonalizes the mass
matrix M2,.,, gives the mass eigenstates H = R, h,
which are expressed in the basis H = (h,H,H,, H).
Moreover, R, splits into a seesaw rotation RS, and a
block-diagonal rotation RS, such that R, = R, RS,

Since [M;| < |Mpe| < | Mg, the seesaw procedure
will be implemented by following Ref. [72], which block
diagonalizes M, such that the & scalars get separated from
the £ ones. The following approximations are made on the
blocks in order to avoid cumbersome expressions after
rotating out the & scalars:

Al;(UlU;(

th ~ AZ){”ZU)( s M&f ~ A)(}(U)zf' (26)

Az, 030,

The seesaw rotation Ry, ss and its angle ®,,,, are

1 -0
Rggen = < e > > (27)
Oeven 1
Ay vy
Ay vy
Olyen = MM, = | B (28)
even — 133 hé — L
Az, v3
Ay v,
The block diagonalization acts as (RSS.,)T
Mi, 0
REMu RS = (1 ) @)
0O M Z
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where the new blocks are
M%zh ~ Mhh - thMgglegy M%.f ~ Mé:é. (30)

The resulting matrix M, has the same algebraic struc-
ture of My, with new definitions of the constants A;;’s,
where i, j = 1, 2, 3. The matrix turns out to be

2~ -1 T

/~\11U% ;\12”1”2 /~\13111113
| Aoy Aptd Aoy | + M, (31)
/~\13111713 [\231)21}3 /~\33U§
where the tilde constants are

- 1 - A Ay,

A11:/\11—[\—» Ap=Ap - A )
v74 v74

- A% Ao, A3

AzzzAzz—A—X» Az = Ap3 — X £,
v74 v74
2

- A A
3 17433

Agy = Ayy — %, Az =Aj3 - /){ £ (32)
X X

By neglecting the electroweak VEVs in the matrix Mﬁ s
one obtains M3, ~ M%. Thus, M3, should have the two
2

mass eigenvalues my, =~ m%_li at the TeV scale and a third
’ 1.2

one m%l at hundreds of GeV, which would be zero if the
electroweak vacuum v were neglected. However, the non-
vanishing determinant of M3, shows the existence of the
smallest eigenvalue, which can be obtained by dividing
the determinant of M?, by the product of the two largest
eigenvalues

Det[M? -
m; ~ Mz Appv* = (Z A,-ﬂ;%v?) v?,  (33)

where A,;, is the effective coupling constant of the

125 GeV Higgs boson.

The mixing matrix R . which diagonalizes M?,, can
be approximated to Rc because of the method employed
in the eigenvalue search. Thus, the corresponding mixing

angles of R are

2
v
. an’dlyxy——2—, tan’fh~0.  (34)

tan’0%, ~
11703

'—@I\)|I\7§l\)

Finally, the transformation R2,,, which diagonalizes each
one of the blocks after the seesaw procedure, turns out to be

R0
Reren = ( i)e 1> (35)
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E. Summary of masses of the scalar sector

The scalar sector of the model includes the following:
(i) Three pairs of charged bosons: one pair corresponding to the W,’s Goldstone bosons G3; and two pairs of physical
charged scalars with masses given by

2 NfQ(U% + U%)”}( f3(1)% + v%)v;(

M, ¥ 8v, vy 8v vz
n 3(v1 + 03)*0y f2f3(”1 —v303)yy Jrf3(”1 +”3) 7
64v303 3203 0,03 64v3v:

(ii) Four CP-odd bosons: two Goldstone bosons G and G corresponding to the gauge fields Z, and Z,,, respectively,
and two physical CP-odd scalars with masses given by

, i+l f3(01 + 0]y,

L 81)11}2 81]1’[)3
4 307 +03)vp  fafs(v] —v3v3)y; +f3(”1 +7J3) v
64vivs 3203w, 03 64viv
(iii) Four CP-even bosons: the SM-Higgs boson with mass given by m?, = A,;,2%, two new CP-even scalar with masses
given by
m2 zfz(”% + ”%)”;( +f3(”% + ”%)”x
Hia 81}1’[)2 8U11}3
n 30 + 03y fofs(vi - v3v3)yg +f3(”1 ‘H’s) vy
64v303 3203 0,03 64viv3

and a CP-even boson with mass given by ﬂﬂvx

Finally, the scalar sector of the model in Ref. [72] can be F, = VI, Fp = VEfy. (38)
recovered by neglecting »5 since the previous model has
two doublets and one singlet, in contrast to the three

. X In particular, the left-handed mixing matrix can be
doublets and the singlet of this model.

