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The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions
that are described by the minimal standard-model extension (SME). To date, most considerations of this
important hypothetical process have been restricted to Lorentz-violating photons, as the necessary
theoretical tools for the SME fermion sector have not been available. With their development in a very
recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two
realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming
fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type
of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong
indications that it is energetically disallowed for theH coefficients, as well. However, it is rendered possible
for the dimensionless c, d, e, f, and g coefficients. For large initial fermion energies, the decay rates for the
c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the
smallness of the Lorentz-violating coefficient where for the e, f, and g coefficients this suppression is even
quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a
fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the
dimensionful b and H coefficients as well as for the dimensionless d and g. The characteristics of this
process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on
experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark
sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the
spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods recently
developed to study the phenomenology of high-energy fermions within the framework of the SME.

DOI: 10.1103/PhysRevD.96.095026

I. INTRODUCTION

The search for signals of physics at the Planck scale has
become more and more prominent over the past years.
Since Planck-scale physics is likely to modify the funda-
mental structure of spacetime and of particles, one of the
most promising signals may be violations of the funda-
mental symmetries of Lorentz and CPT invariance. Such
effects were demonstrated to be present in certain string-
theory models [1–5], in loop quantum gravity [6,7], in
noncommutative theories [8,9], spacetime foam models
[10–12], spacetimes with nontrivial topologies [13,14], and
Hořava-Lifshitz gravity [15].1

The standard-model extension (SME) provides a general
field theory framework incorporating all Lorentz-violating
operators that are compatible with the gauge group of the
standard model and with coordinate invariance [16,18,19].
All operators are decomposed into field operators of a

particular mass dimension and controlling coefficients that
govern Lorentz violation. The latter can be interpreted as
background fields giving rise to preferred spacetime direc-
tions. Theminimal SME contains all such field operators that
are power-counting renormalizable, which is a finite number.
The nonminimal SME additionally includes the infinite
number of higher-dimensional field operators [20–22].
The fundamental result of [23] that links Lorentz violation
to CPT violation in effective field theory ensures that all
CPT-violating operators are contained in the SME auto-
matically. For over fifteen years, various experimental tests
within particle physics and gravity have been carried out
producing a high number of constraints onCPT and Lorentz
violation [24]. In particular, Lorentz-violating nonmi-
nimal models have also been proposed to look for
unusual electromagnetic interactions between fermions
and photons [25–29] and altered interactions in the electro-
weak sector [30].
Modified particle decays primarily provide excellent

tests of Lorentz invariance, which was pointed out even
before the SME existed [31–33]. One of the most promi-
nent of these processes is vacuum Cherenkov radiation.
This is a Cherenkov-type process of an electrically charged,
massive particle that can occur in a Lorentz-violating
vacuum without the presence of external electromagnetic
fields. It resembles ordinary Cherenkov radiation that takes
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1In this context it shall be briefly mentioned that diffeo-

morphism invariance in Hořava-Lifshitz gravity is broken explic-
itly, which is known to be incompatible with the geometrical
structure of the curved spacetime manifold under consideration
[16]. Recently, an extension of Hořava-Lifshitz gravity has been
constructed where diffeomorphism invariance is broken dynami-
cally in the ultraviolet regime [17].
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place for a charged particle propagating through an optical
medium when the particle moves with a velocity exceeding
the phase velocity of light in that medium. Under such
conditions, a large number of molecules is polarized nearby
the particle trajectory, which then radiate coherently. A
similar process can occur in the presence of a Lorentz-
violating background field that permeates the vacuum and
turns it into an optical medium with a nontrivial refrac-
tive index.
Vacuum Cherenkov radiation has already been studied in

several papers. In the context of the SME, it was investigated
predominantly based on Lorentz violation in the photon
sector. A primary interest was to understand vacuum
Cherenkov radiation in the CPT-odd photon sector, i.e.,
within, the (spacelike) Maxwell-Chern-Simons (MCS)
theory. In the classical regime, the process was studied in
[34,35] where these works were complemented by inves-
tigations at the quantum level in [36,37]. After having
established a profound understanding of this sector, the
interest changed to the CPT-even modified Maxwell theory.
In one of the first papers [38], the classical regime was
considered with quantum-theoretical calculations following
in [39,40]. Recent interest has grown towards vacuum
Cherenkov radiation for timelike MCS theory. Studies
thereof had been avoided before due to instabilities of that
framework [41]. The calculation in [42] was restricted to
classical electrodynamics showing that there is no contri-
bution to the decay rate up to second order in the velocity of
the radiating particle. This result was complemented by the
finding of [43] leading to the conclusion that a charged
particle does not radiate photons at all for timelike MCS
theory. The recent article [44] now also includes the behavior
in the quantum regime. In [45] MCS-theory is quantized
consistently for a general background vector and a general
class of covariant gauges by introducing a photon mass that
lies well beyond observational limits. This procedure paves
the way to performing phenomenology and to considering
quantum corrections in such frameworks.
Furthermore, [46] extends our knowledge of vacuum

Cherenkov radiation of pions producing a novel lower
bound of −7 × 10−13 for Lorentz violation in the pion
sector. Another recent article [47] even generalizes the
calculations carried out for pointlike particles in [40] by
taking into account a partonic description of these particles.
Last but not least, gravitational Cherenkov radiation was
focused on in [48]. This process is the counterpart in
gravity that occurs when the velocity of a massive particle
or a photon exceeds the phase velocity of gravity. Under
such circumstances, the particle loses energy by emitting
gravitational waves. The needed requirement can be ful-
filled in a Lorentz-violating gravitational framework.
Also, it is reasonable to observe that a subset of Lorentz

violation in the fermion sector can be converted into a
subset of coefficients in the photon sector [38,49] to
perform the calculation of the decay rate in the latter
sector. Hence, a subset of the results obtained in the photon

sector can be interpreted to correspond to equivalent results
in the fermion sector.
It shall be mentioned, as well, that vacuum Cherenkov

radiation has been studied beyond the SME. The authors of
[50] do not work in the context of effective field theory.
Instead, they impose a modified energy-momentum con-
servation law, which they apply to vacuum Cherenkov
radiation. A different point of view is taken in [51,52]. In
their papers, the authors follow a philosophy that differs
from the basic principles of the SME. Their intention is to
find a modified dispersion relation directly that yields
decay rates for vacuum Cherenkov radiation and photon
decay that have the same characteristics as results based on
the SME. To do so, they introduce a generic class of isotropic
modifications of photon dispersion relations, and they
compute the decay rates solely from this modified kinemat-
ics. The result is compared to the decay rates obtained for the
isotropic CPT-even modified photon theory and the space-
like case of MCS theory. Furthermore, limits are set on the
scale where Lorentz violation is supposed to break down.
Note also that there is a framework that is called the

“Lorentz-violating extended standard model” by its found-
ing father Anselmi [53]. Despite its name, it should not be
confused with the SME. This framework comprises an
energy scale ΛL that is associated with Lorentz invariance
breaking. It introduces Lorentz-violating contributions into
the Standard Model by splitting spacetime into two sub-
manifolds with a subgroup of the Lorentz group operating
as a symmetry group on one of these submanifolds only.
Within Anselmi’s framework, vacuum Cherenkov radiation
is considered for particular Lorentz-violating contributions
that include higher-dimensional operators [54]. The authors
find that cosmic-ray data are consistent with a scale ΛL that
is much smaller than the Planck scale. Finally, the author of
[55,56] uses a logarithmic deformation of the Schrödinger
equation that is supposed to follow from a nontrivial vacuum
structure. Based on this modified quantum mechanics, a
modified refractive index of the vacuum is derived. The latter
is then employed to make certain observations with regards
to the properties of vacuum Cherenkov radiation.
What is still missing to date is an extended study of

vacuum Cherenkov radiation (and other modified particle
processes) in theories with Lorentz invariance broken in the
fermion sector of the SME. The current article is supposed
to improve our understanding of this physical scenario,
which deals with the phenomenology of ultra-high-energy
cosmic rays (UHECRs). We are now ready to reach that
achievement as the methodology to studying quantum
processes of particles with Lorentz-violating fermions
was developed in the very recent work [57].2 We primarily
consider spin-nondegenerate frameworks in the fermion
sector including the b, d, g, andH coefficients. However, to

2See [58] for similar considerations in the modified Dirac
theory based on the minimal SME.
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perform individual cross checks and to complete the picture
our studies also involve most of the remaining families of
coefficients.
The paper is organized as follows. In Sec. II we will

review the basic kinematics of the process. In that context, a
couple of statements will be made with regards to the Ward
identity when Lorentz-violating fermions are involved. In
Sec. III we will continue investigating the process within
isotropic frameworks. These studies cover the isotropic b,
c, d, e, f, and g coefficients. The next step will be to apply
the developed methods to anisotropic background fields,
which is carried out in Sec. IV. Thereby, the a coefficients
and particular anisotropic cases of the b, c, d, e, f, g, andH
coefficients will be covered. The basis of the Cherenkov
process considered to that point will be a conserved
projection of particle spin of the incoming fermion.
Therefore, Sec. V will be devoted to investigating helicity
decays where the fermion spin projection can flip. All
results will be compiled in Sec. VI, followed by a set of new
constraints on certain combinations of controlling coeffi-
cients obtained from cosmic-ray data. Last but not least, the
most important findings will be summarized in Sec. VII.
Calculational details are relegated to Appendix A. We use
natural units with ℏ ¼ c ¼ 1 unless otherwise stated.
Momentum components are always part of the contra-
variant momentum although their indices are lower ones
due to typesetting reasons.

II. BASICS OF THE PROCESS

An important statement with regards to vacuum
Cherenkov radiation was made in [45,59]. According to
these references, an occurrence of vacuum Cherenkov
radiation can be considered from two points of view. If
vacuum Cherenkov radiation is allowed in a certain Lorentz-
violating framework this points out that such a theory has
instabilities in the form of negative-energy states in con-
cordant observer frames [60]. Such states were also shown to
be related to spacelike particle momenta. Under this con-
dition, photons with spacelike momenta could be emitted by
fermions traveling fast enough. From the standpoint that
instabilities are a result of restricting the SME to its minimal
version, the process would be forbidden in the full frame-
work, as instabilities could be remedied by taking into
account higher-dimensional operators. Even if Lorentz
violation existed in nature, indeed, we could look for
vacuum Cherenkov radiation forever without ever observing
the process. The second point of view is that the minimal
SME describes Lorentz violation in nature completely where
the operators from the nonminimal SME do not play a role.
As a result, vacuum Cherenkov radiation would be a
physical process that can happen in nature, in fact. The
absence of this process then places constraints on Lorentz
violation. In this paper, the second opinion is followed, since
all calculations will be restricted to the minimal SME
anyhow. However, the first opinion has its justification, as

well, and it could be elaborated on in a future work by taking
into account higher-dimensional operators.
Now, we consider a modified quantum electrodynamics

(QED) with standard photons minimally coupled to
Lorentz-violating spin-1=2 fermions. The Lagrange density
can be conveniently written in the following form [61]:

LmodQED½e;mψ ; X� ¼ Lphoton þ LDirac½e;mψ ; X�; ð2:1aÞ

Lphoton ¼ −
1

4
FμνFμν −

1

2
ð∂μAμÞ2; ð2:1bÞ

LDirac½e;mψ ; X� ¼ ψ̄ ½Γν

�
i
2
∂ν

↔
− eAν

�
−M�ψ ; ð2:1cÞ

Γν ≡ γν þ cð4Þμνγμ þ dð4Þμνγ5γμ þ eð4Þν14

þ ifð4Þνγ5 þ 1

2
gð4Þμϱνσμϱ; ð2:1dÞ

M≡mψ þ að3Þμγμ þ bð3Þμγ5γμ

þ 1

2
Hð3Þμϱσμϱ; ð2:1eÞ

Fμν ≡ ∂μAν − ∂νAμ; ð2:1fÞ

A∂μ

↔
B≡ A∂μB − ð∂μAÞB; ð2:1gÞ

X ≡ fað3Þμ; bð3Þμ; cð4Þμν; dð4Þμν; eð4Þν; fð4Þν;
gð4Þμϱν; Hð3Þμϱg: ð2:1hÞ

Here ψ is the Dirac field, ψ̄ ≡ ψ†γ0 the Dirac conjugate, Aμ

is the photon field, and Fμν the electromagnetic field
strength tensor. All fields are defined in Minkowski
spacetime with the metric ημν where we use the signature
ðþ;−;−;−Þ. The Dirac matrices are standard and they
obey the Clifford algebra fγμ; γνg ¼ 2ημν14 with the unit
matrix 14 in spinor space. Furthermore, the chiral Dirac
matrix is defined by γ5 ¼ γ5 ≡ iγ0γ1γ2γ3 and the commu-
tator of two Dirac matrices is σμν ≡ ði=2Þ½γμ; γν�. The
elementary charge is e, mψ is the fermion mass, and X
is the set of minimal controlling coefficients for fermions.
All of these are encoded in the quantities Γν and M. The
first contains all dimensionless coefficients where the latter
is comprised by the dimensionful ones. For completeness, a
Feynman-’t Hooft gauge fixing term has been added to the
photon sector Lagrange density.
Energy-momentum conservation with regards to the

external states must be taken into consideration to study
the kinematics of the vacuum Cherenkov process. It is not
difficult to implement three-momentum conservation as the
latter is performed by choosing the three-momentum of the
outgoing fermion as the difference of the three-momenta of
the incoming fermion and the outgoing photon. There are
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two possibilities for the energy balance of the radiation
process:

ΔEð�Þjwithout
spin-flip

¼ Eð�ÞðqÞ − jkj − Eð�Þðq − kÞ; ð2:2aÞ

ΔEð�Þj with
spin-flip

¼ Eð�ÞðqÞ − jkj − Eð∓Þðq − kÞ: ð2:2bÞ

Here we distinguish between the two fermion dispersion
relations that may arise due to a possible spin nondege-
neracy of the Lorentz-violating operators. The first energy
balance describes a spin-conserving process and the second
a process including a spin-flip of the fermion. Energy
conservation is enforced by claiming ΔEð�Þ ¼ 0, which
renders the process energetically allowed.
To compute the decay rate we have to work within

quantum field theory. The only contribution to the process at
tree-level is represented by the Feynman diagram in Fig. 1.
The Feynman rules of the modified QED at first order in
Lorentz violation can be found in [61]. First of all, free
fermions, i.e., the spinor solutions of the Dirac equation are
modified by Lorentz violation. Second, there is a modified
propagator. Third, all dimensionless coefficients contained
in the quantity Γν contribute to an altered interaction
between the fermion and the photon, cf. Eqs. (A7), (A8)
in the latter reference. This interaction originates from the
minimal coupling of the photon to the fermion.
We intend to carry out the calculation at all orders in

Lorentz violation. So besides the modified vertex, the
modified particle energies and the spinor matrices formed
from a spinor and its Dirac conjugate are needed, i.e.,
expressions of the form uū. The particle energies are
obtained from the condition of a nonvanishing determinant
of the Dirac operator. The spinors can be computed directly
by solving theDirac equationwithp0 replacedby theparticle
energies. Since the explicit spinors will not be needed in the
matrix element squared, it suffices to compute the spinor
matrices uū based on the validity of the optical theorem at
tree-level according to the procedure described in [57].
At this point, a critical remark will be made on the matrix

element. Let M ¼ εμMμðkÞ be the amplitude for a QED

process with external on-shell particles and an external
photon with four-momentum kμ that is described by the
polarization vector εμðkÞ. In standard QED, the well-known
Ward identity holds. It guarantees that kμMμðkÞ ¼ 0 when
the polarization vector is replaced by the photon four-
momentum [62]. The Ward identity itself is a direct
consequence of gauge invariance, and it follows from the
more general Ward-Takahashi identity for correlation func-
tions involving external lines that are not on-shell. Hence,
for kμMμðkÞ ¼ 0 to be valid for the vacuum Cherenkov
amplitude, in particular, the external fermions must be on-
shell. For the case of an incoming fermion line with
momentum qμ and an outgoing fermion line with momen-
tum ðqþ kÞμ meeting at a modified vertex, this can be
demonstrated by rewriting the contraction kμΓμ in the form

kμΓμ ¼ ½Γμðqþ kÞμ −M� − ðΓμqμ −MÞ: ð2:3Þ

Sandwiching this expression by the spinors uðqÞ from the
right and ūðqþ kÞ from the left, leads to the statement

kμMμ ¼ 0; Mμ ¼ ūðqþ kÞΓμuðqÞ; ð2:4Þ

for on-shell momenta. This generalization of the Lorentz-
invariant relationship can be derived by employing the
conjugated Dirac equation for the first expression and the
Dirac equation for the second. Furthermore, the hermiticity
conditions γ0ðΓμÞ†γ0 ¼ Γμ and γ0M†γ0 ¼ M must be taken
into account. So the Ward identity as a diagrammatical
relationship is still valid with the Feynman rules appropri-
ately adapted, as the SME preserves gauge invariance.
However, care has to be taken when treating additional

time derivatives in Γμ. Such derivatives lead to an uncon-
ventional time evolution of the asymptotic fermion states
[63]. Since we consider a process with external, on-shell
particles, it is paramount to resolve that problem.
Fortunately, there exists a remedy, which relies on con-
structing a transformation in spinor space that can absorb
the additional time derivatives. By introducing a novel
spinor χ in the Dirac operator according to ψ ¼ Aχ, the
time derivative can be removed when A satisfies the
condition A†γ0Γ0A ¼ 14. Hence, both the Dirac operator
and the spinor solutions are affected by this transformation.
Let χ ¼ A−1ψ be the transformed spinor and

L ¼ 1

2
χ̄S0−1χ þ H:c:; S0−1 ¼ γ0A†γ0S−1A; ð2:5Þ

the transformed Lagrange density with the Dirac operator
S−1. The transformed Dirac equation and its conjugate can
be obtained from the Euler-Lagrange equations:

0 ¼ S−1Aχ; ð2:6aÞ

0 ¼ χ̄ðγ0A†γ0ÞS−1: ð2:6bÞ

FIG. 1. Tree-level Feynman diagram for vacuum Cherenkov
radiation. The incoming fermion is supposed to have four-
momentum q where the outgoing photon and fermion have
four-momenta k and p ¼ q − k, respectively.
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Via Eq. (2.4) it was shown that the validity of the Ward
identity at tree-level rests on the Dirac equation and its
conjugate. Hence, to make this proof of the Ward identity
still work, we have replace the modified interaction vertex
by the appropriately transformed vertex:

−ieΓμ ↦ −ieðγ0A†γ0ÞΓμA: ð2:7Þ

The Ward identity is essential when computing the ampli-
tude corresponding to Eq. (1). The amplitude squared
involves the sum over the photon polarization tensors

εðλÞμ ðkÞεðλÞν ðkÞ formed from the polarization vectors of the
physical polarization states λ ¼ 1, 2. In standard QED, the
sum over the polarization tensors is usually replaced by
−ημν in amplitudes, which corresponds to dropping all
terms that involve at least one photon four-momentum kμ.
The Ward identity renders this procedure possible and we
can follow it here, as well.
The matrix element squared can be computed such as in

the standard case with the usual spinors replaced by the
modified ones. Furthermore, the modified interaction
vertex is employed but the photon polarization vectors
are taken as standard. Without explicitly evaluating the
trace in spinor space, the matrix element squared for a
process with initial fermion spin s and final fermion spin s0
can be written as follows:

jMðs;s0Þj2 ¼ 4παTr½ΛðsÞðqÞΓμΛðs0Þðq− kÞΓν�ΠμνðkÞ; ð2:8aÞ

ΠμνðkÞ≡
X
λ¼1;2

εðλÞμ ðkÞεðλÞν ðkÞ; ð2:8bÞ

with the electromagnetic fine-structure constant
α ¼ e2=ð4πÞ. Furthermore, Γμ is the quantity defined in
Eq. (2.1d), which involves the dimensionless controlling
coefficients. The photon polarization sum is encoded inΠμν

where εðλÞμ is a standard (real) photon polarization vector
associated with the polarization mode λ. The summation
runs over the two physical (transverse) polarizations. The
objects ΛðsÞ contain the spinor matrices formed from
the spinors uðsÞ of spin projection s that contribute to
the process:

