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In a class of new physics models, an extended Higgs sector and new CP-violating sources are
simultaneously present in order to explain the baryon asymmetry in the Universe. The aim of this work is to
study the implications of beyond the Standard Model (SM) CP violation for the searches of heavy scalars at
the LHC. In particular, we focus on the diphoton channel searches in the CP-violating two-Higgs-doublet
model (CPV 2HDM). To have a sizable CPV in the scalar sector, the two heavy neutral scalars in 2HDM
tend to be nearly degenerate. The theoretical constraints of unitarity, perturbativity and vacuum stability are
considered, which requires that the heavy scalarsMH ≲ 1 TeV in a large region of the parameter space. The
experimental limits are also taken into account, including the direct searches for heavy neutral scalars in the
final state of the SM h,W and Z bosons; the differential tt̄ data; those from the charged scalar sector which
is implied by the oblique T parameter; and the precise measurements of the electric dipole moments of
electrons and mercury. The quantum interference effects between the resonances and the SM background
are crucially important for the diphoton signals, and the CPV mixing of the quasidegenerate heavy scalars
could enhance significantly the resonance peak. With an integrated luminosity of 3000 fb−1 at the LHC,
almost the whole parameter space of CPV 2HDM could be probed in the diphoton channel, and the CPV
could also be directly detected via the diphoton spectrum.

DOI: 10.1103/PhysRevD.96.095008

I. INTRODUCTION

The discovery of the 125 GeV Standard Model (SM)
Higgs boson opens a new era in particle physics. But the
hierarchy problem, neutrino masses, dark matter and
the origin of matter-antimatter asymmetry still need to
be addressed in new physics models, such as supersym-
metry [1–3], composite Higgs models [4], and two-Higgs-
doublet models (2HDM) [5], as well as variants of these
models, etc. To explain the baryon asymmetry of the
Universe (BAU), three Sakharov conditions needs to be
accomplished in the new physics models beyond the SM
[6]. One of the most attractive mechanisms to explain BAU
is the electroweak baryogenesis (EWBG); we refer to
Ref. [7] for a recent review. To realize the mechanism,
the SM Higgs sector need to be extended in order to obtain
a strong first order electroweak (EW) phase transition,
which might induce deviation of a triple scalar coupling
from the SM prediction to be detected at high-energy
hadron colliders [8]. The CP violation (CPV) beyond the
SM is one of the three ingredients of Sakharov conditions.

The 2HDM with complex parameters in the scalar potential
offers the most economical possibility to introduce new
CPV sources in the extended Higgs sector [9] and provides
one economical renormalizable framework to address the
BAU using EWBG [10–14].
To probe the CPVeffects with extended Higgs sector, the

previous literature focuses on two distinct categories of
methods. (i) One may rely on direct measurement of the
CPV couplings of the 125 GeV SM-like Higgs boson at
colliders. A lot of effort has been made to study the physics
opportunities in measuring the parity of the SM-like Higgs
boson at the LHC [15–24] and future colliders [25–29].
(ii) One can look for the indirect CPV effects in particular
processes, e.g. the precise measurements of electric dipole
moments (EDMs). There has been incredible progress in
improving the upper bounds on the EDMs of electrons [30]
and mercury [31]. CPV beyond the SM is severely con-
strained by the increasing precision of the EDM measure-
ments (see e.g. [32]), except for the case where the SM-like
Higgs boson has a sizable CPV mixing of Oð0.1Þ and a
sizable cancellation exists in evaluating the Barr-Zee
diagrams for electron EDM [13,14]. The recent electron
and mercury EDM measurements could provide consid-
erable constraints on the parameter space of CPV 2HDM,
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as will be explored in this paper, which is largely
complementary to the direct searches for CPV in the
scalar sector of 2HDM at the LHC in the diphoton decay
mode.
At hadron colliders, the dominant production and

decay mode of the CP-even=CP-odd heavy scalar is the
gg → H=A → tt̄ process, which makes the tt̄ final states an
important channel to probe heavy scalars, but suffers,
however, from large systematic uncertainties and smearing
effects [33]. As a result of the clean and well-understood
background, the diphoton decay mode is very likely
one of the main channels to search for beyond SM
heavy scalars or even probe directly a new source of
CPV in the framework of 2HDM, as for the SM Higgs,
though the branching ratio (BR) to diphotons is usually
very small [34].
In general, for resonant particles at high-energy colliders,

e.g. the heavy neutral scalar in 2HDM, the interference of
resonances with the continuum SM background may have
non-negligible impacts on the shape and size of resonant
signals [35–41], which could help us to probe the spin and
production mode of the resonance particles. In the frame-
work of 2HDM, due to the relative phase between the
resonance and continuum background, various resonance
shapes can be obtained in the channels of gg → Hi → tt̄, γγ
(Hi being the heavy scalars in 2HDM) [35–37,41–44]. The
relative phase can be generated by either the (fermion) loop
diagrams or CP-violating interactions.
In the diphoton decay mode of heavy scalars in CPV

2HDM gg → Hi → γγ, a large interference effect can be
expected, since the continuum background gg → γγ is a
one-loop process, while the resonance is via two-loop.1 In
particular, for heavy scalar masses above the mass
threshold of 2mt, the top loop in the production process
of gg → Hi and the decay process Hi → γγ can induce
imaginary parts in the amplitude gg → Hi → γγ and then
change the magnitude of the cross section,2 with the real
parts serving to shift the resonance shape [44]. When the
two heavy scalars are nearly degenerate with CP-violat-
ing mixing [41,45,46], there will be additional interfer-
ence effects in the heavy scalar sector, which tends to
amplify the nearly degenerate scalar resonance (as shown
in Fig. 12). The amplification could in principle be
directly probed at the high-energy colliders, which is
largely complementary to the indirect constraints from
the measurements of EDMs. One should note that the
CPV in the scalar sector of 2HDM depends nontrivially

on the heavy scalar masses, which is significant only
when two heavy scalars are quasidegenerate [45]. That is
the reason why we focus in this paper only on the 2HDM
scenarios with a small mass splitting for the two heavy
scalars.
The layout of this paper is described as follows. In

Sec. II, we review the setup of CPV 2HDM, with
emphasis on the neutral scalars and their CPV mixings.
For our discussions, we set up the formalism for processes
involving two quasidegenerate heavy scalars. Their propa-
gators are written in the form of a 2 × 2 matrix, with the
off-diagonal elements possibly non-negligible for certain
parameter sets. All the theoretical and experimental
constraints on the CPV 2HDM are collected in Sec. III,
including the requirements of unitarity, perturbativity and
vacuum stability of the scalar potential; the direct searches
of heavy scalars decaying into WW=ZZ, hZ and hZ; and
the consistency of differential tt̄ data with the SM
predictions. The neutral-charged scalar mass splitting
jMH −M�j is tightly constrained by the oblique T
parameter which could “transfer” the charged scalar limits
onto the neutral scalars. All these limits are exemplified in
Figs. 5–9 with the small mass splitting of heavy neutral
scalars set to be 1 GeV or 10 GeV. The electron and
mercury EDM limits are also considered, which exclude a
large region in the parameter space of 2HDM, as expected.
The diphoton signal in the CPV 2HDM is discussed in
Sec. IV, where we show the full parton-level (differential)
cross sections, including both the resonance and interfer-
ence contributions. By scanning the parameter space, it
turns out that the diphoton signals could probe almost all
the regions we considered at the high-luminosity LHC
(HL-LHC) 14 TeV run with an integrated luminosity of
3000 fb−1, at least at the 95%, that are allowed by the limit
above. The relation between the diphoton line shapes and
CPV mixing in the scalar sector is also discussed. It turns
out that the CPV can be directly probed in the diphoton
events, if the scalar masses are ≲600 GeV, when
tan β ¼ 0.5. The conclusions are given in Sec. V. The
formulas for differentialHi → tt̄ cross sections in the CPV
2HDM, the oblique parameters and the details of evalu-
ating the EDMs are respectively summarized in the
appendixes.

II. QUASIDEGENERATE HEAVY NEUTRAL
SCALARS IN CPV 2HDM

A. The CPV 2HDM

There are two scalar doublets Φ1;2 in the general 2HDM.
For simplicity, we introduce a discrete Z2 symmetry to
avoid tree-level flavor-changing neutral currents, under
which two scalar doublets transform as ðΦ1;Φ2Þ →
ð−Φ1;Φ2Þ. When the Z2 symmetry soft-breaking term is
introduced, one can obtain CPV in the Higgs sectors
[32,47]. The general scalar potential can be written as

1Generally, one can expect relatively small interference in the
ZZ channel since both the gg → ZZ continuum background and
the resonance signal processes gg → Hi → ZZ are both domi-
nated by one-loop diagrams [39].

2It should be noted that for a relatively large tan β, the bottom
quark loop can also induce sizable imaginary parts [39,44].
However, this possibility is not favored by the CPV 2HDM
scenario explored in this paper.
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VðΦ1;Φ2Þ ¼ m2
11jΦ1j2 þm2

22jΦ2j2 − ðm2
12Φ

†
1Φ2 þ H:c:Þ

þ 1

2
λ1jΦ1j4 þ

1

2
λ2jΦ2j4 þ λ3jΦ1j2jΦ2j2

þ λ4jΦ†
1Φ2j2 þ

1

2
½λ5ðΦ†

1Φ2Þ2 þ H:c:�; ð1Þ

where λ5 and the Z2 soft-breaking term m2
12 are complex

and all other mass and quartic parameters are real. The
imaginary components of m2

12 and λ5 are the source of CP
violation, which leads to mixings of all three neutral states,
as shown below. For the ease of discussions below, we
define the soft mass parameter as the real part of m2

12, i.e.

m2
soft ≡ Rem2

12; ð2Þ
which is assumed to be positive. After the EW symmetry
breaking, the two scalar doublets obtain nonvanishing
vacuum expectation values (VEVs)

Φ1 ¼
� −sβHþ

1ffiffi
2

p ðv1 þH0
1 − isβA0Þ

�
;

Φ2 ¼
� cβHþ

1ffiffi
2

p ðv2 þH0
2 þ icβA0Þ;

�
; ð3Þ

where we have neglected the relative phase between the
two VEVs, v2 ¼ v21 þ v22 ¼ ð ffiffiffi

2
p

GFÞ−1 with GF the Fermi
constant, sβ ≡ sin β and cβ ≡ cos β with the angle defined
as the VEV ratio tβ ≡ tan β ¼ v2=v1.
It is straightforward to obtain the mass squared matrix for

the three neutral scalars:

M2
0 ¼

0
BB@

λ1c2β þ νs2β ðλ345 − νÞsβcβ − 1
2
Imλ5sβ

ðλ345 − νÞsβcβ λ2s2β þ νc2β − 1
2
Imλ5cβ

− 1
2
Imλ5sβ − 1

2
Imλ5cβ −Reλ5 þ ν

1
CCAv2;

ð4Þ

with the short-hand notation of

λ345 ≡ λ3 þ λ4 þ Reλ5;

ν≡ m2
soft

v2sβcβ
: ð5Þ

In the limits of CP conservation Imm2
12 ¼ 0 and Imλ5 ¼ 0,

the first two scalarsH0
1;2 areCP-even while the third one A

0

is CP-odd. The nonzero imaginary components of m2
12 and

λ5 lead to mixings of all three neutral states via the rotation
matrix R:

M2
0 ¼ RTdiagðM2

1;M
2
2;M

2
3ÞR; ð6Þ

where Mi are the mass eigenvalues for the three physical
scalars Hi. For concreteness we assume the first scalar is

SM-like (H1 ¼ h) with a mass of M1 ¼ mh ¼ 125 GeV,
while the other two scalars H2;3 are heavier with (nearly
degenerate) masses M2;3. The 3 × 3 mixing matrix can be
parametrized explicitly as [48]

R ¼ R23ðαcÞR13ðαbÞR12

�
αþ π

2

�

¼

0
B@

−sαcαb cαcαb sαb
sαsαbsαc − cαcαc −sαcαc − cαsαbsαc cαbsαc
sαsαbcαc þ cαsαc sαsαc − cαsαbcαc cαbcαc

1
CA;

ð7Þ
where the angle α parametrizes the mixing between the
two CP-even states, and the other two αb;c determine the
CP-violating mixing of the scalars.
The physical neutral scalar masses M1;2;3 and the

charged scalar mass M� in the scalar spectrum are directly
related to the mass parameters and quartic couplings in the
potential (1). In practice, one often trades the quartic scalar
self-couplings into the physical inputs, i.e. the EW VEV v,
the scalar masses and the mixing angles:

λ1 ¼ −νt2β þ
1

v2c2β

X
i

M2
iR

2
i1; ð8Þ

λ2 ¼ −
ν

t2β
þ 1

v2s2β

X
i

M2
iR

2
i2; ð9Þ

λ3 ¼ −νþ 1

v2sβcβ

X
i

M2
iRi1Ri2 þ

2M2
�

v2
; ð10Þ

λ4 ¼ 2ν − Reλ5 −
2M2

�
v2

; ð11Þ

Reλ5 ¼ ν −
1

v2
X
i

M2
iR

2
i1; ð12Þ

Imλ5 ¼ −
1

v2sβcβ

�
cβ
X
i

M2
iRi1Ri3 þ sβ

X
i

M2
iRi2Ri3

�
;

ð13Þ
where all the i run from1 to 3. These relations are very useful
to apply the perturbative, unitarity and stability constraints
on the quartic couplings, which would imply also limits on
the physical parameters such as themass ranges of the heavy
neutral scalar in the quasidegenerate case (cf. the following
discussions in Sec. III A and Figs. 13–19).