expressed as the product of two mixing matrices

V. FERMION MASSES VE =V Vi . (39)
First of all, the fermions of each sector can be described
employing two bases: the flavor basis F or the mass basis f. ~ The former matrix rotates out the exotic fermions through
In the flavor basis, after the Yukawa Lagrangian is  a seesaw procedure by taking into account the fact that
evaluated at VEVs, the mass terms can be written as v, 3> v 3. For this, first, we split the whole symmetric
mass matrices in blocks (M FM} for charged fermions and
—L; =F,M;Fy + H.c. (36) My for neutrinos) [73],
Since the mass matrix My is not Hermitian, it has to be Yo <M3X3 M3xn> (40)
diagonalized by the biunitary transformation F ]
Mnx3 Mnxn

diag t
M = (V) "MV, (37 where M#f = (M/F)T and n is the number of exotic

fermions for each sector (1 for up quarks, 2 for down quarks
and consequently the mass and flavor bases will be related ~ and charged leptons, and 6 for neutrinos). The seesaw
via the mixing matrices V' and V% in the following way: rotation matrix is
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1 eff
\/{.ss = (—Gf 1L > (41)

where OF = (M7)~' M*/. The resulting block-diagonal

mass matrix is

sym
. mg sm O3
(W{,SS)TM?,m\/{,SS = ( sym )’ (42)
011><3 M

F exot

where m} gy, is the SM mass matrix given by
my sy & M= MIT(MP)TI M (43)

and M}5,,, ~ M7 is the exotic mass matrix. The latter

matrix in Eq. (39), V] g, describes the diagonalization of

myY gy and MY . It has the structure

VgM O3><n
VE = ( ), (44)
0n><3 Vexot

where V£, is parametrized by
Vim = Ri3(073. 613)Ro3 (053, 655)R1x (07, 87,)  (45)
and the matrices R;; are

F F
¢ sp 0

R12(911V2): —sz* sz 01, (46a)
0 0 1
Cf3 0 Sf3

Ra@)=| 0o 1 0| (6b)
—sf3* 0 Cf3
1 0 0

R23(9§3): 0 053 553 ) (46¢)

0 —siy o
where ¢f; = cos8]; and s]; = sin 0], exp (i5];). The angles
0}; are specified by their tangents 7{; = tan 6]}, which could
be calculated exactly or approximately using the vacuum
hierarchy of the three Higgs doublet outlined in Sec. II. On
the other hand, the Dirac phases 55 can be chosen in such a

way that they correspond to the experimental measure-
ments. Regarding neutrinos, the Majorana phases have to
be included [see Eq. (89)].

The mass matrices and their mass eigenvalues and
mixing angles (involving SM and exotic fermions) can
be obtained by using the vacuum hierarchy of the Higgs
doublets as shown in the next subsections.
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A. Uplike quarks

The uplike quark sector is described in the bases U and
u, where the former is the flavor basis, while the latter is the
mass basis

U= (u',u*,u’,T),
u=(uctT). (47)

The mass term in the flavor basis turns out to be

_EU = U_LMUUR + H.C., (48)
where My, is
h:151141]3 h%ivz l’léil)y, h;‘TUZ
1 0 hziv 0 h2 v
My = — e 7 (49)
V2| oy 0 BBy 0
0 g)z(uvl 0 9yTVy

Since the determinant of My, is nonvanishing, the four
uplike quarks acquire masses. The mass eigenvalues can
be calculated by applying different seesaw schemes: the
first one rotates out the exotic 7 quark, while the second
consists of taking advantage of the large hierarchy between
the ¢ quark and the lightest ones in the VEVs v; > v, > v3.
Consequently, the four mass eigenvalues are

117,33 137,31\2 ,2
2 _ (hSMhlu — h3uh1u) 3

m; = ,
(h)? + (h,)* 2

m? — (Miagyr = hirg5)* U_%
‘ (g;(T)z + (gjzfu)z 2

v

mi = [(h2)? + ()1

W 2

mi = [(g,7)* + (g7)%] - (50)
and the corresponding left-handed rotation matrix can be
expressed by

\/g = \/II:I,SS\/ZB’ (51)
where the seesaw angle is

héT-‘/ﬂJth-‘m vy
(ng)2+(g§14>2 Uy
Rrgr i |, (52)
(g}(T)zJ"(g;u)z 1"}(

0

Ui
0, =

while \/gB diagonalizes only the SM up quarks. Its angles
are given by
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12 12
U _ hZuvg}(T B hZTg)(M 2
2=72, 2 2 .

hiagyr = hirgp v

137,33 117,31

U __ h3uh1u + h3uhluﬁ
13 7 71332 31\2 7

(hlu) + (hlu) Uy
5, = 0. (53)
The heavy quarks T and ¢ acquire masses at tree-level
through v, and v,, respectively. The ¢ quark acquires mass
also through »;; however, this exhibits two suppression
mechanisms: by the seesaw with the exotic quark 7" and the
difference of the Yukawa coupling constants. Finally, the u
quark acquires mass through v5 with the same suppression

mechanisms of the ¢ quark but with 7 instead of 7.

B. Downlike quarks

The downlike quarks are described in the bases D and d,
where the former is the flavor basis, while the latter is the
mass basis

D= (d"dd T T,
d=

(d,s, b,Jl,JZ). (54)
The mass term in the flavor basis is
_‘CD = D_LMDDR + H.C., (55)
where M, turns out to be
O 0 O h{bﬂl h}éﬂl
1 ]’l%}ﬂ]g} h%ﬁﬂ:& h%;v:; h%‘177]2 h%%]Uz
MD = 7§ hg;vz hgtzivz h%zvz hg37113 hgzjl):;
0 0 0 g}(jv}( 0
0 0 0 0 97Uy
(56)

Unlike the previous cases, the determinant of M
vanishes. Actually, the rank of the mass matrix is not 5
but 4. Consequently, the lightest quark d remains massless.
However, this quark can generate a small mass through
radiative corrections according to Fig. 1. The contribution
of this diagram is

|

PHYSICAL REVIEW D 96, 095027 (2017)
U1,2

d

~=
S
no
S
no

FIG. 1. One-loop correction to the d'-quark propagator.

i1

. i *hki v
Z;k _ Zf Yod kg kco(m(f ’mhk>7 (57)

i—12 (47)m,; my; my;

where k =1, 2, 3; f, is the trilinear coupling constant
involving ¢ and doublets @ ; 5; and the function Cy(x,y)
is given by [74]

I
(1=2)(1=y*)(x* = y?)