ΛðsÞ
ab ðpÞ≡ uðsÞa ðpÞūðsÞb ðpÞ; ð2:9Þ

and similarly for s0. For spin-nondegenerate operators the
different fermion spin states can be distinguished from each
other. In principle, there are processes of the form ⊕→⊕,
⊖ → ⊖, ⊕→ ⊖, and ⊖ →⊕ with the possible spin
projections ⊕, ⊖. So the usual summation over particle
spins is not implemented and the matrix element squared
for a process with definite initial and final spin will be
denoted as jMj2 ≡ jMðs;s0Þj2 for brevity. However, once
the process is energetically allowed for a spin-degenerate

operator, both fermion modes cannot be distinguished from
each other, which is why we average over the initial and
sum over the final fermion modes to obtain the matrix
element squared:

jMj2 ¼ 1

2

X
s;s0¼�1=2

jMðs;s0Þj2: ð2:10Þ

III. ISOTROPIC FRAMEWORKS

The first part of the paper is dedicated to spin-conserving
processes, whereas vacuum Cherenkov radiation including
a spin-flip of the fermion will be discussed in Sec. V.
Isotropic frameworks shall be examined first because these
are usually the simplest from a calculational perspective.
Furthermore, in general, it is more challenging to obtain
experimental constraints for isotropic Lorentz violation
because Earth-based experiments often rely on sidereal
variations, which only occur when there are spacelike
preferred directions.
For an isotropic Lorentz-violating framework it is

convenient to describe the phase space of the outgoing
photon in spherical coordinates ðk; ϑ;φÞ with the magni-
tude of the three-momentum jkj≡ k, the polar angle
(colatitude) ϑ, and the azimuthal angle φ. The basis
vectors fêϱ; êϑ; êφg are chosen as usual. The photon
three-momentum points radially away from the origin of
the coordinate system, i.e., along the basis vector êϱ. The
physical photon polarization vectors are orthogonal to the
photon momentum, which is why each points along one of
the two remaining basis vectors. Explicitly, the four-
momentum and polarization vectors are chosen as

kμ ¼ k

0
BBB@

1

sinϑ cosφ

sin ϑ sinφ

cosϑ

1
CCCA

μ

; εð1Þμ ¼

0
BBB@

0

cos ϑ cosφ

cosϑ sinφ

− sinϑ

1
CCCA

μ

;

εð2Þμ ¼

0
BBB@

0

− sinφ

cosφ

0

1
CCCA

μ

: ð3:1Þ

The polarization sum can be decomposed as follows:

ΠμνðkÞ ¼ −ημν −
1

k2
kμkν þ 1

jkj ðk
μnν þ nμkνÞ: ð3:2Þ

Here nμ ≡ ð1; 0; 0; 0Þμ is an auxiliary vector that is needed
to write the polarization sum in a covariant way. However,
nμ does not have any physical significance, as photons are
not affected by Lorentz violation. The terms dependent on
kμ can be dropped due to the Ward identity.
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The decay rate is then computed by integrating the
matrix element squared of Eq. (2.8) over the two-particle
phase space of the final particle state:

Γ ¼ 1

2Eð�ÞðqÞ γ; ð3:3aÞ

γ ¼
Z

d3k
ð2πÞ3

Z
d3p
ð2πÞ3

1

4ωðkÞEð�ÞðpÞ
× ð2πÞ4δð4Þðq − k − pÞjMj2; ð3:3bÞ

where ωðkÞ ¼ jkj is the standard dispersion relation of the
photon. The matrix element squared depends on the three-
momenta q, k, and p. The phase space integration is carried
out over all spatial momentum configurations of the final
photon and fermion. The δ function in the integrand
encodes four-momentum conservation. The second of
the two integrals can be computed quickly when three-
momentum conservation is employed. Furthermore, resort-
ing to spherical coordinates for the photon momentum, the
decay constant γ results in:

γ ¼ 1

8π

Z
∞

0

dkk2
Z

π

0

dϑ
sinϑ

kEð�Þðq − kÞ δðΔE
ð�ÞÞjMj2:

ð3:4Þ

Due to spatial isotropy, there is no dependence on the
azimuthal angle φ, which is why the corresponding
integration can be performed immediately. Now the
remaining integrals must be computed restricted to the
configuration withΔEð�Þ ¼ 0where decays without a spin-
flip are considered. Note that the results can be conven-
iently adapted to the situation when a spin-flip occurs.
The first reasonable step to do is to solve the energy

balance equation with respect to cos ϑ where ϑ is the angle
between the three-momenta of the incoming fermion and the
outgoing photon. This delivers a solution ϑ0 ¼ ϑ0ðq; k; X⊂Þ
dependent on a subset X⊂ of controlling coefficients. The
magnitude of the photonmomentum itself is restricted by the
requirement that cosϑ0 ∈ ½−1; 1�. The latter is only possible
for k ∈ ½0; kmax�, which gives

γ ¼ 1

8π

Z
kmax

0

dkΠðkÞjMj2
���
ϑ¼ϑ0

; ð3:5aÞ

ΠðkÞ ¼ k sinϑ

Eð�Þðq − kÞ

���� ∂ΔEð�Þ

∂ϑ
����−1
����
ϑ¼ϑ0

: ð3:5bÞ

The derivative of ΔEð�Þ results from evaluating the δ
function. Finally, we define the radiated-energy rate, which
gives the energy loss of a radiating fermion as a function of
time:

dW
dt

≡ 1

8π

Z
kmax

0

dkΠðkÞjMj2ω: ð3:6Þ

The latter is obtained based on the definition of Eq. (2.11)
in [37] with the phase-space integral reduced to the final
one-dimensional integral over the photon momentum. The
remaining integrations will be performed when considering
special cases. However, due to the complexity of the
integrands, an analytical integrationwill be either impractical
or it will produce complicated results that do not provide any
further insight. For this reason, the final integration will be
carried out numerically withMathematica and the character-
istic behavior of the decay rate as a function of the incoming
fermion momentum will be shown in a plot. However,
analytical results will be stated for the high-energy behavior
of the decay rates and the radiated-energy rates. Finally, we

introduce the preferred timelike direction λ
○μ ≡ ð1; 0; 0; 0Þμ,

which will be useful at various places. In this context, we
refer to [22] where all of the minimal isotropic coefficients
and a couple of nonminimal ones were identified and
discussed.

A. Isotropic b coefficients

There are four minimal CPT-odd component coeffi-
cients of mass dimension 1 that are comprised by the
observer vector bð3Þμ. With the single isotropic coefficient

bð3Þ0 ≡ b
○

and all other coefficients set to zero, the corre-
sponding modified fermion energies can be written as
follows:

Eð�Þ
b
○ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj � jb

○

jÞ2 þm2
ψ

q
: ð3:7Þ

To find out whether a process is energetically possible at
all, it suffices to investigate a linear process with all
momenta aligned along a single line. This is reasonable,
as additional energy available in the final state will be put
into nonvanishing angles between particle momenta [64].
Hence, considering a vanishing angle between the
momenta of the incoming fermion and the outgoing
photon, the energy balance equation for the vacuum
Cherenkov process is

ΔEð�Þ
b
○ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~qð�Þ þm2

ψ

q
− k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~qð�Þ − kÞ2 þm2

ψ

q
;

~qð�Þ ≡ q� jb
○

j: ð3:8aÞ

Therefore, it is possible to express the energy balance such
as in the Lorentz-invariant case with the single controlling
coefficient absorbed into the initial fermion momentum.
This works, since both quantities have the same mass
dimension and it shows that the process remains forbidden
even for nonzero Lorentz violation.
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B. Isotropic d coefficients

The minimal d coefficients are contained in a traceless
observer two-tensor. The component coefficients them-
selves are dimensionless and CPT-even but odd under a
charge conjugation, which is why they change their signs
for antiparticles. The only isotropic framework for the d
coefficients is given by a diagonal, traceless matrix with a
single nonvanishing controlling coefficient:

dð4Þμν¼d
○

3
½4λ

○μ
λ
○ν
−ημν�¼d

○

×diag

�
1;
1

3
;
1

3
;
1

3

�
μν

; d
○ ≡dð4Þ00:

ð3:9Þ
The particle energies for this isotropic sector can be cast
into the form

Eð�Þ
d
○ ¼ 3

jy○ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
○

p2 � 8d
○

jpjY
○

þ y
○

m2
ψ

q
¼ E0 �

4

3
d
○

jpj þ � � � ;

ð3:10Þ

X
○ ≡ 9þ 22d

○ 2 þ d
○ 4
; ð3:11Þ

Y
○ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
○2p2 þ y

○

m2
ψ

q
; ð3:12Þ

x
○ ≡ 3þ d

○ 2
; y

○ ≡ 9ð1 − d
○ 2Þ: ð3:13Þ

An important observation is made from the dispersion laws.
They depend on the square of the controlling coefficient
except at the position of the two signs. In principle, this
means that the latter sign is controlled completely by the
sign of the controlling coefficient. So we can restrict our

calculation to d
○

> 0where for d
○

< 0 both signs just have to
be switched.
The coefficient dð4Þ00 is one of those that introduce

additional time derivatives into the Lagrange density of
the fermion theory. Such derivatives lead to an unconven-
tional time evolution of the asymptotic fermion states—as
mentioned in Sec. II. The solution is to introduce a novel
spinor χ in the Dirac operator according to ψ ¼ A

d
○ χ. The

time derivative can then be removed when A
d
○ satisfies the

condition A†
d
○ γ0ðγ0 þ dð4Þ00γ5γ0ÞA

d
○ ¼ 14 [63]. This pro-

cedure defines both a new set of spinors and even a new
propagator. The matrix A

d
○ is given by Eq. (A1a) and the

modified propagator can be found in Eq. (A2). The altered
propagator is then used in conjunction with Eq. (4.11a) of
[57] to obtain the spinor matrices in this framework (see
Sec. V A in [57]).3 So the spinor matrix corresponding to
the mode with energy EðþÞ is given by

ΛðþÞ
d
○ ðpÞ ¼ ξμ

d
○ γμ þ Ξ

d
○14 þ ζμ

d
○ γ5γμ þ ψμν

d
○ σμν; ð3:14aÞ

ξμ
d
○ ¼ 1

2y
○

Y
○

0
B@ y

○

Y
○

EðþÞ

3x
○ðY

○

þ 4d
○

jpjÞp

1
CA

μ

; ð3:14bÞ

Ξ
d
○ ¼ 3

2

ffiffiffi
y
○

q mψ

Y
○
ðY

○

þ 4d
○

jpjÞ; ð3:14cÞ

ζμ
d
○ ¼ jpj

2Y
○

y
○

0
B@ y

○

x
○

EðþÞ

3ðY
○

=p2ÞðY
○

þ 4d
○

jpjÞp

1
CA

μ

; ð3:14dÞ

ψμν

d
○ ¼

ffiffiffi
y
○

q
EðþÞmψ

4Y
○

jpj

0
BBB@
0 0 0 0

0 0 p3 −p2

0 −p3 0 p1

0 p2 −p1 0

1
CCCA

μν

: ð3:14eÞ

Analyzing the kinematics of vacuum Cherenkov radiation,

there is no momentum configuration such that ΔEð−Þ
d
○ ¼ 0.

However, for the mode with energy EðþÞ
d
○ , energy conser-

vation can be fulfilled. Evaluating the energy balance
condition restricts the angle ϑ to a function ϑ0 depending
on the initial fermion momentum q, the final photon

momentum k, and the controlling coefficient d
○

:

cosϑ0 ¼
1

2z
○2qk

�
z
○ðz○q2 þ 9m2

ψÞ− 9X
○

ðEðþÞðqÞ− kÞ2 þ z
○2k2

þ72d
○

jEðþÞðqÞ− kj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
○2ðEðþÞðqÞ− kÞ2 − z

○

m2
ψ

q �
;

ð3:15aÞ

z
○ ≡ 9 − d

○ 2
: ð3:15bÞ

The maximum photon momentum kmax is determined from
the limiting condition that cosϑ0 ¼ 1. It is difficult to solve
the corresponding equation analytically. Therefore, its
solution is obtained numerically in conjunction with
integrating over the final particle phase space. To compute
the phase space factor, we need the derivative of the energy
balance equation with respect to the angle in the final
particle state:

3Note that in Eqs. (4.11) of the published version of [57], the
matrix γ5 is missing in conjunction with the term involving Υ.
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∂ΔEðþÞ
d
○

∂ϑ ¼ −
∂EðþÞ

d
○ ðqÞ
∂q

����
q¼jq−kj

∂jq − kj
∂ϑ ¼ −

∂EðþÞ
d
○ ðqÞ
∂q

����
q¼jq−kj

kq sin ϑ
jq − kj ; ð3:16aÞ

where

∂EðþÞ
d
○ ðqÞ
∂q ¼ 1

18qEðþÞ
d
○ ðqÞ

z
○2q4 − 81Z

○ 2

y
○

Z
○

þX
○

q2
; ð3:16bÞ

Z
○ ≡m2

ψ −
y
○

9
½EðþÞ

d
○ ðqÞ�2: ð3:16cÞ

The phase space factor can now be obtained as follows:

Π
d
○ ðkÞ ¼ k sin ϑ

EðþÞ
d
○ ðq − kÞ

������
∂ΔEðþÞ

d
○

∂ϑ

������
−1������

ϑ¼ϑ0

¼ 18

q

2
64y

○

Z
○

q2 þX
○

q4

z
○2q4 − 81Z

○ 2

3
75
q¼jq−kj

�������
ϑ¼ϑ0

¼ 9

z
○2q

2
664X○ þ 4d

○

k − EðþÞ
2x

○2ðEðþÞ
d
○ − kÞ2 − z

○

m2
ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
○2ðEðþÞ

d
○ − kÞ2 − z

○

m2
ψ

r
3
775
��������
ϑ¼ϑ0

: ð3:17aÞ

Finally, when the vacuum Cherenkov process is allowed it
has a (finite) threshold energy. Hence, it can only occur
when the incoming fermion energy is larger than a certain
nonzero minimum value. The latter is expected to depend
on the controlling coefficient. The corresponding threshold
momentum is the minimal incoming momentum to be
delivered such that the process is just about to be possible.
It will then occur along a single line as the radiation of a
photon with a nonvanishing angle ϑ always requires more
energy. The same argument was used to show that the
Cherenkov process never occurs for the isotropic b coef-
ficient, which means that the threshold lies at infinity. Thus,
to determine the threshold momentum, we can just restrict
the energy balance equation to ϑ ¼ 0 and examine its first-
order expansion for small photon momenta. As the result-
ing equation is still involved we restrain Lorentz violation

to d
○

≪ 1, which is a reasonable assumption due to the large
number of tight constraints already existing. The threshold
momentum is then determined to be

qth
d
○ ¼ 1

2

ffiffiffi
3

2

r
mψffiffiffi
d
○

q þ � � � : ð3:18Þ

The ellipses indicate higher-order corrections in the con-
trolling coefficient. Several remarks are in order. First,
due to dimensional reasons, the threshold momentum
linearly depends on the fermion mass. Second, it is
inversely proportional to the square-root of the controlling

coefficient, which shows that it moves to infinity for
vanishing Lorentz violation. This property is expected,
as the process is energetically forbidden in the Lorentz-
invariant limit. Third, due to the square-root dependence,
Eq. (3.18) resembles the expression for the threshold
energy of vacuum Cherenkov radiation in the isotropic
CPT-even modification of the photon sector, cf. [40].
Fourth, the particular dependence on the controlling coef-
ficient is not compulsory as we will see below when
investigating the isotropic minimal e, f, and g coefficients.
Now, in the matrix element squared of Eq. (3.5a) all

occurrences of ϑ are replaced by ϑ0 of Eq. (3.15), which
followed from energy-momentum conservation. The result-
ing expression then only depends on the incoming fermion
momentum q, the outgoing photon momentum k, the
fermion mass mψ , and the controlling coefficient. The result
of the numerical integration is presented in Fig. 2. Several
remarks are again in order. First, when the incoming fermion
momentum approaches the threshold, the decay rate goes to
zero, as expected. Second, for large momenta q of the
incoming fermion, i.e., for q=mψ ≫ 1, the decay rate

approaches the asymptote Γ∞
d
○ ¼ ð16=9Þαg○q. Hence, for

large momenta, the decay rate is a linear function of the
fermion momentum and the controlling coefficient.
Recall that at the beginning the calculation was restricted

to d
○

> 0. All results can be carried over to d
○

< 0 by

changing the sign before every d
○

, which means that the
mode Eð−Þ must be considered. The threshold energy is
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then given by Eq. (3.18) with d
○

replaced by −d
○

. Hence, it is

possible to determine a two-sided bound on d
○

from
experimental data as shall be seen below.

