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We present a new technique for extracting decay and transition rates into final states with any number
of hadrons. The approach is only sensitive to total rates, in which all out-states with a given set of QCD
quantum numbers are included. For processes involving photons or leptons, differential rates with respect
to the nonhadronic kinematics may also be extracted. Our method involves constructing a finite-volume
Euclidean four-point function, with a corresponding spectral function that measures the decay and
transition rates in the infinite-volume limit. This requires solving the inverse problem of extracting the
spectral function from the correlator and also necessitates a smoothing procedure so that a well-defined
infinite-volume limit exists. Both of these steps are accomplished by the Backus-Gilbert method, and, as we
show with a numerical example, reasonable precision can be expected in cases with multiple open decay
channels. Potential applications include nucleon structure functions and the onset of the deep-inelastic
scattering regime, as well as semileptonic D and B decay rates.
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I. INTRODUCTION

Reliably calculating the low-energy phenomenology of
the strong interaction is very challenging. One major source
of complication is that the underlying gauge theory, QCD,
is most simply expressed in terms of color-charged quarks
and gluons, whereas the low-energy degrees of freedom of
the theory are confined color-singlet states, called hadrons.
In the past few decades, great progress has been made in
extracting the low-energy hadron spectrum and its structure
directly from QCD, by numerically estimating the quantum
path integral on a discretized, finite-volume Euclidean
space-time.
This approach, called lattice QCD, enables one to

calculate the discrete spectrum of QCD on a three-
dimensional torus, i.e. a cubic spatial volume with perio-
dicity L, as well as matrix elements of quark-field operators
between finite-volume Hamiltonian eigenstates. Taking
discretization and finite-time effects to be negligible, it
is important to understand how the energies and matrix
elements on the torus can be related to the infinite-volume
observables of the theory.
For example, in theories with a mass gap, such as

QCD, one can define single-particle finite-volume states
as those corresponding to a pole in the correlation function

that remains isolated even if the spatial volume is taken
to infinity. The energies of such states, with vanishing
spatial momentum, are known to satisfy EQðLÞ ¼
MQ þOðe−MπLÞ, where Mπ is the physical mass of the
lightest degree of freedom, the pion in QCD, andMQ is the
mass of the particle with quantum numbersQ [1]. For such
states, one aims to calculate EQðLÞ at multiple volumes
and extrapolate to the infinite-volume limit. Similarly, local
matrix elements with single-hadron states are exponentially
close to their infinite-volume counterparts, so that one can
hope to estimate the experimental observable by taking
MπL sufficiently large.
By contrast, for multiparticle states, i.e. those that do not

satisfy the condition given above, a naive infinite-volume
limit is not useful.1 For a given box size, the energy of the nth
multiparticle state contains information about the interactions
of the particles, but as L → ∞ with n fixed, this state flows
to the threshold value, e.g. 2MQ. Instead, the now-standard
approach is to use finite-volume as a tool, rather than an
unwanted artifact, by applying analytic, field-theoretic rela-
tions between finite- and infinite-volume quantities.
This approach was pioneered by Lüscher, who derived a

quantization condition relating the finite-volume spectrum
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1One can also define a distinction between single- and multi-
particle states in a finite volume based on the energies of the
finite-volume states in relation to infinite-volume thresholds. A
particularly clear discussion of this is given in Sec. 7.2 of Ref. [2].
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to the two-to-two scattering amplitude in the case of
identical scalar particles [2,3]. The formalism includes
all partial waves but assumes that the two-particle states
have zero total momentum in the finite-volume frame and
also neglects exponentially suppressed terms of the form
e−MπL. More recently, this idea has been generalized to
describe systems with nonzero momentum, as well as any
number of strongly coupled two-particle channels, includ-
ing nonidentical and nondegenerate particles as well as
intrinsic spin [4–16]. Extensions to three-particle scattering
are also underway [17–19].
A similar approach can be used to relate matrix elements

of finite-volume multiparticle states to their infinite-volume
counterparts, in order to extract electroweak decay and
transition amplitudes. Here, the paradigm example is the
weak decay K → ππ. The decay amplitude is given at
leading order in the weak interaction by the QCD matrix
element hππ; outjHð0ÞjKi, where Hð0Þ is the weak
Hamiltonian density expressed in terms of four-quark
operators. In lattice QCD, however, it is only possible to
calculate hn; LjHð0ÞjK;Li where jn; Li is a finite-volume
state with the quantum numbers of two pions.
In Ref. [20], Lellouch and Lüscher derived a conversion