B. Couplings in the CPV 2HDM

We collect here all the couplings of heavy scalars
in the CPV 2HDM, which are important for examining
the theoretical and experimental constraints as well as the
diphoton prospects at the LHC.
With the discrete Z2 symmetry, the scalar doublets Φ1;2

couple only to the up-type quarks or the down-type quarks
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and charged leptons, which is sufficient to suppress the
dangerous tree-level flavor-changing neutral couplings of
the scalars. The type-I and type-II Yukawa couplings are,
respectively, with the quark mixing suppressed,

L ¼
8<
:

−ðcαsβ
mu
v ÞQ̄L

~Φ2uR − ðcαsβ
md
v ÞQ̄LΦ2dR þ H:c:

−ðcαsβ
mu
v ÞQ̄L

~Φ2uR þ ðsαcβ
md
v ÞQ̄LΦ1dR þ H:c:

whereQT
L ¼ ðuL; dLÞ is the SM quark doublet, ~Φ2 ≡ iσ2Φ�

2

with σ2 being the second Pauli matrix, and the Yukawa
couplings to the charged leptons are of the same form as
that of the down-type quarks in both cases. After the
rotation R, the couplings of physical scalars Hi to the SM
fermions andW and Z gauge bosons can be parametrized as

L ¼
X3
i¼1

½−mfðcf;if̄f þ ~cf;if̄iγ5fÞ

þ aið2m2
WWμWμ þm2

ZZμZμÞ�Hi

v
; ð14Þ

with the coefficients cf;i, ~cf;i and ai collected in Table I, as
functions of theRmatrix elements in Eq. (7) [13,32,49]. In
the CP-conserving limit of αb;c ¼ 0, it is clear that the R
matrix is block-diagonal, and the first two scalarsH1;2 have
the purely CP-even Yukawa couplings of cf;i while the
couplings of the third oneH3 are purely CP-odd ~cf;i. In the
most general case, when cf;i ~cf;i ≠ 0 or ai ~cf;i ≠ 0, all three
mass eigenstates Hi couple to both CP-even and CP-odd
currents, and the CP symmetry is violated.
The Yukawa couplings of the charged scalar H� are

L ¼
8<
:

−
ffiffi
2

p
v HþūiVij½cot βmuið1 − γ5Þ þ cot βmdjð1þ γ5Þ�dj þ H:c: 2HDM-I

− 1ffiffi
2

p HþūiVij½cot βmuið1 − γ5Þ − tan βmdjð1þ γ5Þ�dj þ H:c: 2HDM-II;
ð15Þ

with Vij the Cabibbo–Kobayashi–Maskawa quark mixing
matrix. These couplings can be used to interpret the LHC
limits on the charged scalars in terms of the 2HDMs, which
would be applied to the neutral scalar sector, due to the
oblique constraints on the heavy scalar mass splitting, as
shown in Sec. III B 3.
In evaluations of the decay widths and propagator matrix

for the (quasidegenerate) heavy neutral scalars H2;3 below,
we also need the Higgs-gauge couplings g1iZ involving two
different physical scalars and the SM Z boson, which is of
the form

g1iZ ¼ e
2sWcW

½ð−sβR11 þ cβR12ÞRi3

− ð−sβRi1 þ cβRi2ÞR13�; ð16Þ
and can be significantly simplified in the parameter set of
α ¼ β − π=2 and αb;c ≠ 0:

g12Z ¼ −
e

2sWcW
sαbcαc ;

g13Z ¼ e
2sWcW

sαbsαc : ð17Þ

The trilinear scalar coupling is relevant to the decay of
H2;3 → hh and can be extracted from the Higgs potential as

λ11i ≡ 1

2

∂3L3s

∂2H1∂2Hi
¼ −

v
2

X
m;n;k

R1mR1nRikamnk; ð18Þ

with i ¼ 2, 3; L3s as the original Lagrangian for the cubic
scalar couplings in the basis of ðH0

1; H
0
2; A

0Þ before the
rotation R; and the coefficients [50]

a111 ¼
1

2
cβλ1;

a112 ¼
1

2
sβλ345;

a113 ¼ −
1

2
sβcβImλ5;

a122 ¼
1

2
cβλ345;

a123 ¼ −Imλ5;

a133 ¼
1

2
cβðs2βλ1 þ c2βReλ345 − 2Reλ5Þ;

a222 ¼
1

2
sβλ2;

a223 ¼ −
1

2
sβcβImλ5;

a233 ¼
1

2
sβðc2βλ2 þ s2βReλ345 − 2Reλ5Þ;

a333 ¼
1

2
sβcβImλ5; ð19Þ

with λ345 defined in Eq. (5). A general derivation of the
scalar cubic and quartic self-couplings in CPV 2HDM can
be found in Refs. [50–52].

TABLE I. Yukawa and gauge couplings of the physical neutral scalars in CPV 2HDM, in terms of the corresponding SM couplings.

cu;i ~cu;i cd;i ~cd;i ai

Type I Ri2= sin β −Ri3 cot β Ri2= sin β Ri3 cot β Ri2 sin β þRi1 cos β
Type II Ri2= sin β −Ri3 cot β Ri1= cos β −Ri3 tan β Ri2 sin β þRi1 cos β
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We list here also the trilinear couplings of neutral scalars
to the charged scalar H�, which could, in principle, enter
the Hiγγ coupling through the H� loop:

λiþ− ¼
X
j

Rij
~λjþ−; ð20Þ

with the coefficients ~λ written in the basis of ðH0
1; H

0
2; A

0Þ
[50,52]

~λ1þ− ¼ −v cos β½sin2 βðλ1 − λ4 − Reλ5Þ þ cos2 βλ3�; ð21Þ

~λ2þ− ¼ −v sin β½cos2 βðλ2 − λ4 − Reλ5Þ þ sin2 βλ3�; ð22Þ

~λ3þ− ¼ −v sin β cos βImλ5: ð23Þ

C. Quasidegenerate heavy scalars and CP violation

The (1,3) and (2,3) elements of the mass squared matrix
M2

0 in Eq. (4) are the source of CPV in the 2HDM, and they
are correlated via

ðM2
0Þ13 ¼ ðM2

0Þ23tβ; ð24Þ
which relates the scalar masses to the CPV angles as
follows [48]:

ðM2
1 −M2

2s
2
αc −M2

3c
2
αcÞsαbð1þ tαÞ

¼ ðM2
2 −M2

3Þðtαtβ − 1Þsαccαc : ð25Þ
In particular, the magnitudes of CPV are very sensitive
to the mass splitting ΔMH ≡M3 −M2 (here for simplicity
we assume the scalar H3 is heavier than H2, i.e.
M3 −M2 > 0). Given the relation in Eq. (25), with a larger
deviation of tβ from 1 and smaller mass splitting of ΔM,

ΔMH ≪ MH ≡M2 þM3

2
; ð26Þ

one gets a larger CPV mixing of jαcj in the heavy Higgs
sector. The nontrivial dependence of CPV in 2HDM on the
mass splitting ΔMH (and other parameters such as the
heavy scalar mass MH and tan β) is crucially important for
the couplings of the heavy scalars to the SM particles; for a
transparent physical picture we refer to Fig. 4 of Ref. [45].
On the phenomenological side, this is intimately related to
the theoretical, collider and EDM constraints on the heavy
neutral scalars in Sec. III. This is also the strongest
motivation in this work for us to study in great detail
the phenomenologies of CPV in the degenerate limit.
In the scalar sector of CPV 2HDM, we have the mass

parameters m2
ij and the quartic couplings λi in the potential

(1), including also the two phases of m2
12 and λ5. After

spontaneous symmetry breaking, these are related to the
phenomenological parameters, of which some are already
known and some others are measurable at the LHC: the EW

VEV v and ratio tan β; the neutral scalar masses Mi; the
charged scalar mass M�; the (CPV) mixing angles α, αb,
αc; and the soft Z2 breaking parametermsoft. To simplify the
numerical calculations below in the high-dimensional
parameter space and obtain some physically meaningful
results, we will not scan the whole parameter space, but
rather make the following reasonable assumptions, which
are applied to all the numerical calculations below and
suffice to demonstrate the nontrivial features in the scalar
sector of CPV 2HDM:

(i) The alignment limit requires both α ¼ β − π=2 and
αb ¼ 0 [53,54], i.e., no CPV in the Z2 symmetric
model. However, a small deviation from the exact
alignment limits is still allowed by current LHC
Higgs data, i.e. the couplings of SM Higgs to the
gauge bosons a1 ¼ − cos αb sinðα − βÞ≃ 1; in other
words, α may deviate from β − π=2 and/or αb may
be nonzero. In this paper, we consider a particular
direction in the vicinity of the exact alignment limit,
i.e., α ¼ β − π=2 and αb ≠ 0, which is also adopted
in Refs. [13,14,32]. It is found that in this direction
the mixing angle αb can be allowed up to ∼Oð10−1Þ
for tan β ∼ 1, and, as aforementioned, the scenario
can generate abundantly the BAU through the
EWBG mechanism due to the existence of beyond
SM CPV and the feasibility of a strong first order
phase transition [12–14,55]. This motivates us to
investigate further the CPV effects in the upcoming
LHC data in this scenario, which is largely com-
plementary to the EDM experiments in the direct
searches for CP violation [49,56]. It turns out that,
as seen in the following sections, the amplified CP-
violating interference effects in the diphoton spec-
trum in comparison with the CP-conserving cases
are able to be detected in the HL-LHC 14 TeV run
[39,40,44].

(ii) As illustrating examples, we will focus on two
specific values of the small mass splitting ΔMH ¼
1 and 10 GeV; for larger values, say 50 GeV, the two
heavy scalars H2;3 are significantly separated, with
much weaker correlations between them. An even
smaller mass splitting ΔMH is, on the other hand, in
practice possible, but would not change too much
the qualitative features and might need mild tuning
of the parameters in the potential.

(iii) The Z2 breaking parameterm2
soft ¼ Rem2

12 is directly
related to the quartic couplings λi; see Eqs. (8)–(13).
Its impact on the diphoton signal is twofold: On one
hand, it will enter the trilinear couplings of the
neutral and charged scalars λiþ−HiHþH− in
Eqs. (21)–(23), and contribute to the H� loop for
the effective Hiγγ interaction. However, as long as
the quartic couplings λi are within the perturbative
ranges, the H� loop contribution to the diphoton
signal is always subdominant to the fermion loops.
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On the other hand, the perturbativity, stability and
unitarity bounds on the quartic couplings would also
set limits on msoft, depending on tan β, the heavy
scalar masses and the mixing angles. For the scalar
masses below 1 TeV, the theoretical limits require
the soft-breaking mass parameter to be of a few
hundred GeV. To be specific, throughout the numeri-
cal calculations below we set msoft ¼ 300 GeV.

(iv) We will not apply any “artificial” constraints on the
heavy scalar mass MH > mh, tan β, and the CPV
mixing angles − π

2
< αb;c < π

2
, besides the correla-

tion obtained from Eq. (25):

sin αb ¼
1

2

ðM2
3 −M2

2Þ sin 2αc tan 2β
ðM2

2 sin
2 αc þM2

3 cos
2 αcÞ −m2

h

; ð27Þ

or, alternatively,

tan 2β ¼
�
cos 2αc þ

ðM2
2 þM2

3Þ − 2m2
h

M2
3 −M2

2

�
sin αb
sin 2αc

:

ð28Þ

In the calculations below we will exclude the
unphysical regions in which the phase αb or αc
does not have a real solution.

D. Heavy neutral scalar decay and propagator matrix

Compared to the SM-like scalar H1 ¼ h, the couplings of
H2;3 to the SM fermions and massive gauge bosons are
rescaled respectively by the cf;i (~cf;i) and ai coefficients in
Table I, and therefore the decay widths into SM fermion
pairs,WW and ZZ, are respectively proportional to the linear
combinations of ðcf;iÞ2 and ð~cf;iÞ2 and a2i . The beyond SM
decay channels Hi → hh, hZ are dictated respectively by
the couplings λ11i in Eq. (18) and g1iZ in Eq. (16). In the
CP-conserving limit of αb;c ¼ 0, both couplings, and thus
the two decay modes, are vanishing. At loop level, the heavy
scalars could decay into two gluons and two photons, as in
the SM, mediated by the SM fermion loops, with subleading
contribution from the W� and H� loops for the diphoton
channel [as long as the quartic couplings λi in the potential
(1) are within the perturbative range]. The partial decay
widths in CPV 2HDM for these channels are respectively, at
the leading order,

ΓðHi → ff̄Þ ¼ Nf
CGFMim2

f

4
ffiffiffi
2

p
π

��
1 −

4m2
f

M2
i

�
ðcf;iÞ2 þ ð~cf;iÞ2

��
1 −

4m2
f

M2
i

�1=2

; ð29Þ

ΓðHi → VVÞ ¼ ΓðHSM → VVÞ × ðaiÞ2

¼ GFδVM2
i ðaiÞ2

16
ffiffiffi
2

p
π

�
1 −

4m2
V

M2
i

�
1=2
�
1 −

4m2
V

M2
i
þ 12m4

V

M4
i

�
; ð30Þ

ΓðHi → hhÞ ¼ jλ11ij2
4πMi

�
1 −

4m2
h

M2
i

�
1=2

; ð31Þ

Γ½Hi → hZ� ¼ jg1iZj2m2
Z

16πMi

��
1 −

ðmh þmZÞ2
M2

i

��
1 −

ðmh −mZÞ2
M2

i

��
1=2

×

�
1 −

2ðM2
i þm2

hÞ
m2

Z
þ ðM2

i −m2
hÞ2

m4
Z

�
; ð32Þ

ΓðHi → ggÞ ¼ GFα
2
sðMiÞM3

i

64
ffiffiffi
2

p
π3

�����Xq
cq;iAH

1=2ðτqÞ
����2 þ

����Xq
~cq;iAA

1=2ðτqÞ
����2
�
; ð33Þ

ΓðHi → γγÞ ¼ GFα
2
EMM

3
i

128
ffiffiffi
2

p
π3

�����Xj¼1;2

Rij
~λjþ−v

2M2
�

A0ðτ�Þ þ
X

f
Nf

CQ
2
fcf;iA

H
1=2ðτfÞ þ aiA1ðτWÞ

����
2

þ
����Ri3

~λ3þ−v
2M2

�
A0ðτ�Þ þ

X
f
Nf

CQ
2
f ~cf;iA

A
1=2ðτfÞ

����2
�
; ð34Þ
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where τX ¼ M2
H=4m

2
X (with τ� ¼ M2

H=4M
2
�); δV ¼ 1 for

the Z boson and 2 for the W boson; αEM the fine-structure
constant; the strong coupling αs evaluated at the scale MH;
the trilinear scalar couplings ~λ given in Eqs. (21)–(23); and
the loop functions AðτÞ for the charged scalars, fermions and
vectors are the same as in [3,57].
Representative examples of the various branching ratios

(BRs) of the heavy scalars H2;3 in the CPV 2HDM are
presented in Fig. 1, as functions of the heavy scalar mass
MH, for both the type-I and type-II Yukawa couplings in
respectively the left and right panels, with small mass
splittings as mentioned ΔMH ¼ 1 GeV (upper) and
10 GeV (lower), tan β ¼ 0.5, and the maximal mixing of
the two heavy scalars αc ¼ π=4. With these mass and
mixing parameters fixed, the mixing angle αb is determined
via the relation given in Eq. (27), which is considered as a
function of the scalar mass MH. In this maximal-mixing
case, the decay BRs of the two quasidegenerate scalarsH2;3

are almost the same, with small corrections from, e.g., the
tiny differences of phase spaces. Here follow more com-
ments on these different decay modes:

(i) As a result of theOð1Þ top Yukawa couplingmt=v in
the SM, H2;3 decays almost 100% into top pairs, as
long as it is kinematically allowed. As a “side
effect,” the top-loop induced decay H2;3 → gg is

generally larger than, or comparable to, other chan-
nels besides tt̄ in most of the parameter space (the
yellow lines in Fig. 1). The decay rates to other
lighter fermions, e.g. bb̄ and ττ̄, depend largely on
the SM Yukawa coupling and tan β.3

(ii) For the quasidegenerate case of H2;3, the mixing
angle αb is generally very small. Even if it is sizable,
say ∼0.1, it could be easily excluded by the EDM
measurements; cf. Figs. 17–19. Therefore, for a
small mixing αb with the SM Higgs, these decay
modes into SM h, W and Z bosons are in general
highly suppressed, if the tt̄ channel is open. Result-
antly, the constraints from direct searches of
H2;3 → WW=ZZ, hh and hZ are very limited,
effective only when the scalar mass MH ≲
450 GeV for both ΔMH ¼ 1 GeV and 10 GeV,
unless tan β is to some extent fine-tuned
j tan β − 1j ≪ 1. See Figs. 5–9 and Sec. III B 4 for
more details.