C. Isotropic c coefficients

To perform a cross check, an analog calculation of the
decay rate for vacuum Cherenkov radiation will be carried
out for the c coefficients. These coefficients are CPT-even
and they are spin-degenerate, which is why they exhibit a
single modified dispersion relation for particles only.
Nevertheless, as we will see, the calculation has great
parallels to that for the d coefficients with the only
difference of being simpler. The isotropic case is charac-
terized by the following choice:

cð4Þμν¼c
○

3
½4λ

○μ
λ
○ν
−ημν�¼c

○

×diag

�
1;
1

3
;
1

3
;
1

3

�
μν

; c
○ ≡cð4Þ00;

ð3:19Þ

cf. Eq. (3.9) for the d coefficients. The dispersion relation
for particles is simple and it can be conveniently expressed
in terms of two parameters involving the single nonzero
controlling coefficient:

Ec
○ ¼ 1

a
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
○ 2
p2 þm2

ψ

q
; ð3:20aÞ

a
○ ≡ 1þ c

○

; b
○ ≡ 1 −

c
○

3
; ð3:20bÞ

In principle, the global prefactor can be pulled under the
square root to define a new parameter before p2 and to

redefine the particle mass. However, the particle energy will
be kept as is. Since the coefficient matrix has been chosen
such as for the d coefficients, the Lagrangian contains an
additional time derivative, as well. To define proper asymp-
totic states, this time derivative is removed in analogy to
before by modifying the Dirac operator. That procedure is
carried out with the matrix Ac

○ given in Eq. (A4).
The general propagator for the c coefficients can be found

in Eq. (B4) of [57]. Transforming the Dirac operator with the
matrix Ac

○ , leads to an altered version of the propagator,
which is stated inEq. (A5). For spin-degenerate sectors, there
is the peculiarity that both particle spins must be summed
over since theywill both contribute to thevacuumCherenkov
process. So Eq. (4.11a) of [57] is not directly applicable to
derive the sum over the spinor matrices for both fermion
modes as the latter holds for spin-nondegenerate sectors only.
However, it is not a great obstacle to derive an analog result
for the spin-degenerate coefficients, which is carried out in
Appendix B. Finally, using Eq. (B2) allows for obtaining the
sum over the spinor matrices:

Λc
○ðpÞ≡X

s¼�
uðsÞūðsÞ ¼ ½ξμ

c
○ γμ þ Ξc

○14�p0¼E
c
○

; ð3:21aÞ

ξμ
c
○ ¼ b

○

a
○
pμ þ 4

3

c
○

a
○
p0λ

○μ
; ð3:21bÞ

Ξc
○ ¼ mψ

a
○
: ð3:21cÞ

To study the kinematics of the process, we introduce
spherical coordinates in the momentum space of the photon.
From the energy balance equation, we can then compute the
angle ϑ enclosed by the spatial momenta of the incoming
fermion and the outgoing photon. It is given by

cos ϑ ¼ 1

b
○ 2
q

�
a
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
○ 2
q2 þm2

ψ

q
−
2

3
c
○ða○ þ b

○

Þk
�
: ð3:22Þ

The condition that cosϑ ∈ ½−1; 1� restricts the magnitude of
the photon momentum to ½0; kmax� with the maximum value

kmax ¼ −
3

2

b
○ 2

c
○ða○ þ b

○

Þ
q

 
1 −

a
○

b
○ 2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
○ 2
q2 þm2

ψ

q !
: ð3:23Þ

The process takes placewhen a nonzero region inmomentum
space is accessible for the final particles. Thus, it is
also possible to obtain the threshold momentum from the
condition that kmax ¼ 0. The result at first order in Lorentz
violation reads

qth
c
○ ¼ 1

2

ffiffiffi
3

2

r
mψffiffiffiffiffiffi
−c○

p þ � � � : ð3:24Þ

FIG. 2. Double-logarithmic plot of the decay rate Γ=ðαmψ Þ of
vacuum Cherenkov radiation for the coefficients c

○

, d
○

(blue,

plain), e
○

, f
○

, g
○

(green, plain) as functions of the incoming particle
momentum q=mψ . The Lorentz-violating coefficients are chosen

equally as jc○ j ¼ d
○

¼ e
○ ¼ f

○

¼ g
○ ¼ 10−10. The dashed, red lines

were added to guide the eye.
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From the latter threshold, it is evident that the radiation
process is only rendered possible insofar c

○

< 0. This is in
contrast to the isotropicd coefficients that exhibit twodistinct

fermiondispersion relations allowingboth signs ofd
○

.Wewill
come back to the latter point below. Finally, the phase space
element is computed as before leading to a compact result:

∂ΔEc
○

∂ϑ ¼ −
�
b
○

a
○

�2
kq sinϑ

Ec
○ ðq − kÞ ; ð3:25aÞ

Πc
○ ðkÞ ¼ k sinϑ

Ec
○ðq − kÞ

���� ∂ΔEc
○

∂ϑ
����−1
����
ϑ¼ϑ0

¼ k sinϑ
Ec

○ðq − kÞ
�
a
○

b
○

�2 Ec
○ ðq − kÞ
kq sinϑ

����
ϑ¼ϑ0

¼ 1

q

�
a
○

b
○

�2

;

ð3:25bÞ
where any dependence on the angle ϑ drops out in the final
expression. Now all ingredients are available to compute the
decay rate and the numerical result is shown in Fig. 2.
Qualitatively, it behaves in the sameway as the decay rate for
the d coefficients for small enough Lorentz violation. The
asymptotic decay rates for q ≫ mψ correspond to each other
due to the averaging over the initial spins and as the rates for
processes with a spin-flip are heavily suppressed by Lorentz
violation. This observation will be made in Sec. V below.
There exists a coordinate transformation [38] that maps

the c coefficients in the fermion sector to the nonbire-

fringent coefficients k̄ð4ÞF of the CPT-even modification of
the photon sector. The latter modification is governed by an
observer four-tensor that is suitably contracted with two
electromagnetic field strength tensors [20,65,66]. Recall

that k̄ð4ÞF appears in the parametrization of the sector that
produces nonbirefringent photon dispersion laws at first
order in Lorentz violation [38]. The Lagrange density and
the decomposition of the observer four-tensor are given by:

LmodMax ¼ −
1

4
FμνFμν −

1

4
kð4ÞμνϱσF FμνFϱσ; ð3:26aÞ

kð4ÞμνϱσF ¼ 1

2
ðημϱk̄ð4ÞνσF − ημσ k̄ð4ÞνϱF − ηνϱk̄ð4ÞμσF þ ηνσ k̄ð4ÞμϱF Þ:

ð3:26bÞ

The coordinate transformation that moves Lorentz violation
from the fermion to the photon sector and vice versa works
at first order in Lorentz violation, as well. It allows for
moving nonbirefringent photon coefficients to the fermion
sector and vice versa. Hence, the decay rate of any allowed
particle-physics process can be computed for Lorentz
violation either sitting in the c coefficient matrix of the
fermion sector or in the nonbirefringent modified Maxwell
theory. The leading-order terms of both results should
correspond to each other.

Vacuum Cherenkov radiation and photon decay were
considered in [40] for the isotropic part of modified
Maxwell theory, which is characterized by the single
controlling coefficient ~κtr. Due to the coordinate trans-
formation discovered in [38], ~κtr corresponds to the
currently studied coefficient c

○

in the fermion sector where
~κtr ¼ −ð4=3Þc○ . The opposite sign can be explained when
keeping in mind that, in principle, Lorentz-violating con-
tributions are moved from one side of an equation to the
other. Hence, a positive ~κtr translates to a negative c

○

in the
fermion sector. Since vacuum Cherenkov radiation was
found to be possible for ~κtr > 0, it should also be possible
for c

○

< 0. Comparing the leading-order terms in the
expansions of the threshold momentum and the decay rate
for large momenta and small Lorentz-violating coefficients
reveals that they are equal. This is an excellent cross check
for both results as both calculations were performed
independently from each other.

D. Isotropic e coefficients

The minimal e coefficients are dimensionless and com-
prised by an observer four-vector. There is a single isotropic
coefficient that corresponds to the zeroth component of this
vector, i.e., e

○ ≡ eð4Þ0. The isotropic dispersion law can be
conveniently cast into the form

Ee
○ðpÞ ¼ 1

r2
e
○

½RðpÞ − e
○

mψ �; ð3:27aÞ

RðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðre○pÞ2 þm2

ψ

q
; ð3:27bÞ

re○ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e

○2
p

: ð3:27cÞ

TheLagrangedensity for this case is plaguedbyan additional
time derivative, as well. Hence, we have to find a matrix Ae

○

such that A†
e
○ γ0½γ0 þ e

○

14�Ae
○ ¼ 14. Making a particular

Ansatz for Ae
○ containing a subset of the 16 Dirac bilinears

enables us to find the matrix, which is stated in Eq. (A7).
Using Eq. (B4) of [57], the propagator of the Dirac operator
transformed with the matrix Ae

○ can be computed and it is
given in Eq. (A11). From this propagator, the sum over the
spinor matrices is obtained with Eq. (B2):

Λe
○ ðpÞ≡X

s¼�
uðsÞūðsÞ ¼ 1

r2
e
○

�
1 −

e
○

mψ

RðpÞ
�
½ξμ

e
○ γμ þ Ξe

○14�p0¼E
e
○

;

ð3:28aÞ

ξμ
e
○ ¼ re○p

μ þ e
○

�
mψ −

e
○

Ee
○

1þ r−1
e
○

�
λ
○μ
; ð3:28bÞ

Ξe
○ ¼ −mψ : ð3:28cÞ
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Note that there is now a global nontrivial prefactor that did
not appear in Eq. (3.21) for the isotropic c coefficients. The
kinematics of the process is not difficult to evaluate. Solving
the energy balance equation for the angle between the three-
momenta of the incoming fermion and the outgoing photon
gives

cosϑ ¼ 1

q

�
e
○2

2
kþRðqÞ

�
: ð3:29Þ

The condition for the angle to lie within the interval ½0; π�
restricts themagnitude of the outgoing photonmomentum as
follows:

k ∈ ½0; kmax�; kmax ¼
2

e
○2
½q −RðqÞ�: ð3:30Þ

The process takes place only when there is a nonvanishing
region in the phase space of the final particles where energy-
momentum conservation is fulfilled. The latter is only
possiblewhen kmax > 0where the conditionkmax ¼ 0 solved
for q leads to the thresholdmomentum. The equation has two
solutions:

qth
e
○ ¼ �mψ

e
○
; ð3:31Þ

whereby both signs are permissible. First of all, there is a
critical difference to the threshold momenta obtained
previously; compare to Eqs. (3.18), (3.24). Here, the thresh-
old is not inversely proportional to the square root of
the coefficient, but to the coefficient itself. Let us assume
that the order of magnitude for c

○

is the same as for e
○

. If the
initial fermion propagates through a background field con-
nected to c

○

it will start radiating photons at a much smaller
energy compared to the case when it moves through a
background field generated by e

○

. This behavior of the
threshold momentum has a direct implication on the decay
rate, as we shall see.
Furthermore, the controlling coefficient can be negative,

which would render the second threshold momentum
positive. Thus, for the isotropic e coefficient, vacuum
Cherenkov radiation is possible not only for a fixed sign
of the controlling coefficient. This particular behavior is in
contrast to the characteristics of the isotropic c coefficient,
but the isotropic d coefficient behaves in a similar manner.
However, the latter has two distinct dispersion relations,
whereas the currently considered case has a single one only.
A calculation in the classical regime confirms the result,
though. Computing the group velocity of the incoming
particle, which corresponds to its physical propagation
velocity, leads to

vgr ¼
���� ∂E∂q

���� ¼ jqj
RðqÞ : ð3:32Þ

The vacuum Cherenkov process is possible when the phase
velocity of light is smaller than the maximum attainable
velocity of massive particles. Since the photon sector is
Lorentz-invariant, the classical condition is vgr ≥ 1.
Solving vgr ¼ 1 for jqj leads to the same threshold
momenta that are given in Eq. (3.31). With regards to
phenomenology, this behavior allows for obtaining a two-
sided constraint on the controlling coefficient e

○

such as

for d
○

.
With these results at hand, we compute the phase space

factor, which has a quite simple form, as well:

Πe
○ ðkÞ ¼ k sinϑ

Ee
○ðq − kÞ

���� ∂ΔEe
○

∂ϑ
����−1
����
ϑ¼ϑ0

¼ ð1 − e
○2ÞS

ðS − e
○

mψÞq
;

ð3:33aÞ

S ¼ RðqÞ − ð1 − e
○2Þk: ð3:33bÞ

The final step is to perform the numerical integration
producing the decay rate shown in Fig. 2. The latter differs
crucially from the previous two results for the c and d
coefficients. For high momenta it approaches the straight
line that is given by Γ∞

e
○ ¼ ð2=3Þαe○2q, i.e., it is suppressed

by the square of the controlling coefficient. When the
momentum decreases and approaches the threshold, the
decay rate starts deviating from the asymptote and it goes to
zero, as expected. However, the threshold is several orders
of magnitude larger than that of the c and d coefficients
since it depends on the inverse of the controlling coefficient
instead of the inverse square root.

E. Isotropic f coefficients

The f coefficients have a structure very similar to that of
the e coefficients although there is a crucial difference, as
we will see below. These coefficients are contained in an
observer four-vector, and the isotropic component is given

by f
○ ≡ fð4Þ0. The modified fermion dispersion relation

depends on the square of the latter coefficient only:

E
f
○ ¼ 1

r
f
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
; ð3:34aÞ

r
f
○ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f

○ 2
q

: ð3:34bÞ

Note the similarities in the quantities re○ and r
f
○ . Again, we

have to find amatrixA
f
○ to remove the additional time deriva-

tive in the Lagrange density, i.e., A†
f
○ γ0½γ0 þ if

○

γ5�A
f
○ ¼ 14.

Making a similar Ansatz as before, we compute the trans-
formation described by Eq. (A9). However, the latter matrix
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has a quite complicated structure. A simpler transformation
matrix is obtained from an observation that wasmade in [67].
In the latter paper, a transformation was found to map the f
coefficients onto the c coefficients. This result can be
employed to arrive at the more suitable A

f
○ stated in

Eq. (A9a). The procedure to do so will be described in
Appendix A 4 in more detail. The propagator is taken from
Eq. (C4) of [57] and it is transformed with the matrix A

f
○

leading to Eq. (A11). Based on Eq. (B2), the sum of the
spinor matrices reads

Λ
f
○ ðpÞ ¼

X
s¼�

uðsÞūðsÞ ¼ 1

r2
f
○

h
ξμ
f
○ γμ þ Ξ

f
○14
i
p0¼E

f
○

; ð3:35aÞ

ξμ
f
○ ¼ r

f
○

h
pμ þ E

f
○ ðr

f
○ − 1Þλμ

i
; ð3:35bÞ

Ξ
f
○ ¼ r

f
○mψ : ð3:35cÞ

The kinematics can be evaluated as before. The angle
between the momenta of the incoming fermion and the
outgoing photon is

cos ϑ ¼ 1

2q

h
f
○ 2
kþ 2r

f
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

ψ

q i
; ð3:36Þ

and the magnitude of the photon momentum is restricted to

k ∈ ½0; kmax�; kmax ¼
2

f
○ 2

h
q − r

f
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

ψ

q i
: ð3:37Þ

From the condition that kmax ¼ 0 for a nonvanishing
phase space volume, the threshold momentum is obtained
to be

qth
f
○ ¼ �mψ

f
○

þ � � � ; ð3:38Þ

which is a result analog to Eq. (3.31). The only difference is
that there are higher-order contributions in the controlling
coefficient. Both signs are permissible as the sign of the
coefficient is not fixed, in principle. The phase space element
is extraordinarily simple:

Π
f
○ ðkÞ ¼

r2
f
○

q
: ð3:39Þ

Nowwe are in a position to compute the phase space integral
over the matrix element squared. The decay rate is plotted in
Fig. 2 and it is congruent with the result for e

○

. Further
important observations can be made when considering the
map between the c and the f coefficients [67], which was
referred to above. Explicitly, it is given by:

cð4Þμν ¼ fð4Þμfð4Þν

ðfð4ÞÞ2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðfð4ÞÞ2
q

− 1

�
; ð3:40aÞ

c
○ ¼ r

f
○ − 1 ¼ −

1

2
f
○ 2 þ � � � : ð3:40bÞ

In the latter map, the f coefficients appear quadratically

only. A nonvanishing isotropic coefficient f
○

induces an
isotropic part of cð4Þμν. However, only the traceless part of
cð4Þμν contributes to physical observables and the latter is
given by:

diagðc○ ; 0; 0; 0Þμν − c
○

4
ημν ¼ 3

4
c
○

× diag

�
1;
1

3
;
1

3
;
1

3

�
μν

:

ð3:41Þ

Hence, when mapping the f
○

onto the c
○

coefficient, due to

c
○ ¼ −f

○ 2
=2 at first order in Lorentz violation, the combina-

tion c
○ 0 ≡ ð3=4Þc○ ¼ −ð3=8Þf

○ 2
is expected to contribute to

observables. This is exactly what we observe. First of all, the
threshold momentum is then given by

qth
c
○ 0 ¼ 1

2

ffiffiffi
3

2

r
mψffiffiffiffiffiffiffi
−c○ 0

p þ � � � ¼ mψ

jf
○

j
þ � � � ; ð3:42Þ

which corresponds to the result of Eq. (3.38) when the
absolute-value bars are interpreted as the two different signs.
A similar correspondence exists between the decay rates for a
large initial fermion momentum, which we will see below.
According to our deductions in Sec. III C, the process is only

possible for c
○

< 0. Since the square of f
○

flows into c
○

, both

signs of f
○

are permissible.

F. Isotropic g coefficients

The minimal g coefficients are comprised by an observer
three-tensor that is antisymmetric in the first two indices. The
coefficients are dimensionless, odd under CPT, but even
under charge conjugation. Hence, they keep their signs for
antiparticles. The single isotropic sector is constructed by
assigning the same gð4Þ123 to the six coefficients whose index
triples are permutations of f1; 2; 3g where the signs of the
permutations are taken into account. All remaining coeffi-
cients shall be zero. Hence, any component coefficient with
at least one timelike index vanishes and the spacelike part is
chosen to be totally antisymmetric:

gijk ¼ g
○

× εijk; g
○ ≡ gð4Þ123: ð3:43Þ
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It is easier to evaluate the kinematics in comparison to the
framework of isotropic d coefficients. This can already be
seen from the dispersion relations

Eð�Þ
g
○ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðrð�Þ

g
○ Þ2

r
; ð3:44aÞ

rð�Þ
g
○ ≡mψ � g

○ jpj; ð3:44bÞ

which are evidentlymuch simpler thanEq. (3.10). Such as for
the d coefficients, the different signs that are responsible for
having two dispersion relations are directly linked to the
coefficient g

○

. Therefore, without a restriction of generality,

we assume g
○

> 0 and consider the mode described by EðþÞ
g
○ .

A negative controlling coefficient just means that we switch
the labels of the dispersion laws.
Although the g coefficients are, in general, more

involved than the d coefficients, the Lagrange density of
the isotropic g sector is simpler than the Lagrange density
of the isotropic d sector. The reason is that nonzero spatial
coefficients gð4Þijk do not introduce additional time deriv-
atives into the Lagrange density. Thus, the previously
mentioned issues with the unconventional time evolution
of asymptotic states does not occur here. Instead,
Eq. (4.11a) of [57] can be applied directly to obtain the
spinor matrices:

ΛðþÞ
g
○ ðpÞ ¼ ξμ

g
○ γμ þ Ξg

○14 þ ζμ
g
○ γ5γμ þ ψμν

g
○ σμν; ð3:45aÞ

ξμ
g
○ ¼ 1

2

�
EðþÞ

p

�μ

; ð3:45bÞ

Ξg
○ ¼

rðþÞ
g
○

2
; ð3:45cÞ

ζμ
g
○ ¼ 1

2jpj
�

p2

EðþÞp

�μ

; ð3:45dÞ

ψμν

g
○ ¼

rðþÞ
g
○

4jpj

0
BBBBB@

0 0 0 0

0 0 p3 −p2

0 −p3 0 p1

0 p2 −p1 0

1
CCCCCA

μν

: ð3:45eÞ

The calculation of the decay rate for vacuum Cherenkov
radiation is performed in the same manner as for the d
coefficients. However, there are also crucial differences.
First of all, the energy balance equation is solved with

respect to the angle ϑ assigned to the outgoing photon,
which gives

cosϑ0¼
1

2ð1þg
○2Þ2kq

n
ð1þg

○2Þ½g○2k2þ2kEðþÞðqÞ−2g
○

mψq�

þ2g
○

mψ

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þg

○2Þ½k−EðþÞðqÞ�2−m2
ψ

q
−g

○

mψ

io
:

ð3:46Þ

Since ϑ0 ∈ ½0; π� the outgoing photon momentum k is
restricted to ½0; kmax�. However, the equation to be solved
involves a third-order polynomial in k. Its solutions are
lengthy and not transparent, which is why they will not be
stated. The threshold momentum follows from the energy
balance of the linear process, which is expanded in k and g

○

.
At first order in Lorentz violation, it is given by

qth
g
○ ¼ mψ

g
○

þ � � � : ð3:47Þ

Note the similarity to Eqs. (3.31), (3.38) for the isotropic e
and f coefficients, respectively. For g

○

> 0, only one mode
contributes to the process leading to only one sign in the
latter threshold. The phase space factor is computed in
analogy to that of the isotropic d coefficients. To do so, we
need the derivative of the energy balance with respect to the
angle in the final particle state:

∂ΔEðþÞ
g
○

∂ϑ ¼ −
∂EðþÞ

g
○ ðqÞ
∂q

�����
q¼jq−kj

kq sin ϑ
jq − kj ; ð3:48aÞ

∂EðþÞ
g
○ ðqÞ
∂q ¼ ð1þ g

○2Þqþ g
○

mψ

EðþÞ
g
○ ðqÞ

: ð3:48bÞ

The following relation is useful giving the magnitude of the
difference between the initial fermion momentum and the
photon momentum evaluated at the allowed angle ϑ0:

jq − kjjϑ¼ϑ0
¼ 1

2g
○

mψ

fðEðþÞ
g
○ − kÞ2

− ½ð1þ g
○2Þðq − kÞ2 þm2

ψ �g
���
ϑ¼ϑ0

: ð3:49Þ

Finally, with these ingredients, the phase space factor is
obtained to have the following form:
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Πg
○ðkÞ ¼ 1

q

�
1þ g

○2 þ g
○

mψ

jq − kj
�
−1
����
ϑ¼ϑ0

¼ 1

ð1þ g
○2Þq

2
6641 − g

○

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g

○2Þkðk − 2EðþÞ
g
○ Þ þ ½ð1þ g

○2Þqþ g
○

mψ �2
q

3
775
��������
ϑ¼ϑ0

¼ 1

ð1þ g
○2Þq

2
641 − g

○

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g

○2ÞðEðþÞ
g
○ − kÞ2 −m2

ψ

q
3
75
������
ϑ¼ϑ0

: ð3:50Þ

Although the kinematics for the isotropic g coefficients is
not as involved as that for the isotropic d coefficients, the
integrand of Eq. (3.5a) is still too complicated to perform
the integration analytically. Hence, the numerical result
can be found in Fig. 2. The behavior of the rate is similar
to that for the e and f coefficients, i.e., it is suppressed
by the square of the controlling coefficient. For
large momenta, it corresponds to Γ∞

e
○ or Γ∞

f
○ , as for the

spin-degenerate coefficients, the initial fermion spin is
averaged over and the processes with spin-flip are heavily
suppressed, cf. Sec. V. For g

○

< 0, the process takes place
for the mode labeled by ð−Þ where the calculation yields
analog results.

