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If the QCD axion is a significant component of dark matter, and if the Universe was once hotter than a
few hundred MeV, the axion relic abundance depends on the function χðTÞ, the temperature-dependent
topological susceptibility. Uncertainties in this quantity induce uncertainties in the axion mass as a function
of the relic density, or vice versa. At high temperatures, theoretical uncertainties enter through the dilute
instanton gas computation, while in the intermediate and strong coupling regime, only lattice QCD can
determine χðTÞ precisely. We reassess the uncertainty on the instanton contribution, arguing that it amounts
to less than 20% in the effective action, or a factor of 20 in χ at T ¼ 1.5 GeV. We then combine the
instanton uncertainty with a range of models for χðTÞ at intermediate temperatures and determine the
impact on the axion relic density. We find that for a given relic density and initial misalignment angle,
the combined uncertainty amounts to a factor of 2–3 in the zero-temperature axion mass.
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I. INTRODUCTION

The axion remains a promising candidate for dark matter
[1–3], perhaps more so as the window for conventional
weakly interacting massive particles shrinks. Searches for
axion dark matter are underway [4], and there are proposals
for future experiments which could conceivably widen the
search window substantially [5].
In the early Universe, the axion begins to oscillate

coherently when its thermal mass, maðTÞ, becomes com-
parable to the Hubble scale. The axion mass is related to the
QCD topological susceptibility by

m2
aðTÞf2a ¼ χðTÞ;

χ ¼
Z

d4xhF ~FðxÞF ~Fð0ÞiT ¼ ∂2
θFðθ; TÞ; ð1:1Þ

where, in the last expression, Fðθ; TÞ is the θ-dependent
free energy.
At high temperatures, Fðθ; TÞ can be calculated by

standard instanton methods [6]. At low temperatures,
Fðθ; TÞ is known from chiral perturbation theory, and in
fact converges rapidly to its T ¼ 0 limit below the con-
fining phase transition [7,8]. However, for plausible cos-
mologies and a range of axion parameters, it is the case that
the axion starts to oscillate at intermediate temperatures,
T ∼ GeV, where αs is approaching strong coupling and
neither calculation applies. Instead, one can hope to extract
χðTÞ from lattice QCD.
Recently, there have been a number of papers reporting

lattice calculations of χðTÞ at temperatures above the
critical temperature, both in pure gauge theory/quenched
approximations [8–10] and in QCD [7,11–16]. In some

cases, discrepancies are found at high temperatures com-
pared with the dilute instanton gas prediction. The free
energies found in [12,13] differ by about an order of
magnitude from the leading-order semiclassical result
above the GeV scale, while the computation and extrapo-
lation obtained in [7,14] (see also [17]) differs by many
orders of magnitude (although systematic effects are not
under control in the extrapolation, and thus the level of
compatibility with the controlled high-temperature compu-
tations in [12,13] is unclear.) These results suggest a level
of uncertainty in the microscopic parameters (the zero-
temperature axion mass ma and possibly the misalignment
angle θ0) required to achieve a given relic density Ω.
Here we will assess the theoretical uncertainty on

Ωðma; θ0Þ in analytic computations and compare with
lattice results. Our analysis has two prongs. First, in
Sec. II, we reexamine the uncertainty on the leading-order
semiclassical result for the free energy above the GeV scale.
We consider a number of possible sources of error, the
most important of which are likely to be corrections to the
effective action that shift the IR cutoff on instanton sizes.
However, in contrast to suggestions in the literature, we
argue that infrared divergences that plague ordinary finite-
temperature perturbation theory are not numerically relevant
in the instanton effective action, and that the size of higher-
order corrections can be reasonably estimated. As a result,
the topological susceptibility has known low- and high-
temperature asymptotics which appear compatible with
[12,13]. Then, in Sec. III, we introduce a family of models
for the topological susceptibility that interpolate through
the region where neither analysis is reliable. In Sec. IV,
we compute the relic density over this range of models,
including the instanton uncertainty at the high-temperature
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boundary and uncertainties in QCD parameters. In this way
we determine the sensitivity of Ωðma; θ0Þ to theoretical
uncertainties. We find the sensitivity is limited, and overall
the axion mass prediction from analytical methods appears
robust at the level of a factor of 2–3. We comment on the
implications of these results in Sec. V and conclude.