FIG. 1. Representative examples of BRs of the heavy scalars H2;3 in CPV 2HDM of type I (left) and type II (right), as functions of
scalar mass MH , with a small mass splitting of ΔMH ¼ 1 GeV (upper) or 10 GeV (lower), and tan β ¼ 0.5. With the maximal mixing
αc ¼ π=4, the BRs of the two heavy scalars H2;3 are almost the same.

3In the CPV 2HDM with quasidegenerate heavy neutral
scalars, the scenarios with large tan β ∼mt=mb are excluded
by the perturbativity, unitarity and stability constraints, or at least
highly disfavored; the favorite regions are around tan β ∼ 1; see
the examples in Figs. 13 and 14.
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(iii) In the large MH limit, the BRðH2;3 → γγÞ is ex-
pected to be of order 10−5, dictated by the couplings
and loop factors in Eqs. (29) and (34) [here we have
used the fact that the loop functions jAH

1=2ðτtÞj≃
jAA

1=2ðτtÞj when MH is significantly larger than 2mt

but below roughly the TeV range]:

BRðHi → γγÞ≃ ΓðHi → γγÞ
ΓðHi → ttÞ

≃ α2EMM
2
H

54π2m2
t
jAH

1=2ðτtÞj2; ð35Þ

which is determined predominantly by the heavy
scalar massMH and has a weak dependence on other
parameters in the 2HDM. For illustration purposes,
we present the BRðH2;3 → γγÞ in Fig. 2 in both the
type-I and type-II 2HDM, where the mass and
mixing parameters vary freely in the ranges below,

MH ¼ M� ∈ ½mh; 1 TeV�;
ΔMH ∈ ½1; 10� GeV;
msoft ∈ ½100; 500� GeV;
tan β ∈ ½0.1; 10�;
αc ∈ ½−π=2; π=2�; ð36Þ

and αb can be solved from the relation (27). It is
transparent in Fig. 2 that in most of the regions of
interest the branching fraction into diphotons is
within a narrow band which is well described by
Eq. (35) (when the theoretical constraints and
experimental limits in Sec. III are taken into con-
sideration, some points with small BRs in Fig. 2
might be excluded). Though the BR into diphotons
is small, the SM background gg → γγ, which arises
at the one-loop level, is also suppressed compared to
other processes. Without severe contamination from
the messy QCD processes, H2;3 → γγ should be one

of the most important channels for direct heavy
scalar searches at the LHC,4 as for the SM Higgs.

It is known that for multiple (nearly) degenerate reso-
nances, the imaginary part of their propagator matrix is not
diagonal if they have common decay channels [58]. This
was also discussed for the amplitudes involving the CPV
resonances in Ref. [59]. Here we define the 2 × 2 propa-
gator matrix for H2;3 as follows:

PijðŝÞ

¼
�
ŝ −M2

2 þ iΠ̂22ðŝÞ iΠ̂23ðŝÞ
iΠ̂23ðŝÞ ŝ −M2

3 þ iΠ̂33ðŝÞ

�−1

¼ 1

detP−1
ij ðŝÞ

�
ŝ −M2

3 þ iΠ̂33ðŝÞ −iΠ̂23ðŝÞ
−iΠ̂23ðŝÞ ŝ −M2

2 þ iΠ̂22ðŝÞ

�
:

ð37Þ

The absorptive parts of the scalar propagator matrix receive
contributions from the loops of the SM fermions, vector
bosons, associated scalar-vector bosons, and SM Higgs
pairs [60],

Π̂ijðŝÞ ¼ Π̂ff
ij ðŝÞ þ Π̂VV

ij ðŝÞ þ Π̂hZ
ij ðŝÞ þ Π̂hh

ij ðŝÞ; ð38Þ

where the partial contributions are respectively

Π̂ff
ij ðŝÞ ¼ KFð

ffiffiffî
s

p
Þ
X
f

Nf
Cŝm

2
f

8πv2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4κf

p
× ½ð1 − 2κfÞðcf;ic�f;j þ ~cf;i ~c�f;jÞ
− 2κfðcf;ic�f;j − ~cf;i ~c�f;jÞ�Θðŝ − 4m2

fÞ; ð39Þ

FIG. 2. BRðH2;3 → γγÞ in CPV 2HDM of type I (left) and type II (right), as functions of scalar mass MH , with the mass and mixing
parameters varying in the ranges given in Eq. (36).

4The Zγ channel will not be explored here since interference
effects in the process gg → Zγ are relatively small, though its BR
can be relatively larger.

LIGONG BIAN, NING CHEN, and YONGCHAO ZHANG PHYSICAL REVIEW D 96, 095008 (2017)

095008-8



Π̂VV
ij ðŝÞ ¼ GFaiajδVM2

i M
2
j

16
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4κV

p

×

�
1þ 2

�
m2

V

M2
i
þm2

V

M2
j

�
−
4m2

Vð2ŝ − 3m2
VÞ

M2
i M

2
j

�

× Θðŝ − 4m2
VÞ; ð40Þ

Π̂hZ
ij ðŝÞ ¼

g1iZg1jZM2
i M

2
j

16πv2
λ1=2ð1; κh; κZÞ

×

�
1 −

m2
h −m2

Z

M2
i

−
m2

h −m2
Z

M2
j

þ ðm2
h −m2

ZÞ2 − 4ŝm2
Z

M2
i M

2
j

�
Θðŝ − ðmh þmZÞ2Þ;

ð41Þ

Π̂hh
ij ðŝÞ ¼

Sij;11λ11iλ11j
32π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4κh

p
Θðŝ − 4m2

hÞ: ð42Þ

where κX≡m2
X=ŝ;Kfð

ffiffiffî
s

p Þ≃1þ5.67αsð
ffiffiffî
s

p Þ=π accounting
for the high-order corrections; λðx; y; zÞ ¼ x2 þ y2 þ z2−
2ðxyþ yzþ xzÞ; andSij;11 the symmetry factor for identical
particles. The total decay widths of H2;3 are related to the
imaginary parts of the self-energies as follows:

Π̂iiðM2
i Þ≃MiΓi; ð43Þ

excluding the loop decay modes into gluons and photons.
Under the limit of negligible off-diagonal widths, the
propagators are reduced to the standard one:

PiiðŝÞ →
1

ŝ −M2
i þ iΠ̂iiðŝÞ

: ð44Þ

III. THEORETICAL AND EXPERIMENTAL
CONSTRAINTS

To have a self-consistent description, the mass spectrum
and scalar potential of the CPV 2HDM should be con-
strained by the unitarity, perturbativity and vacuum stability
requirements, which are summarized in Sec. III A. The
current LHC constraints on the heavy scalars are presented
in Sec. III B, including the direct searches in the final states

of WW=ZZ, hh and hZ and the consistency of differential
tt̄ data with the SM predictions. When the EW precision
tests are considered, the mass splitting jMH −M�j cannot
be arbitrarily large, which could imply constraints on H2;3

from the charged scalar sector, which is detailed also in
Sec. III B. The EDMs are one of the observables that are
most sensitive to beyond SM CPV, and they are collected in
Sec. III C. All these limits are used to constrain the masses
of heavy scalars H2;3 in CPV 2HDM and their couplings.
With the parameter setups in Sec. II C, we scan the

parameter space by varying MH, tan β, and αb (or αc), and
we present all of these limits in the two-dimensional plots
of MH − tan β, MH − αc and MH − αb in Figs. 5–9. In the
MH − tan β space, we compare the two scenarios of CP
conservation αc ¼ 0 and maximal CP violation αc ¼ π=4
[here αb determined by the relation (27)]. Clearer depend-
ence on the CPV angle αc can be found in the MH − αc
plots, where we take two benchmark values of 10−3 and
10−2 for αb and tan β is determined by Eq. (28). In the
MH − αb plots we set αc to be positively and negatively
maximal [tan β is again obtained by Eq. (28)], i.e.
αc ¼ �π=4. By comparing the plots in Figs. 8 and 9 we
can see clearly the implications of changing the sign of αc,
in some regions of the parameter space.

A. Unitarity, perturbativity and stability bounds

The perturbative unitarity constraints are imposed on the
model so that it is not very strongly coupled and are
obtained by evaluating the S-matrices for the coupled scalar
scattering amplitudes in the CPV 2HDM (see Refs. [61,62]
for the CP-conserving 2HDM case). The S-matrices for
coupled channels with different charge configurations can
be packed as follows:

a00 ¼
1

16π
diagðX4×4; Y4×4; Z3×3; Z3×3Þ; ð45Þ

aþ0 ¼ 1

16π
diagðY4×4; Z3×3; λ3 − λ4Þ; ð46Þ

aþþ
0 ¼ 1

16π
Z3×3; ð47Þ

with the explicit expressions for the submatrices of
ðX4×4; Y4×4; Z3×3Þ [62]

X4×4 ¼

0
BBB@

3λ1 2λ3 þ λ4 0 0

2λ3 þ λ4 3λ2 0 0

0 0 λ3 þ 2λ4 þ 3Reλ5 3Imλ5

0 0 3Imλ5 λ3 þ 2λ4 − 3Reλ5

1
CCCA; ð48Þ

CP VIOLATION EFFECTS IN THE DIPHOTON … PHYSICAL REVIEW D 96, 095008 (2017)

095008-9



Y4×4 ¼

0
BBB@

λ1 λ4 0 0

λ4 λ2 0 0

0 0 λ3 þ Reλ5 Imλ5

0 0 Imλ5 λ3 − Reλ5

1
CCCA;

Z3×3 ¼

0
B@

λ1 Reλ5 þ iImλ5 0

Reλ5 − iImλ5 λ2 0

0 0 λ3 þ λ4

1
CA

The eigenvalues in Eqs. (45)–(47) should be ∈ ð− 1
2
; 1
2
Þ

under the unitarity constraints. To satisfy the tree-level
vacuum stability requirements, we impose the following
conditions on the quartic couplings in the potential (1)5:

λ1;2 > 0; λ3 > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

λ3 þ λ4 − jλ5j > −
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
: ð49Þ

The perturbativity limits are simply jλij < 4π.

B. Collider constraints

1. Direct heavy neutral scalar searches

The direct searches for heavy neutral scalars have been
performed at the LHC, in the decay modes of heavy scalars
into the SM particles of VV ¼ WW, ZZ [64–66], hh
[67–71] and hZ [72–74], with the h, W and Z bosons
decaying further into lighter SM particles. There have been
also searches for heavy CP-even or CP-odd resonance
scalars in the diphoton spectra [75–77]. However, in these
searches, the interference effects between the resonance

and SM background are not taken into account, and these
exclusion limits cannot be naïvely interpreted on the
2HDM we are considering in which the interference terms
are generally much more important than the pure reso-
nances (see the examples in Figs. 10 and 11). The diphoton
searches in Ref. [78] are interpreted in terms of the 2HDM
[79–83], with a pair of degenerate CP-even and CP-odd
scalars H=A. However, the scenarios they considered are
MH=A ¼ 200 GeV and 300 GeV, which is excluded by the
theoretical limits in Sec. III A, even if there is no CPV
mixing between the two heavy scalars (cf., e.g. Figs. 13 and
14). Therefore, we will consider only the direct search
limits from the massive final states h, W and Z in the
discussions below.
To constrain the CPV 2HDM, we collect all the current

most stringent direct search limits in these different decay
channels in Fig. 3 at both

ffiffiffi
s

p ¼ 8 TeV and 13 TeV. The
degenerate heavy scalars are produced predominantly from
gluon fusion, as in the most general 2HDM scenarios. In
the left panel of Fig. 3, the red, green and blue lines stand
respectively for the limits in the final states ofWW=ZZ, hh
and hZ. We do not show the limits beyond 1 TeV, as in CPV
2HDM with quasidegenerate H2;3 the mass range MH ≳
1 TeV is excluded, or at least highly disfavored, by the
stringent theoretical bounds in Sec. III A on the quartic
couplings λi (cf. the limits in Figs. 13–19).
To impose the current LHC constraints on the cross

sections

σðpp → H2;3 → XXÞ ¼
X
i¼2;3

σðgg → HiÞ × BrðHi → XXÞ;

ð50Þ
we consider for simplicity the leading order production of
heavy scalars from gluon fusion by rescaling the produc-
tion rate for a SM-like Higgs

FIG. 3. Left: Limits on the cross sections of gg → H2;3 at the LHC, in the subsequent different decay modes. The solid, dashed, and
dotted-dashed red lines are the limits from the decays H → ZZ in Ref. [64] and H → WW=ZZ in Refs. [65,66]; the solid, dashed and
dotted-dashed green lines are fromH → hh [68–70]; the solid and dashed blue lines are fromH → hZ [72,74]. In this plot we show also
the direct charged scalar search limits from pp → H�X [84] (dashed purple). Right: The 95% C.L. uncertainties of the differential cross
section dσ=dMtt [85], which is used to constrain the (CPV) couplings of H2;3 to the top quark. See text for more details.