G. Comparison of results and discussion

The decay rates for the isotropic c, d, e, f, and g
coefficients are shown in Fig. 2. For momenta that are much
larger than the thresholds, all curves grow linearly with the
momentum where the decay rates decrease quickly
when the momentum approaches the thresholds, as
expected. The very similar behavior of the decay rates

for c
○

, d
○

and for e
○

, f
○

, and g
○

is indicative. The characteristics

of the decay rates for e
○

, f
○

, and g
○

correspond to the

properties of the curves for c
○

, d
○

qualitatively. However,
on the one hand, the threshold momenta lie many orders of

magnitude apart. On the other hand, the decay rates for e
○

, f
○

,
and g

○

are suppressed by an additional power of the
controlling coefficient, which renders the process ineffi-
cient for the latter coefficients.

IV. ANISOTROPIC FRAMEWORKS

After considering a couple of isotropic frameworks, our
interest lies in gaining some understanding of the vacuum
Cherenkov process in anisotropic theories. Our studies
will be restricted to such frameworks with a residual

two-dimensional isotropy. They are characterized by a
single preferred spacelike direction λ̄μ and we choose a
suitable observer frame where the latter is purely space-
like.4 For a system that is isotropic in a plane, it is
reasonable to choose cylindrical coordinates of the form
ðk⊥;φ; k∥Þ. Here the momentum component k⊥ shall be
perpendicular to the preferred direction and k∥ is the
momentum component parallel to the preferred direction.
Both k⊥ and the azimuthal angle φ parameterize the plane
where the dispersion relation is isotropic. The photon four-
momentum and the physical polarization vectors are then
chosen as follows:

kμ ¼

0
BBB@

jkj
k⊥ cosφ

k⊥ sinφ

k∥

1
CCCA

μ

; εð1Þμ ¼

0
BBB@

0

− sinφ

cosφ

0

1
CCCA

μ

;

εð2Þμ ¼ 1

jkj

0
BBB@

0

k∥ cosφ

k∥ sinφ

−k⊥

1
CCCA

μ

: ð4:1Þ

The polarization vectors are transverse, i.e., orthogonal to
the momentum. Furthermore, they are also orthogonal to
each other and properly normalized. The sum over the
polarization tensors can be expressed according to Eq. (3.2)
with the auxiliary vector nμ.
Coming to the decay rate, the phase space integral is cast

into the form

4Choices of purely timelike or spacelike preferred directions
are always reasonable from a calculational point of view. Due to
observer Lorentz invariance, not much is to be gained from a
calculation involving a spacelike preferred direction with non-
vanishing time component. We will see that there are some
interesting cases that are covered by such choices of the preferred
direction.
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Γ ¼ 1

2Eð�ÞðqÞ γ; ð4:2aÞ

γ ¼ 1

16π2

Z
2π

0

dφ
Z

∞

−∞
dk∥

×
Z

∞

0

dk⊥
k⊥

jkjEð�Þðq − kÞ δðΔE
ð�ÞÞjMj2: ð4:2bÞ

The decay constant γ is an observer Lorentz scalar, which is
why it only depends on observer scalars themselves. For an
anisotropic sector with the single preferred direction λ̄μ, this
means that it can only depend on particle spin and the
kinematic quantities q2, q · λ̄, and λ̄2 where qμ is the initial
fermion momentum, which is on-shell. For now, we assume
the generic modified fermion dispersion law to be of the
form:

Eð�ÞðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ fð�Þðq∥; mψ ; X⊂Þ

q
; ð4:3aÞ

q∥≡q · λ̂; q⊥≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−q2∥

q
; λ̂≡ λ̄

jλ̄j ; ð4:3bÞ

with three-momentum components q⊥ and q∥ that are
perpendicular and parallel, respectively, to the preferred
direction. The functions fð�Þ are generic and they shall
depend only on the parallel momentum component, the
fermion mass, and a subset X⊂ of the Lorentz-violating
coefficients. A dependence on particle spin is linked to
certain nonzero controlling coefficients and it is indicated
by the index ð�Þ. In the Lorentz-invariant case, it holds that
fð�Þ ¼ q2∥ þm2

ψ , independently of particle spin. Under
these circumstances, the on-shell fermion momentum
satisfies

q2 ¼ EðqÞ2 − q2⊥ − q2∥ ¼ fð�Þðq∥; mψ ; X⊂Þ − q2∥; ð4:4Þ

where for vanishing Lorentz violation, q2 ¼ m2
ψ , as

expected. This demonstrates that γ cannot depend on the
perpendicular momentum component as long as the fer-
mion dispersion relation is of the form indicated. We will
see that this condition is, indeed, satisfied for the aniso-
tropic c, d, e, and f coefficients, whereas the g coefficients
behave differently. Hence, setting q⊥ ¼ 0 for the first four
cases is permissible. It is crucial that γ does not depend on
q⊥ for calculational reasons because for q⊥ ≠ 0, the
kinematics of the process involves third-order polynomials
in the momentum, which are arduous to solve and make the
calculation impractical.
With the assumption of q⊥ ¼ 0 at hand, energy-momen-

tum conservation can be used to get rid of the integral over
k⊥. The δ function sets k⊥ to the value k⊥;0 that is in
accordance with energy-momentum conservation. Note that
this also affects the integration over k∥. As k⊥ ∈ ½0;∞Þ, the

parallel momentum component is restricted and we will see
that k∥ can only vary from zero to a maximum value k∥;max.
Since the energy-momentum relation does not depend on the
azimuthal angle explicitly, the limits of the integral over φ
remain unaffected. The decay rate is then given by

γ¼ 1

16π2

Z
2π

0

dφ
Z

k∥;max

0

dk∥ΠðkÞjMj2
���
k⊥¼k⊥;0

; ð4:5aÞ

ΠðkÞ ¼ k⊥
jkjEð�Þðq − kÞ

���� ∂ΔEð�Þ

∂k⊥
����−1
����
k⊥¼k⊥;0

: ð4:5bÞ

The remaining integral over the azimuthal angle can be easily
performed as long as the matrix element squared does not
depend on φ. We will see that this is the case for the
anisotropic sector of c, d, e, and f coefficients. However, for
the g coefficients the situation is different and the nontrivial
integral over φ must be carried out numerically. Finally, we
define the radiated-energy rate in analogy to Eq. (3.6):

dW
dt

≡ 1

16π2

Z
2π

0

dφ
Z

k∥;max

0

dk∥ΠðkÞjMj2ω
���
k⊥¼k⊥;0

: ð4:6Þ

In all of the cases considered, the spacelike preferred
direction will be chosen to point along the third spatial
axis of the coordinate system, i.e., λ̄μ ≡ ð0; λ̄Þμ with
λ̄ ¼ ð0; 0; 1ÞT .

A. Isotropic and anisotropic a coefficients

The a coefficients are CPT-odd and there are four
minimal controlling coefficients that can be put into a
Lorentz observer four-vector að3Þμ ¼ ðað3Þ0;aÞμ. We will
not perform separate analyses for the isotropic and aniso-
tropic parts of the a coefficients as it is convenient to treat
both sectors in one go. Since the framework is spin-
degenerate, there is a single fermion dispersion relation.
It is reasonable to split the momentum vector into a part p⊥
perpendicular to the preferred spatial direction a and into a
part p∥ parallel to a:

Ea ¼ að3Þ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ðp∥ − jajÞ2 þm2

ψ

q
; ð4:7aÞ

p∥ ≡ p · â; p⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − p2

∥

q
; â≡ a

jaj : ð4:7bÞ

The a coefficients have the peculiarity that the four-
momentum is shifted by −að3Þμ. Note that the isotropic
coefficient að3Þ0 is subtracted from the particle energy on
the left-hand side of the dispersion relation and it has been
brought to the right-hand side. To investigate whether the
process is allowed energetically it again suffices to consider
a linear process [64]. Hence, the energy balance for a
vanishing perpendicular photon momentum component can
be brought into the form
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ΔEa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

ψ

q
− k∥ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~q − k∥Þ2 þm2

ψ

q
; ð4:8aÞ

~q≡ q − jaj: ð4:8bÞ

It is clear that the energy balance for vacuum Cherenkov
radiation has the standard shape when jaj is absorbed by the
incoming fermion momentum. The isotropic coefficient has
dropped out of the equation completely. Hence, a back-
ground field generated by the minimal a coefficients does
not render vacuum Cherenkov radiation possible.

B. Anisotropic b coefficients

The isotropic component of the b coefficient vector was
investigated in Sec. III A with the result that it does not
allow a charged fermion to radiate photons in vacuo. The
next step is to study the anisotropic b coefficients that are
contained in the spatial vector b and the latter gives rise to a
preferred spacelike direction. We will again define momen-
tum components perpendicular and parallel to the preferred
direction. The modified particle energy has the form

Eð�Þ
b̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þm2

ψ

q
� jbj

	
2

r
; ð4:9aÞ

p∥ ≡ p · b̂; p⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 −p2

∥

q
; b̂≡ b

jbj : ð4:9bÞ

The kinematics of the vacuum Cherenkov process can
again be studied conveniently by looking at the energy
balance for a vanishing perpendicular component of the
photon momentum:

ΔEð�Þ
b̄

¼
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þm2
ψ

q
�jbj

���−k∥−
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq−k∥Þ2þm2
ψ

q
�jbj

���
¼E0ðqÞ−k∥−E0ðq−k∥Þ: ð4:10Þ

It is suggestive that the outer square root can be completely
eliminated considering absolute-value bars of the expres-
sions contained. As Lorentz violation is assumed to be
perturbative, the expressions enclosed are positive and the
bars can be dropped. This results in the preferred direction
b dropping out of the energy balance altogether leading to
the standard result. Thus, vacuum Cherenkov radiation is
not possible in a background generated by the b coef-
ficients—at least not without a spin-flip.

C. Anisotropic H coefficients

The minimalH coefficients form a set of six independent
coefficients that have mass dimension 1. They are con-
tained in an antisymmetric observer Lorentz two-tensor.
Three of these coefficients have one timelike and one
spacelike index where the remaining three can be classified
as purely spacelike. To deal with the first class of
coefficients, it is convenient to introduce a preferred

direction h composed of the coefficients. The two-tensor
Hð3Þμν is then cast into the form

Hð3Þμν ¼
�

0 hT

−h 0 ⊗ 0

�μν

; hi ¼ Hð3Þ0i: ð4:11Þ

There are two distinct dispersion relations that are con-
veniently written as follows:

Eð�Þ
h̄

ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ ðp⊥ � jhjÞ2 þm2

ψ

q
; ð4:12aÞ

p∥≡p · ĥ; p⊥≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2−p2

∥

q
; ĥ≡ h

jhj: ð4:12bÞ

Hence, the dispersion relation can be expressed in terms of
momentum components parallel and orthogonal to the
preferred direction. The framework is isotropic in the plane
perpendicular to h. Considering a linear process, i.e., for a
vanishing perpendicular photon momentum component k⊥,
the energy balance equation is

ΔEð�Þ
h̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ~m2

q
− k∥ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − k∥Þ2 þ ~m2

q
;

~m2 ≡m2
ψ þ h2: ð4:13Þ

The energy balance has the same form as in the Lorentz-
invariant case when the controlling coefficients are
absorbed by the fermion mass. The sign before jhj does
then not even matter anymore. For this reason, Lorentz
violation caused by any of the three coefficients hð3Þ0i does
not render vacuum Cherenkov radiation possible.
Coming to the framework characterized by the three

purely spacelike coefficients, we can proceed along a
similar path. It again makes sense to introduce a preferred
direction ~h whose components correspond to the three
nonzero coefficients where the ordering has to be chosen
appropriately. Here, the two-tensorHð3Þμν is decomposed as

Hð3Þμν ¼
�
0 0T

0 ðεijk ~hkÞ

�μν

; ~h≡
0
B@

Hð3Þ23

−Hð3Þ13

Hð3Þ12

1
CA; ð4:14Þ

and the modified dispersion relations are given by

Eð�Þ
¯̄h

ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

ψ

q
� j ~hj

	
2

r
; ð4:15aÞ

p∥≡p · ~̂h; p⊥≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2−p2

∥

q
; ~̂h≡ ~h

j ~hj: ð4:15bÞ

It is again wise to decompose the momentum vector into
parts parallel and perpendicular to the preferred direction.
Although there is again a residual isotropy in a plane, there
is a crucial difference to the dispersion relation of
Eq. (4.12). In the first, the fermion mass appears in com-
bination with p∥ whereas, in the latter, it comes together
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with p⊥. However, this difference does not change the
energy balance for vacuum Cherenkov radiation critically:

ΔEð�Þ
¯̄h

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ~m2

�
q

− k∥ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq − k∥Þ2 þ ~m2

�
q

;

~m� ≡mψ � j ~hj: ð4:16Þ

Just as before, all controlling coefficients can be absorbed
into the fermion mass. So the structure of the energy

balance equation is taken over from the Lorentz-invariant
case. Thus, nonzero minimal purely spacelike H coeffi-
cients do not induce a vacuum Cherenkov process, as well.
The general dispersion relation for all six coefficients

nonzero at the same time seems to be highly complicated.
What can be treated, though, are cases with just two
nonzero coefficients Hð3Þ0i ≡ h0i, Hð3Þjk ≡ hjk where
fi; j; kg is a permutation of f1; 2; 3g. The dispersion
relations for such a case can be written in the form

Eð�ÞðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ þ h2jk þ ~h2jk � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

j þ p2
kÞðh2jk þ ~h2jkÞ þ h2jkm

2
ψ

qr
: ð4:17Þ

Here, ~hij are the spatial components of the dual tensor
~Hð3Þμν ≡ ð1=2ÞεμνϱσHð3Þ

ϱσ with the four-dimensional Levi-
Civita tensor εμνϱσ where ε0123 ¼ 1. Since the momentum
components pj, pk are multiplied by Lorentz-violating
coefficients, it is suggestive to express the dispersion law as

Eð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

ψ − δm2
ψ þ ðPð�Þ

∥ Þ2
q

; ð4:18aÞ

Pð�Þ
∥ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ δm2

ψ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2jk þ ~h2jk

q
; ð4:18bÞ

δm2
ψ ≡

h2jk
h2jkþ ~h2jk

m2
ψ ; p∥≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
j þp2

k

q
; p⊥≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2−p2

∥

q
;

ð4:18cÞ

where we defined a new momentum Pð�Þ
∥ . This is possible

here, since in a first step, we can absorb δm2
ψ into p2

∥ to
define the momentum ~p2

∥ and in a second step, we absorb

�ðh2jk þ ~h2jkÞ1=2 into ~p∥. Both of these quantities do not
depend on the momentum itself and they are just additive to
p2
∥ and to ~p∥, respectively. Based on this result, the energy

balance equation is considered for a linear decay. However,
it does not provide a solution for the outgoing photon
momentum that is nonzero. This is clear as the modified

dispersion relation expressed by the new momentum Pð�Þ
∥

is formally equivalent to the dispersion relation of a
standard fermion for each spin projection.
Different combinations of mixed and purely spacelike

coefficients lead to highly complicated dispersion relations
involving third roots, which are impractical to study. The
only possibility at reach for these cases is to plot the energy
balance for randomly chosen values of the coefficients.
This two-dimensional surface was plotted three times as a
function of two of the three spatial momentum components.
Such plots strongly suggest that ΔEð�Þ cannot reach
nonnegative values. Thus, vacuum Cherenkov radiation
without a spin-flip is most probably forbidden for the entire

set of minimal H coefficients, but a rigorous proof is not
available at this point.

D. Anisotropic d coefficients

We will investigate a case of anisotropic d coefficients
that is characterized by the following diagonal and traceless
matrix containing a single coefficient:

dð4Þμν ¼ d̄
3
½4λ̄μλ̄ν þ ημν� ¼ d̄ × diag

�
1

3
;−

1

3
;−

1

3
; 1

�
μν

;

d̄≡ dð4Þ33: ð4:19Þ

The dispersion relation has a form similar to Eq. (3.10):

Eð�Þ
d̄

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥þfd̄ðp∥Þ

q
¼E0�

4

3
d̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥þm2

ψ

q jp∥j
E0

þ�� � ;

ð4:20aÞ

fd̄ðp∥Þ≡ 9

z̄2
½X̄p2

∥ � 8d̄jp∥jȲþ z̄m2
ψ �; ð4:20bÞ

X̄≡ 9þ 22d̄2 þ d̄4; ð4:20cÞ

Ȳ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̄2p2

∥ þ z̄m2
ψ

q
; ð4:20dÞ

x̄≡3þ d̄2; ȳ≡9ð1− d̄2Þ; z̄≡9− d̄2: ð4:20eÞ

The third momentum component takes a special role in the
fermion energy, since Lorentz violation only appears in the
function fd̄ of the third momentum component. This
behavior can be traced back to the existence of a preferred
spacelike direction that points along the third spatial axis of
the coordinate system. A crucial and helpful property for
computing the decay rate of vacuum Cherenkov radiation
is that the dispersion relation is purely conventional in
the plane perpendicular to the preferred direction, cf. the
description at the beginning of the current section.
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Let d̄ > 0 where the dispersion relation EðþÞ
d̄

is taken as a
base. For the choice of anisotropic coefficients of Eq. (4.19)
there is a similar issue for the asymptotic states such as for the
isotropic sector, which was studied in Sec. III B. Again, a
matrix Ad̄ has to be constructed such that the additional time
derivative in the Lagrange density can be removed. This
means that the condition A†

d̄
γ0½γ0 þ ðdð4Þ33=3Þγ5γ0�Ad̄ ¼ 14

must be fulfilled. ThematrixAd̄ is stated in Eq. (A1b) and the
modified propagator is given by Eq. (A3). The spinor matrix
needed for the decay rate is obtained fromEq. (4.11a) of [57]
where the components of the previous propagator are
inserted. This leads to

ΛðþÞ
d̄

ðpÞ ¼ ξμ
d̄
γμ þ Ξd̄14 þ ζμ

d̄
γ5γμ þ ψμν

d̄
σμν; ð4:21aÞ

ξμ
d̄
¼1

2

�
EðþÞ

p

�μ

þ1

2

�
3x̄p∥

z̄Ȳ
ðȲþ4d̄p∥Þ−p∥

�
λ̄μ;

ð4:21bÞ

Ξd̄ ¼
3mψ

2
ffiffiffī
z

p
Ȳ
ðȲþ 4d̄p∥Þ; ð4:21cÞ

ζμ
d̄
¼ x̄p∥

2Ȳ

�
EðþÞ

p

�μ

þ
�
3

2z̄
ðȲþ 4d̄p∥Þ−

x̄p2
∥

2Ȳ

�
λ̄μ;