II. THEORETICAL UNCERTAINTIES
ON THE INSTANTON CONTRIBUTION

TO THE FREE ENERGY

A. The standard computation

At high temperatures, the θ dependence of the free
energy is controlled by instantons (Gross, Pisarski, and
Yaffe [6], henceforth GPY]. Classically, even at finite
temperature, there are instantons of all scale sizes. But
at one loop, there are two sources of scale invariance
violation: the usual ultraviolet divergences familiar in the
zero-temperature theory, and the finite temperature itself.
Both correct the effective action, rendering finite the scale
size integral both at small and large ρ.
Heuristically, the latter effect is associated with the

effective mass of the A4 field,

m2
D ¼ 1

3
ðg2T2Þ

�
N þ Nf

2

�
: ð2:1Þ

GPY note that a term in the effective action 1
2g2 m

2
DA

2
4 gives

rise to a correction to the instanton action, for ρ ≫ T−1 [and
αsðρ−1Þ ≪ 1], proportional to ρ2,

Z
d4x

1

2g2
m2

DA
2
4 ¼

π2

2g2
m2

Dρ
2: ð2:2Þ

Note the g−2 in front of m2
D, reflecting the 1=g2 in front of

the whole action, and the fact that the actual screening
length is of order 1

gT. If this were the complete result for
the correction to the effective action, the ρ integration for
the free energy would take the form, in the case of three
flavors,

FðTÞ ∝ mumDms

Z
dρ
ρ2

ðΛρÞ9e−3π2ρ2T2

: ð2:3Þ

The integral is finite and dominated by ρ ∼ ðπTÞ−1.
Since the dominant scale is of order T−1, the effective

action cannot be expanded in powers of ρ; in a derivative
expansion of the background field effective action, terms of
the form

g2

Tn−2 A4ðx⃗Þ∂i1…∂inA4ðx⃗Þ ð2:4Þ

are all of the same order, g2T2, in the instanton background.

GPY indeed computed the full one-loop determinant [6].
At small ρ, in particular, the above expression for the action
is modified as follows:

δS ¼ 1

3
π2ρ2T2ð2N þ NfÞ −

1

18
π2ρ2T2ðN − NfÞ: ð2:5Þ

For Nf ¼ 0, for example, this is not parametrically smaller
than the Debye screening term, though it is numerically
smaller. At one loop, the complete expression for the free
energy in the presence of a single instanton is given by [6]

Fðθ; TÞ ¼ −
Z

dρ
ρ5

�
4π2

g2

�
2N

e
− 8π2

g2ðρÞCN

×
YNf

i¼1

ðξρmiÞe−1=3λ2ð2NþNFÞ−12AðλÞ½1þ1
6
ðN−NfÞ�þiθ

ð2:6Þ

where

AðλÞ ¼ −
1

12
lnð1þ λ2=3Þ þ αð1þ γλ−2=3Þ−8 ð2:7Þ

λ ¼ πρT CN ¼ 0.097163; ξ ¼ 1.3388

α ¼ .01290 γ ¼ 0.1586 ð2:8Þ

and NF ¼ 3 in temperature regimes where three quarks
are excited. At a temperature of T ¼ 1.5 GeV and using a
renormalization scale μ ¼ T, we obtain

F0ð1.5Þ ¼ −3.7 × 10−14 GeV−4 ð2:9Þ

where the subscript indicates θ ¼ 0. Here we have used the
program RunDec [18–20] to obtain αsð1.5 GeVÞ≃ 0.345
with three active flavors.
This computation of the free energy is subject to certain

theoretical uncertainties, including higher-order corrections
sensitive to the UV cutoff, parametric uncertainties on αs,
effects of heavier quarks, and higher-order corrections that
modify the infrared cutoff on ρ. In the next subsection, we
estimate the uncertainties from the first three of these
sources. In our view there has been some confusion in the
literature about the uncertainty associated with corrections
to the ρ cutoff, which is plausibly the dominant source of
uncertainty. We therefore devote a separate subsection to
this source.