2
x {)czy2 In <§7) —x?Inx? + y? lnyz}. (58)

Co(x,y) =

Thus, up to one-loop correction, the mass matrix is

B =P ke higw

h%}iv3 h§§v3 h§303 h%vz h%zjvz
MD_% o, hu, Ke, Wy W |,

0 0 0 g, 0

0 0 0 0 gf(jv)(

(59)

the determinant of which does not vanish. Its diagona-
lization is straightforward by considering the hierarchy
Zdj KM K K Uy

The masses of the d and s quarks are given by

(24133 = X Mg g + (2" g = 24" Wg) g + (B 3y = 24 h3g) hog)®

m

TR + ()7 + (0% + (P17 + [(h2)7 + (W) (L)

o (M) + (h5)*)(h3)? + [(h33)° + (h3)(50)? + [(h33)° + (h33)°] (h50)* v3
s (57 + () + (7 2

(60)
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while the masses of b, J! and J? are

2
v
= [0 + 02 + (07) 2.
N A 2 V%
my = (9;(]) ?vmn = (9;2(.7) 5 (61)
The corresponding left-handed rotation matrix is
V? = \/?,ss\/?& (62)

where the seesaw angle that rotates out species J' is

hll hlZ

17 U1 17 V2
T 1
sz Uy 'q)(] Uy
11 12
Of = | bon Miw 63
L — ' v v
G x G Tx
11 12
h3J v hBJ 3
I
9yg Vx gi] Y

and the SM angles of \/?’B are given by

MZW@+W%+$@
(h33)? + (h32)* + (h33)*v3
mZW@+W%+W@
(h3))* + (m33)* + (h3))*vs
%:%%+%%+@@@_
(h34)* + (h33)* + (h33)* va

(64)

The heaviest quarks J! and J? acquire masses at the TeV
scale due to v, while the b quark obtains mass through v,
at the GeV scale. The strange quark acquires mass propor-
tional to v5 at hundreds of MeV with the suppression due to
the b quark. The lightest d quark does not acquire mass at
tree level but at one loop, where the radiative correction
works as a suppression mechanism.

As an alternative scenario, if ¢ acquires a VEV v,
smaller than v3, the entries of the fourth and fifth rows of
the matrix in Eq. (56) are not null. In this case, the mass
matrix is

O 0 0 h}}77]1 h%éﬂl
21 22 23 21 2
hiqvs  higvs  hygvs  hygva hyzv,
1
31 32 33 31 3
Mp =—= | hagva hygva hygva hizvs hizvs |,
V2 11 12 13 1
ggdvﬂ go'dv(i ggdv()' g){jvl}’ 0
21 22 23 2
go'd/’jﬁ go'dvﬁ ggd”o‘ 0 ngUX

(65)

the determinant of which is nonvanishing and consequently
the d quark is massive, with mass given by

PHYSICAL REVIEW D 96, 095027 (2017)

(g};b)z(h%%)z vgv% (66)
(9;1(.7”;()2 U;z( 7

2
my =

where for simplicity 43}, 33, and h3), have been set to zero
in order to simplify the expression.

C. Neutral leptons

The neutrinos involve both Dirac and Majorana masses
in their Yukawa Lagrangian. The flavor and mass bases are,
respectively,

Ny = (5 O N )
ny = (2N, (67)

The mass term expressed in the flavor basis is
13¢
~Ly = 5 NEMyN,. (68)

where the mass matrix has the block structure

0o MI o
0 My My
with My = diag( ). b3, 1) % the Dirac mass in the
§, N') basis, and
hs; hs, b

My= 50y (710)
0 0 O

is a Dirac mass matrix for (v;, vg). My = puplsys is the
Majorana mass of Np.

By employing the inverse SSM, taking into account the
hierarchy v, > v3 > |[M /|, we find that

m, 0 0
(\/ZSS)TMN\/ZSS =10 my 0 [, (71)
0 my

where the resultant 3 x 3 blocks are [38,39]

my, = ME(MN)_IMN(M}/)_IMD’
MNWMN—MN, MN%MN’+MN. (72)

The most important details of these matrices are discussed
in Sec. VL

D. Charged leptons

The charged leptons are described in the bases E and e,
where the former is the flavor basis, while the latter is the
mass basis
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E = (e, e ¢e", &L, E2),

e=(e,ut1,E E). (73)

The mass term obtained from the Yukawa Lagrangian is

—Lr=E;MzE; +H.c., (74)
where M turns out to be
0 h%vsy 0  hly, 0
0 Moy 0 Ky 0
My—— | hgos 0 hge, 0 0
g}(‘év)( 0 0 g}(gv)( 0
0 g)z(’;v)( 0 0 gjgvx
(75)