ð4:21dÞ

ψμν
d̄
¼mψ

ffiffiffī
z

p

4Ȳ

0
BBB@

0 −p2 p1 0

p2 0 EðþÞ 0

−p1 −EðþÞ 0 0

0 0 0 0

1
CCCA

μν

: ð4:21eÞ

For dispersion relations of the special form of Eq. (4.20),
the momentum component k⊥;0 following from energy-
momentum conservation is conveniently expressed via the
Källén function Ω:

k⊥;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωðfd̄ðqÞ; k2∥; fd̄ðq − k∥ÞÞ

q
2EðþÞ

d̄
ðqÞ

; ð4:22aÞ

Ωðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2yz − 2xz: ð4:22bÞ

The parallel photon momentum k∥ follows from the con-
dition that k⊥ ¼ 0. However, the resulting equation is too
complicated to be solved analytically, which is why it is
solved numerically for certain values of the incoming
fermionmomentum and controlling coefficient. A first-order
approximation for the thresholdmomentum can be obtained,
nevertheless, from the energy balance of the linear process
with a vanishing perpendicular photon momentum compo-
nent k⊥. An expansion in k∥ and d̄ delivers

qth∥;d̄ ¼
1

2

ffiffiffi
3

2

r
mψffiffiffī
d

p þ � � � : ð4:23Þ

Due to the structure of thedispersion relation, thephase space
factor can be computed elegantly, as well. First of all, the
derivative of the energybalance equationwith respect tok⊥ is
given by

∂ΔEðþÞ
d̄

∂k⊥
����
k⊥¼k⊥;0

¼ −
�
k⊥
jkj þ

k⊥
EðþÞ
d̄

ðq − kÞ

�����
k⊥¼k⊥;0

¼ −
EðþÞ
d̄

ðqÞk⊥
jkjEðþÞ

d̄
ðq − kÞ

����
k⊥¼k⊥;0

: ð4:24Þ

The phase space factor is especially simple, as it depends on
the initial fermion energy only:

Γd̄ðkÞ ¼
k⊥

jkjEðþÞ
d̄

ðq − kÞ

���� ∂ΔE
ðþÞ
d̄

∂k⊥
����
−1����

k⊥¼k⊥;0

¼ 1

EðþÞ
d̄

ðqÞ
:

ð4:25Þ

Therefore, it can be pulled out of the phase space integral,
finally giving:

γ ¼ 1

8πEðþÞ
d̄

ðqÞ

Z
k∥;max

0

dk∥jMj2
���
k⊥¼k⊥;0

ð4:26Þ

Thus, in the matrix element squared, all k⊥ have to be
replaced by Eq. (4.22). The resulting expression must be
integrated over k∥. When the matrix element squared does
itself not depend on the azimuthal angle, the integral over φ
just gives a factor of 2π. The numerical result for the decay
rate as a function of the incoming fermion momentum is
shown in Fig. 3. The curve has the typical characteristics of

FIG. 3. Double-logarithmic plot of the decay rate Γ=ðαmψ Þ of
vacuum Cherenkov radiation for the coefficients c̄, d̄ (blue,
plain), ē, f̄ (green, plain), and ḡ (red, dashed) as functions of the
incoming particle momentum q∥=mψ . The Lorentz-violating
coefficients are chosen equally as jc̄j ¼ d̄ ¼ ē ¼ f̄ ¼ ḡ ¼ 10−10.
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the decay rate for the corresponding isotropic coefficient d
○

.
The calculation can be carried out in an analog way for the
second fermion mode when d̄ < 0.

E. Anisotropic c coefficients

A proper cross check for calculations carried out in
anisotropic frameworks with a remaining two-dimensional
isotropy is performed within a fermion theory modified by
the following set of c coefficients:

cð4Þμν ¼ c̄
3
½4λ̄μλ̄ν þ ημν� ¼ c̄ × diag

�
1

3
;−

1

3
;−

1

3
; 1

�
μν

;

c̄≡ cð4Þ33: ð4:27Þ

Note the similarity to Eq. (4.19). Hence, many of the
following calculations are very similar to those presented in
the previous section. The modified fermion energy can be
decomposed into the standard orthogonal part and a
contribution dependent on the momentum component
parallel to the preferred direction. The latter contains all
Lorentz violation and it is described by the function fc̄:

Ec̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ fc̄ðp∥Þ

q
; ð4:28aÞ

fc̄ðp∥Þ≡ 1

b̄2
ðā2p2

∥ þm2
ψÞ; ð4:28bÞ

ā≡ 1 − c̄; b̄≡ 1þ c̄
3
: ð4:28cÞ

This particular framework induces an additional time
derivative in the Lagrange density, as well. It is removed
from the Dirac operator with the matrix Ac̄ stated in
Eq. (A4). This results in the modified propagator that is
given by Eq. (A6). Summing the spinor matrices produces

Λc̄ðpÞ≡
X
s¼�

uðsÞūðsÞ ¼ ½ξμc̄γμ þ Ξc̄14�p0¼Ec̄
; ð4:29aÞ

ξμc̄ ¼ pμ −
4

3

c̄

b̄
p∥λ̄

μ; ð4:29bÞ

Ξc̄ ¼
mψ

b̄
: ð4:29cÞ

The next step is to analyze the kinematics of the process.
The particular form of the dispersion relation again allows
for expressing the photon momentum component
perpendicular to the preferred direction via the Källén
function, cf. Eq. (4.22). Note that here the function fc̄ and
the dispersion relation Ec̄ have to be employed. The photon
momentum component parallel to the preferred direction is
restricted by the requirement that k⊥ ≥ 0. This leads to
k∥ ∈ ½0; k∥;max� with

k∥;max ¼
3

2c̄ðāþ b̄Þ
�
−ā2qþ b̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ā2q2 þm2

ψ

q 	
: ð4:30Þ

From the condition k∥;max ¼ 0, we obtain the threshold
momentum

qth∥;c̄ ¼
1

2

ffiffiffi
3

2

r
mψffiffiffiffiffiffi
−c̄

p þ � � � : ð4:31Þ

Hence, the process only occurs if c̄ < 0. This makes sense
for the same reason that was outlined in Sec. III C. The
phase space factor is computed in analogy to the previous
section with the simple result of Eq. (4.25) where the
suitable particle energy of Eq. (4.28) has to be inserted.
The decay rate is plotted in Fig. 3 and it is similar to that for
the d̄ coefficient due to the same reasons stated for the
isotropic cases.

F. Anisotropic e coefficients

The anisotropic case of e coefficients is generated by
nonvanishing spatial coefficients, i.e, eð4Þμ ≡ ð0; eð4ÞÞμ. It is
reasonable to choose the observer frame such that eð4Þ

points along the third axis of the coordinate system: eð4Þ ≡
ē λ̄with ē≡ jeð4Þj. The fermion dispersion relation can then
be written as follows:

Eē ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ fēðp∥Þ

q
; ð4:32aÞ

fēðp∥Þ ¼ rēðp∥Þ2 þ p2
∥; ð4:32bÞ

rēðp∥Þ≡ ēp∥ þmψ : ð4:32cÞ

Besides, it is convenient to introduce the quantity rē that
will appear at various places. The anisotropic sector does
not exhibit any additional time derivatives in its Lagrange
density. Thus, the spinor solutions do not have to be
transformed and we obtain the sum over the spinor matrices
directly from Eq. (B2) of the current paper and Eq. (B4)
of [57]:

ΛēðpÞ≡
X
s¼�

uðsÞūðsÞ ¼ ½pþ rē14�p0¼Eē
: ð4:33Þ

The kinematics of the process is evaluated as usual for
sectors with a single spacelike preferred direction. First, it
makes sense to determine the perpendicular photon
momentum component from energy-momentum conserva-
tion. In the dispersion law, Lorentz violation is only linked
to the parallel momentum component. Hence, for the
anisotropic e coefficients, it is again possible to express
the perpendicular photon momentum component via the
Källén function, cf. Eq. (4.22). Since the process only takes
place as long as k⊥ > 0, the parallel component k∥ is
restricted to the interval ½0; k∥;max� with
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k∥;max ¼
2

ē2

h
q∥ þ ērēðq∥Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2∥ þ rēðq∥Þ2

q i
: ð4:34Þ

Note that here the quantity rē of Eq. (4.32c) is a function of
q∥. From the condition k∥;max ¼ 0 we obtain the minimal
initial fermion momentum that renders the process possible:

qth∥;ē ¼
mψ

ē
þ � � � : ð4:35Þ

In contrast to the isotropic case of e coefficients with the
single nonvanishing eð4Þ0, there is only a single solution for
the threshold energy because the magnitude of eð4Þ is
positive. Last but not least, the phase space factor is given
by Eq. (4.25) with the particle energy taken from Eq. (4.32).
The numerical result for the decay rate is presented in Fig. 3.
Note the similarities to the decay rate for the isotropic
coefficient e

○

. For q∥ ≫ mψ it is suppressed by the square
of the controlling coefficient and its threshold momentum
lies several orders of magnitude above the thresholds for c̄
and d̄.

G. Anisotropic f coefficients

The anisotropic case of f coefficients is chosen in
analogy to the anisotropic sector of the e coefficients,
i.e., fð4Þμ ≡ ð0; fð4ÞÞμ. A suitable observer frame makes fð4Þ
point along the third spatial axis of the coordinate system:
fð4Þ ≡ f̄ λ̄ with f̄ ≡ jfð4Þj. The modified dispersion relation
then reads

Ef̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ff̄ðp∥Þ

q
; ð4:36aÞ

ff̄ðp∥Þ ¼ r2
f̄
p2
∥ þm2

ψ ; ð4:36bÞ

rf̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f̄2

q
; ð4:36cÞ

where the quantity rf̄ is independent of the momentum in
contrast to rē of Eq. (4.32c). Since there are not any
additional time derivatives in the Lagrange density the sum
over the spinor matrices follows simply from Eq. (B2) of
the current article and Eq. (C4) of [57]:

Λf̄ðpÞ≡
X
s¼�

uðsÞūðsÞ ¼ ½pþmψ14 − iðp · fð4ÞÞγ5�p0¼Ef̄
:

ð4:37Þ

Energy-momentum conservation forces the perpendicular
momentum component of the final photon to be given by
Eq. (4.22) with the function ff̄ inserted. The parallel
momentum component is restricted to

k∥∈ ½0;k∥;max�; k∥;max¼
2

f̄2

h
r2
f̄
q−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
f̄
q2þm2

ψ

q i
; ð4:38Þ

which finally leads to the threshold momentum:

qth
f̄
¼ mψ

f̄
þ � � � : ð4:39Þ

As f̄ > 0, the threshold momentum has a fixed sign only.
The phase space factor simply corresponds to Eq. (4.25)
with the fermion energy of Eq. (4.36). The decay rate is
plotted in Fig. 3 and the result is similar to the decay rate for
the anisotropic ē studied in the previous section.
Furthermore, the observation made in [67] can be applied
to the current case, as well. Thus, we try to map the f onto

the c coefficients where a nonvanishing fð4Þ3 will be
considered only. We then obtain from the general trans-
formation of Eq. (3.40a):

c̄ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðfð4Þ3 Þ2

q
¼ −

1

2
ðfð4Þ3 Þ2 þ � � � : ð4:40Þ

Furthermore, when transforming the fð4Þ3 into the c coef-
ficient sector, only the traceless part contributes:

diagð0; 0; 0; c̄Þμν þ c̄
4
ημν ¼ 3

4
c̄ ×

�
1

3
;−

1

3
;−

1

3
; 1

�
μν

;

ð4:41Þ

cf. Eq. (3.41). The rest of the current consideration works in
analogy to what we did for the isotropic f coefficients in
Sec. III E. This demonstrates the consistency between the
results for the anisotropic c and f coefficients, and the
transformation obtained in [67].

H. Anisotropic g coefficients

Among the anisotropic choices of minimal g coefficients,

we choose gð4Þμνϱ ¼ ḡðλ
○μ
λ̄ν − λ̄μλ

○νÞλ̄ϱ with gð4Þ033 ≡ ḡ. The
anisotropy is linked to the preferred direction pointing
along the third spatial axis of the coordinate system. The
corresponding dispersion relations are

Eð�Þ
ḡ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrð�Þ

ḡ Þ2 þ p2
∥ þm2

ψ

q
; ð4:42aÞ

rð�Þ
ḡ ≡ p⊥ � ḡjp∥j: ð4:42bÞ

Despite the isotropy in the plane perpendicular to the
preferred direction, their form differs from the shape of the
dispersion relations for the anisotropic sectors of c, d, e,
and f stated in Eqs. (4.28), (4.20), (4.32), and (4.36). The
perpendicular and parallel momentum components cannot
be separated from each other, but there is a product of both
in the dispersion relation. The reason is that gð4Þμνϱ is a
third-rank tensor that is constructed from two preferred
spacetime directions, in contrast to the vectors and tensors
studied so far. Therefore, according to the argument at the
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beginning of the current section, the decay rate is expected
to depend on the perpendicular component q⊥ of the initial
fermion momentum, as well. However, the calculation for a
nonvanishing q⊥ turns out to be impractical, which is why
we restrict it to the case of q⊥ ¼ 0, nevertheless. Therefore,
in contrast to the c, d, e, and f coefficients, the decay rate
for q⊥ ¼ 0 can only be considered as a special case, i.e.,
when the initial fermion propagates along the preferred
direction. However, deeper insights from studying the
general case are not expected.
We use the restriction ḡ > 0 and consider the fermion

mode described by EðþÞ
ḡ . As there are no additional time

derivatives in the Lagrange density, the spinor matrix uū is
obtained directly from Eq. (4.11a) of [57]:

ΛðþÞ
ḡ ðpÞ ¼ ξμḡγμ þ Ξḡ14 þ ζμḡγ

5γμ þ ψμν
ḡ σμν; ð4:43aÞ

ξμḡ ¼
1

2

�
EðþÞ

p

�μ

þ ḡjp∥j
2p⊥

0
BBB@

0

p1

p2

0

1
CCCA

μ

; ð4:43bÞ

Ξḡ ¼
mψ

2
; ð4:43cÞ

ζμḡ ¼
mψ sgnðp∥Þ

2p⊥

0
BBB@

0

−p2

p1

0

1
CCCA

μ

; ð4:43dÞ

ψμν
ḡ ¼sgnðp∥Þ

4p⊥

0
BBBBBB@

0 p1p∥ p2p∥ −p⊥r
ðþÞ
ḡ

−p1p∥ 0 0 −p1EðþÞ

−p2p∥ 0 0 −p2EðþÞ

p⊥r
ðþÞ
ḡ p1EðþÞ p2EðþÞ 0

1
CCCCCCA

μν

:

ð4:43eÞ

Since the dispersion relation has a different form in
comparison to all of the anisotropic cases previously
studied, the perpendicular momentum component, which
is determined by energy-momentum conservation, cannot
be elegantly expressed via the Källén function. Instead, we
obtain a more complicated result that can be best written in
terms of three functions as follows:

k⊥;0 ¼
1

2gðqÞ
n
ḡjq− k∥jhðqÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞ½4k2∥gðqÞþh2ðqÞ�

q o
;

ð4:44aÞ

fðqÞ≡ ð1þ ḡ2Þq2 þm2
ψ ; ð4:44bÞ

gðqÞ≡ ḡ2ðq − k∥Þ2 − fðqÞ; ð4:44cÞ

hðqÞ≡ k2∥ þ fðqÞ − fðq − k∥Þ: ð4:44dÞ

The condition k⊥;0 ≥ 0 restricts the parallel component,
with the maximum momentum being simple enough to be
expressed analytically:

k∥ ∈ ½0; k∥;max�; k∥;max ¼
2

ḡ2
½ð1þ ḡ2Þq −

ffiffiffiffiffiffiffiffiffi
fðqÞ

p
�:

ð4:45Þ

Finally, the condition for a nonvanishing accessible
region in phase space, k∥;max ¼ 0, delivers the threshold
momentum:

qthḡ ¼ mψ

ḡ
þ � � � : ð4:46Þ

Compare the latter to Eq. (3.47). Via the derivative of the
energy balance equation,

∂ΔEðþÞ
ḡ

∂k⊥ ¼ −
�
k⊥
jkj þ

k⊥ þ ḡjq − k∥j
EðþÞ
ḡ ðq − kÞ

�
; ð4:47Þ

the phase space factor is stated as follows:

ΠḡðkÞ ¼
k⊥

jkjEðþÞ
ḡ ðq−kÞ

����∂ΔE
ðþÞ
ḡ

∂k⊥
����
−1����

k⊥¼k⊥;0

¼ 1

EðþÞ
ḡ ðqÞþ ḡ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2∥=k

2⊥
q

jq− k∥j

����
k⊥¼k⊥;0

: ð4:48Þ

The procedure of computing the decay rate numerically
differs from that carried out for the coefficients d̄, c̄, ē, and
f̄ as the matrix element squared depends on the azimuthal
angle φ. Therefore, φ has to be integrated over numerically,
as well. The numerical result for the decay rate can be
found in Fig. 3. Note the similarities to the decay rates for ē
and f̄. However, it must be kept in mind that this result is
only a special case for q⊥ ¼ 0. As indicated within the
current section, due to the particular form of the dispersion
relation for ḡ, a dependence on the perpendicular momen-
tum component of the incoming fermion is expected.
Furthermore, an analog result is obtained by studying

ḡ < 0 in conjunction with the mode described by Eð−Þ
ḡ .

I. Comparison of results and discussion

The decay rates for the anisotropic sectors of the c, d, e,
f, and g coefficients are plotted in Fig. 3 as functions of the
parallel momentum component q∥ of the incoming fer-
mion. The behaviors of the curves are very similar when
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they are compared to the isotropic results presented in
Fig. 2. The linear behavior for momenta q∥ ≫ mψ and the
quick decrease near the threshold are clearly visible. The
only caveat concerns the anisotropic g coefficients where
the presented result presumably is just a special case when
the initial fermion propagates along the preferred direction.
Due to the form of the dispersion relation, the decay rate is
expected to depend on the perpendicular momentum
component q⊥ additionally.

V. HELICITY PROCESSES

For the spin-nondegenerate operators there is a pecu-
liarity that arises from the existence of two distinct
dispersion relations for particles. In a vacuum Cherenkov
process, the spin projection of the incoming fermion can
switch, in principle. As long as the fermion dispersion
relation does not depend on the spin projection, such spin-
flip processes may deliver a partial contribution to a
nonzero decay rate where the contribution cannot be
isolated from the spin-conserving processes. However, this
changes when there are two different fermion dispersion
laws, as now the fermion can jump from one branch of the
dispersion law to the other when its spin projection
changes. Hence, the energy balance equation crucially
differs from that of a spin-conserving decay, which forces
us to consider such particular decays separately. Spin-flip
processes, which are sometimes called helicity processes,
can be important for the spin-nondegenerate operators and
we will analyze their impact for the b andH coefficients, in
particular. In this context, fermions in a spin-up state will be
denoted as ⊕ and fermions in a spin-down state as ⊖.

A. Isotropic b coefficients

In Sec. III A it was shown that vacuum Cherenkov
radiation is not possible for the isotropic b coefficients—as
long as the spin projection of the incoming fermion remains
unchanged. However, as described at the beginning, spin-
flip processes must be taken into account, as well. Let us
first of all consider the process⊕→ γ þ⊖. The kinematics

differs crucially from the kinematics studied so far. The
final polar angle is given by

cosϑ0¼
1

qk



kEðþÞ

b
○ ðqÞ−b

○

�
qþb

○

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−EðþÞ

b
○ ðqÞÞ2−m2

ψ

r ��
;

ð5:1Þ

which allows for restricting the magnitude of the photon
momentum to the interval ½kmin; kmax� where

kmin;max ¼
2qb

○

4qb
○

þm2
ψ

h
∓ðq − b

○

Þ þ EðþÞ
b
○ ðqÞ

i
: ð5:2Þ

Several remarks are in order. First, the minimal photon
momentum is larger than zero in contrast to all of the
processes studied without spin-flips. Second, the expres-
sion in square brackets in Eq. (5.2) reveals that both the
minimum and the maximum photon momentum are pos-
itive independently of the incoming fermion momentum q.
Therefore, no restriction is put on the latter, which is why
there is no threshold. For the isotropic b coefficients, a
fermion can radiate photons when changing its spin projec-
tion, nomatter how small itsmomentum is. Last but not least,
the phase space factor can be cast into a simple form:

ΠðkÞ ¼ 1

q
1

1 − b
○

=jq − kj

����
ϑ¼ϑ0

: ð5:3Þ

It is convenient to perform the phase space integration
numerically due to the complicated form of the matrix
element squared. A graph of the numerical result can be
found in Fig. 4(a) for a wide range of incoming fermion
momenta. This figure allows for making additional interest-
ing observations. First, as was already pointed out above, the
process does not have a threshold, which is why in a double-
logarithmic plot, the decay rate does not have a vertical
asymptote. Instead, the decay rate has amaximum,which is a
characteristic not observed for spin-conserving processes.