B. UV-sensitive corrections, heavy quarks,
and parametric uncertainties

In the previous section, we evaluated the one-loop
expression for F at T ¼ 1.5 GeV with μ ¼ T and three
flavors. Let us comment on a few of the knobs we can turn
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in this calculation to obtain estimates of theoretical
uncertainty.
(a) Because the dominant instanton size is of order

ðπTÞ−1, μ ¼ πT is another natural choice for the
renormalization scale.

(b) At T ¼ 1.5 GeV, πT is substantially above the charm
threshold and near the bottom quark mass. We might
therefore include at least the charm quark in the free
energy.

(c) A complete two-loop calculation of F is not available
at present. In some places in the literature,
UV-divergent two-loop corrections to the free energy
are incorporated using renormalization group consid-
erations, as discussed in [21]. These corrections are
generally written as powers of αsðρ−1Þ=αsðμÞ in the ρ
integrand. However, for μ of order T (or πT), there is
no justification for including some two-loop correc-
tions and not others. Without performing an actual
two-loop computation of the θ-dependent part of the
free energy, the only principled approach is to use
the complete one-loop expression with μ of order T
(or πT). However, the “UV two-loop” computation
might instead be useful as an uncertainty estimator.

We therefore recompute the free energy using μ ¼
f1; ffiffiffi

π
p

; πg × T, three or four active flavors, and including
or not including the UV-divergent two-loop corrections.
For the change in renormalization scale, we again use
RunDec to accurately determine αsðμÞ with different
numbers of active flavors. The two-loop corrections are
incorporated by running αs in the exponent to μ ¼ ρ−1 at
two-loop order and running the quark masses and the
coupling in the prefactor to μ ¼ ρ−1 at one-loop order.
For example,

e−
2π

αsðμÞ → e−
2π

αsðμÞðμρÞb0
�
αsðρ−1Þ
αsðμÞ

�
2b1=b0

ð2:10Þ

where b0 ¼ 9 and 2b1=b0 ¼ 32=9 for NF ¼ 3, and αsðρ−1Þ
is determined from αsðμÞ at one-loop order.
Results are reported in Table I. The largest value for

the free energy is obtained in the three-flavor scheme with
μ ¼ T, adding the partial two-loop terms. This is not a
surprise, since the included two-loop terms correspond
entirely to running from T to ρ−1 ∼ πT. However, it is likely
an overestimate of the correction; if we use μ ¼ πT in the
same computation, the partial two-loop result is smaller and
much closer to the complete one-loop result. In reality, the
complete two-loop result is likely to involve a mixture of
scales, motivating the choice μ ¼ ffiffiffi

π
p

T. We observe that
(excluding the 3F; 2L; μ ¼ T result), the envelope of
the values is contained within the μ ¼ ffiffiffi

π
p

T calculations,
corresponding to an Oð1Þ uncertainty in the free energy,

ΔF0ð1.5Þ
F0ð1.5Þ

≃ 1: ð2:11Þ

We can also estimate a “parametric” uncertainty stem-
ming from experimental uncertainty in αs. Using the
1-sigma error bar on αsðmZÞ, running down to μ ¼
π × 1.5 GeV and converting to the three-flavor scheme
with RunDec [18–20], we obtain less than 2% uncertainty
in αs.