The determinant of M is nonvanishing, ensuring that the
five charged leptons acquire masses. Although its eigen-
values and the mixing matrix V¥ have large analytical
solutions, we can obtain predictable expressions by imple-
menting the vacuum hierarchy of the Higgs doublets. The
resulting eigenvalues are

epppul M pel\2 2
_ (hsehlg_h3eh15) U3

me = el\2 w2 D’
(hig)” + (Hyg)
el e i 1,2 Te
m2 — (h;ethli? + hggh’fa) U_% (h3e)zv§
n B 1 ’
(h§e)* + (Hg)* 2 2
m2 — (hg’e)zvg
T 2 s

2
v
mi = [(g)¢)* + (97¢)°] ?x

my = [(g2e) + ()% (76)

The exotic charged leptons E! and E? have acquired masses
at the TeV scale, while the heaviest SM lepton 7 has
acquired mass at the GeV scale, proportional to v,. On the
other hand, the charged leptons y and e have acquired mass
through v, which constitutes the smallest VEV. Both of
them participate in a sort of seesaw with the matrix entries
proportional to v, which helps us to suppress their masses.
Moreover, the e mass is further suppressed because of
the difference between the Yukawa coupling constants in
the first equation of (76), which can be assumed to be at the
same order of magnitude.

PHYSICAL REVIEW D 96, 095027 (2017)
1. Left-handed rotation

The unitary transformation that diagonalizes the matrix
MEF = MM, can be split as follows:
Vi = \/E,SS\/E,B' (77)

The seesaw procedure is done by V¥ ¢ because M¥ has

the suited hierarchy in its sub-blocks. The corresponding
seesaw angle turns out to be

el 1 . . e 2u
e, 010, h5, Gye V30
2m21 2m22
E E
. Hl ol T
@Eu — hlgglgvlv;( h%gﬂvﬂ/l (78)
L 2m2l ZmZZ
E E
1 1 )
(h3g gye+h3,gye) V30, 0
2m?
£l

Then, the transformation V7 only diagonalizes SM
leptons with angles given by

el
E hlE
L2~
hlE
1 3pre 2 2
[E 29;55 h5eh5e™ vy*vs
L.23 -

el3pel 2 ul 3
Gee hip"hig 01

1 Te
E Ng;(Eh2eﬁ
~ elpel :
g;(ehlE Uy

(79)

2. Right-handed rotation

On the other hand, the right-handed matrix M% = MTEM E
cannot be diagonalized by means of the seesaw procedure
because of the presence of vf( terms in the top-left 3 x 3
block. Therefore, finite angles are required to rotate out any
1))2( in contrast with the diagonalization procedure applied
on M¥. These angles can be approximately obtained by

neglecting any electroweak vacuum in ME,

gt 0 gugh gege O
0 gt 0 0 Gede
ME z% Goedye 0 gt Gede 0|,
Gedoe O gege  Ge® O
0  gedie O 0 g’

(80)

and diagonalizing it in such a way that the masses of the
exotic species E' and E? result in the bottom-right block.
This rotation may be expressed by the parametrization
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V%,vx = R25(91?25)R34(9£.34)R14(‘9£.14>7 (81)

and the corresponding angles are given by

e

~ 2 )
YE
7l

g){e

1 bl
g;(E

E
TR 25
E
15~

el
ye

(9,6)” + (g5e)?

fhia R (82)

Consequently, the diagonalization is done by the trans-
formation
\/Ig = \/15,1/‘1\/12,3‘ (83)

After rotating out v, from the top-left 3 x 3 block, it is
viable to implement a similar rotation to Vf g with the
following angles:

12
goe(h§p* + g

£~ ) vy
RI127™ T (L hs + hﬂlhﬂﬂ)y_’

I\ gl 1EM3¢) V3

1 pre(pel pep ul g pup 2
E L g){EhZe<hIEh3e + hlEh3e) U3
R23 7 elptr (el 2 ul2

Gyl (hSE™ + M) L)

1 2p7e 17

E ~ g)(E h2e hZe VU3 ’4
R13%¥ 13 (84)

g (5> + Hig?) v

Summarizing, the fermion mass hierarchy is induced by
the generation of a hierarchy of the vacuum of the Higgs
doublets together with the mass matrices obtained from the
Yukawa Lagrangian, the terms of which are constrained by
|

(e 2 + (P
B+ I

hSohsy + s s p?

HNU3

m, =
(hy) v

The ratio p = h),/h}, describes the heavy neutrino
hierarchy. Since the matrix m, has a null determinant,
at least one neutrino is massless. The above matrix is
diagonalized by

(VEsm)'m, Vi oy = mye,
which together with V7§, constitutes the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [75,76]

Uf = (VE,SM)TVIIY,SM‘ (88)

PHYSICAL REVIEW D 96, 095027 (2017)

TABLE II. Three-flavor oscillation parameters fitting at lo
reported by Refs. [29,30]. £ = 1 for NO and 2 for IO.

NO 10
sin® 0, 0.3089013 0.30870013
sin’ 0,5 0.44079923 0.58410>
sin? 6,5 0.02163 055074 0.02175- 58073
S 28973 269735
i 74952 74943
e 252614 25182043

the nonuniversal U(1), gauge and Z, discrete symmetries.
The fermion masses are outlined in Table IV.