(a) (b)

FIG. 4. Decay rates of the helicity decay ⊕→ γ þ⊖ for b
○

=mψ ¼ 10−10 (a) and for b̄=mψ ¼ 10−10 (b). The position of the maximum
and the asymptotic behaviors on the left-hand and the right-hand side of the maximum are indicated in both plots. With the naked eye,
differences in the two plots cannot be spotted.
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An approximation for the corresponding momentum was

found from the plot to be qmax ≈m2
ψ=b

○

. Second, the decay
rates have asymptotic behaviors on the left- and right-hand
sides of the maximum that we denote as Γ<;>. In a double-
logarithmic plot, the decay rate Γ< has an oblique asymptote
that corresponds to a polynomial behavior. Its form is found
analytically:

Γ< ∼
32α

3

�
b
○

mψ

�3
q2

mψ
: ð5:4Þ

In contrast to the asymptotic behavior just encountered,
the decay rate on the right-hand side of the maximum does
not behave polynomially, but it involves a logarithmic
dependence:

Γ> ∼
α

2

�
ln

�
4qb

○

m2
ψ

�
−
3

2

�
m2

ψ

q
: ð5:5Þ

Third, from the asymptotic behaviors and the absolute
numbers in the plot we see that the decay rate is highly
suppressed—either by the smallness of the Lorentz-violating
coefficient to the third power or by the ratio mψ=q that is
much smaller than one for energies much larger than the
fermionmass. Finally, asymptotic behaviors for the radiated-
energy rates are found to be

�
dW
dt

�
<
∼ 32α

�
qb

○

m2
ψ

�4

m2
ψ ;

�
dW
dt

�
>
∼
α

2

�
ln

�
4qb

○

m2
ψ

�
−
11

6

�
m2

ψ : ð5:6Þ

These two regimes are also separated by qmax to a good
approximation.
Considering the opposite process ⊖ → γþ ⊕, we find

quickly that the energy balance equation does not provide
an accessible phase space region. Recalling that the spin-
conserving process is forbidden, this behavior is not totally
surprising, as only one particular of the two possible spin-
flip processes is expected to improve the energy balance.
The process ⊖ → γþ ⊕ is forbidden for all of the sectors
investigated subsequently. The situation changes when
switching the sign of the controlling coefficient, though.

B. Anisotropic b coefficients

The calculation for an anisotropic case of minimal b
coefficients with the preferred direction pointing along the
third axis of the coordinate system has many similarities
with that carried out previously. We consider the process
⊕→ γ þ⊖. The perpendicular momentum component of
the photon in the final state can again be expressed in terms
of the Källén function:

k⊥;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðfðþÞðqÞ; k2∥; fð−Þðq − k∥ÞÞ

q
2EðþÞðqÞ ; ð5:7aÞ

fð�Þðp3Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þm2

ψ

q
� b̄
	2
: ð5:7bÞ

From the condition that k⊥;0 ¼ 0, we obtain k∥ ∈
½k∥;min; k∥;max� where both limits are complicated functions
of the incoming fermion momentum, the fermion mass, and
the controlling coefficient under consideration. Since these
functions do not contribute to a better understanding, they
will be skipped. Due to k∥;min ∼ −b̄, a photon with a small
momentum can, in principle, be emitted in a direction
opposite to the direction of the initial fermion. The phase
space factor is given by the inverse of the dispersion
relation EðþÞ, as usual for anisotropic cases characterized
by the generic dispersion relation of Eq. (4.3). The phase
space integration is carried out numerically leading to a
decay rate that shares many characteristics with the decay
rate for the isotropic b coefficient, cf. Fig. 4(b). There is a
maximum at qmax ≈m2

ψ=b̄. The asymptotic behavior of the
decay rate on its left-hand side is

Γ< ∼
32α

3

�
b̄
mψ

�
3 q2

mψ
; ð5:8Þ

whereas the asymptotic behavior on the right-hand side
again involves a logarithm:

Γ> ∼
α

2

�
ln

�
4qb̄
m2

ψ

�
−
3

2

�
m2

ψ

q
: ð5:9Þ

Note the similarities to the previous Eqs. (5.4), (5.5) for
the isotropic framework. The opposite process ⊖ → γþ ⊕
can again be shown to be energetically forbidden. The
corresponding radiated-energy rates read

�
dW
dt

�
<
∼ 32α

�
qb̄
m2

ψ

�
4

m2
ψ ;�

dW
dt

�
>
∼
α

2

�
ln

�
4qb̄
m2

ψ

�
−
11

6

�
m2

ψ ; ð5:10Þ

and they are completely analogous to Eq. (5.6).

C. H coefficients

The H coefficients do not have an isotropic part. We will
consider the representative example of a nonvanishing

coefficient Hð3Þ03 ≡ H̄ where Hð3Þμν ¼ H̄ðλ
○μ
λ̄ν − λ̄μλ

○νÞ.
The kinematics behaves differently in comparison to the
kinematics of the anisotropic b and d coefficients, which is
inferred from the dispersion relations:
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Eð�ÞðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
∥ þ ðp⊥ � H̄Þ2 þm2

ψ

q
; ð5:11aÞ

p∥ ≡ p · λ̄; p⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − p2

∥

q
: ð5:11bÞ

Note that in the dispersion laws given above, it is the
perpendicular momentum component that is connected to
the controlling coefficient, whereas the parallel momentum
component can be separated from the rest. In comparison to
the dispersion relations of the anisotropic b, d coefficients,
the roles of p⊥ and p∥ have interchanged, i.e, the decay
rate is not expected to depend on the parallel momentum
component, but on the perpendicular one only. Therefore,
the process is kinematically possible for the initial fermion
traveling perpendicularly to λ̄ where the observer frame is
chosen such that it travels along the x axis specifically, i.e.,
q ¼ ðq; 0; 0Þ. With the final photon reasonably parame-
terized according to Eq. (4.1), the energy balance equation
for the process ⊕→ γ þ⊖ can be evaluated neatly. It is
now the parallel momentum component that is expressed
via the Källén function:

kð�Þ
∥;0 ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩðfðþÞðq;0Þ;k2⊥;fð−Þðq−k⊥cosφ;−k⊥sinφÞÞ

q
2EðþÞðqÞ ;

ð5:12aÞ

fð�Þðp1; p2Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
1 þ p2

2

q
� H̄

�
2

þm2
ψ : ð5:12bÞ

Note that k∥ ∈ R, which is why both the positive and the
negative solution have to be taken into account. From the

limit kð�Þ
∥;0 ¼ 0 we obtain k⊥ ∈ ½0; k⊥;max�. Again, the upper

limit on k⊥ is a complicated function that will not be stated,
because nothing is to be gained from it. The phase space

factor is given by ΠðkÞ ¼ k⊥=ðjkð�Þ
∥;0 jEðþÞðqÞÞ. The latter

differs from the phase space factor of most of the other
anisotropic cases under consideration, as the roles of k⊥, k∥
have interchanged. Since the phase space factor depends on

the magnitude of k∥ only and due to jMj2ð−k∥Þ ¼
jMj2ðk∥Þ for this case, the negative solution kð−Þ∥;0 delivers
the same contribution to the decay rate or radiated-energy
rate as the positive one. Therefore, the calculation can be

restricted to kðþÞ
∥;0 , whereby the final result must simply be

doubled.
Another crucial difference from the kinematics of the b

and d coefficients is that there is no azimuthal symmetry,

i.e., kðþÞ
∥;0 , k⊥;max, and the matrix element squared depend on

φ ∈ ½0; 2π� where the interval is not restricted by the
kinematics. Therefore, the numerical integration is two-
dimensional and has to be carried out over φ ∈ ½0; 2π� and
k⊥ ∈ ½0; k⊥;maxðφÞ�. Numerical instabilities were encoun-
tered for H̄=mψ ≪ 1making the corresponding result of the
decay rate unreliable. The problem is that k⊥;max strongly
depends on φ. Large contributions lie in the direct vicinities
of φ ∈ f0; 2πg and the function drops extremely quickly
outside of the neighborhoods of these two values such that
k⊥;maxðπÞ ∼ H̄. This behavior makes the integration over φ
cumbersome. Hence, the Mathematica routine is only used
for integrating over k⊥ and the integration over φ is carried
out manually by applying Simpson’s rule over subsequent
intervals. This procedure has proven to be more stable for a
larger value of the controlling coefficient H̄=mψ ¼ 10−5

and the corresponding graph is presented in Fig. 5. Starting
with low momenta, the decay rate is heavily suppressed by
the smallness of the controlling coefficient. Besides, there
is one oblique and one (presumably) horizontal asymptote
in the double-logarithmic plot, which is why the curve does
not have a maximum. Due to the complexities of the
computation, it is only possible to determine approximate
expressions for the asymptotes from the numerical data
points:

Γ< ≈ 8α

�
H̄
mψ

�
3 q2

mψ
; Γ> ≈

α

2
H̄; ð5:13aÞ

�
dW
dt

�
<
≈ 20α

�
qH̄
m2

ψ

�
4

m2
ψ ;

�
dW
dt

�
>
≈
α

3
qH̄: ð5:13bÞ

(a) (b)

FIG. 5. Decay rates of the process ⊕→ γ þ⊖ for H̄=mψ ¼ 10−5 (a) and for d
○

¼ 10−10 (b). The horizontal asymptote in (a) is a
particular property of this case.
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It seems that in contrast to all of the cases studied
previously, both Γ< and Γ> have a polynomial behavior.
The existence of a horizontal asymptote makes this
framework different from the other cases investigated.

D. Isotropic d coefficients

The decay rate of the helicity decay for the d coefficients
is also complicated to compute due to the involved structure
of the modified dispersion relations. Considering the decay
⊕→ γ þ⊖, we can proceed formally just as before. The
important point is that computer algebra delivers two
functions for the polar angle ϑ in the final state where
only one of these satisfies the energy balance equation.
Respecting ϑ ∈ ½0; π� further restricts the magnitude of the
photon momentum to an interval whose limits are com-
plicated polynomials involving third roots. Therefore, here
it is more necessary than ever to perform the calculation
numerically where the result for the decay rate can be found
in Fig. 5(b). It is evident that the characteristics of the curve
are similar to the properties of the decay rates for the b

coefficients. There is a maximum at qmax ≈ 3=
ffiffiffi
d
○

q
and the

asymptotic behavior on the left-hand side seems to be
polynomial, whereas the decay rate on the right-hand side
possibly has a polynomial dependence, as well. It is
challenging to determine analytical functions describing
these behaviors. However, the following numerical approx-
imations are directly obtained from the plot:

Γ< ≈ 20α

�
qd

○

mψ

�3
q2

mψ
; Γ> ≈ 10α

m2
ψ

q
: ð5:14Þ

What is significant here is the steep increase of the decay
rate for the region on the left-hand side of the maximum.
However, note that the decay rate is then still suppressed by
the third power of the small dimensionless controlling
coefficient. For the radiated-energy rates we find the appro-
ximations�
dW
dt

�
<
≈ 100αd

○ 4
�

q
mψ

�
8

m2
ψ ;

�
dW
dt

�
>
≈ 10.4αm2

ψ :

ð5:15Þ

On the left-hand side of the maximum, dW=dt grows very
steeply as a function of the momentum, as well, but it is
suppressed by the fourth power of the controlling
coefficient.

E. Isotropic g coefficients

The decay rate for the helicity decay ⊕→ γ þ⊖ can be
calculated in the same way as that for the d coefficients.
From a technical viewpoint, the calculation is even simpler
in comparison. The numerical result is shown in Fig. 6. For
increasing momenta the rate rises as

Γ< ∼
32α

3
g
○3 q2

mψ
; ð5:16Þ

until it reaches the maximum at qmax ≈ ð3=2Þmψ=g
○

.
Note that the increase is far from as steep as for the
isotropic d coefficients. Here, the decay rate just grows
quadratically but it is still suppressed by the third power of
the controlling coefficient. After reaching the maximum,
the function decreases again. This decrease cannot be
described by a polynomial, but it has a logarithmic
behavior. Performing several approximations of both the
integrand and the integration limits, which were checked to
be consistent with the numerical result, allows for obtaining
the asymptotic decay rate for very large momenta:

Γ> ∼ α

�
ln

�
qg

○

mψ

�
−
3

4

�
m2

ψ

q
: ð5:17Þ

Last but not least, asymptotic behaviors for the radiated-
energy rates read�

dW
dt

�
<
∼ 32α

�
qg

○

mψ

�4

m2
ψ ;

�
dW
dt

�
>
∼ α

�
ln

�
qg

○

mψ

�
−
11

12

�
m2

ψ : ð5:18Þ

Here we point out the great similarities to the results for the
isotropic b coefficient, cf. Eqs. (5.4), (5.5), and (5.6).

F. Discussion

A simplified treatment of helicity decays in the context
of Lorentz-violating fermions can be found in [68]. In the
latter paper, a collection of Lorentz-violating dimension-5
operators is considered that were initially classified by
Myers and Pospelov [69]. Based on a simplified theoretical
analysis, the decay rate for various unusual processes
such as vacuum Cherenkov radiation is obtained for the
asymptotic regimes. Although their theory differs from
the minimal frameworks considered here, some of their
and our results do have certain characteristics in common.
Their decay rate for vacuum Cherenkov radiation in the

FIG. 6. Decay rate of the process ⊕→ γ þ⊖ for g
○ ¼ 10−10.
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asymptotic region of small momenta is given by Eq. (C30).
The common characteristic with Eqs. (5.4), (5.16) is a
suppression by the third power of the controlling coeffi-
cient. The momentum dependence is, of course, different, as
they consider a higher-dimensional operator including addi-
tional momenta. The decay rate was also obtained in the
region of asymptotically large momenta, cf. their Eq. (C31).
The latter shares some properties with Eq. (5.5), e.g., the
decay rate is suppressed bym2

ψ=q but not by the controlling
coefficient. The logarithmic dependence is missing in their
result, which is most likely related to the approximations that
the authors of [68] use.
To understand the decay rates for processes with and

without spin-flip a bit better, we consider a linear decay
with all particle momenta aligned. In the process, a photon
with a certain helicity is emitted. Without spin-flip, the
final-state electron will move along a direction opposite to
that of the initial-state electron. The reason for this behavior
is that the final-state electron has to change helicity such
that the overall helicity in the process is conserved. Since
the electron does not perform a spin-flip by definition, its
helicity can only change by reversing its momentum. For
momenta directly above threshold, the kinematics does not
allow the electron momentum to reverse, which is why the
decay rate is highly suppressed in this regime. For momenta
much larger than the threshold, a high-energy photon can
be emitted such that the final-state electron moves in a
direction opposite to the initial-state electron automatically
changing helicity even without flipping the electron spin.
This behavior results in a strong increase of the decay rate.
The situation is different for a helicity decay. As the spin of
the final-state electron now flips, its momentum direction
does not have to be reversed, which means that the final-
state electron can be emitted in forward direction. This
behavior is nicely seen within the anisotropic cases based
on b̄ and H̄ where photons with momenta approximately
proportional to the controlling coefficients can be emitted
in directions opposite to the direction of the incoming
fermion. Hence, the appearance of such momentum con-
figurations demonstrates that it is possible for the final-state
fermion to continue propagating in forward direction.
The decay rate for helicity decays was found to rise

with increasing momentum of the initial fermion, which
can be explained from the growing accessible phase space
volume. However, for momenta beyond a certain value, the
decay rate decreases again. The initial fermions are then
almost chiral, which renders a helicity-flip more and more
unlikely [68]. The situation is different for the coefficient H̄
only, as a spin-up fermion propagating along the x-axis is
not in a helicity eigenstate. Hence, such a fermion must be
in a superposition of states with positive and negative
helicity independently of the particle energy, which is why
the probability for photon emission should not be sup-
pressed. This property explains the horizontal asymptote of
the decay rate for large momenta.

The authors of [68] call the maximum of the decay rate,
which occurs for helicity decays, an “effective threshold.”
This notion is reasonable, since the decay rate below the
maximum is strongly suppressed by Lorentz violation.
For the d and g coefficients, the approximate values
of qmax found from the plots are related to the threshold
momenta of the corresponding spin-conserving decays,

e.g., qmax ∼mψ=
ffiffiffi
d
○

q
for the isotropic d coefficient. This fact

explains the strong increase of the radiated-energy rate of
the helicity decay for the isotropic d coefficient, which is
proportional to the eighth power of the momentum. In
contrast to that, the radiated-energy rates only rise with the
fourth power of the momentum within the remaining
sectors studied. Note also that each asymptote ðdW=dtÞ<
is suppressed by the fourth power of the corresponding
controlling coefficient, i.e., this property is common to all
of the coefficients studied. Last but not least, there is a

direct correspondence between g
○

and b
○

=mψ via Eqs. (27) of
[22] that explains the very similar results for Γ< and
ðdW=dtÞ< for these coefficients. However, this correspon-
dence is valid at leading order in Lorentz violation only,
i.e., deviations of the decay rates for larger momenta
emerge when higher-order terms in Lorentz violation
become important.