5At loop level, these stability conditions might be weakened to
some extent; see e.g. [63].
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σðgg → HiÞ
σðgg → hSMÞ

¼ jPqcq;iA
H
1=2ðτqÞj2 þ jPq ~cq;iA

A
1=2ðτqÞj2

jPqA
H
1=2ðτqÞj2

ð51Þ

with τq ¼ M2
Hi
=4m2

q, and then evaluate the leading order
BRðHi → XXÞ from the partial decay widths in Eqs. (29)–
(33). As mentioned in Sec. II C, we scan the parameter
space of CPV 2HDM, by changing the parameters MH,
tan β, and αb (or αcÞ, with the constraint in Eq. (27) taken
into consideration and ΔMH ¼ 1 GeV or 10 GeV. All the
95% C.L. limits from direct LHC searches in theWW=ZZ,
hh and hZ channels are presented, respectively, as the red,
green and blue shaded regions in Figs. 5–9, as functions
of the heavy scalar mass MH and tan β, αc or αb. See
Sec. III B 4 for the details.

2. Differential tt̄ cross section

The heavy neutral scalars H2;3 of 2HDM couple to the
SM fermions, even in the CP conservation limit of
αb;c ¼ 0. As aforementioned and exemplified in Fig. 1,
H2;3 decay predominantly into the top quark pairs. There
have been dedicated searches for the (pseudo)scalars
H=A → tt̄ in 2HDM performed by ATLAS, with the
interference terms taken into consideration. However, only
two specific scalar masses are considered:MH=A ¼ 500 and
750 GeV [86]. To constrain the CPV 2HDM in a more
general sense, we resort to the differential cross section
measurements with respect to the invariant mass of the two
top jets dσ=dMtt̄ [85]. The 2HDM processes gg → H2;3 →
tt̄ arise at the one-loop level through the top quark mediated
Higg loop, and interfere with the tree-level SM background
gg → tt̄. The invariant mass Mtt̄ could likely be distorted,
depending on tan β, the scalar mass MH, the mass splitting
ΔMH and the mixing parameters. The consistency of
experimental data and theoretical predictions imposes
stringent constraints on the couplings of H2;3 to the top
quark, which is largely complementary to the direct
searches of H2;3 in the h, W and Z bosonic final states.
The parton-level analytical expressions for H2;3 → tt̄ in

CPV 2HDM are to some extent similar to that for the
diphoton channel in Sec. IV, with the Hiγγ amplitudes
replaced by those for Hitt̄. As in the diphoton case, the
resonance signal gg → H2;3 → tt̄ interferes with the tree-
level SM background gg → tt̄. The explicit formulas for the
resonance and interference terms can be found, e.g., in
Ref. [41]; for the sake of completeness, we collect the
differential cross sections dσ=dMtt̄ in Appendix A. The
95% C.L. experimental uncertainties Δðdσ=dMtt̄Þ at

ffiffiffi
s

p ¼
13 TeV are presented in the right panel of Fig. 3, which is
dominated by the systematic and statistical errors of the
experimental data [85]. To constrain the beyond SM CP-
conserving and CP-violating couplings, in particular those
to the top quark, we evaluate the differential cross sections
dσ=dMtt̄ in the CPV 2HDM, as functions of the scalar

masses and mixing parameters, and compare them to the
experimental limits given in Fig. 3 by requiring that the
integrated cross sections in these seven bins from Mtt ¼
300 GeV to 1100 GeVare all smaller than the experimental
uncertainties. The excluded regions in the parameter space
ofMH, tan β and αb;c are presented in Figs. 5–9 as the pink
lines, and in Figs. 13–19, as the shaded pink regions.

3. Limits from the charged scalar sector

The scalar mass spectrum of CPV 2HDM and the mixing
angles are subject to the EW precision tests. In particular,
with the two neutral scalarH2;3 almost degenerate, the mass
splitting jMH −MH�j of heavy neutral and charged scalars
cannot be arbitrarily large, which is tightly constrained by
the oblique parameters. Therefore, all the mass limits on the
charged scalar H� can be “transferred” to the neutral
scalars of 2HDM, no matter where these limits are from.
These limits from the charged scalar sector can be, in some
sense, considered as “indirect” limits on the neutral scalars
in the framework of 2HDM, and might be dramatically
changed when the scalar sector is altered, e.g. more scalar
singlet(s) and/or multiplet(s) are introduced. When “trans-
ferred” from the charged scalar sector to the neutral scalar
sector, the mass limits would be weakened by the magni-
tude of Oð100 GeVÞ, which is dictated by the S and T
parameters, and ultimately determined by the mass and
mixing parameters in CPV 2HDM. In the case of β − α ¼
π=2 with αb;c ≠ 0, the expressions for S and T can be
significantly simplified and are collected in Appendix B
[49]. As the oblique parameter T is much more sensitive to
the mass splitting jMH −M�j than S, in the numerical
calculations we will consider for simplicity only the
constraints from the current global EW fit of T [87]:

T ¼ 0.09� 0.13: ð52Þ

On the experimental side, charged scalars have been
searched for at the LHC in associated production with a
top quark (and a bottom quark), i.e. pp → H�X, with the
subsequent decay ofH� → tb;τν [84,88,89]. In the 2HDM,
the charged scalar H� decays mostly into the top-bottom
quarks, with the coupling strength depending on tan β and
whether it is of type I or type II. The current most stringent
limits on the cross section σðpp → H�Þ are from Ref. [84]
and shown in the left panel of Fig. 3 as the purple line, and
the lower limit on M� is presented in Fig. 4, for both the
type-I and type-II models, as a function of tan β. In
obtaining the M� mass limits, we follow the leading order
parton-level cross section σðbg → H−tÞ in Ref. [90], multi-
ply a factor of 1.5 to account for the subleading processes
[3], with the Yukawa couplings given in Eq. (15).
With couplings to the SM fermions, the charged scalar

H� in 2HDM contributes significantly to some rare flavor-
changing decay processes which are highly suppressed in
the SM. With ∼109B mesons collected at Belle [92], the
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partial width of the radiative decay B → Xsγ is precisely
measured, imposing severe constraints on the charged
scalar H� in 2HDM [91,93]. The extra contributions of
H� to the rare B decays depend on the Yukawa couplings,
i.e. whether they are type I or type II, and also on tan β, as
shown in Fig. 4. There are also limits on the charged scalar
H� from other flavor observations such asΔmB and ϵK , but
these are expected to be weaker and are not considered here
[5]. In the leptonic sector, there are also limits on the
charged scalar H� from the anomalous magnetic moment
of muon ðg − 2Þμ (see e.g. [49]), which however is much
weaker, and will be neglected in this work. To apply the
direct search and B decay limits on H� in Fig. 4 to the
neutral scalars H2;3, we adopt the formula for ΔT given in
Eq. (B2), with the limits presented in Figs. 5–9.

4. Constraining CPV 2HDM

All the direct search limits of H2;3 in the final states of
WW=ZZ, hh and hZ; the constraints from the differential tt̄

FIG. 5. Experimental limits on the CPV 2HDM of type I (left) and type II (right) with maximal CP violation αc ¼ π=4 and two
quasidegenerate scalars H2;3 with a small mass splitting of ΔMH ¼ 1 GeV (upper) or 10 GeV (lower). The red, green and blue shaded
regions are respectively from the direct searches of heavy neutral scalars in the final states of WW=ZZ, hh and hZ collected in Fig. 3
[64–66,68–70,72,74], with the same line legends as in that figure, e.g. the solid red line represents the limits from Ref. [64]. In this figure
we also show the limits from the uncertainties of differential cross section dσ=dMtt at the parton level (solid pink line) [85], the limits
from the direct searches of charged scalars at the LHC (dashed purple) [84] and precise measurements of B → Xsγ (dashed orange) [91].
The short-dashed, long-dashed and dotted-dashed gray lines are respectively from the limits of theoretical arguments of unitarity,
perturbativity and stability of the scalar potential. All the regions below the unshaded lines (and the regions above the upper short and
dashed gray lines in the two lower panels) are excluded. See text for more details.

FIG. 4. Lower limits on the mass of charged scalar H� in
2HDM, as functions of tan β, from the direct searches at the LHC
[84] and the observations of rare decay B → Xsγ [91]. The solid
and dashed lines are respectively for the type-I and type-II
models. These limits could be used to constrain the heavy
quasidegenerate neutral scalars H2;3 when combined with the
experimental limits on oblique parameter T [87].
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cross sections; and the limits from the charged scalar H�

(direct search of H� at the LHC and the constraints
from B → Xsγ) are collected in Figs. 5–9, in the two-
dimensional planes of MH − tan β, MH − αc and MH − αb.
In these plots, the legends are the same: the shaded regions
are all excluded by the direct searches of heavy neutral
scalars, with the red, green and blue colors standing
respectively for the limits in the final states of WW=ZZ,
hh and hZ, using the same line legends (solid, dashed or
dotted-dashed) as in Fig. 3. The limits from tt̄ data are
depicted in pink, while the constraints from direct H�
searches and B → Xsγ are shown in dashed purple and
orange. All the experimental limits are at the 95% C.L. The
theoretical limits from perturbativity, unitarity and stability
are labeled as the gray lines. All the regions below these
colorful and gray lines are excluded. The electron and
mercury EDM limits are more relevant to heavier H2;3, and
not shown in these plots but presented in Figs. 13–19.
As mentioned and exemplified in Sec. II D, the BRs of

H2;3 into the SMWW=ZZ, hh and hZ bosons are generally
very small when the top quark channel is kinematically
allowed, and these direct search data could exclude
some regions where the scalars are not too heavy, i.e.
MH ≲ 450 GeV, in general less constraining than the
“indirect” limits from tt̄, H� direct searches; rare B decay;
and EDM data. The direct search limits from WW=ZZ, hh
and hZ are collectively depicted in yellow in Figs. 14, 16,
17 and 18. Readers who are more interested in the diphoton
prospects at the LHC and the EDM limits can skip all the
following details in this subsection.
We first demonstrate the important collider limits on the

heavy neutral scalarsH2;3 in CPV 2HDM in theMH − tan β
plane. One should note that in the CP-conserving limit of
αb;c ¼ 0, the decay modes H2;3 → WW=ZZ; hh; hZ are all
highly suppressed, and we do not have any limits on H2;3

from the direct searches at the LHC. However, the limits
from differential tt̄ data are still there, as the scalar H2;3

both couple to the SM fermions, no matter how the mixing

changes. In addition, the oblique parameter T does not
vanish even in the limit of αb;c ¼ 0 [cf. Eq. (B2)], which
renders limits on the neutral scalars H2;3 from the H�

searches and B → Xsγ data. These limits from the tt̄ data,
B decay data and the direct searches of H� in the CP-
conserving limit of αb;c ¼ 0 can be found in Fig. 13 where
we also show the diphoton prospects.
The collider limits onH2;3 with the maximal αc ¼ π=4 in

the MH − tan β space are presented in Fig. 5, for both the
type-I and type-II Yukawa couplings. The unphysical
regions are painted in black, within which we cannot find
real solutions for the mixing angles αb;c in Eq. (27). As
mentioned in Sec. III B 1, the scalars H2;3 are produced
predominantly from gluon fusion gg → H2;3. When the
heavy scalar masses MH ≃ 2mt ≃ 350 GeV, we have a
resonancelike effect for the direct search limits, due to the
enhanced top loop amplitude in the production process,
therefore excluding broader regions. Comparing the upper
and lower panels in Fig. 5 with respectively ΔMH ¼
1 GeV and 10 GeV, a larger mass splitting ΔMH pushes
the mixing αb and the BRðH2;3 → WW=ZZ; hh; hZÞ larger
(cf. the example given in Fig. 1); then broader regions are
excluded in the lower plots for all these bosonic decay
modes. Note that in Fig. 5, the direct search data could
exclude larger values of MH when

j tan β − 1j ≪ 1; ð53Þ

as in the limit of tan β → 1, the CPV angle αb is largely
enhanced by tan 2β in Eq. (27), when other mass and
mixing parameters are fixed.
The collider limits projected into the MH − αc plane are

collected in Figs. 6 and 7, with respectively the benchmark
values of αb ¼ 10−3 and 10−2. Note that with αb ¼ 10−3

and ΔMH ¼ 10 GeV, the whole region in the MH − αc
plane is excluded by the perturbativity, unitarity and
stability limits; thus we have only the plots with a smaller
splitting ΔMH ¼ 1 GeV in Fig. 6. For fixed values of αb, a

FIG. 6. The same as in Fig. 5 in the MH − αc plane, with αb ¼ 10−3 and ΔMH ¼ 1 GeV. The scenarios with larger splitting
ΔMH ¼ 10 GeV are excluded by the theoretical arguments of perturbativity, unitarity and stability.
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positive αc > 0 leads to a solution tan β < 1 via Eq. (28),
and the limits from differential tt̄ data are more stringent
than the case with a negative αc < 0 for which tan β > 1

(see also the tt̄ limit in Fig. 5). With a larger αb ¼ 10−2, for
positive αc the tan β in Fig. 7 is larger and the couplings of
H2;3 to the top quark get smaller; then the tt̄ limits are much
weaker. Therefore the tt̄ limits are not shown in Fig. 7. For
the same reason, the H� direct search limits in Fig. 7 are
much weaker than those in Fig. 6, as the direct search data
in Fig. 4 are effective only when tan β ≲ 0.5. We can also
see the dependence of the theoretical limits on the mass and
mixing parameters, in particular by comparing the upper
and lower plots with different ΔMH in Fig. 7. Anyway, the
direct neutral scalar limits are well below the theoretical
limits and B → Xsγ constraints in the two-dimensional
space of MH and αc, as long as the mass splitting is small.
In Figs. 8 and 9, we present the collider limits in the two-

dimensional space of MH and αb, with respectively αc ¼
−π=4 and þπ=4, and tan β determined via the relation in
Eq. (28). In these plots we can clearly see the dependence
of the WW=ZZ, hh and hZ limits on the mixing angle αb.
The cross sections σðgg → H2;3 → WW=ZZ; hh; hZÞ are,
roughly, proportional to the mixing of the SM Higgs h with
the heavy scalars; therefore a large αb excludes a broader
range of heavy scalar mass MH. However, a large αb, say
∼0.1, is excluded or highly disfavored by the EDM
measurements; see Figs. 17–19. With αc < 0 and > 0,

tan β is greater and smaller than 1, respectively, in Figs. 8
and 9; therefore the limits from tt̄ andH� direct searches at
the LHC are much more stringent in the latter case, as just
mentioned. As a direct consequence of tan β < 1 and larger
couplings ofH2;3 to the top quark, theWW=ZZ, hh and hZ
data exclude larger regions in Fig. 9 than in Fig. 8. As in
Figs. 5–7, all the direct search limits in Figs. 8 and 9 are
belowMH ≲ 450 in almost the whole parameter space, and
less important than other limits, e.g. from EDM, when we
are focusing on the diphoton searches in the degener-
ate limit.