1 This results in an uncertainty in F0ð1.5Þ of about a
factor of 2, similar to the uncertainty from UV-sensitive
corrections.
The lattice result for the topological susceptibility

obtained in Ref. [13] corresponds to F0ð1.5Þ≈
−4 × 10−13 GeV−4, which lies outside the uncertainty
range that we estimate from these sources. Similar con-
clusions were drawn in the lattice studies [12,16]. In
[12,17], it was suggested that the uncertainty in the 1-loop
instanton computation arising from higher-order terms
could actually be much larger, associated with infrared
divergences in QCD perturbation theory at finite temper-
atures and with large shifts in the Debye screening length.
We now turn to corrections of this type.

C. Corrections to the IR cutoff
on ρ and infrared sensitivity

As discussed previously, the IR cutoff on the instanton
size can be qualitatively associated with the Debye mass
term in the effective action. In the perturbative vacuum, the
Debye mass does receive large corrections beyond leading
order [22,23]. A simple, heuristic understanding of these
corrections can be obtained by consideringΠ44 as a function
of (spatial) momentum, q⃗, for small q⃗. There is a variety of
effects, but already at one loop, for example, there is a
contribution to ∂Π=∂q2 that diverges linearly as mD → 0 at
q ¼ 0. The linear IR divergence is cut off by the leading-
ordermD, leaving a weaker logarithmic IR divergence cut off
by the nonperturbative magnetic mass. The next-to-leading-
order Debye mass has the following form [22,23]:

TABLE I. The instanton-induced free energy in units of
−10−14 GeV−4 at θ ¼ 0 and T ¼ 1.5. Rows correspond to
a variety of computations: (3F, 4F) ¼ three or four light
flavors; (1L, 2L) ¼ one-loop complete or partial two-loop;
(T,

ffiffiffi
π

p
T, πT) ¼ renormalization scale.

3F, 1L, T 3.6
3F, 2L, T 10
3F, 1L,

ffiffiffi
π

p
T 4.9

3F, 2L,
ffiffiffi
π

p
T 7.2

4F, 1L,
ffiffiffi
π

p
T 3.2

4F, 2L,
ffiffiffi
π

p
T 5.2

3F, 1L, πT 6.0
3F, 2L, πT 5.5
4F, 1L, πT 4.0
4F, 2L, πT 3.8

1Uncertainty from higher-order corrections to the running of αs
are extremely subdominant.

AXIONS, INSTANTONS, AND THE LATTICE PHYSICAL REVIEW D 96, 095001 (2017)

095001-3



m2
D ¼ ðmDÞ20 þ

2Ng2

4π
TðmDÞ0 lnðmD=g2TÞ þ � � � : ð2:12Þ

The next-to-leading-order correction is of order g3, signaling
a breakdown of the perturbation expansion. It has been
suggested [12,17] that the uncertainty on χðθ; TÞ might be
much larger than estimated in the previous section, due to the
presence of such IR divergences.2

In the instanton computation, there is both a question
of principle and a question of numerics. We have seen that
it is not low spatial momenta that are relevant in the
instanton background, but momenta of order k ∼ 1=ρ ∼ T.
Consequently, for the dominant semiclassical configura-
tions with ρ ∼ 1=T ≪ Λ, the IR divergences in Π44 are cut
off at T in the instanton effective action Seff . The correc-
tions to Seff from individual diagrams are then well-
behaved and proportional to gðTÞ2T2. Thus, as a matter
of principle, IR-divergent corrections to mD in the pertur-
bative vacuum do not indicate a loss of perturbative control
or a significant source of uncertainty in the instanton
computation of Fðθ; TÞ.
However, until T is extremely large, gðTÞ is Oð1Þ in

QCD, and there is no parametric separation between mD
and T. Therefore, Eq. (2.12), valid in the perturbative
vacuum, might still be used as an estimate for the typical
size of corrections to the effective action in the instanton
background. Numerically, it gives rise to

ðmDÞ1
ðmDÞ0

≃ 0.6 ð2:13Þ

at T ¼ 1.5 GeV. The instanton-induced free energy scales
approximately as the 7th − 8th power of the infrared cutoff
on ρ, so from Eq. (2.13) we are led to associate an
uncertainty in the free energy due to two-loop finite
temperature corrections,