VI. CONSTRAINTS

The most significant theoretical findings are presented in
Table I and they will be discussed before proceeding to
experimental constraints. Vacuum Cherenkov radiation
conserving the spin direction of the fermion was found
to be only possible in frameworks with nonzero c, d, e, f,
and g coefficients, which, interestingly, are the dimension-
less ones in the fermion sector. For these processes,
the threshold momentum is generically given by qth ¼
ρmψ=Xσ

⊂ at leading order in the controlling coefficients
X⊂ ∈ X with X of Eq. (2.1h). This expression is valid for
both isotropic and anisotropic frameworks. The parameters
ρ and σ are dimensionless, i.e., ρ is a global prefactor and σ
is the power of the coefficient. The decay rate for momenta
that are much larger than the particle mass can be written in
the form Γ∞=α ¼ rXs

⊂q for isotropic sectors and Γ∞=α ¼
rXs

⊂q∥ for anisotropic ones. The radiation rate reads
ðdW=dtÞ∞=α¼uXv

⊂q2 and ðdW=dtÞ∞=α ¼ uXv
⊂q2∥, respec-

tively. Here q is the momentum of the incoming fermion
and q∥ is the component parallel to the preferred spacelike
direction. The remaining dimensionless parameters r, s, u,
and v describe the dynamical properties of the vacuum
Cherenkov process for the different frameworks under
consideration.
The results for the c and d coefficients are very similar,

so are those for the e, f, and g coefficients. For the first two,
the threshold momenta are inversely proportional to the
square-root of the nonzero controlling coefficient, and the
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decay rates for large momenta depend linearly on the
controlling coefficient and the momentum itself. This
behavior differs crucially from the outcomes obtained
for the e, f, and g coefficients. For the latter, the threshold
momenta are inversely proportional to the controlling
coefficients directly where the decay rates for large
momenta are suppressed by the squares of the controlling
coefficients. Note that the ratio between the asymptotic
decay rates for the f and c coefficients amounts to 3/8, as
expected from the existence of the transformation found in
[67], cf. Sec. III E. The characteristic dimensionless num-
bers presented for the isotropic and anisotropic frameworks
correspond to each other except for the decay rate for the g
coefficients. For the anisotropic coefficient gð4Þ033, the
matrix element squared depends on the azimuthal angle
φ, which has to be integrated over. This integration
produces a numerical constant for the decay rate that is
approximately 1=5 and it differs from the 1=3 of the
isotropic case.
Constraints on the controlling coefficients can be

obtained from data of UHECR. We assume the energy
of a cosmic ray detected on Earth to be smaller than the
threshold energy of vacuum Cherenkov radiation. This will
be justified below. So we consider the condition Eprim ≡
E < qth with the primary energy Eprim and the generic
expression qth for the threshold momentum introduced
above. The latter equation is solved for the controlling
coefficient leading to X⊂ ¼ ðϱmψ=EÞ1=σ . To obtain a
constraint on the generic coefficient X⊂ at 2σ level we
add twice the uncertainty that is linked to the experimental
error ΔE of the energy value measured:

X⊂ >

�
ϱmψ

E

�
1=σ

þ 2ΔE
���� ∂
∂E
�
ϱmψ

E

�
1=σ
����; ð6:1Þ

where ϱ, σ are the dimensionless parameters in the thresh-
old energy, which can be found in Table I. In principle, the
constraints can be placed directly on the coefficients
discussed in the paper, so far. Note that it is possible to
generalize at least some of the bounds obtained with

Eq. (6.1). For the isotropic coefficients, we use the notation
that was introduced in Eq. (95) of [22]. This notation is
based on the effective coefficients of Eqs. (27) in the latter
reference. The effective c coefficients additionally involve

them coefficients. However, cð4Þeff only contains c
ð4Þ, asmð3Þ

does not exist. Furthermore, there is a coordinate trans-
formation that transforms between the c coefficients in the
fermion sector and the nonbirefringent CPT-even coeffi-
cients in the photon sector at first order in Lorentz violation
[38] (see Sec. III C, as well). Therefore, any bound on the
isotropic c coefficient involves the isotropic coefficient ~κtr
of the photon sector. According to Eqs. (27) in [22], the dð4Þ

coefficients are comprised by the effective coefficients ~Hð5Þ
eff

where those also contain the dimension-5 H coefficients.
Since the latter have not been considered in the current
article, we can constrain the isotropic d coefficients only.

The dimension-4 e coefficients are contained in að5Þeff
together with the dimension-5 a coefficients, which are
not taken into account here. So the bound applies to eð4Þ

only. Last but not least, the coefficients ~gð4Þeff involve the
dimension-4 g coefficients and the dimension-3 b coef-
ficients. The bð3Þ do not contribute to the decay rate of the

spin-conserving process, though, which is why g
○ ð4Þ
1 can be

bound directly. Note that in Eq. (95) of [22], the latter is
defined with an additional minus sign. There are no
effective coefficients involving fð4Þ since these contribute
to observables at second order in Lorentz violation only.
Following the observation of [67], we put the f into the c
coefficients.
The isotropic constraints are computed by using the

energy E of a primary detected by the Pierre-Auger
observatory. The composition of this primary is unknown.
A conservative choice is to take an iron nucleus with
N ¼ 56 nucleons leading to a nucleon energy of E=N. The
Cherenkov photon is assumed to be emitted from one of the
up or down-type quarks in the nucleons where we take
the masses mu≈2.3×10−3GeV and md ≈ 4.8 × 10−3 GeV.
Another conservative assumption is that each of these

TABLE I. Summary of the crucial results for vacuum Cherenkov radiation conserving the fermion spin. The definition of the
dimensionless parameters in the first column can be found at the beginning of Sec. VI. The first two characterize the threshold energy
and the middle two describe the asymptotic decay rate for large momenta compared to the fermion mass. The final two are contained in
the asymptotic expressions for the radiated-energy rate. The first set of five columns states values for the isotropic coefficients studied.
The second set lists values for the corresponding anisotropic coefficients under consideration.

c
○

d
○

e
○

f
○

g
○

cð4Þ33 dð4Þ33 jeð4Þj jfð4Þj gð4Þ033

ρ ð1=2Þ ffiffiffiffiffiffiffiffi
3=2

p ð1=2Þ ffiffiffiffiffiffiffiffi
3=2

p
1 1 1 ð1=2Þ ffiffiffiffiffiffiffiffi

3=2
p ð1=2Þ ffiffiffiffiffiffiffiffi

3=2
p

1 1 1
σ 1=2 1=2 1 1 1 1=2 1=2 1 1 1
r 16=9 16=9 2=3 2=3 2=3 16=9 16=9 2=3 2=3 ≈0.40
s 1 1 2 2 2 1 1 2 2 2
u 7=9 7=9 7=24 7=24 7=24 7=9 7=9 7=24 7=24 ≈0.20
v 1 1 2 2 2 1 1 2 2 2
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quarks carries a fraction r ¼ 0.1ð¼∧10%Þ of the nucleon
energy (cf. [70] and references therein). Hence, we use
quark energies of Eu ¼ Ed ¼ rE=N. The anisotropic con-
straints are based on a different event, but the procedure
employed is the same.
A compilation of the constraints based on these values

and Eq. (6.1) is presented in Table II. Several remarks are
in order. First, a subset of the bounds is one-sided and
the remaining ones are two-sided. The vacuum
Cherenkov process is rendered possible if either the
velocity of the photon is decreased with respect to the
maximum velocity of the fermion or if the fermion
velocity is increased with respect to the photon.
Having a one-sided bound means that this condition is
only fulfilled for a particular sign of the controlling
coefficients involved. Another reason for a one-sided
bound is that the constraint may apply to a combination
of coefficients that has a fixed sign such as jeð4Þj. Second,

most of the one-sided bounds are lower ones, as vacuum
Cherenkov radiation only occurs when the corresponding
controlling coefficients are negative. An exception are
again the bounds on the nonnegative jeð4Þj. However,

considering only one of the three coefficients eð4Þi to be

nonzero at a time, results in an upper bound on jeð4Þi j. In
principle, the latter is equal to a two-sided constraint on

the particular eð4Þi .
Third, the absolute numbers appearing in the con-

straints for the c, d and the e, g coefficients are the same
because, for large particle energies, the thresholds cor-
respond to each other. The kinematics of the process
plays a primary role in obtaining the constraints where
the decay rate itself is secondary. Fourth, the bounds on
the e and g coefficients are weak compared to the
constraints for the c and d coefficients, as the thresholds
depend on the controlling coefficients in a different way.

TABLE II. Constraints on controlling coefficients in the up and down-quark sector at 2σ-level obtained with
Eq. (6.1). The isotropic bounds are based on the event 737165 detected by the Pierre-Auger observatory and
published in [71]. In [40] the event energy was corrected by 5%. This was done to take into account the missing
energy of a hadronic primary, since the energy of [71] was based on the assumption of a photon primary. However, a
photon primary can be ruled out to a significance of 3σ when the shower-maximum atmospheric depth of the event
is considered, cf. [40]. Thus, the corrected event energy is E ¼ 212 × 1018 eV where the experimental error ΔE
constitutes 25% of the cosmic-ray energy. To obtain the anisotropic constraints, we chose the event 81 of the
SUGAR catalog on [72] with an energy of E ¼ 38.9 × 1018 eV and a declination of −88°. The latter value means
that the primary was propagating approximately along the third axes of the coordinate system, i.e., along the
preferred spacetime direction λ̄μ of the anisotropic frameworks. It was hard to find an official statement on the
energy uncertainty of SUGAR. Therefore, an estimate of 10% was obtained from the averaged differences between
the underlying conversion models from the vertical muon number to the primary energy, cf. Fig. 1 and the first two
unnumbered equations in Sec. II of [73].

Sector Lower constraint Coefficients Upper constraint

up quark −3 × 10−23< c
○ u − ð3=4Þ~κtr − ð3=8Þðf

○ uÞ2
−3 × 10−23< d

○ u <3 × 10−23

−9 × 10−12< e
○u <9 × 10−12

−9 × 10−12< g
○u <9 × 10−12

−6 × 10−22< cð4Þu33 − ð3=8Þðfð4Þu3 Þ2
−6 × 10−22< dð4Þu33

<6 × 10−22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðeð4Þui Þ2

q
<4 × 10−11

−4 × 10−11< gð4Þu033
<4 × 10−11

down quark −1 × 10−22< c
○ d − ð3=4Þ~κtr − ð3=8Þðf

○ dÞ2
−1 × 10−22< d

○ d <1 × 10−22

−2 × 10−11< e
○d <2 × 10−11

−2 × 10−11< g
○d <2 × 10−11

−3 × 10−21< cð4Þd33 − ð3=8Þðfð4Þd3 Þ2
−3 × 10−21< dð4Þd33

<3 × 10−21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðeð4Þdi Þ2

q
<8 × 10−11

−8 × 10−11< gð4Þd033
<8 × 10−11
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Last but not least, we deduce that the vacuum Cherenkov
process is highly efficient for the c and d coefficients. This
conclusion follows from either the radiated-energy rate or
the decay rate whose inverse corresponds to the lifetime of
the high-energetic particle. Hence, a cosmic ray whose
energy lies above the threshold loses this energy excess very
rapidly. UHECRs originate definitely from outside of our
solar system, probably even from outside of the MilkyWay.
So it is granted that a cosmic ray that is detected on Earth has
an energy below the threshold, which is why the assumption
made at the very beginning is justified. The only caveat is
that for the e and g coefficients, the process is less efficient as
it is suppressed by the square of the Lorentz-violating
coefficient. This behavior is mirrored in the threshold
momenta leading to much weaker bounds on those
coefficients.

A. Energy loss via helicity processes

In Sec. V we found that helicity processes are devoid of a
threshold. Although the corresponding decay rates are
heavily suppressed by the smallness of the controlling
coefficients, a charged particle can steadily radiate and lose
energy when traveling from its source to the Earth. Since
the particle will radiate over distances that lie in the order of
magnitude of many lightyears, these decays can never-
theless play a crucial role as long as the corresponding
controlling coefficients are large enough. This argument
could allow us to place additional constraints on the
coefficients involved. Since possible constraints cannot
follow from a threshold, we adopt the approach used in
[48] to derive them. In the latter reference, the radiated-
energy rate for a gravitational Cherenkov process is
employed to compute the propagation length that a
UHECR travels before its energy drops below a certain
value that has already been observed on Earth. Taking into
account that the energy loss dE=dt is the negative of the
radiated-energy rate, the following differential equation
must be solved:

dE
dt

¼ −
dW
dt

; ð6:2Þ

where expressions for dW=dt can be found in Sec. V for the
cases studied. The asymptotic behavior of the radiated-
energy rate was obtained for both momenta smaller and
larger than Emax ≈ qmax where the decay rate has a
maximum. Hence, the differential equation can be solved
for these cases. In what follows, all particle momenta will
be replaced by particle energies, which is an excellent
approximation in the ultrahigh-energetic regime. Note that
in natural units, time t can be replaced by the path length l
traveled by the particle. To obtain conservative bounds, we
could consider an iron nucleus with initial energy Ei ≡
Eðl ¼ 0Þ propagating from its source to the Earth. Its final
energy when detected on Earth shall be Ef ≡ Eðl ¼ LÞ.
Furthermore, we assume that such nuclei survive distances
of around L≃ 10 Mpc despite possible scattering proc-
esses with the cosmic microwave background. The latter
value corresponds to 1039 GeV−1 in natural units and was
used in [48], as well. The initial energy is supposed to lie in
the regime E ≪ Emax, which can be justified at the end
when we will be aware of the limiting value of the
controlling coefficients. The radiated-energy rate is then
characterized by a polynomial behavior that we write
generically as

dW
dt

¼ s̄

�
q
mψ

�
n
m2

ψ ; ð6:3Þ

where n ≥ 0 and s̄ ¼ s̄ðX⊂; mψÞ is a dimensionless number
the may include a suitable dimensionless ratio of the
controlling coefficient and the particle mass. For such a
polynomial behavior, Eq. (6.2) can be solved analytically:

EðlÞ ¼

 ½E1−n

i þðn−1Þs̄lm2−n
ψ �1=ð1−nÞ for n≠ 1

Ei expð−s̄lmψ Þ for n¼ 1:
ð6:4Þ

TABLE III. Parameters used in Eqs. (6.3), (6.5). The first column states the controlling coefficient under consideration. The next two
columns give the parameters for an asymptotic polynomial behavior of the radiated-energy rate for E ≪ Emax. In the fourth and fifth
column the corresponding parameters can be found that are valid in the regime E ≫ Emax. The subsequent three columns list the
parameters for a logarithmic behavior again for momenta beyond Emax. The approximate expressions for Emax, which separates the
different regimes, appear in the final column. The symbol ≈ indicates that the corresponding results are understood to have been
obtained from plots or numerically instead of by analytical methods.

Polynomial ð<Þ Polynomial ð>Þ Logarithmic ð>Þ
s̄ n s̄ n s ~s ŝ Emax (≈)

b
○

32αðb
○

=mψ Þ4 4
4b

○

=mψ
α=2 11=6 m2

ψ=b
○

b̄ 32αðb̄=mψ Þ4 4 4b̄=mψ α=2 11=6 m2
ψ=b̄

H̄ ≈20αðH̄=mψ Þ4 4 ≈ðα=3ÞH̄=mψ 1 —

d
○

≈100αd
○ 4 8 ≈10.4α 0

3mψ=

ffiffiffi
d
○

q
g
○

32αg
○4 4 g

○ α 11=12 ð3=2Þmψ=g
○

VACUUM CHERENKOV RADIATION FOR LORENTZ- … PHYSICAL REVIEW D 96, 095026 (2017)

095026-29



Explicit values and expressions for the parameters used in
Eqs. (6.5), (6.3) are listed in Tab. III. The question now is
how large the corresponding Lorentz-violating coefficients
can be chosen such that an iron nucleus with a certain initial
energy Ei can travel a length of L ¼ 10 Mpc without its
energy dropping below Ef ¼ 1011 GeV. After all, the latter
lies in the order of magnitude of primary energies that have
already been detected on Earth. The only real quarks in the
proton and the neutron are the up and down quarks. When
each of these quarks carries a fraction of r ¼ 0.1 of the
kinetic energy of the nucleon, the real quarks would carry
30% of the primary energy.5 It is safe to assume that
statistically half of the up and down quarks are in a spin-up
state, whereas the other half is in a spin-down state. So only
50% of the quarks will be affected by vacuum Cherenkov
radiation in case there is Lorentz violation. Hence, even if
the quarks constantly radiate over a large distance, the
nucleon will lose 15% of its kinetic energy at a maximum.
As the initial energy of the nucleus directly after production
at the source is unclear, this energy loss is not sufficient to
obtain reliable constraints on controlling coefficients.
Finally, we would like to make a couple of remarks about

the scenario with the energy of the iron nucleus lying in the
regime E ≫ Emax. For the isotropic and anisotropic b
coefficients and the isotropic g coefficients, the asymptotic
behavior of the radiated-energy rate for energies beyond
Emax is logarithmic. The corresponding differential equa-
tion then generically reads

dE
dt

¼ −~s
�
ln

�
s
E
mψ

�
− ŝ

�
m2

ψ ; ð6:5Þ

with the dimensionless numbers ~s, ŝ, and s ¼ sðX⊂; mψ Þ.
The latter s additionally involves a suitable dimensionless
combination of the controlling coefficient and the particle
mass. Integrating both sides delivers

t ¼ expðŝÞ
s~smψ

Ei

�
ln

�
s
E
mψ

�
− ŝ

�����Ef

Ei

∼
E
~sm2

ψ

�
ln

�
s
E
mψ

�
− ŝ

�
−1
����Ef

Ei

; ð6:6aÞ

EiðxÞ≡ −
Z

∞

−x

expð−tÞ
t

dt: ð6:6bÞ

with the exponential integral EiðxÞ. In the second line of
Eq. (6.6a), the asymptotic behavior is stated for the argu-
ment of the logarithm to be much larger than 1.
Unfortunately, it is not possible to solve the latter equation
for Ef by analytical means. A numerical study reveals some
properties of the solution, though. We choose energy values

Ei ≫ Emax where Emax is determined based on the formulas
in the last column of Table III for a particular coefficient
choice and, e.g., the constraints listed in Table II when
possible. For these values we found that the particle energy
drops radically below Ei long before the particle reaches a
distance of 10 Mpc from its source. This result is largely
insensitive of the exact value of Ei and the controlling
coefficient, which can be traced back to the logarithmic
dependence of dW=dt. For the d and H coefficients, the
radiated-energy rate for E ≫ Emax stays constant and grows
linearly with the energy, respectively. The behavior of the
propagating nucleus was found to be similar. Its energy
drops below Ei at distances that are much smaller than
10 Mpc. However, as statistically just 50% of all particles
will lose energy by radiating electromagnetic waves, this
process cannot be interpreted as an alternative to the GZK
mechanism.

B. Generalization to more general observer frames

The bounds compiled in Table II hold in a special observer
frame, which is identified with the sun-centered equatorial
frame. In general, Lorentz violation is isotropic in a single
observer frame only where any observer transformation to a
different frame produces anisotropies. Since the bounds are
obtained based on a cosmic ray whose energy was measured
in the frame of the moving Earth, the bounds are valid in this
frame.When transforming to an observer frame that is at rest
with respect to the cosmic microwave background, the
velocity of the Earth would have to be considered. This
procedure would produce further nonzero controlling coef-
ficients that are additionally suppressed by this velocity. To
be able to take those into account, the equations for the
thresholdmomenta that were derived in the previous sections
will, at least, be generalized partially.
In principle, these characteristic momenta can be obtained

classically. The procedure was already used for the isotropic
e coefficients in Sec. III D as a cross check. It takes the
modified group velocity of a massive particle as a basis. The
limiting condition for vacuum Cherenkov radiation to occur
is vgr ¼ 1, i.e., the incoming particle has to propagate faster
than light. Neglecting higher-order terms in Lorentz viola-
tion, the momentum components q are replaced by the
particle velocity v via q=jqj ¼ v̂ with the normalized
velocity v̂≡ v=jvj. Then vgr ¼ 1 must be solved for jqj
rendering the threshold. For the c and d coefficients, the
calculation can be performed in an elegant way by following
the lines of [38]. However, for the e and g coefficients the
latter approach did not seem to work. Instead, we tried to
solve the group velocity equation directly for jqj. This works
well for frameworks with a single coefficient but for multiple
nonzero coefficients, the equation becomes too involved to
be solved practically. There is the possibility that deviations
between the group and the phase velocity vph ≡ EðqÞ=jqj
are of higher order in Lorentz violation. Hence, solving the
technically much simpler equation vph ¼ 1 may lead to a5These numbers are in good accordance with Table I of [64].
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momentum q̄ that corresponds to the correct threshold at first
order in Lorentz violation: q̄ ¼ qth þOðX⊂Þ. To check
whether this is the case, indeed, both equations were solved
numericallywith the results q̄ andqth compared subsequently.
The quantity q̄ obtained from the condition vph¼1 was only

taken as a reliable approximation for the real threshold qth

when the numerical deviations were supposed to be traced
back to higher-order terms inLorentz violation.For thec,d,e,
and g coefficients we then obtain (where the threshold
momenta for only one of the two modes are shown):

qth
cð4Þ ¼

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2cð4Þμν þ k̄ð4ÞμνF þ fð4Þμfð4ÞνÞuμuν

q þ � � � ; ð6:7aÞ

qth
dð4Þ ¼

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2dð4Þμνuμuν

q þ � � � ; ð6:7bÞ

qth
eð4Þ ¼

mψ

eð4Þμuμ
þ � � � ; ð6:7cÞ

qth
gð4Þ ¼

mψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þgð4Þμνϱgð4Þμνσuϱuσ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gð4Þμαβgð4Þμγδuαuβu

γuδ
qr ����

M

þ � � � : ð6:7dÞ

Here uμ ≡ ð1; v̂Þμ is the (normalized) four-velocity of the

incoming massive particle and k̄ð4ÞμνF is the nonbirefringent
part of the CPT-even, minimal photon sector coefficients

kð4ÞμνϱσF that appear in the nonbirefringentAnsatz ofEq. (3.26)
(cf. also [38]). Note that both the latter photon coefficients and
the f coefficients can be put into the c coefficients by suitable
transformations, as described before in Secs. III C and III E.
The thresholdmomenta for thec,d, ande sectors includeall of
the minimal coefficients. Apart from that, it seems to be
challenging to generalize the threshold momentum for the g
coefficients, i.e., theequationgivenholds for theg coefficients
restricted to the set M ≡ fgð4Þ0μν ¼ gð4Þμν0 ¼ gð4Þ121 ¼ 0g
only. Although the term in front of the second square root in
Eq. (6.7d) is of higher order in the g coefficients, it cannot be
discarded, because there are sectors that do not contribute to
the double square-root term. For example, this is the case for
the isotropic g coefficients.