C. EDM constraints

With the EDM of a fermion denoted by dEf and the
chromo-EDM (CEDM) of a quark by dCq , the relevant (C)
EDM interaction Lagrangian is given by

LðCÞEDM ¼ −
i
2
dEfF

μνf̄σμνγ5f

−
i
2
dCqGaμνq̄σμνγ5Taq; ð54Þ

with Fμν and Gaμν the electromagnetic and strong field
strengths, and Ta ¼ λa=2 the generators of the SUð3ÞC
group. The gluonic dimension-six Weinberg operator is
described by the interaction Lagrangian:

FIG. 7. The same as in Fig. 6 with αb ¼ 10−2, ΔMH ¼ 1 GeV (upper) and 10 GeV (lower).

LIGONG BIAN, NING CHEN, and YONGCHAO ZHANG PHYSICAL REVIEW D 96, 095008 (2017)

095008-14



FIG. 8. The same as in Fig. 5 in the MH − αb plane, with αc ¼ −π=4, ΔMH ¼ 1 GeV (upper) and 10 GeV (lower).

FIG. 9. The same as in Fig. 8 in the MH − αb plane, with αc ¼ þπ=4.
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LWeinberg ¼
1

6
dGfabcϵμνλσGa

ρμGλσ; Gc
ν
ρ: ð55Þ

In the CPV 2HDM, the Weinberg operator dG is the neutral
Higgs contribution [94,95]

dG ¼ ðdGÞH: ð56Þ

In the CPV 2HDM, the CP-odd electron-nucleon
interactions CS come from the CP-odd four-fermion
interactions

LCS
¼ C4f

S ēiγ5eN̄N ð57Þ

with

ðCSÞ4f ¼ ð29 MeVÞgdgecd ~ce
mdM2

H
þ ð220 MeVÞgsgecs ~ceκ

msM2
H

;

with gf ¼ mf=v and κ ≈ 0.5� 0.25 [96]. Then, it is
appropriate to define an effective electron EDM entering
the paramagnetic system as [97]

deffpara ≈ de þ
αC4f

S

αde
C4f
S : ð58Þ

The coefficients αi are provided by atomic calculations
[98,99]. As the contributions to CS are mediated by the
scalars and hence highly suppressed, the ACME results can
be safely interpreted as an upper limit for the electron EDM
dEe . Therefore, we will impose on 2HDM the latest eEDM
constraint from the ACME Collaboration of [30],

jdej < 8.7 × 10−29 e · cm: ð59Þ

The mercury EDM receives a dominant contribution
from the nuclear Schiff moment S, which is generated
by long-range, pion-exchange time-reversal-violating and
parity-violating (TVPV) nucleon-nucleon interactions,

LTVPV
πNN ¼ N̄½ḡð0Þπ τ⃗ · π⃗ þ ḡð1Þπ π0 þ ḡð2Þπ ð2τ3π0 − τ⃗ · π⃗Þ�N:

ð60Þ

In a general context, the isoscalar and isovector couplings

ḡð0Þπ ; ḡð1Þπ dominate over the isotensor coupling ḡð2Þπ ; then the
mercury EDM is approximately given by6 [102]

dHg ¼ κSS ≈ κS
2mNgA
Fπ

ða0ḡð0Þπ þ a1ḡ
ð1Þ
π Þ; ð61Þ

where gA ≈ 1.26; Fπ ¼ 186 MeV; the nuclear matrix
elements a0 ¼ 0.01e fm3, a1 ¼ �0.02e fm3 [103]; and

ḡð0Þπ ¼ ~ηð0Þð~δu þ ~δdÞ þ γ ~G
ð0ÞC ~G; ð62Þ

ḡð1Þπ ¼ ~ηð1Þð~δu − ~δdÞ þ γ ~G
ð1ÞC ~G: ð63Þ

To perform the numerical calculations, we use the follow-
ing hadronic matrix elements [102],

~ηð0Þ ¼ −2 × 10−7; ~ηð1Þ ¼ −4 × 10−7;

γ ~G
ð0Þ ≈ γ ~G

ð1Þ ¼ 2 × 10−6; ð64Þ

and assume a new atomic sensitivity coefficient κS ¼
−2.8 × 10−4 fm−2 [103]. Throughout our calculations,
we will impose the latest constraint on the mercury
EDM [31]

jdHgj < 7.4 × 10−30 e · cm; ð65Þ

which could constrain tightly the 2HDM parameter space
and is largely complementary to the ACME result.
To calculate the mercury EDM, we need to incorporate

the effect of renormalization group running of the Wilson
coefficients from the new physics scale down to the
hadronic scale. The Wilson coefficients of effective oper-
ators related to the electron EDM, CEDM and Weinberg
three gluon operators are, respectively,

δf ≡ −
Λ2dEf

2eQqmq
; ~δq ≡ −

Λ2dCq
2mq

; C ~G ¼ Λ2dG

3gs
;

ð66Þ

withmq andQq respectively the quark masses and charges,
and Λ representing the CPV 2HDM scale which is chosen
to be v ¼ 246 GeV. These effective coefficients can be
generated from the following effective Lagrangian:

L ¼ i
X
f

δf
Λ2

mfeFμνf̄σμνγ5f

þ i
X
q

~δq
Λ2

mqgsGaμνq̄σμνγ5Taq

þ C ~G

2Λ2
gsfabcϵμνλσGa

ρμGλσ:Gc
ν
ρ: ð67Þ

Details of the EDM evaluations in the CPV 2HDM are
summarized in Appendix C. All the separate contributions
to electron and mercury EDMs are proportional to the CP-
violating coefficients, e.g. the ~cf couplings in Table I; thus
in a large region of the parameter space of 2HDM, these

6It should be kept in mind that the calculations of mercury
EDMs are subjected to the uncertainties of hadronic matrix
elements; for a recent review, see Ref. [100]. The upper limits on
the nuclear Schiff moment S has been estimated in Ref. [101].
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CPV couplings are tightly constrained, as shown in
Figs. 13–19.

IV. THE γγ CHANNEL AT
HADRON COLLIDERS

The diphoton process gg → H2;3 → γγ in (CPV) 2HDM
at hadron colliders is analogous to that in the SM
gg → h → γγ, where the production of scalar(s) is from
gluon fusion mediated predominately by the SM top quark,
and the scalar(s) decay radiatively into two photons through
the SM fermion andW loops (with subleading contribution
from the H� loop). If extra heavy vectorlike fermions or
heavy charged vector bosons are introduced, the production
rate and BR into diphotons might be dramatically enhanced
[44,104,105]. Within the well-motivated framework of
2HDM without any more beyond SM particles, the dipho-
ton signal at hadron colliders is unambiguously determined
by the Yukawa and gauge couplings in Table I and the mass
and quartic couplings in the scalar potential (1).
The diphoton signal at the LHC from a single heavy

scalar decay has recently been studied in Refs. [39,40,44],
which applies also to the 2HDM with the two heavy scalars
H=A significantly separated apart, in which case the
interference of the two heavy resonances is in general
negligible. The scenarios with (quasi)degenerate heavy
scalars H2;3 are a straightforward generalization of the
single-resonance case, with much richer phenomenologies
linked to CPV in 2HDM, as stated above. As detailed
below, the degenerate resonances can be searched for at the
LHC in the diphoton channel as well as other decay modes
such as tt̄. Furthermore, a large mixing αc of the quasi-
degenerate scalars H2;3 could enhance significantly the
cross section at the resonance peak, compared to a
quasidegenerate case without any CPV mixing (αc ¼ 0),
by roughly a factor of 50% or even more in a large region of
the parameter space. Therefore, the CPV in the scalar sector
could also be directly probed at a high-energy collider, by
simply examining the cross section at the resonance peak.
Searches forH2;3 → γγ are not only largely complementary
to other channels such as the final states of hh and tt̄, but
also to other probes of CPV beyond the SM like EDM
experiments. In particular, the CPV in the scalar sector of
2HDMmight be small enough to evade the EDM limits but
that is still probable at the high-energy colliders.
Throughout this paper we will consider only the sensitiv-
ities at the

ffiffiffi
s

p ¼ 14 TeV HL-LHC with an integrated
luminosity of 3000 fb−1. At a future 100 TeV collider like
FCC-hh [8,106,107] or SPPC [108], with a larger produc-
tion cross section, the significance could be largely
improved.

A. The differential cross sections

At hadron colliders, for the diphoton events we have
both the tree-level backgrounds from qq̄ → γγ and the

one-loop level process gg → γγ. The quark parton proc-
esses do not interfere with the diphoton signal from the
heavy scalars, but are comparable to or even larger than
the gluon-initialized backgrounds, both of which are
included in calculation of the signal sensitivities below.
The parton-level differential cross section for the qq̄
backgrounds is

d
dz

σ̂ðqq̄ → γγÞ ¼
X
q

πα2EMQ
4
q

3ŝ

�
t̂
û
þ û

t̂

�
; ð68Þ

where z ¼ cos θ the scattering angle, and we have summed
up all the initial quark flavors. The parton-level cross
section for gg → γγ sums up the SM background and heavy
scalar resonance contributions,

d
dz

σ̂totðgg → γγÞ ¼ kF
α2EMα

2
sð

ffiffiffî
s

p Þ
64πŝ

×
X
fλg

jMbkg
fλg þMres

fλgj2; ð69Þ

where kF ≃ 2 is the k-factor for high order QCD correc-
tions [44]. The pure signal cross section is obtained by
subtracting the SM background in Eq. (69):

dσ̂sig

dz
¼ dσ̂res

dz
þ dσ̂int

dz
; ð70Þ

with

dσ̂res

dz
¼ kF

α2EMα
2
sð

ffiffiffî
s

p Þ
64πŝ

X
fλg

jMres
fλgj2; ð71Þ

dσ̂int

dz
¼ −kF

α2EMα
2
sð

ffiffiffî
s

p Þ
64πŝ

X
fλg

Mres
fλgM

bkg�
fλg þ c:c:; ð72Þ

and the minus sign in the interference terms are from the
additional fermion loops, and one only needs to include the
helicity configurations of fλg ¼ ð� � ��Þ; ð�� ∓∓Þ.
Explicitly, the reduced helicity amplitudes for the continu-
ous SM background gg → γγ are

Mbkg
���� ¼ M1; ð73Þ

Mbkg
��∓∓ ¼ M2; ð74Þ

with, in the massless quark limit [35],

ReM1 ¼
�X

q

Q2
q

��
1þ t̂ − û

ŝ
log

���� t̂û
����

þ t̂2 þ û2

2ŝ2

�
log2

���� t̂û
����þ π2θ

�
t̂
û

��	
; ð75Þ
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ImM1 ¼ −
�X

q

Q2
q

�
π½θðt̂Þ − θðûÞ�

×

�
t̂ − û
ŝ

þ t̂2 þ û2

ŝ2
log

���� t̂û
����
�
; ð76Þ

M2 ¼ −
�X

q

Q2
q

�
: ð77Þ

Since the resonance masses we probe below are typically
heavier than the tt̄ threshold, i.e., ŝ ∼MH ≳ 2mt, we
sum over all six flavors of quarks, which leads toP

qQ
2
q ¼ 5=3.

In the simpler case with a single (CPV) Higgs boson H,
the corresponding resonance helicity amplitudes can be
written in the rude form of

Mres
fλ1λ2g ∼Mfλ1gðgg → HÞPHMfλ2gðH → γγÞ ð78Þ

with PH the standard propagator for a single heavy scalar
H. For a pair of quasidegenerate CPV scalars Hi, the
corresponding resonance helicity amplitudes can be gen-
eralized by including the 2 × 2 propagator matrix Pjk in
Eq. (37):

Mres
���� ¼ GFŝ2

128π2
X
j;k

ðcg;j � i~cg;jÞPjkðcγ;k � i~cγ;kÞ; ð79Þ

Mres
��∓∓ ¼ GFŝ2

128π2
X
j;k

ðcg;j � i~cg;jÞPjkðcγ;k ∓ i~cγ;kÞ;

ð80Þ

with j, k ¼ 2, 3. When the moduli are squared and summed
up, we have altogether 64 terms. With some of them
canceled out,

X
fλg

jMres
fλgj2 ¼ 4

�
GFŝ2

128π2

�
2X
jkmn

ðcg;jc�g;m þ ~cg;j ~c�g;mÞ

× PjkP�
mnðcγ;kc�γ;n þ ~cγ;k ~c�γ;nÞ; ð81Þ

where the four indices j, k,m,n all run from2 to 3.Herewith
the summation we have included both the diagonal and off-
diagonal terms; for the latter case the indices j ≠ k andm ≠ n
stand for the interferencesof the twonearlydegenerateheavy
scalars. The CP-even and CP-odd contributions to the
effective coupling of Higg (with i ¼ 2, 3) are respectively

cg;i ¼
X
q

cq;iAH
1=2ðτqÞ; ð82Þ

~cg;i ¼
X
q

~cq;iAA
1=2ðτqÞ ð83Þ

where τX ¼ ŝ=4m2
X. For the Hiγγ couplings,

cγ;i ¼ −
X
j;¼1;2

Rij
~λjþ−v

2M2
H�

A0ðτH�Þ þ
X
f

cf;iN
f
CQ

2
fA

H
1=2ðτfÞ

þ aiAH
1 ðτWÞ ð84Þ

~cγ;i ¼ −
Ri3

~λ3þ−v
2M2

H�
A0ðτH�Þ þ

X
f

~cf;iN
f
CQ

2
fA

A
1=2ðτfÞ; ð85Þ

with the trilinear scalar couplinggiven inEqs. (21)–(23). The
prefactorRij

~λjþ−v=2M2
H� for theH� loop is intrinsically a

function of the quartic couplings, which turns out to be small
as long as the couplings λi in the scalar potential are
perturbative. Furthermore, the charged scalar term in
Eq. (85) is generally also suppressed by the CP-violating
coupling Imλ5, which makes the scalar loop contribution
even smaller for the CP-odd contributions.
The generalization above is also valid for the interference

terms. Summing up the helicities, we have

X
fλg¼����

Mres
fλgM

bkg�
fλg þ c:c: ∝ 2

X
ij

½cg;iPijcγ;j − ~cg;iPij ~cγ;j�Mbkg�
1 þ c:c:; ð86Þ

X
fλg¼��∓∓

Mres
fλgM

bkg�
fλg þ c:c: ∝ 2

X
ij

½cg;iPijcγ;j þ ~cg;iPij ~cγ;j�Mbkg�
2 þ c:c:; ð87Þ

and then the interfering amplitude square

X
fλg

Mres
fλgM

bkg�
fλg þ c:c: ¼ GFŝ2

128π2

�
2

�X
ij

cg;iPijcγ;j

�
ðMbkg�

1 þMbkg�
2 Þ

þ2

�X
ij

~cg;iPij ~cγ;j

�
ðMbkg�

2 −Mbkg�
1 Þ þ c:c:

�
: ð88Þ
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Splitting the interference terms into the real and imaginary parts, they read

4

�X
ij

ðcg;icγ;jÞRePRe
ij ðMRe

1 þMRe
2 Þ þ

X
ij

ðcg;icγ;jÞImPRe
ij ðMIm

1 þMIm
2 Þ

þ
X
ij

ð~cg;i ~cγ;jÞRePRe
ij ðMRe

2 −MRe
1 Þ þ

X
ij

ð~cg;i ~cγ;jÞRePIm
ij ðMIm

2 −MIm
1 Þ
�
; ð89Þ

4

�X
ij

ðcg;icγ;jÞRePRe
ij ðMIm

1 þMIm
2 Þ −

X
ij

ðcg;icγ;jÞImPIm
ij ðMRe

1 þMRe
2 Þ

þ
X
ij

ð~cg;i ~cγ;jÞRePIm
ij ðMRe

2 −MRe
1 Þ −

X
ij

ð~cg;i ~cγ;jÞImPIm
ij ðMRe

2 −MRe
1 Þ
�
; ð90Þ

where for the SM background MIm
2 ¼ 0, while the imagi-

nary parts of the loop functions come from the loops with
ŝ > 4M2

loop. WhenH2 decouples fromH3 in the propagator
matrix, i.e. P23 ¼ 0, the imaginary part of the propagator
PIm
ii → M2

iΓ2
Hi

in the limit of ŝ → M2
i .