ΔF0ð1.5Þ
F0ð1.5Þ

≃ 20: ð2:14Þ

We emphasize that a correction to the free energy of this
size does not reflect a breakdown of the semiclassical
analysis at this order. Organizing the instanton effective
action as

Sinst ¼ S0 þ S1 þ S2 þ � � � ; ð2:15Þ

at leading order, the action is

S0 ¼
8π2

g2
≃ 17 ð2:16Þ

at T ¼ 1.5 GeV. A shift in the free energy of order
Eq. (2.14) corresponds to

SDebye2

S0
≲ 0.2; ð2:17Þ

a controlled correction to the effective action. More
generally, we could estimate terms in the series by the
three-dimensional loop factor, which is of order

λ ¼ Ng2ðTÞ
ð4πÞ3=2 : ð2:18Þ

At T ¼ 1.5 GeV, λ ¼ 0.3. Two-loop corrections to the
effective action would then be expected to be of order

S2
S0

≃ λ2 ¼ 0.1 ð2:19Þ

consistent with the Debye estimate. In other words, there is
no reason to expect arbitrarily large corrections. The action
is exponentiated in the free energy, leading to the order-of-
magnitude uncertainty estimate in Eq. (2.14).
There is also the question of actual infrared divergent

contributions to the instanton action. These are associated
with low-momentum A⃗ fields and corrections to the
effective action involving no background fields. In the
zero-instanton sector, such infrared divergences arise in
the free energy first at four-loop order. It is believed that
they are cut off at a scale of order g2T, the presumed mass
gap of the three-dimensional gauge theory. The typical
diagram involves six vertices connected by propagators,
and the divergence arises when all vertices are well-
separated. A computation at high order in the instanton
background is complex, but for ρ of order T−1, the infrared
divergence should be similar. At zero temperature, the
propagators are known [24,25], and at distances large
compared to ρ, they are close to free-field propagators.
At finite temperatures, when all coordinates except x4 are
large compared to T−1 and ρ, we expect something similar,
leading to an infrared divergent correction at the same
order as at zero temperature. At 1.5 GeV, this suggests a
perturbatively incalculable correction to the instanton
action at the 1% level.
In summary, IR divergences do not appear relevant to the

instanton computation, and semiclassical analysis is under
sufficient theoretical control to admit uncertainty estimates.
Absent a complete two-loop computation, we will take
the perturbative Debye mass correction, Eq. (2.14), as a
conservative estimate of the uncertainty in the θ-dependent
free energy. UV cutoff–sensitive corrections and uncer-
tainties in αs are expected to be subdominant to the finite-T

2It should be noted that the existence of such corrections is not
connected with the presence of light fermions. In particular,
fermions do not introduce infrared divergences at high temper-
ature. Therefore, even lattice studies focusing on the size of
corrections in the pure gauge theory are of interest.
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corrections to the effective action, and Eq. (2.16) indicates
that dilute gas corrections are expected to be negligible.
We therefore know with some confidence the range

of possible behaviors for the axion potential both at
temperatures below the critical temperature (∼150 MeV
for Nf ¼ 3) and at temperatures a few GeV and above.
These boundary properties constrain the behavior in the
intermediate range of temperatures, which happen to lie
where the axion begins to oscillate in conventional scenar-
ios. For this reason lattice computations (that successfully
reproduce the high-temperature behavior) can be of value.
On the other hand, as we will describe below, if we simply
assume a smooth interpolation between the two regimes,
the axion relic density is not very sensitive either to the
form of the interpolation or the uncertainty in the high
energy semiclassical computation.
In closing this section, we note that there have been

arguments that the behavior of χ is drastically different at
high temperatures than the semiclassical result, even turn-
ing off exponentially rapidly with temperature [26–29]. We
will not address this possibility further here, but it is
certainly true that in such a circumstance substantially
different axion relic densities can be obtained [10,28,29].