C. Comparison to existing bounds

According toTableD26of the data tables [24], the number
of constraints in the quark sector is moderate. Most of the
bounds have been set on minimal a coefficients and those
result from various types of meson oscillation experiments.
Vacuum Cherenkov radiation cannot bound the a coeffi-
cients, as we have seen, since both the process with and
without a spin-flip is forbidden for this type of coefficients.
The second group of constraints refers to the minimal c
coefficients where the strictest lower ones result from
astrophysical data and they lie in the order of magnitude
of −10−23, which is in accordance with the corresponding
values in Table II. Further bounds on the minimal c
coefficients have been placed on those of the top-quark
sector. They approximately cover the range f−10−1; 10−1g,

i.e., these coefficients are only weakly bounded. Last but not
least, there is a small number of constraints on the minimal d
coefficients, again for the top-quark sector. These lie in the
same order of magnitude as the bounds on the c coefficients
mentioned before.
To summarize, the majority of already existing constraints

in the quark sector were obtained on the minimal a and c
coefficients where a small number exists for the d coef-
ficients. So the current bounds compiled in Table II on the d,
e, and g coefficients obtained from the absence of vacuum
Cherenkov radiation are justified. Some of the remaining
new bounds such as those on d improve the currently
existing ones by several orders of magnitude. However, it
must also be taken into account that the constraints presented
here were computed based on a very simple analysis without
taking into account the nucleon structure appropriately, i.e.,
the parton distribution functions. In this context, the recent
paper [74] shall be mentioned where upper constraints on the
magnitudes of up and down-quark coefficients were derived
from data on deep inelastic scattering covering the orders of
magnitude f10−6; 10−4g.
Cherenkov-type processes may play a role for neutrinos,

as well. There are several processes that can be considered to
contribute to this class, e.g., νμ → νμ þ νe þ ν̄e or νμ →
νμ þ γ at one-loop level. Neutrinos would lose energy by
such processes occurring, which would distort the energy
spectrum of a neutrino beam. This distortion depends on the
traveling length, and its nonobservation allows for estimating
neutrino coefficients that are known as oscillation-free. The
associated particles are left-handed Dirac fermions with a
single flavor; so itmakes sense to refer to them in this context.
The estimated values are compiled in Table XV of [21].

The value for the oscillation-free isotropic c coefficient c
○ ð4Þν

for a neutrino energy of 100TeVamounts to−3 × 10−11. The
absence of the Cherenkov process in combination with
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the first PeV neutrino events detected by IceCube led to
remarkable bounds on oscillation-free c coefficients of
different mass dimension [75]. For example, a lower bound

of −4 × 10−19 was placed on ðcð4Þνof Þ00.

VII. CONCLUSIONS

In the current work, vacuum Cherenkov radiation was
studied where Lorentz violation was assumed to be situated
in the minimal fermion sector. First of all, the process was
analyzed without a spin-flip of the fermion occurring. It
was found that such a process is not allowed for the
minimal a, b, and H coefficients, whereas it can occur for
subsets of the c, d, e, f, and g sectors. A charged particle
can radiate photons when its energy exceeds a certain
threshold that depends on some inverse power of the
Lorentz-violating coefficients. Furthermore, both the decay
rates and radiated-energy rates were computed based on
formal results on the modified particle spinors developed
earlier in [57]. For large energies, the decay rates were
found to grow linearly with the momentum. For the c and d
coefficients, the rate is suppressed by the nonvanishing
controlling coefficient where for the e, f, and g coefficients,
this suppression is even quadratic. Last but not least, when
the momentum approaches the threshold, the rates tend to
zero, as expected.
On the other hand, the scenario including a fermion spin-

flip was examined. This process is crucial for the spin-
nondegenerate b, d, H, and g coefficients, as the fermion
energy jumps from one branch of the dispersion relation to
the other when the spin projection changes. Because of this
behavior, the process has several peculiar properties. First
of all, this realization of vacuum Cherenkov radiation is
possible for the dimensionful b and H coefficients in
contrast to the spin-conserving process. The helicity decay
does not have any threshold, i.e., it occurs for arbitrary
initial fermion momentum. Furthermore, the decay rate
grows for increasing momentum until it reaches a maxi-
mum at which point it decreases again. The increase and
decrease were either found to depend polynomially or
logarithmically on the initial fermion momentum.
Spin-conserving vacuum Cherenkov radiation works

very efficiently, and the radiating fermion loses its energy
excess on short time scales. Hence, if a cosmic ray is
detected on Earth, we can deduce that its energy is smaller
than the threshold energy. From this condition, several new
constraints on isotropic and anisotropic Lorentz violation in
the up and down-quark sectors have been obtained. For the
c and d coefficients, their magnitudes range from 3 × 10−23

to 3 × 10−21. For the e and g coefficients, weaker bounds
have been computed in the range of 9 × 10−12 to 2 × 10−11,
as the threshold has a different dependence on the con-
trolling coefficients. Some bounds are even two-sided due
to the fact that vacuum Cherenkov radiation is not tied to a
particular sign of the related coefficients.

Although the decay rates of the helicity processes are
heavily suppressed by the smallness of the controlling
coefficients, a fermion can radiate energy steadily when
traveling light years. However, as a nucleon consists to 30%
of real quarks and as statistically only half of those radiate,
there is no possibility of obtaining a reliable set of constraints
from helicity decays at the moment. Nevertheless, studying
helicity processes in the context of spin-nondegenerate
operators has led to several fruitful theoretical insights.
Bounds on the quark sector are rare and the current paper

contributes to closing this gap. Furthermore, it shows two
issues. First, it demonstrates the power of cosmic-ray data
to search for Lorentz violation in the fermion sector where
hitherto the main focus had been on the photon sector.
Second, it illustrates the usefulness of the recently devel-
oped theoretical results of [57] for phenomenological
studies related to Lorentz violation in the fermion sector.

ACKNOWLEDGMENTS

It is a pleasure to thank V. A. Kostelecký for useful
remarks, especially on transforming the f onto the c
coefficients and with regards to more general observer
frames. Also, the author is grateful for the opportunity of
giving two seminars at Indiana University. Subsequent
discussions with V. A. Kostelecký, R. Lehnert, and the local
group have been very fruitful with respect to obtaining the
constraints from experimental data. Additionally, the author
thanks the anonymous referee for a considerable amount of
remarks that helped to broaden the scope of the paper.
Pointing out the possibility of helicity decays has led to an
increased number of interesting results. This work was
partially funded by the Brazilian foundation FAPEMA.

APPENDIX A: PROPAGATORS

Here we give the propagators for the Lorentz-violating
frameworks that are characterized by additional time
derivatives in the Lagrange density. For such sectors, the
asymptotic states possess an unconventional time evolu-
tion, which is why both the spinor solutions and the
propagator have to be modified. We give the propagators
for these sectors, because they cannot simply be derived
from Eqs. (2.6), (2.7) in [57].

1. Pseudovector d coefficients

For the framework of isotropic coefficients, the Dirac
operator has to be modified with the matrix A

d
○ where for

the anisotropic case the analogous procedure must be
carried out with Ad̄. Both matrices can be chosen diagonal
and are given by

A
d
○ ¼ diag

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffi

1þd
○

q ;
1ffiffiffiffiffiffiffiffiffiffiffi
1þd

○

q ;
1ffiffiffiffiffiffiffiffiffiffi
1−d

○

q ;
1ffiffiffiffiffiffiffiffiffiffi
1−d

○

q
1
CA; ðA1aÞ
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Ad̄ ¼ diag

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d̄=3
p ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d̄=3

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− d̄=3
p ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− d̄=3

p �
:

ðA1bÞ

The propagator of the modified Dirac operator for the
isotropic sector has the form

S
d
○ ¼ 1

Δ
d
○

ðξ̂μ
d
○ γμ þ Ξ̂

d
○14 þ ζ̂μ

d
○ γ5γμ þ ψ̂μν

d
○ σμνÞ; ðA2aÞ

ξ̂μ
d
○ ¼ 1

27
f4d

○ 2
p0½9m2

ψ − y
○

p2
0 − ð5x○ − 4d

○ 2Þp2�λ
○μ

− x
○ðz○p2 þ 9m2

ψ − y
○

p2
0Þpμg; ðA2bÞ

Ξ̂
d
○ ¼ −

ffiffiffi
y
○

q
27

mψðz○p2 þ 9m2
ψ − y

○

p2
0Þ; ðA2cÞ

ζ̂μ
d
○ ¼ 4d

○

27
fðz○p2 þ 9m2

ψ þ y
○

p2
0Þpμ

þ p0½ðz○ þ 8d
○ 2Þp2 − ð9m2

ψ þ y
○

p2
0Þ�λ

○μg; ðA2dÞ

ψ̂μν

d
○ ¼ 4

ffiffiffi
y
○

q
9

d
○

mψp0ε
μνϱσpϱλ

○

σ; ðA2eÞ

Δ
d
○ ¼
�
y
○

9

�2

ðp0−EðþÞ
d
○ Þðp0−Eð−Þ

d
○ Þðp0þEðþÞ

d
○ Þðp0þEð−Þ

d
○ Þ;

ðA2fÞ

with the particle energies given by Eq. (3.10) and x
○

, y
○

, z
○

defined in Eqs. (3.13), (3.16c). For the anisotropic frame-
work we obtain:

Sd̄ ¼
1

Δd̄
ðξ̂μ

d̄
γμ þ Ξ̂d̄14 þ ζ̂μ

d̄
γ5γμ þ ψ̂μν

d̄
σμνÞ; ðA3aÞ

ξ̂μ
d̄
¼ 1

81
f½z̄ðz̄P2 − 9m2

ψÞ − 9X̄p2
3�Pμ

þ 3x̄p3½z̄P2 − 9m2
ψ − ȳp2

3�λ̄μg; ðA3bÞ

Ξ̂d̄ ¼
ffiffiffī
z

p
27

mψ ½z̄P2 − 9m2
ψ − ȳp2

3�; ðA3cÞ

ζ̂μ
d̄
¼ 4d̄

27
f6x̄p2

3p
μ þ p3½z̄P2 þ 9m2

ψ − ðz̄þ 16d̄2Þp2
3�λ̄μg;
ðA3dÞ

ψ̂μν
d̄

¼ −
4
ffiffiffī
z

p
9

d̄mψp3ε
μνϱσpϱλ̄σ; ðA3eÞ

Δd̄ ¼
�
z̄
9

�
2

ðp0−EðþÞ
d̄

Þðp0−Eð−Þ
d̄

Þðp0þEðþÞ
d̄

Þðp0þEð−Þ
d̄

Þ;

ðA3fÞ

with the fermion energies of Eq. (4.20) and the quantities
X̄, x̄, ȳ defined in Eqs. (4.20c), (4.20e). Furthermore, the
“reduced momentum” Pμ ≡ pμ − p3λ̄

μ has been intro-
duced to express the result in a convenient way.

2. Vector c coefficients

For the c coefficients, which are spin-degenerate, the
results are much simpler. The Dirac operator for the
isotropic case must be modified with Ac

○ . For the aniso-
tropic case, Ac̄ is introduced. Each matrix is given by the
identity matrix in spinor space that is multiplied by a global
factor:

Ac
○ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1þ c
○

p 14; Ac̄ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − c̄=3
p 14: ðA4Þ

The propagator for the isotropic framework is then given by

Sc○ ¼
1

Δc
○

ðξ̂μ
c
○ γμ þ Ξ̂c

○14Þ; ðA5aÞ

ξ̂μ
c
○ ¼ a

○

b
○

pμ þ 4

3
c
○

a
○

p0λ
○μ
; ðA5bÞ

Ξ̂c
○ ¼ a

○

mψ ; ðA5cÞ

Δc
○ ¼ a

○ 2ðp0 − Ec
○ Þðp0 þ Ec

○Þ; ðA5dÞ

with a
○

, b
○

of Eq. (3.20b). For the anisotropic sector we
obtain

Sc̄ ¼
1

Δc̄
ðξ̂μc̄γμ þ Ξ̂c̄14Þ; ðA6aÞ

ξ̂μc̄ ¼ b̄2pμ −
4

3
c̄ b̄p3λ̄

μ; ðA6bÞ

Ξ̂c̄ ¼ b̄mψ ; ðA6cÞ

Δc̄ ¼ b̄2ðp0 − Ec̄Þðp0 þ Ec̄Þ; ðA6dÞ

with ā, b̄ given by Eq. (4.28c).

3. Scalar e coefficients

The Dirac operator for the isotropic sector must be
transformed with the matrix
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Ae
○ ¼ −aγ5 þ bγ0γ5; a ¼ e

○ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

e
○ ð1 − re○ Þ

q ;

b ¼ e
○ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r2
e
○ ð1þ re○Þ

q ; ðA7Þ

to remove the additional time derivatives in the Lagrange
density. Note that the latter matrix is not diagonal in
contrast to those encountered previously. The propagator
is then

Se○ ¼
1

Δe
○

ðξ̂μ
e
○ γμ þ Ξ̂e

○14Þ; ðA8aÞ

ξ̂μ
e
○ ¼ re○p

μ þ e
○

�
mψ −

e
○

p0

1þ r−1
e
○

�
λ
○μ
; ðA8bÞ

Ξ̂e
○ ¼ −mψ ; ðA8cÞ

Δe
○ ¼ r2

e
○ ðp0 − Ee

○Þðp0 þ E−e○Þ; E−e○ ≡ Ee
○ je○↦−e○ :

ðA8dÞ
This propagator does produce the standard textbook result
for vanishing Lorentz violation. The reason is that the Dirac
operator was transformed with the matrix Ae

○ of Eq. (A7)
whereby the latter does not correspond to the identity
matrix for e

○ ¼ 0. This behavior is different from that of the
cases previously analyzed.

4. Scalar f coefficients

For the isotropic sector of the minimal f coefficients, the
additional time derivative can be removed by a trans-
formation in spinor space such as before. Here, two distinct
transformation matrices have been found that are given as
follows:

A
f
○ ¼ a14 þ ibγ5γ0; a ¼ 1ffiffiffiffiffi

r
f
○

q cosh

�
1

2
artanhðf

○

Þ
�
;

b ¼ 1ffiffiffiffiffi
r
f
○

q sinh

�
1

2
artanhðf

○

Þ
�
; ðA9aÞ

A0
f
○ ¼ a0σ02 − b0γ5γ2; a0 ¼ f

○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

f
○ ð1 − r

f
○ Þ

q ;

b0 ¼ f
○

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

f
○ ð1þ r

f
○ Þ

q ; ðA9bÞ

with the quantity r
f
○ of Eq. (3.34b). Note the similarities of

the matrix coefficients a, b in Eq. (A7) and a0, b0 in

Eq. (A9b). The first matrix was found by making an Ansatz
in terms of particular Dirac bilinears and solving the
resulting equations. The second matrix is based on the
observations in [67]. In the latter reference, a transforma-
tion was constructed mapping the f coefficients onto the c
coefficients. For the timelike case, the corresponding
transformation reads

χ¼ exp

�
i
2
γ0γ5artanhðf

○

Þ
�
ψ ¼½coshðxÞ14− isinhðxÞγ5γ0�ψ ;

ðA10aÞ

x ¼ 1

2
artanhðf

○

Þ: ðA10bÞ

This transformation generates an isotropic c coefficient that
is of the form stated in Eq. (3.40b). Then Eq. (A4) can be
applied to remove the additional time derivative from the
Lagrange density. This procedure results in the matrix A

f
○

given in Eq. (A9a) above.6 Since the matrix A
f
○ has a

simpler structure compared to A0
f
○ , the first will be used. The

propagator then reads

S
f
○ ¼ 1

Δ
f
○

ðξ̂μ
f
○ γμ þ Ξ̂

f
○14Þ; ðA11aÞ

ξ̂μ
f
○ ¼ r

f
○ ½pμ þ p0ðrf○ − 1Þλμ�; ðA11bÞ

Ξ̂
f
○ ¼ r

f
○mψ ; ðA11cÞ

Δ
f
○ ¼ r2

f
○ ðp0 − E

f
○ Þðp0 þ E

f
○ Þ: ðA11dÞ

Note that when A0
f
○ is employed, the standard textbook result

for the propagator is not obtained for a vanishing controlling
coefficient, which is a behavior analog to that of the isotropic
e coefficient. After all,A0

f
○ does not correspond to the identity

matrix for vanishingLorentz violation. This is another reason
for why the transformation mediated by A

f
○ is the preferable

one to be used for calculations of the decay rate.

6The existence of two distinct transformation matrices shows
explicitly that the coordinate transformation removing the addi-
tional time derivatives from the Lagrange density is not unique.
Such a behavior is reminiscent of the observation made in
Sec. III A of [76]. In the latter paper, a Hamiltonian is obtained
by two different procedures: a field-redefinition method and a
method named after Parker. The resulting Hamiltonians are
different, but they produce analog physical results.
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APPENDIX B: SUM OVER SPINOR MATRICES
FOR SPIN-DEGENERATE OPERATORS

In the current section, the sum over the spinor matrices
uðsÞūðsÞ shall be obtained for a spin-degenerate operator in
the SME fermion sector. These comprise the c, e, and f
coefficients. The derivation works in analogy to the proof
based on the optical theorem that was carried out in [57].
Our investigations are restricted to minimal coefficients.
Therefore, the propagator for a spin-degenerate operator
has two poles only. In general, it can be written as

iS ¼ i
Δ
ðξ̂μγμ þ Ξ̂14 þ Υ̂γ5 þ ζ̂μγ

5γμ þ ψ̂μνσ
μνÞ; ðB1aÞ

Δ ¼ Zðp0 − EuÞðp0 − E<Þ; ðB1bÞ

with the denominator Δ. The latter is decomposed into
its rootswhereZ is amomentum-independent constant,Eu is
the fermion energy, and E< the corresponding nega-
tive propagator pole. The structure in spinor space is
controlled by the parameters fξ̂μ; Ξ̂; Υ̂; ζ̂μ; ψ̂μνg. For the

spin-degenerate cases, ζ̂μ and ψ̂μν do possibly not contribute.
Based on the validity of the optical theorem at tree-level, the
spin sumover the spinormatrices uðsÞūðsÞ is directly linked to
the propagator. The general proof for the spin-nondegenerate
operators is shown in [57]. Adapting the latter to the spin-
degenerate sectors, produces

X
s¼�

uðsÞūðsÞ ¼ 2Eu

ZðEu−E<Þ
×ðξ̂μγμþ Ξ̂14þϒ̂γ5þ ζ̂μγ

5γμþ ψ̂μνσ
μνÞ
���
p0¼Eu

:

ðB2Þ

Hence, the spinor space structure of the propagator is directly
taken over to the sumover the spinormatrices and allp0 have
to be replaced by the fermion energy. After all, the latter
correspondence follows from cutting a propagator resulting
in on-shell fermions. The prefactor is the analog of the
function C in Eq. (4.11a) of [57], which is the remainder of
the propagator denominator.
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