It is straightforward to obtain the differential cross
sections with respect to the diphoton invariant mass Mγγ ,
by integrating over the scattering angle z and convoluting
with the gluon distribution luminosity Lgg in proton [109]:

dσres

dMγγ
¼ 2

Mγγ
σ̂resðŝ ¼ M2

γγÞLgg; ð91Þ

dσint

dMγγ
¼ 2

Mγγ
σ̂intðŝ ¼ M2

γγÞLgg: ð92Þ

B. Diphoton signal at hadron colliders

With the parton-level differential cross sections for both
the resonance and interference terms given in Eqs. (91) and

(92), we are ready to predict the diphoton signals at the
LHC from the decay of heavy scalars in the CPV 2HDM.
To demonstrate the most important features in the diphoton
signals, two representative examples are presented in
Figs. 10 and 11 with respectively tan β ¼ 0.5 and 2 in
both the type-I and type-II 2HDM. Other parameters are set
as follows: the heavy scalar mass MH ¼ 500 GeV with a
splitting ΔMH ¼ 1 GeV or 10 GeVand the vanishing CPV
in the heavy scalar sector αc ¼ 0 for which αb ¼ 0. In the
two figures we show both the separate contributions from
the pure degenerate resonances and the real and imaginary
interference terms in Eqs. (89) and (90). For the sake of
concreteness, we set

ffiffiffi
s

p ¼ 14 TeV, and integrate over the
scattering angle z ¼ cos θ from 0 to zmax ¼ 0.5. For the
scalar mediators H2;3 the signal process gg → Hi → γγ
does not depend on z ¼ cos θ, while the SM background
qq̄ → γγ and gg → γγ both peak in the forward direction.
Without optimizing the kinematics we adopt a naïve cut on
the angle j cos θj < 0.5. A dedicated study would improve
to some extent the projected sensitivities in Sec. IV C.

FIG. 10. Examples of the diphoton spectra dσ=dMγγ in the CPV 2HDM, with the heavy scalar mass MH ¼ 500 GeV with a small
splitting ΔMH ¼ 1 GeV (left) or 10 GeV (right), tan β ¼ 0.5 and αc ¼ 0. In these plots we show both the pure resonance (blue) and real
and imaginary interference (solid and dashed red) contributions, as well as the total spectra (black). For the Yukawa couplings of type I
and type II, these spectra are almost the same.
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In both benchmark scenarios in Figs. 10 and 11, the
diphoton signal above the continuous SM background is
always dominated by the interference terms, as expected:
the resonance signal gg → Hi → γγ arises at the two-loop
level and is much smaller than the interfering background
resonance which is comparatively enhanced by the one-
loop background process gg → γγ. When the invariant
masses of the two photons are close to the heavy scalar
mass, i.e. Mγγ ≃MH, the real interference effects are
destructive, induced from the extra fermion loops in the
heavy scalar mediated diagrams.7 However, at the reso-
nance Mγγ ≃MH, the differential diphoton cross section is
always dominated by the imaginary parts, as ðMγγ −
MHÞ2 ≲MHΓH (neglecting the heavy scalar mixing effects,
i.e. the off-diagonal elements of the propagator Pij), with
the heavy scalar decay width ΓH largely enhanced by the
Oð1Þ top quark Yukawa coupling in the SM. One could
note in the couplings in Table I that the couplings of heavy
scalars to the top quark are roughly ∝ ðtan βÞ−1; then the
total width ΓH has, roughly, a second power dependence on
tan β, i.e. ΓH ∝ ðtan βÞ−2. Therefore the resonance in
Fig. 11 is much narrower than that in Fig. 10, roughly
by a factor of ð2=0.5Þ−2 ¼ 1=16. When the mass splitting is
larger, e.g.ΔMH ¼ 10 GeV, as a result of the narrow width
for the model with tan β ¼ 2, the width ΓH < ΔMH and the
heavy scalars are significantly separated apart, as seen in
Fig. 11. In contrast the diphoton spectra for tan β ¼ 0.5 do
not change too much.
There is apparently a dip in the vicinity of Mγγ ≃ 2mt ≃

350 GeV in the real interference contributions of Fig. 10,
which is due to the opening of the H2;3 → tt̄ decay mode
and sharp increase of the decay width ΓH (neglecting here

again the heavy scalar mixing elements in the propagator).
In other words, opening of the top decay mode could
diminish significantly the propagator Pij, which, however,
depends largely on the value of tan β. As for the resonance
widths in Figs. 10 and 11, the depth of the dip is roughly
proportional to

P−1
ij ðMttÞ ∼ ΓH ∝ ðtan βÞ−2: ð93Þ

A smaller tan β could thus induce effectively a more
significant dip at Mγγ ≃ 2mt. (In Fig. 11 we do not show
explicitly the dip at 2mt, which is much smaller than those
in Fig. 10, as expected.)
Combing both the effects of tan β on the resonance width

and the dip at Mγγ ≃ 2mt, a smaller tan β could make the
double-scalar resonance broader and the dip deeper; then
the γγ spectrum is expected to be more severely distorted,
even without any CPV in the scalar sector of 2HDM, i.e.
αb;c ¼ 0. That is also the reason why the differential tt̄ cross
sections in the right panel of Fig. 3 exclude larger regions
when tan β is small (cf. the pink regions in Figs. 13 and 14):
the significant dip and broad resonance in Fig. 10 could
easily be excluded by the uncertainties of tt̄ data.
With a maximal mixing αc ¼ π=4 of the two nearly

degenerate scalars, the differential diphoton cross section
could be significantly enhanced at the resonance Mγγ ≃
MH ≅ M2;3, as clearly shown in Fig. 12. When Mγγ is far
away from the resonance MH, the CPV effects would be
highly suppressed. The CPV effect on the diphoton
spectrum in the presence of CPV 2HDM could be directly
tested in the high-energy collisions at the LHC, and is
largely complementary to other current limits and future
probes of CPV, e.g. those from the EDM measurements. It
depends on some parameters in the scalar sector of 2HDM:

(i) The CP effect is more significant when the
scalars are lighter, and vanishes in the limit of
Mγγ ≃MH → ∞, as the production cross section
diminishes when the scalars are heavier, and the

FIG. 11. The same as in Fig. 10, with tan β ¼ 2.

7It is also possible that the real interference effects are
constructive, as long as the contributions of the W� and H�
loops to the Hiγγ couplings are greater than the SM fermion
loops. However, in the CPV 2HDM with two nearly degenerate
heavy scalars, the constructive scenarios are highly disfavored by
the couplings of the heavy scalars.
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diphoton spectrum is further suppressed by the mass
Mγγ ≃MH in the dominator of Eqs. (91) and (92), as
shown in Fig. 20.

(ii) The CPV in the scalar sector depends also on tan β,
as most of the couplings of H2;3 to the SM particles
involve functions of tan β, in particular the couplings
to the top quark. When tan β ¼ 0.5, both values of
αc ¼ 0 and π=2 generate almost the same spectrum.
In contrast, when tan β ¼ 2, some of the subleading
terms in the couplings of H2;3 to the top quark and
other SM particles become important. Thus in
Fig. 12 the spectra with αc ¼ π=2 differ slightly
from those with α ¼ 0.

(iii) As the mixing angle αb connecting the SM Higgs to
M3 is typically very small in the 2HDM scenarios
with quasidegenerate heavy scalars, the impact of
CPV on the diphoton spectra in Fig. 12 is mainly
from the CPV mixing αc of the two heavy scalars
H2;3. In principle, the effects from αb could also be
significant when αb is large. However, it is excluded
or tightly constrained by the EDM limits; see the
plots in Figs. 17–19.

C. Prospects at the LHC

To calculate the expected numbers of signal events from
gg → H2;3 → γγ, we sum up the resonance and interference
terms given in Eqs. (91) and (92), and compare them with
the SM background qq̄ → γγ and gg → γγ. In particular, we
integrate the differential cross sections dσ=dMγγ for both
the SM backgrounds and 2HDM signals with a universal
bin width of 10 GeV:

ΔσγγðM0Þ ¼
Z

M0þ5 GeV

M0−5 GeV
dMγγ

dσ
dMγγ

; ð94Þ

with the list of cross sections as functions of the diphoton
invariant massMγγ ¼ M0. To suppress the SM background

we have set an upper bound on the angle z < 0.5 as in the
previous subsection. We estimate how many background
and signal events Nγγ could be expected in each of the
diphoton bins at

ffiffiffi
s

p ¼ 14 TeV and with the total lumi-
nosity of 3000 fb−1. By counting simply the numbers of
events in the diphoton spectra, we obtain the 95% C.L.
sensitivities via the standard χ2-method:

χ2 ¼
X
bins

 
Nsignal

γγ ðM0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nbkg

γγ ðM0Þ
q

!
2

; ð95Þ

where all the sensitivities in the bins are summed up. To
take into account the detector effects we assume an
efficiency of 95% for photon identification. The uncertainty
in the photon energy scale at high transverse momentum is
typically ≲2%, depending on the rapidity of photons [110].
We have checked the smearing effect on the photon spectra
and sensitivities, and we have found that it is very small and
completely negligible.
All the diphoton prospects at the LHC are presented in

the two-dimensional space of MH − tan β, MH − αc and
MH − αb in Figs. 13–19, for both the type-I and type-II
CPV 2HDM, with two typical values of small splitting
ΔMH ¼ 1 GeV and 10 GeV, as above, and some bench-
mark values of the mixing parameters αb or αc. All the
regions below the red lines are probable at the HL-LHC at
the 95% C.L., with

ffiffiffi
s

p ¼ 14 TeV and an integrated
luminosity of 3000 fb−1. The collider limits from differ-
ential tt̄ data in the right panel of Fig. 3, direct H� searches
and B → Xsγ data in Fig. 4 are also shown, respectively, as
the pink, purple and orange shaded regions. The gray
regions are excluded by the theoretical arguments of
perturbativity, stability and unitarity. In some of the plots
the combined limits from direct searches ofH2;3 in the final
state of WW=ZZ, hh and hZ are shaded in yellow, while
the electron and mercury EDM limits are in blue and
brown. Note that the perturbativity, unitarity and stability

FIG. 12. Total diphoton spectra in the vicinity of the resonance peak, in the examples given in Figs. 10 and 11 with mass splitting
ΔMH ¼ 1 GeV, αc ¼ 0 and π=4 (and π=2 for tan β ¼ 2).
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requirements on the theoretical side are rather stringent:
depending on tan β and the mass and mixing parameters,
the quartic couplings λi in the scalar potential are tightly
constrained. We will not scan the full parameter space for

the theoretical limits, but rather for the sake of concrete-
ness, in all these plots we have taken the values of MH� ¼
MH and msoft ¼ 300 GeV. In the quasidegenerate case,
depending on ΔMH and αb;c, the heavy scalar mass MH is

FIG. 13. Diphoton prospects of quasidegenerate scalarsH2;3 in CPV 2HDM in the parameter space ofMH and tan β, with type-I (left)
and type-II (right) Yukawa couplings, with a small mass splitting ΔMH ¼ 1 GeV and αc ¼ 0. The regions below the solid red lines are
probable at the 95% C.L. at the HL-LHC with

ffiffiffi
s

p ¼ 14 TeV and an integrated luminosity of 3000 fb−1, by searches of gg → H2;3 → γγ,
with the SM background gg → γγ and the interference of background and resonance taken into consideration. (Note that the red lines go
beyond 1 TeV when tan β ≲ 1, not shown in these plots; the small tan β regions are all covered implicitly.) The shaded regions are
excluded, respectively, by differential tt̄ data [85] (pink) in the right panel of Fig. 3, direct H� searches [84] (purple) and B → Xsγ [91]
(orange) in Fig. 4. The gray regions are excluded by the theoretical arguments of perturbativity, stability and unitarity. The limits and
prospects in the two plots with a larger ΔMH ¼ 10 GeV are almost the same.

FIG. 14. The same as in Fig. 13, with αc ¼ π=4,ΔMH ¼ 1 GeV (upper) and 10 GeV (lower). More limits are shown in these plots: the
combined direct searches of H2;3 → WW=ZZ, hh and hZ at the LHC (yellow) [64–66,68–70,72,74] and the EDM measurements of
electrons (blue) [30] and mercury (brown) [31]. Within the dark bands, we cannot find any physical solution for the relation (27).
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required to be roughly within a range of 400 GeV to 1 TeV,
unless some parameters in 2HDM are fine-tuned. Heavy
scalars beyond 1 TeV push some of the quartic couplings λi
nonperturbative, while a smaller MH drives the stability
conditions violated (depending on the parameter msoft).
The diphoton sensitivities as well as the theoretical and

experimental constraints, in the parameter space of
MH − tan β, are presented in Fig. 13, where we have set
αc ¼ 0 (and resultantly αb ¼ 0). In theCP-conserving limit

of αb;c ¼ 0, we do not have the limits from direct searches
of H2;3 → WW=ZZ, hh and hZ, and the purely CPV
phenomena of EDMs. A large region is excluded by the
theoretical arguments and the B → Xsγ data. With a high
luminosity of 3000 fb−1 at the LHC, almost all the allowed
regions in Fig. 13 could be tested in the diphoton channel,
though the BRðH2;3 → γγÞ is rather small compared to
other decay modes. One should note that the red lines go
beyond 1 TeV when tan β ≲ 1, which is not shown

FIG. 15. The same as in Figs. 13 and 14 in theMH − αc plane, with αb ¼ 10−3 andΔMH ¼ 1 GeV. The scenarios with larger splitting
ΔMH ¼ 10 GeV are excluded by the theoretical arguments of perturbativity, unitarity and stability.