VI. NEUTRINO PARAMETERS

The consistency of this model with the current neutrino
oscillation data shown in Table II is tested by exploring
the parameter space of the neutral sector of the Yukawa
Lagrangian. For simplicity, we choose a basis for v where
My is diagonal, and My, is proportional to the identity

v

M, = diag( h! hi/hj\/)ﬁ (85)

My = pplass, (86)
where p,, fixes the Majorana mass such that the light
neutrinos acquire masses at the eV scale. On the other hand,
the coupling constants /)., h3;, and h}, determine the
masses of the heaviest neutrinos.

By replacing the Dirac mass matrix from (70) in the light
mass eigenvalues in (72), the explicit expression of the SM
neutrino mass matrix is obtained:

hSshs, + W s p?
(h5)? + (H3,)%0°

RS, + WL

hSShS; + Mo hap?
hSuhsy + Wy b p?

(h$)? + (M50

(87)

The parametrization for the PMNS matrix follows the
convention shown in Eq. (45) given by
Us = D(1.85, 6Y)Ro3 (033)R13(005. 61)R12(0).  (89)

where D(1,68Y,5Y) is the Majorana phase matrix

1 0 0
D(1,8Y.8Y)=[0 % 0
0 0 %
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The angles can be obtained following the convention
presented by the Particle Data Group [77],

S%3 = |U€3 2v
2
S%3 _ |Uu3| .
1- |Ue3 2
2 |U€2|2

2, = 1Zal” (90)
2 1 - |Ue3|2

The resulting angles obtained from the experimental
data are shown in Table II, which have been fitted in
Refs. [29,30], in which the convention (90) was employed.

A. Numerical exploration of m, consistent
with current data

Since the components of the neutrino mass matrix m,
are quadratic forms of the Yukawa couplings, it is useful to
do some coordinate transformation to simplify them. The
Yukawa couplings are expressed in their “Cartesian”
fashion, but their “polar” form can be written as

h5¢ = h; cos 0y,
{ phty, = hisin 0,

hsl = hjj cos &
{phg‘g = hlsind’,

{ hs) = hj cos 0], 1)
phs, = hisin 6y,
The Dirac mass matrix becomes
., phic;  phicy  phic]
M, = TS hes,  Hs,  his. |, (92)
Vo o o
and consequently the neutrino mass matrix is
N LT
m, = (hffﬁ RRiC (W ReRCT |, (93)
MU N hghgesr Wemgelt (k)2

where ¢ = cos(82 — 6). It is also possible to obtain the
mass matrix by defining the vectors in the neutrino Yukawa
coupling space,

hy = (hjcy, hisy).

hy = (hicy, hysy),

hy = (hjc. hys;). (94)

in such a way that the mass matrix is obtained by dot
multiplying these vectors,

PHYSICAL REVIEW D 96, 095027 (2017)

POV R
M= iy | e b mE by (95)
v
SRS TS A VR S

The new matrix can be diagonalized yielding the
corresponding eigenvalues and eigenvectors and also the
mixing matrix and its angles using the definitions in (90).
Moreover, to make this model consistent with neutrino
oscillation data [29,30], the Yukawa parameters (h¢,0¢),
(h%,0,), (ht, 67), and 6%, should be fitted. Such a procedure
is done with the Monte Carlo method by generating one
billion trials in the parameter space and accepting points

104 |. I T l/ T /

02 04 06 08 1.0
V3
) (hy)* =0.10.

10

V3
© (hy)”=1.00.

FIG.2. Contour plots of v, (TeV) vs v3 (GeV) from Eq. (98) for
different values of (h);)* and u,.. From below to above are the
corresponding contour plots for the following values of iy :
10 keV (gray line), 50 keV (black line), 100 keV (gray dashed
line), 500 keV (black dashed line), 1 MeV (gray dotted-
dashed line), 5 MeV (black dotted-dashed line), 10 MeV (gray
dotted line), and 50 MeV (black dotted line).
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that match the mass matrix to the experimental data. It is
worth mentioning that the other two rotation parameters 6%,
and 0% from Eq. (79) are approximated to m,/m,.

On the other hand, the appropriate mass scale and mass
ordering can be obtained by adjusting the outer factor of the
mass matrix and the ratio p. For both normal-ordering (NO)
and inverted-ordering (IO) schemes, the Yukawa coupling
constants can be set to

One should note that, due to the smallness of w3, the
Majorana mass scale 4, does not need to be small, contrary
to other models [38,39]. Specifically, values at the MeV
scale are consistent with the observable data.

Table III shows the values of the parameters found with
the Monte Carlo procedure consistent with the reported
values in Refs. [29,30] for NO and IO. From the fact that
the mass matrix is isotropic in the parameter space, € is set
to zero, and any other solution with ¢¢ # 0 is obtained by
doing three-dimensional rotations in the neutrino parameter
space. The other angles are determined by 6, and &7 — 0.

The NO scheme has several disconnected regions (there
are 12 shown in Table III) distributed in 3000 solutions
consistent with neutrino data that demonstrate the high
consistency of the model with this scheme. Such values can

(hl)? = 0.02,
p* =05, (96)

while the mass scale is set to

vz = 0.5 GeV, be replaced in (93) in order to obtain the correct squared-
v, =5 TeV, mass differences and angles. However, the 10 scheme has
sy = 0.1 MeV. (97) only four regions distributed in less than a thousand

solutions. It is due to the more restrictive constraints
implied in this scheme. The masslessness of v3, the values
of the mixing angles, and the quasidegenerated masses of
v} and 12 restrict the parameter regions enormously, as is
shown in Table III.