III. χ ðTÞ AT INTERMEDIATE TEMPERATURES

We have argued that we know the high-temperature
behavior of χ to about an order of magnitude. At scales
below 1 GeV, the coupling rapidly becomes strong, and
other methods are needed to determine the axion mass.
At very low temperatures, the θ dependence of the

vacuum energy is known reliably from current algebra,

Fðθ; 0Þ ¼ −3.6 × 10−5 GeV4 cosðθÞ: ð3:1Þ
Finite temperature lattice computations indicate that the
topological susceptibility,

χðTÞ ¼ ∂2VðTÞ
∂θ2

����
θ¼0

; ð3:2Þ

is near its zero-temperature chiral perturbation theory
(ChPT) value at temperatures of order 100 MeV, and
remains approximately equal to it until at least the chiral
phase transition near 150 MeV [8]. Beyond this scale, only
lattice computations can accurately determine χðTÞ, and at
present there are varied results in the literature.
However, for the purposes of computing the axion relic

density, it turns out to be sufficient to consider simplemodels
that interpolate between the ChPT and instanton regimes.
We will adopt the following class of models for Fðθ; TÞ:

Fðθ; TÞ ¼

8><
>:

−χð0Þ cos θ; 0 < T < T2

−χðT0ÞðT0

T Þn cos θ; T2 < T < T0

−χðT0ÞðT0

T Þ8 cos θ; T > T0

ð3:3Þ

Here T0 is the “anchor point” for the instanton regime.
The results of [8] suggest that the slope of χ is instantonlike
down to temperatures a few times Tc; however, tomaintain a
minimal uncertainty in the semiclassical computation, we
fix T0 ¼ 1.5 GeV. As discussed below, our modeling still
includes the possibility of instantonlike slopes at lower T.
We will vary χðT0Þ within the uncertainty on the instanton
computation. T2, the anchor point for the ChPT regime, is
related to T0 and the slope of the power law in the model by

Tn
2 ¼ Tn

0 ×
χðT0Þ
χð0Þ : ð3:4Þ

We vary n such that T2 varies between 100 and 500 MeV.
Given T0 ¼ 1.5 GeV, values of T2 of order 150 in fact
correspond to n≃ 8, equivalent to assuming instantonlike
behavior persists significantly below T0. Larger values for
T2 above the critical temperature Tc are not based on
physical considerations, but instead are included to partially
accommodate the lattice results of [7,14], which found very
shallow falloff of χðTÞ above the chiral phase transition.
This behavior is then approximated in the models of
Eq. (3.3) for larger T2 by zero falloff until T2. However,
Refs. [7,14,17] extrapolated the shallow power law behavior
up to high temperatures, leading to values for F0 many
orders of magnitude different from the semiclassical result.
Our insistence on reaching instanton behavior by 1.5 GeV
[within the uncertainty (2.14)] requires an even steeper
power law to set in above T2 when T2 ≫ Tc. Numerically, n
will fall in the range 7–20, with the lower values corre-
sponding to lower values of T2.

IV. AXION RELIC DENSITY
FROM MISALIGNMENT

We can now assess the sensitivity of the axion relic
density to uncertainties in χðTÞ, including both the uncer-
tainties in the instanton computation and the range of
models for the behavior at intermediate temperatures. In the
figures below we will numerically integrate the equation of
motion,

äþ 3H _aþ V 0ðaÞ ¼ 0: ð4:1Þ

However, for qualitative purposes, a good approximation is
obtained by treating the axion as frozen until a temperature
Tosc [30,31]:

maðToscÞ ¼ 3HðToscÞ: ð4:2Þ

At this point, the axion begins to oscillate with a time-
(temperature-) dependent mass. Approximating the energy
density by

ρðtÞ ¼ 1

2
_a2 þ 1

2
m2

aðTÞa2; ð4:3Þ
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one can show that it evolves with temperature as