FIG. 16. The same as in Figs. 13 and 14 in theMH − αc plane, with αb ¼ 10−2,ΔMH ¼ 1 GeV (upper) and 10 GeV (lower). The type-
I 2HDM with ΔMH ¼ 1 GeV is excluded by the electron EDM measurements [30].
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explicitly in these plots; the small tan β regions are all
covered implicitly.
The maximal CPV case with αc ¼ π=4 is shown in

Fig. 14, where the EDM constraints become important.
Depending on the Yukawa couplings and the mass splitting
ΔMH, a sizable region in the MH − tan β plane has been
excluded by the EDM measurements. In the case of type-II
2HDM with ΔMH ¼ 10 GeV, when the electron and
mercury EDM constraints are combined together, the whole

MH − tan β plane is excluded; see the lower right panel in
Fig. 14. This excluded scenario could be confirmed or
falsified at the LHC via the diphoton searches gg →
H2;3 → γγ. A positive signal in the excluded region would
imply the incompleteness of CPV 2HDM at the TeV scale,
which has to be further extended, or the experimental data
should be interpreted in other beyond SM frameworks.
The projected diphoton sensitivities in the MH − αc

plane are presented in Figs. 15 and 16, with respectively

FIG. 18. The same as in Figs. 13 and 14 in the MH − αb plane, with αc ¼ þπ=4 and ΔMH ¼ 1 GeV. The scenarios with ΔMH ¼
10 GeV are excluded by the electron and mercury EDM measurements [30,31].

FIG. 17. The same as in Figs. 13 and 14 in the MH − αb plane, with αc ¼ −π=4, ΔMH ¼ 1 GeV (upper) and 10 GeV (lower). The
type-II 2HDM with ΔMH ¼ 10 GeV is excluded by the electron EDM measurements [30].
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αb ¼ 10−3 and 10−2. For the small CPVangle αb ¼ 10−3 in
Fig. 15, the 2HDM contributions to the EDMs are highly
suppressed, and could not provide any limits beyond the
theoretical constraints. However, when αb becomes larger,
e.g. 10−2 in the plots of Fig. 16, the electron and mercury
EDMs could exclude a large parameter space as in Fig. 14.
In particular, the type-I 2HDM with ΔMH ¼ 1 GeV is all
excluded by the electron EDM; see the caption of Fig. 16. It
is transparent in these plots that the searches of H2;3 → γγ
at the LHC could probe the whole allowed region in the
MH − αc plane, at least for the benchmark scenarios
given here.
In the following Figs. 17 and 18 we show the diphoton

sensitivities and the constraints in the parameter space of
MH and αb, with respectively αc ¼ −π=4 and þπ=4. For
comparison, the αc ¼ 0 case is shown in Fig. 19, in which
tan β ¼ 1, αb ≠ 0 and the EDMs from CPV 2HDM are
purely the αb-relevant contributions. Obviously the EDM
measurements exclude large values of αb, depending on
other parameters in the 2HDM. As in Figs. 15 and 16, some
of the scenarios have been completely excluded by the
EDM data, e.g. the type-II 2HDM with αc ¼ −π=4 and
ΔMH ¼ 10 GeV, and both the type-I and type-II 2HDM
with αc ¼ þπ=4 and ΔMH ¼ 10 GeV. For negative αc in
Fig. 17, tan β > 1, and the production cross section of
heavy scalars σðgg → H2;3Þ is suppressed, when compared
to the positive αc case (and tan β < 1) in Fig. 18; therefore

smaller regions could be probed in Fig. 17, in particular
when αb is small and ΔMH is large (see the lower panel in
Fig. 17). In contrast, in Fig. 19, with αc ¼ 0, tan β ¼ 1 is a
constant, and thus the diphoton sensitivities are almost
horizontal lines. Again, almost the whole parameter space
could, in principle, be probed in the diphoton channel of
heavy scalar decay in CPV 2HDM.
To demonstrate the prospects of distinguishing the

2HDM scenarios with different CPVs in the scalar sector
at the LHC, we compare the significance defined in
Eq. (95) for the benchmark models given in Fig. 12. As
the CPV effects are most significant at the resonance, we
count for simplicity only the single bin (with a bin width of
10 GeV) at the peak, which is rather conservative from this
aspect. With a larger coupling to the top quark, the
scenarios with tan β ¼ 0.5 have a larger cross section at
the peak and thus higher significances in the left panel of
Fig. 20. As shown in Fig. 12, a maximal CP-violating
mixing of the two heavy scalars, i.e. αc ¼ π=4, could
enhance significantly the cross sections at the peak; thus the
lines in Fig. 20 with αc ¼ π=4 have a larger significance,
compared to the CP-conserving limit of αb ¼ 0 (and
αc ¼ π=2), especially when the scalars H2;3 are not too
heavy. Comparing the expected significances with different
αc in Fig. 20, we could distinguish the maximal mixing
case αc ¼ π=4 from the CP-conserving model at the HL-
LHC, if the heavy scalar mass MH ≲ 600 (500) GeV for

FIG. 19. The same as in Figs. 13 and 14 in the MH − αb plane, with αc ¼ 0, ΔMH ¼ 1 GeV (upper) and 10 GeV (lower).
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tan β ¼ 0.5 (2). Here we have considered only the peak
bins; with more diphoton bins included, the distinguishing
power could be further improved.

D. Discussions

All the theoretical and experimental limits and the
diphoton prospects at HL-LHC in the framework of
CPV 2HDM have been extensively studied in depth in
the sections above. Before proceeding to the conclusion we
comment in this section on the various effects of different
mass, mixing and coupling parameters on these limits and
the diphoton signal in both the type-I and type-II CPV
2HDMs, and grab some of the qualitative features.
One should be first aware of the constraints from the

theoretical requirements of unitarity, perturbativity and sta-
bility in the scalar sector with two quasidegenerate heavy
scalarsH2;3, which prefer a tan β ∼ 1, as a sufficiently large
tan β (or cot β) would easily push the quartic couplings λi
to be nonperturbative or unitarity violating. For instance,
the prefactors sin−1 β (cos−1 β) in Eqs. (8)–(10) would be
large in the limit of tan β ≪ 1 (tan β ≫ 1). In this sense,
the theoretical limits are approximately “invariant” under
the exchange tan β ↔ cot β, which is transparently dem-
onstrated in the example shown in Figs. 13–16.
Furthermore, these theoretical requirements also set both
lower and upper limits on the quasidegenerate heavy scalar
masses MH. An upper bound is easy to understand, as,
without the SM gauge symmetry extended, all the scalars in
the 2HDM masses are proportional to the EW VEV v
through Mi ∼

ffiffiffi
λ

p
v; therefore, with the perturbative cou-

plings jλij < 4π, one should expect all the heavy scalars in
2HDM to be roughly below the TeV scale. In Eqs. (8) and
(9), there are minus terms −ν which are proportional to the
Z2 soft-breaking parameter m2

soft; then the lower bound on
the heavy scalars depends largely on msoft. With the mass
splitting ΔMH gets larger; these theoretical constraints
might be to some extent weakened, but the CPV phases αb;c

would ge generally much smaller, and we will lose the
significant CPV effects at the “double resonance.”
In a large region of parameter space, the production

and decay processes gg → H2;3 → γγ are dominated by
the top quark loop, thanks to the fact that tan β ∼ 1 (if
tan β ∼mt=mb, the bottom quark and W� loop would be
very important); therefore the diphoton signal depends
largely on the value of tan β (see Figs. 13 and 14) and could
be largely enhanced by the CPV angle αc (αb is generally
much smaller) at the resonance peak (see Figs. 12 and 20).
The couplings to the down-type quarks and charged
leptons, e.g. whether the couplings are of type I or type
II, are important in the sense that they determine largely the
limits from B → Xsγ and the EDMs of electron and
mercury. The mass splitting ΔMH is important when the
scalar resonances become narrower (see the examples in
Fig. 11) and plays also an important role in evaluating the
EDMs, e.g. in Fig. 14.

V. CONCLUSION

In this paper, we have studied in detail the diphoton
signal from the decay of two quasidegenerate heavy scalars
in the CPV 2HDM with both type-I and type-II Yukawa
couplings. To simplify the scalar potential, we assume there
is a soft-breaking Z2 symmetry, under which there are only
two CP-violating terms in the potential: the soft-breaking
mass parameter Imm2

12 and one of the quartic couplings
Imλ5. With these CP-violating terms, the three neutral
scalars are no longer CP eigenstates but all mix with one
another, with the lightest one being SM-like with mass of
125 GeV, leaving the other two heavier. The CP-violating
mixing angles αb;c are linked intimately to the scalar
masses, in particular depending nontrivially on the mass
splitting of the two heavier states H2;3. Roughly speaking,
with the two heavy scalars approaching to be degenerate,
their mixing tends to be larger, or even maximal, which is in
general more important than their CP-violating mixing

FIG. 20. Significance at the resonance peak with a bin width of 10 GeV for the CPV 2HDM with ΔMH ¼ 1 GeV, tan β ¼ 0.5 (left)
and 2 (right), and αc ¼ 0, π=4 (and π=2 for tan β ¼ 2). The sensitivities for type-I and type-II 2HDM are almost the same.
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with the SM Higgs which is somewhat suppressed by the
large mass splitting of MH −mh.
Throughout this paper we have considered two bench-

mark values of small splitting of ΔMH ¼ 1 GeV and
10 GeV, and work in the simplified case of α ¼ β − π=2
with αb;c ≠ 0 which is consistent with the current SM
Higgs data. We have collected in Sec. III all the relevant
theoretical and experimental limits on the CPV 2HDM,
with some typical example shown in the two-dimensional
parameter space of heavy scalar mass MH versus tan β, αc
and αb, i.e. Figs. 5–9 and Figs. 13–19. It turns out that
the theoretical limits from the requirements of unitarity,
perturbativity and stability of the scalar potential impose
severe constraints on the parameter space in our model,
demanding that the heavy scalar masses satisfy 400 GeV≲
MH ≲ 1 TeV. The direct searches of heavy neutral scalars
H2;3→WW=ZZ;hh;hZ performed at the LHC could hardly
constrain the heavy scalars heavier than roughly 450 GeV,
unless there is to some extent fine-tuning in the scalar
sector, due to the small branching ratios of H2;3 decay into
the massive SM bosons. As the heavy scalars decay almost
100% into the top quark pairs, the consistency of exper-
imental differential tt̄ data with the SM predictions could
constrain more effectively the couplings of H2;3, in par-
ticular when tan β is small. Benefitting from the oblique T
parameter constraints on the neutral-charged scalar splitting
jMH −M�j, the direct search of charged scalars and the
rare B decay data of B → Xsγ provide additional limits on
the neutral scalar sector. The electron and mercury EDM
constraints on the CP-violating couplings, e.g. those in
Table I, exclude also large regions in the parameter space.
Though the branching ratios to diphoton are generally

very small, typically of order 10−5 in a large region of the
parameter space, the clean SM background renders it one of
the key channels to search for heavy neutral scalars, as for
the SM Higgs. The full details of the (differential) diphoton
cross section are given in Sec. IV, for both the resonance
and interference contributions. The SM background is
expected to be much larger than the pure signal resonances,
thus the continuum-resonance interference is crucially
important for the heavy scalar searches. By naïvely count-
ing the numbers of diphoton events as functions of the
invariant mass Mγγ , we have estimated the expected sen-
sitivities for the searches ofH2;3 → γγ in the CPV 2HDM at
the

ffiffiffi
s

p ¼ 14 TeV HL-LHC with an integrated luminosity
of 3000 fb−1, which are presented in Figs. 13–19. It turns
out that almost all of the allowed parameter space could be
probed in the diphoton channel, at least at the 95% C.L.,

which is largely complementary to other direct searches at
the LHC, e.g. in the final states of the SM h, W and Z
bosons. A large mixing αc of the two nearly degenerate
heavy scalars could enhance significantly the cross section
at the resonance peak; see the examples in Fig. 12.
Therefore with sufficient events collected at the resonance
peak, we could obtain some information of CPV in the
scalar sector of 2HDM, e.g. the examples given in Fig. 20,
which is largely complementary to the low-energy probe of
CPV in the EDM experiments.
In this paper we have focused only on the type-I and

type-II 2HDM with CPV in the scalar sector, which could
be generalized to the decay H2;3 → Zγ though the inter-
ference effects might be tinny there. The angular distribu-
tions of the leptons from Z decay could, in principle, be
used to suppress the SM background and provide more
information about the couplings of the heavy scalars. In
addition, we could do analogous studies in the framework
of supersymmetric models with also two scalar doublets.
The heavy superparticles might be important for the loop-
level Hiγγ couplings, and leave the footprint in the
diphoton signal. All these open questions will be pursued
in future follow-up papers.
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APPENDIX A: DIFFERENTIAL CROSS
SECTION FOR gg → H2;3 → tt̄

In the CPV 2HDM, the parton-level cross sections for the
resonance and interference terms are respectively

d
dz

σ̂resðgg → H2;3 → tt̄Þ ¼ kF
3G2

Fα
2
sð

ffiffiffî
s

p Þŝ2m2
t βt

213π3

×
X
ij

�����Xq
cq;iAH

1=2ðτqÞ
����2 þ

����Xq
~cq;iAA

1=2ðτqÞ
����2
�
Pijðβ2t jct;jj2 þ j~ct;jj2Þ; ðA1Þ
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d
dz

σ̂intðgg → H2;3 → tt̄Þ ¼ −kF
GFα

2
sð

ffiffiffî
s

p Þm2
t

213=2π

βt
1 − β2t z2

×
X
ij

��X
q
cq;iAH

1=2ðτqÞPij

�
Re
βtct;j þ

�X
q
~cq;iAA

1=2ðτqÞPij

�
Re
~ct;j

�
; ðA2Þ

where z ¼ cos θ is the scattering angle, βt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =ŝ
p