The stringent constraint on 6%, in the 10 scheme is
noteworthy. The NO one allows it to vary from 0° to 45°,
while the IO one allows it to vary only from 0° to 3°. The
narrowing is observable in the 4, k%, €, and 07 — 8, widths
in the last four rows of Table III. On the contrary, there does
not exist such stringent constraints in the NO scheme.

The above values fix the outer factor of the mass matrix
(87) at 50 meV, which yields to the correct squared-mass
differences. Nevertheless, there exist other possible values
for the parameters p,, hyy,, v,, and v3 that give the factor
of 50 meV. The only condition required to get the correct
mass scale is

2
PN — 50 meV. (98)
(h/\/) Uy
By taking the above constraint and isolating pu,s, it is
possible to obtain other solutions. These solutions are shown

in Fig. 2, in which some contour plots on the v, vs v3 plane
for different values of u from 10 keV to 50 MeV are shown.

VILI. h - 7t AND h — u

The Higgs lepton flavor violation (HLFV) processes
comprise some of the new hints in searching for new

TABLE IIl. Parameter domains that reproduce neutrino data for NO and IO from Refs. [29,30]. 65 = 0.

o5 g 3 hy o 0; — 0,
Normal ordering
0° 0.270 £ 0.007 0.738 £ 0.040 0.747 £ 0.040 +(39.49 £2.99) +(38.79 £0.78)
0.271 £ 0.007 0.741 £0.041 0.745 £ 0.041 +(140.24 £2.93) F (38.69 £0.84)
0.274 £ 0.007 0.737 £0.043 0.745 £ 0.043 +(40.39 +2.80) F (141.25£0.74)
0.275 £ 0.008 0.754 £0.040 0.729 £ 0.040 +(78.17 £2.61) F (218.52 £ 0.65)
15° 0.294 £ 0.008 0.737 £ 0.045 0.738 £ 0.043 +(66.73 £ 1.02) +(33.32 £ 0.81)
0.362 £0.014 0.722 £ 0.033 0.725 £ 0.041 +(51.41 £2.81) F (43.99 £0.51)
0.358 £0.015 0.720 £ 0.036 0.727 £ 0.041 +(50.75 £ 3.29) F (22451 £0.74)
30° 0.400 £ 0.008 0.689 £ 0.035 0.734 £ 0.035 +(46.38 £1.91) +(27.53 £ 1.12)
0.471 £0.019 0.625 £ 0.021 0.751 £ 0.029 +(42.39 £ 1.94) £(129.04 £0.73)
0.402 £0.010 0.694 £ 0.043 0.729 £ 0.045 +(46.16 £2.21) F (152.30 £ 1.40)
45° 0.495 £ 0.003 0.548 £ 0.004 0.796 £ 0.005 +(42.61 £0.82) +(19.10 £ 0.75)
0.498 + 0.002 0.547 £+ 0.007 0.791 £+ 0.003 +(41.96 +0.78) +(160.04 + 0.58)
Inverted ordering
0° 0.984 £ 0.006 0.725 £0.031 0.700 £ 0.032 +(81.88 £0.84) F (163.17 £ 0.56)
1° 0.982 £ 0.006 0.732 £0.030 0.695 £0.031 +(81.57 £0.74) +(161.91 £0.55)
2° 0.980 £ 0.006 0.747 £0.022 0.681 £ 0.022 +(81.54 £0.51) F (160.77 £ 0.50)
3° 0.978 £ 0.006 0.759 £0.014 0.671 £0.013 +(81.51 £0.32) F (159.56 + 0.46)
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physics BSM. From them, the process & — tu suggests
new physics since CMS 8 TeV had reported the branching
ratio [78]

BR(h — i) = (0.847037)%. (99)
In comparison, ATLAS reported [79]
BR(h — ) = (0.53 £ 0.51)%, (100)

consistent with CMS. Thus, the process 7 — zu may be
giving the first evidence on nonoscillatory LFV, together
with the well-known neutrino oscillations. Now, according
to the present model, the piece of the Lagrangian that
predicts this process is

eu me

3e

—Lpsmn = \/Eg%e!fe +\/i%e’£hsel;e

TE (3
+ 2 et hyel + et hyeh, +He.  (101)
V2 V2

involving the interaction between charged leptons and
Higgs doublets. Then, the replacement of the flavor states
by the corresponding mass eigenstates with the rotation
matrices

h—RT, H, (102a)
EL = \/EeL, (102]3)
ER = \/geR (1020)

is required in order to get the suited couplings. The rotation
matrices can be expressed, at leading order, as

h h
I —si, —si3
T h
Reven = S12 1 0 (10321)
h
sis 0 1
1 1 §F
V2 V2 L13
E _ L 1 sE
Vism = V2 V2 L23 |, (103b)
St =513 _ Sf,z_@LSfB 1
V2 V2
E E
CR.12 1 SR.13
E _ E E
V=1 -1 g1 Skos (103c)
E E
SR23  TSRI13 1

After rotating the flavor basis into the mass eigenbasis, the
Yukawa charged lepton Lagrangian can be expressed as

_‘CE,SM,h = yljaefeh + H.C., (104)
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where y;; (y;;) are the conserving (violating) flavor lepton
number coupling constants.