ρðTÞ ¼ ρðToscÞ
�
R3ðToscÞ
R3ðTÞ

�
maðTÞ
maðToscÞ

: ð4:4Þ

Within the range of maðTÞ that we consider, Tosc is always
less than the instanton anchor point T0. Therefore, Eq. (4.2)
can be solved by substituting the intermediate power-law
behaviors for maðTÞ; the instanton asymptotics constrain
the range of intermediate power laws considered.
The relic density Ωa can then be expressed as a function

of the parameters χðT0Þ and n (or T2). The result is:

Ωaxion ¼ 0.13 × ð7.3Þ 2
4þn

�
ma

30 μeV

�
−6þn
4þn

×

�
χ0ð1.5Þ

3.7 × 10−14 GeV4

�
− 1
4þn
�

θ0
2.155

�
2

ð4:5Þ

where θ0 is the initial misalignment angle and ma is the
zero-temperature axion mass. Taking, for example, ma ¼
30 μeV and a few values for χ0ð1.5Þ and n gives the results
in Table II. Alternatively, for fixed Ωaxion ¼ ΩDM, we
obtain

�
ma

30 μeV

�
¼ 0.51 × ð2.4Þ 6

6þn

�
χ0ð1.5Þ

3.7 × 10−14 GeV4

�
− 1
6þn

×

�
θ0

2.155

�8þ2n
6þn

�
ΩDM

0.25

�
−4þn
6þn

: ð4:6Þ

Eq. (4.5) indicates that the relic density is substantially
insensitive to the magnitude of the free energy at high
temperatures; for T2 ¼ 150 MeV (n ∼ 8), χ0 enters to the
− 1

12
power. Therefore, sizable uncertainties in χ0 translate

into modest uncertainties in ma, also observed in [8].
Similarly the dependence on n (T2) is mild. The lattice
results of [8,13], for example, differ from our estimate of
χ0ð1.5Þ by a factor of about 10, and exhibit power-law
behavior corresponding to n≃ 8. If the Peccei-Quinn phase
transition occurs after inflation, this factor of 10 leads to

about a 15% decrease in the value of the axion mass
required to account for the observed dark matter density.
To obtain a more accurate result for the late-time relic

density, we solve the full axion equation of motion numeri-
cally through the time where it starts to oscillate. Figure 1
shows the relic density obtained in this way for two values
of T2 and a range of χ0, in the postinflationary Peccei-
Quinn-breaking scenario (θ0 ¼ 2.155). Compared to the
analytic estimate (4.5), the full numerical solution yields
marginally higher Ω for fixedma. Even with the factor of 5
variation in T2 and the factor of 202 variation in χ0, we find
that the axion mass required to account for all of dark
matter varies by only a factor of 2–3.
Additional sources of axion production (cosmic strings)

can force a larger axion mass. These masses are, indeed, at
the edge of capability of cavity experiments like ADMX,
and are the focus of much future planning. However, these
sources of energy density, as well as the constraint on θ0,
are not necessarily present in the early Universe.
In fact, there is not necessarily a Peccei-Quinn transition

at all [32]. The approximate Peccei-Quinn symmetry, if it
exists, is almost certainly an accident. This accident may
not occur at the high temperatures or high curvatures that
characterize the early Universe. In this case, the initial value
of θ is a fixed number, or possibly one of a set of discrete

TABLE II. Axion relic density as a function of model param-
eters as computed with the approximate formula (4.5). Here
mað0Þ ¼ 30 μeV, χ0 is given in units of 3.7 × 10−14 GeV4, and
the misalignment angle is set to the value appropriate for post-
inflationary breaking of the Peccei-Quinn symmetry, θ0 ¼ 2.16.