, kF ¼ 2 is the k-factor for the high-order corrections, the
propagator elements Pij are given in Eq. (37), and “Re” takes only the real parts. The minus sign in Eq. (A2) is from the
fermion loops in the signal amplitude for theHigg couplings. In numerical calculations, the strong coupling αs is evaluated
at the heavy scalar mass MH. In both the resonance and interference terms, the contribution from the H2;3 mediated
processes (the diagonal terms Pii) and the mixed ones (the off-diagonal terms of Pij with i ≠ j) are all summed up. It is
straightforward to obtain the differential cross sections with respect to the invariant top pair mass Mtt̄, by integrating over
the scattering angle z and convoluting with the gluon distribution luminosity Lgg in protons:

dσres

dMtt̄
¼ 2

Mtt̄
σ̂resðŝ ¼ M2

tt̄ÞLgg; ðA3Þ

dσint

dMtt̄
¼ 2

Mtt̄
σ̂intðŝ ¼ M2

tt̄ÞLgg: ðA4Þ

APPENDIX B: OBLIQUE PARAMETERS IN THE CPV 2HDM

In the limit of β − α ¼ π=2, the oblique parameters in 2HDM are [49]

ΔS ¼ 1

24π

�
c22WGðM2

�;M
2
�; m

2
ZÞ þ s2αb ½c2αcGðM2

1;M
2
2; m

2
ZÞ þ s2αcGðM2

1;M
2
3; m

2
ZÞ

þ s2αc ĜðM2
2; m

2
ZÞ þ c2αc ĜðM3; m2

ZÞ� þ c2αb ½ĜðM2
1; m

2
ZÞ þGðM2

2;M
2
3; m

2
ZÞ�

þ log

�
M2

1M
2
2M

2
3

M6
�

�
−
�
ĜðM2

1; m
2
ZÞ þ log

�
M2

1

M2
�

��	
; ðB1Þ

αΔT ¼ 1

16π2v2
fs2αbFðM2

�;M
2
1Þ þ ð1 − s2αbs

2
αcÞFðM2

�;M
2
2Þ þ ð1 − s2αbc

2
αcÞFðM2

�;M
2
3Þ

− c2αcs
2
αbFðM2

1;M
2
2Þ − s2αcs

2
αbFðM2

1;M
2
3Þ − c2αbFðM2

2;M
2
3Þ

þ 3c2αb ½Fðm2
Z;M

2
1Þ − Fðm2

W;M
2
1Þ� þ 3s2αbs

2
αc ½Fðm2

Z;M
2
2Þ − Fðm2

W;M
2
2Þ�

þ 3s2αbc
2
αc ½Fðm2

Z;M
2
3Þ − Fðm2

W;M
2
3Þ�

− 3½Fðm2
Z;M1Þ − Fðm2

W;M1Þ�g; ðB2Þ

with M1 ¼ mh the SM Higgs mass, and the auxiliary functions are defined as

Fðx; yÞ ¼
� xþy

2
− xy

x−y logðxyÞ; x ≠ y

0; x ¼ y
ðB3Þ

Gðx; y; zÞ ¼ −
16

3
þ 5ðxþ yÞ

z
−
2ðx − yÞ2

z2

þ 3

z

�
x2 þ y2

x − y
−
x2 − y2

z
þ ðx − yÞ3

3z2

�
log

x
y

þ z2 − 2zðxþ yÞ þ ðx − yÞ2
z3

× fðxþ y − z; z2 − 2zðxþ yÞ þ ðx − yÞ2Þ; ðB4Þ
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~Gðx; y; zÞ ¼ −2þ
�
x − y
z

−
xþ y
x − y

�
log

x
y

þ 1

z
fðxþ y − z; z2 − 2zðxþ yÞ þ ðx − yÞ2Þ;

ðB5Þ

Ĝðx; yÞ ¼ Gðx; y; yÞ þ 12 ~Gðx; y; yÞ; ðB6Þ

with

fðx; yÞ ¼

8>>><
>>>:

ffiffiffi
y

p
log
��� x− ffiffiyp
xþ ffiffi

y
p
���; y > 0

0; y ¼ 0

2
ffiffiffiffiffiffi−yp

tan−1
ffiffiffiffi−yp
x ; y < 0

: ðB7Þ

APPENDIX C: EDMS IN THE CPV 2HDM

1. All the separate contributions

For light fermions, the dominant contributions to their
EDMs and CEDMs come from the two-loop Barr-Zee-type
diagrams [111]. In particular, the Wilson coefficient δe
receives contributions from the following terms:

δe ¼ ðδeÞHγγ
t þ ðδeÞHZγ

t þ ðδeÞHγγ
W þ ðδeÞHZγ

W

þ ðδeÞHγγ
H� þ ðδeÞHZγ

H� þ ðδeÞH
�W∓γ

H ; ðC1Þ

where the diagrams with effective Hiγγ and HiZγ cou-
plings from integrating out a top quark loop are respectively

ðδfÞHγγ
t ¼ −

NcQfQ2
t e2

64π4
X3
i¼1

½fðzitÞct;i ~cf;i þ gðzitÞ~ct;icf;i�;

ðC2Þ

ðδfÞHZγ
t ¼ −

NcQfgVZf̄fg
V
Zt̄t

64π4
X3
i¼1

�
~f

�
zit;

m2
t

M2
Z

�
ct;i ~cf;i

þ ~g

�
zit;

m2
t

M2
Z

�
~ct;icf;i

�
; ðC3Þ

where ziX ≡m2
X=M

2
i and gV

Zff̄
is the vector-current cou-

plings of the Z boson to the fermions. The loop integral
functions are respectively

fðzÞ≡ z
2

Z
1

0

dx
1 − 2xð1 − xÞ
xð1 − xÞ − z

log
xð1 − xÞ

z
; ðC4Þ

gðzÞ≡ z
2

Z
1

0

dx
1

xð1 − xÞ − z
log

xð1 − xÞ
z

; ðC5Þ

~fðx; yÞ≡ yfðxÞ − xfðyÞ
y − x

; ðC6Þ

~gðx; yÞ≡ ygðxÞ − xgðyÞ
y − x

: ðC7Þ

There are also contributions from the W-bosons and its
Nambu-Goldstone bosons to the Hiγγ and HiZγ operators,
which were gauge invariant and were obtained in
Refs. [112–114]:

ðδfÞHγγ
W ¼ Qfe2

256π4
X3
i¼1

��
6þ 1

ziW

�
fðziwÞ þ

�
10 −

1

ziW

�
gðziwÞ þ

3

4
ðgðziWÞ þ hðziWÞÞ

�
ai ~cf;i; ðC8Þ

ðδfÞHZγ
W ¼

gV
Zf̄f

gZWW

256π4
X3
i¼1

��
6 − sec2θW þ 2 − sec2θW

2ziw

�
~fðziW; c2WÞ

þ
�
10 − 3 sec2θW −

2 − sec2θW
2ziw

�
~gðziW; c2WÞ þ

3

2
ðgðziWÞ þ hðziWÞÞ

�
ai ~cfi ; ðC9Þ

where the gauge coupling gWWZ ¼ e= tan θW , and the loop
function

hðzÞ≡ z
2

Z
1

0

dx
1

z − xð1 − xÞ

×

�
1þ z

z − xð1 − xÞ log
xð1 − xÞ

z

�
: ðC10Þ

The contributions by integrating out the charged Higgs
boson loops read

ðδfÞHγγ
H� ¼ Qfe2

256π4
X
i

½fðzi�Þ − gðzi�Þ�λ̄i ~cf;i; ðC11Þ

ðδfÞHZγ
H� ¼

gV
Zf̄f

gZHþH−

256π4

�
v
M�

�
2X

i

�
~f

�
zi�;

M2
�

m2
Z

�

−~g

�
zi�;

M2
�

m2
Z

��
λ̄i ~cf;i; ðC12Þ

with zi� ¼ M2
�=M

2
i , gZHþH− ¼ eð1 − tan θ2WÞ=ð2 tan θWÞ,

and λ̄i ¼ −λiþ−=v the effective trilinear scalar couplings
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given in Eqs. (21)–(23). Additional contributions are from
the H�W∓γ operators [114], which read

ðδfÞH
�W∓γ

H ¼ sf
512π4

X
i

�
e2

2s2W
I4ðM2

i ;M
2
�Þai ~cf;i

−I5ðM2
i ;M

2
�Þλ̄i ~cf;i

�
; ðC13Þ

where sf ¼ þ1 for the down-type quarks and charged
leptons, and −1 for the up-type quarks, and the two-loop
integral functions are defined as

I4;5ðM2
1;M

2
2Þ≡ m2

W

M2
� −m2

W
½I4;5ðmW;M1Þ − I4;5ðM2;M1Þ�;

ðC14Þ

I4ðM1;M2Þ≡
Z

1

0

dzð1 − zÞ2
�
z − 4þ z

M2
� −M2

2

m2
W

�

×
M2

1

m2
Wð1 − zÞ þM2

2z −M2
1zð1 − zÞ

× log

�
m2

Wð1 − zÞ þM2
2z

M2
1zð1 − zÞ

�
; ðC15Þ

I5ðM1;M2Þ≡
Z

1

0

dz
M2

1zð1 − zÞ2
m2

Wð1 − zÞ þM2
2z −M2

1zð1 − zÞ

× log

�
m2

Wð1 − zÞ þM2
2z

M2
1zð1 − zÞ

�
: ðC16Þ

For the CEDM, the top quark loop is integrated out to
obtain the effective hiGG or hiG ~G operators, which leads
to the following CEDM operators [115],

~δqðΛÞ≡ ð~δqÞhggt ¼ −
g2s

128π4
X3
i¼1

½fðzitÞct;i ~cq;iþgðzitÞ~ct;icq;i�:

ðC17Þ
The contribution to the dimension-6 Weinberg operator

arises predominantly from the top loop [94], which gives

C ~GðΛÞ≡ ðC ~GÞt ¼ −
g2s
3

1

128π4
X3
i¼1

h0ðzitÞct;i ~ct;i; ðC18Þ

with the two-loop integral function

h0ðzÞ≡ z4

2

Z
1

0

dx
Z

1

0

dy
x3y3ð1 − xÞ

½z2xð1 − xyÞ þ ð1 − xÞð1 − yÞ�2 :

ðC19Þ

2. RG running and mixing effects

During the renormalization group (RG) running from the
new physics scale down to the hadronic scale, the nontrivial

corrections to the Wilson coefficients of the CEDM and
Weinberg operators induced by flavor-conserving CP-odd
four-fermion operators need to be taken into account. The
complete Lagrangian for the calculation of mercury EDMs
should be

LCPV ¼ LðCÞEDM þ
X
q

Cq
4

Λ2
Oq

4 þ
X
q0≠q

~Cq0q
1

Λ2
~Oq0q
1

þ 1

2

X
q0≠q

~Cq0q
4

Λ2
~Oq0q
4 : ðC20Þ

Here, the first two CP-odd four-fermion operators

Oq
4 ¼ ðq̄qÞðq̄iγ5qÞ; ðC21Þ

~Oq0q
1 ¼ðq0q0Þðq̄iγ5qÞ; ðC22Þ

can be generated through the CPV Yukawa threshold
corrections and the CPV neutral Higgs boson mixing in
the t-channel. The corresponding CP-odd coefficients are
given respectively as

Cq
4 ¼ gqgq

cq ~cq
M2

H
; ðC23Þ

~Cq0q
1 ¼ gq0gq

cq0 ~cq
M2

H
; ðC24Þ

with gqðq0Þ ¼ mqðq0Þ=v. On the other hand, the last CP-odd
four-fermion operator,

~Oq0q
4 ¼ ðq0ασμνq0βÞðqβiσμνγ5qαÞ; ðC25Þ

is generated from the operator mixing effects of ~Cq0q
1 and

~Cqq0
1 which follow Eq. (C28) below. To obtain the value of

the Wilson coefficients ðδq; ~δq;− 3C ~G
2
Þ at a GeV scale, we

need to take an evolution for

C ¼
�
δq; ~δq;−

3C ~G

2
; Cq

4; ~C
q0q
1 ; ~Cqq0

1 ; ~Cq0q
4

�
ðC26Þ

from the 2HDM scale v down to the GeV scale, based on
the renormalization group equations (RGE) [116–118]:

d
d ln μ

C ¼ C · Γ: ðC27Þ

Here, the one-loop anomalous dimension matrix is given by

Γ ¼

2
664

αs
4π γs 0 0
1

ð4πÞ2 γsf
αs
4π γf 0

1
ð4πÞ2 γ

0
sf 0 αs

4π γ
0
f

3
775; ðC28Þ
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with

γs ¼

2
64
þ8CF 0 0

þ8CF þ16CF − 4N 0

0 þ2N N þ 2nf þ β0

3
75; ðC29Þ

γf ¼ ½−12CF þ 6 �; ðC30Þ

γ0f ¼

2
64
−12CF 0 −1

0 −12CF −1
−12 −12 −8CF − 6

N

3
75; ðC31Þ

γ0sf ¼

2
664

0 0 0

0 0 0

−8 m0
q

mq

Q0
q

Qq
−8 m0

q

mq
0

3
775; ðC32Þ

γsf ¼ ½þ2 þ2 0 �; ðC33Þ

where q runs over u, d, b; N ¼ 3; CF ¼ ðN2 − 1Þ=ð2NÞ ¼
4=3; β0 ¼ ð11N − 2nfÞ=3; and nf is the flavor number.
For the RGE running from the 2HDM scale down to the

scale of mb, we assume a five-flavor scheme. Keeping only
the leading logarithmic terms that make additional con-
tributions to the CEDMs of bottom and light quarks at the
matching scale μ ¼ mb, we have

Δ~δbðmbÞ ≈
1

8π2
Cb
4 log

�
MH

mb

�
; ðC34Þ

where Δ~δbðmbÞ could be figured out from Eq. (C28) and is
from integrating out the bottom quark at the one-loop level.
After the bottom quark is integrated out, its CEDMmakes a
shift to the Weinberg operator [117,119],

ΔC ~GðmbÞ ¼
αSðmbÞ
12π

~δbðmbÞ: ðC35Þ

Here the two-loop Barr-Zee graph generated CEDMs
~δ0bðmbÞ have been modified to be ~δbðmbÞ ¼ ~δ0bðmbÞ þ
Δ~δbðmbÞ to obtain the whole b-quark CEDM at the mb
scale. The shift to CEDMs of quarks are given by

Δ~δqðmbÞ ≈
g2s

64π4
mb

mq
ð ~Cbq

1 þ ~Cqb
1 Þ
�
log

MH

mb

�
2

: ðC36Þ

Wewould like to mention thatΔ~δqðmbÞ is nontrivial, which
is induced by ~Cqq0

4 through integrating out the bottom quark
at the two-loop level. Below the mb scale, we assume a
four-flavor scheme for the RGE running of the Wilson
coefficients δq, ~δq and C ~G betweenmb and mc, and a three-
flavor scheme below mc.
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