A. Conserving lepton number process & — 7t

The process h — 77 is prediced by the piece

_EhTT = yr‘r%rh (105)
with
V. — mysysgas | mesh ' (106)
\/Epgv p2v
Thus, s%, controls how much h decays into 7.
Additionally, the ratio
o(h—11) { 0.90 +0.28 CMS (107)
o(h = 1t)gy | 1.43-0.37+0.43 ATLAS

comprises an important hint of BSM physics in flavor
violation. In the present model, it turns out to be

oh— 1) (&)2

o(h — 7)sy A\

(108)

where p, = 0.05 in order to obtain the masses of b and z.
The dependences on st s, 5% |3, 5% »3, and 575 are strongly
suppressed by factors mj/m?2. Therefore, the CMS and
ATLAS limits yield the regions

CMS
ATLAS,

no_
S12 =

{ (2.67 £ 0.85) x 1072 (109)

(3.86 +0.06) x 1072
constraining the available domains in the parameter space,

which is presented in the next paragraph in light of the
HLFV h — zu decay.

B. HLFV h — tu
The process h — zu is predicted by the piece

_[’h‘m = ym’/TLTRh + yTﬂﬁﬂRh + H'C'7 (1 10)
where the LFV couplings are

. musi%sg,m meS'HST 103

y/rr - - B (1113)
p3v V2pyv
h h E
m,s m,s'tys

_ MySiz MeS1oSRas (111b)

y - s
" V2 prv

and 57 |53 = 57 3 + 57 53. The branching ratio (BR) from
the Lagrangian is given by
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FIG.3. Contour plots of y,, in the planes s/; vs s¥ |3 and sf; vs
sk 13 with s 5 = 0.01 and s7, = 0.05. The orange (blue) regions
shows 68% (95%) C.L.

BR(h — tu) = 8 F oo Yur & 12009, (112)
with the new parameter y,, written as
)_)/41: \/y/%‘r_‘_y%/r (113)

According to Ref. [80], the parameter y,, lies in the region

0.002(0.001) < 3,, < 0.003(0.004) (114)
at 68% (95%) C.L. in such a way the CMS result might be
explained.

By fixing the value of y,, at 68% and 95% C.L., some
parameter spaces can be drafted to observe how much the
model is consistent with the CMS report. First of all, y,.
does not depend on s§!23 due to the m,/psv factor in the
coefficient y,,. Second, according to Fig. 3(a), the depend-
ence on s ,; is slighter compared with s7; and s% 5
because of the constraint on s%, ~ 0.05. On the other hand,
there exists a direct proportionality between s{; and s%
shown in Fig. 3(b) in order to satisfy the CMS result.
Moreover, how sf; determines the actual value of y,, in
comparison with s¥ |, and s; is observed. Summarizing,
st should be larger than 5 in order to get the suited
BR(h — 7u) in accordance with the CMS report.

VIII. DISCUSSION AND CONCLUSIONS

Some issues not explained by the SM, such as the flavor
problem, neutrino masses, and mixing can be addressed by
employing the addition of Abelian symmetries and the
extension of the particle spectrum. The model shown here
exhibits nonuniversal U(1), quantum numbers with Z,
parities, which require extended scalar and fermion sectors
in order to cancel chiral anomalies and to avoid massless
charged fermions. The model implements three scalar
doublets and one scalar singlet with an additional scalar

PHYSICAL REVIEW D 96, 095027 (2017)

TABLE IV. Summary of fermion masses showing their VEVs
as well as the suppression mechanism if it is involved. The orders
of magnitude of v, vy, v, v3, and u, are units of TeV, hundreds
of GeV, units of GeV, hundreds of MeV, and units of MeV,
respectively.

Leptons Quarks
Family Mass Mass
1 1 HA V3 2 u hi=h,* v3
L wrz h V2
2 v _HNVY h2 c s
(hl 72 hr V2
3 3 ﬂN”§ 2 t Ty
L DR s V2
Exotic Ni ki v, T hrvy
2 HN V2
1 e h2—h,"? vy d T2
o V2 h2 412
2 U h4h? py s B+h2 v
hy V2 by V2
3 T h,vy b hy, vy
V2 V2
Exotic E! hg vy J! hyiv,
V2 V2
Exotic E? heyvy, J2 a0,
V2 V2

field without a VEV. The fermion sector includes three
exotic quarks 7 and J'2, five exotic leptons £'? and v
and three Majorana fermions A/ ", which allow dlfferent
mass mechanisms in such a way that the fermion mass
hierarchy is obtained naturally, as it was shown in Sec. V
in Egs. (76), (50), (60), and (61). A summary about the
fermion mass acquisition is presented in Table IV.

A vacuum hierarchy among the three Higgs doublets is
obtained from the electroweak VEV v = 246 GeV together
with the third-generation fermion masses, especially the
t-quark mass at m, = 173.21 GeV. First, according to
the SM, the electroweak bosons acquire mass through
the VEVs of the three doublets, such that the effective
electroweak VEV turns out to be

2

v? = v + 03 + 03 = (246 GeV)>. (115)

Second, the f-quark mass in the model is given by

m, = \/(h3)? + (h31)2 2L = 173.21 £0.71 GeV.