Ω

n χ0 ¼ 1=10 χ0 ¼ 1 χ0 ¼ 10

8 0.22 0.18 0.15
14 0.18 0.16 0.14
20 0.17 0.15 0.14

5 10 50 100 500
0.05

0.10

0.50

1

ma (µeV)

FIG. 1. Axion relic density from misalignment in the post-
inflationary scenario. Colors correspond to different models for
the temperature-dependent free energy between the dilute gas at
high temperatures and chiral perturbation theory at low temper-
atures. Specifically, the blue (green) band sets the anchor point
for ChPT at T2 ¼ 100ð500Þ MeV. The width of each band
reflects the uncertainty in the instanton computation of the free
energy used as an anchor at T¼1.5GeV, F0 → ð1=20; 20Þ × F0,
c.f. Eqs. (2.9) and (2.14). The dashed line corresponds to the
value of F0ð1.5Þ obtained in the lattice calculation of Ref. [13].
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numbers. This number might well be small, or might be
Oð1Þ. Either has significant implications for the final dark
matter density.
Alternatively, there may be an approximate symmetry

both for low and high temperature (or curvature). The
question of whether the symmetry is broken during or
after inflation then depends, for example, on the coupling
of the inflaton to the field responsible for Peccei-Quinn
symmetry breaking. For example, there might be an
effective mass term for this field, of either sign. There
seems to be no particular reason to believe that one or the
other outcome is favored.
These different possibilities have been extensively stud-

ied in the literature. If the symmetry breaking occurs after
inflation, one has to average over random initial misalign-
ment angles, which fixes the parameter θ0 as above. In the
case of symmetry breaking before inflation, θ0 is a free
parameter. In Fig. 2 we show the sensitivity of the
misalignment angle required to saturate the relic density
to the uncertainty in χ0. As in the postinflationary case
studied above, we find that the theoretical uncertainties
have essentially no qualitative impact on the required
parameters. Furthermore, for a wide range of Oð1Þ values
for θ0, the relevant axion masses are compatible with
current and next-generation cavity experiments [4,33].

V. CONCLUSIONS

Within the conventional picture of axion cosmology, we
have found that the standard computation of the axion
relic density is relatively robust against theoretical uncer-
tainties stemming from the dilute gas computation of the
QCD free energy at high temperatures and the behavior of

the free energy at strong coupling. In particular, we have
argued that the instanton computation is under sufficient
control at temperatures of 1–2 GeV to allow a reasonable
assessment of uncertainties due to higher-order correc-
tions. These corrections cannot amount to much more than
an order of magnitude in the free energy without an
unexplained breakdown in the semiclassical analysis. In
particular, we have argued that infrared divergences in the
Debye mass in the perturbative vacuum are not relevant in
the instanton background and cannot inject arbitrarily
large corrections to Fðθ; TÞ. Thus, while an improved
determination of the finite-temperature topological sus-
ceptibility would lead to improvement in the precision of
the (relic density, axion mass) relation, it is not expected
to lead to qualitative (order-of-magnitude) changes, and
modern cavity experiments retain significant discovery
potential.
However, in closing, we note that it has long been

recognized that the underlying cosmological assumptions
of the standard calculation may not hold, and that there is
good theoretical motivation to consider lighter axions with
larger decay constants. Within conventional effective field
theory, for example, it is hard to account for the requisite
quality of the Peccei-Quinn symmetry without invoking
large discrete symmetries. String theory points to a different
picture, in which the Peccei-Quinn symmetry appears
more natural [34]. The assumption that the underlying
mass scale is of the order of the Planck or unification scale
is suggestive of larger decay constants. It could also be that
four-dimensional effective field theory is not useful at
scales orders of magnitude below the Planck scale, as in
large or warped extra dimension scenarios, and early
Universe cosmology might be substantially modified.
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FIG. 2. Axion relic density from misalignment in the preinflationary scenario. The curve shows the misalignment angle needed to
obtain Ω ¼ 0.258. The band reflects the uncertainty in the instanton computation of the free energy, Eq. (2.14), used as an anchor at
T ¼ 1.5 GeV, and the anchor point for ChPT has been fixed to T2 ¼ 140 MeV. Left panel: log-log axes over a broad range of axion
masses. Right panel: linear axes over a range of axion masses in reach of current and next-generation ADMX [33].
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