5=
(116)

Additionally, if the Yukawa coupling constants are
assumed at order 1, we obtain that v, is close to the value
of the electroweak VEV since \/Em, ~ v;. Therefore, v, ~
245.9 GeV is the dominant contribution to the electroweak
VEV, leaving a small gap to be filled by v, and v5. Third,
the v, and v3 vacua are determined by the b-quark and
7-lepton masses together with the muon and neutrino
masses, respectively. Regarding v,, it is observed that
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Uy N \/imb ~ 6 GeV, and since the 7/b mass ratio is of
order

me _ (h5,)* L
my \(50)” + () + (h3y)* ~ 2

(117)

the assumption to assign such a numerical value to v, is
adequate. In addition, the fact that v; =~ \/imﬂ ~ 0.2 GeV

with the neutrino mass scale factor obtained from the
inverse seesaw mechanism

2
HNT3

2
Uy

=50 meV (118)

suggests that v3 should be about 200 MeV. Consequently,
the vacuum hierarchy v; < v, < 3 is consistent with the
current phenomenological observations.

On the other hand, the masses of the u quark, ¢ quark,
and the electron appears as subtractions between Yukawa
couplings, which gives an additional suppression of their
masses. This feature is not accidental but comes from the
form of the seesaw formula (43),

my gy & M/ — MIT (M) MPT,

and the vacuum hierarchy. For instance, the ¢ mass comes
from the following sub-block in the uplike quark mass
matrix:

22
hluvl |
Mo | — — —

G, |

2
thvl

g)(T U)(

By taking into account the fact that v, < v, the eigen-
values

2 _ (h%ig)ﬁ - h%Tg;%u)z
g+ (g 27

vy | (haggu + hizg,r)’ v}
2 (g +(gu)?* 2

2
1

<

m} = [(g,7)* + (5)’]

are obtained, such that the exotic 7 quark suppress the
c-quark mass. The same scenario appears in the u-quark
mass, where the corresponding sub-block is

11 13
h3uv3 | h3uv3
M, - - - s
31 33
hluvl | hluyl

the eigenvalues of which turn out to be (with the
assumption v3/v; < 1)
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117,33 137,31\2 ,2
(h3uh1u_h3uh1u) 3

CHERAGHZEY

2
my

(h4yhs + WAL o}
7+ ()72

2
v
my = () + (L)) 5 +

and it is observed again how a heavier mass, in this case the
t-quark mass, suppresses the mass of the light u quark.
Finally, the e and y leptons shows a similar behavior, but
the suppression is between v5 in the second column with
the v, in the fourth column of the charged lepton mass
matrix

e
h3e U3 |
m I — — 9

M ul
Myvs | Hiev

hi}:?)]
(119)

eu

such that the masses of the lightest charged leptons are

o (W — WEnsh) o}

e e 1 ’
(hSL)? + (g 2
el e 1\2

f(RL)? (R 2

These suppression mechanisms are induced by the vacuum
hierarchy together with the zero texture matrices obtained
from the nonuniversal U(1)y interaction and the Z, parity.
Consequently, the subtraction of Yukawa coupling con-
stants is a natural consequence of the diagonalization of the
mass matrices by taking into account the vacuum hierarchy
outlined in the previous paragraphs.

Furthermore, the model is not only consistent with the
fermion mass hierarchy of the SM, but also it is consistent
with some phenomenological reports in the lepton sector.
Regarding the consistency of the model with current
neutrino oscillation data, this scheme is consistent with
both mass orderings, NO and 10, but the former is preferred
because of the large abundance of solutions in comparison
with the latter. The PMINS angles and the squared-mass
differences are satisfied without needing fine-tunings due to
the fact that the parameters A¢, ki, and /7 vary from O to 1,
and similarly the angles 6, and &7, span £180°. Moreover,
the suited neutrino mass scale is fitted by the Majorana
mass p,, the Yukawa coupling k', and the vacua v; and
v,, s0 the model has a large set of solutions in order to be
consistent with neutrino oscillation data. Additionally, the
model is adequate for understanding the CMS report
about the & — zu branching ratio. The mixing angles of
the CP-even scalars, the left- and right-handed charged
leptons, together with the vacuum hierarchy yield definite
regions of consistency in the mixing angle space, where the
most important relation is between s?; and s% 5.
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Regarding the exotic neutral sector N and N, Egs. (85)
and (96) allow us to set the pseudo-Dirac neutrinos masses
from 100 to 700 GeV by setting y5, from 4 keV to 0.1 GeV
such that N and N can be observed at current energy
scales at particle colliders. Moreover, since hfv in Eq. (85)
does not matter in setting the correct squared-mass
differences of light neutrinos, N> and N? masses are not
constrained.

The present model shows how the introduction of new
nonuniversal quantum numbers and an extended scalar
sector present a fertile scenario in which some issues—
which the SM cannot explain, such as the fermion mass

PHYSICAL REVIEW D 96, 095027 (2017)

hierarchy; HLFV processes; or, last but not least, the
evidence of the massive nature of neutrinos in their
oscillations—can be understood with the introduction of
the least number of new particles and symmetries.
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