factor relating these finite- and infinite-volume matrix
elements. The factor depends on the box size via a known
geometric function and also depends on the derivative
of the elastic pion scattering phase shift, ∂δππðkÞ=∂k,
evaluated at the kaon mass. This relation is being used
by the RBC/UKQCD Collaboration to perform a full-error-
budget calculation of K → ππ decays, aiming toward a
first-principles understanding of the ΔI ¼ 1=2 rule and a
prediction of ϵ0=ϵ [21,22].
The Lellouch-Lüscher relation has since been general-

ized to states with nonzero total momentum in the finite
volume and to coupled two-particle channels with non-
identical and nondegenerate particles, as well as particles
with intrinsic spin [5,6,13,15,23–27]. These extensions
also accommodate currents that carry angular-momentum,
momentum, and energy, allowing one to extract timelike
form factors as well as semileptonic decay amplitudes. In
Ref. [28], the relation was also extended to matrix elements
of the form hππ; outjJ ð0Þjππ; ini, providing a rigorous
path toward resonance form factors and transition ampli-
tudes. Going beyond single-current insertions, Ref. [29]
used techniques based in the Lellouch-Lüscher approach to
analyze long-distance contributions to KL-KS mixing from
a finite-volume Euclidean four-point function.
Aside from the two-to-two transitions and the neutral

meson mixing formalism, all relations of the Lellouch-
Lüscher type have the general form

hEkðLÞ;pjJ ð0ÞjΨ;PiL
¼

X
α

CαhEkðLÞ;p; α; outjJ ð0ÞjΨ;Pi; ð1Þ

where jΨ;Pi is a QCD-stable, single-particle state with the
indicated three-momentum. Here, α is summed over all
two-particle channels with the relevant quantum numbers.
For example, in the case of unflavored states, the sum
includes ππ and KK̄. In words, the finite-volume matrix
element on the left-hand side of Eq. (1) is equal to a linear
combination of all possible infinite-volume matrix ele-
ments in which the out-states have the appropriate quantum
numbers. The coefficients, Cα, depend on derivatives of all
parameters in this sector of the QCD scattering matrix as
well as on the box size.
Using this result to extract decay and transition ampli-

tudes for heavy mesons is extremely challenging. For a
system with N open decay channels, one must first use
extensions of the Lüscher formalism to extract all QCD
scattering parameters, at multiple energies near the target
decay energy, in order to estimate the derivatives. Given
these, it is possible to calculate the coefficients, Cα. In a
second step, one must then calculate finite-volume matrix
elements at different box sizes but with the same energies,
in order to generate multiple equations of the form (1),
with only the infinite-volume matrix elements unknown.
Given N-independent results, one can invert the relations
to determine the various transition amplitudes.2

It is also important to note that this approach is currently
only available for energies below the production of the
lightest state with more than two hadrons. For example, in
the case of unflavored final states, one is limited by either
the three- or four-pion threshold. The situation is particu-
larly frustrating for the decay of charmed or bottom mesons
as these can produce pions copiously, and only by
disentangling all open channels can one make a statement,
about, say, D → ππ; KK̄. In addition, we note that the
number of open channels counts not only the species in the
asymptotic states but also the angular momentum. For
example, in the case of Nγ → Nπ transitions, the finite-
volume matrix element will be contaminated by multiple
angular-momentum states, a problem that worsens as the
center-of-mass energy is increased.
Given these complications, it is prudent to investigate

whether an alternative approach can be used to extract
decay and transition rates from lattice QCD. In this work,
we consider cases in which total transition rates into all out-
states with given QCD quantum numbers are of interest.
This is less information than the individual transition
amplitudes of Eq. (1), and it is reasonable to ask whether
it can be accessed in a more direct manner.
Our method is inspired by Fermi’s Golden Rule. Imagine

a quantum system defined initially on a three-dimensional
torus, described by a Hamiltonian H ¼ H0 þ V, with an
unperturbed partH0 under which a particleΨ is stable (with

2In certain cases, an ambiguity in the overall phase may require
an additional constraint beyond the N that are always needed; see
also the discussion in Ref. [13].

HANSEN, MEYER, and ROBAINA PHYSICAL REVIEW D 96, 094513 (2017)

094513-2



massM), and a small perturbation V that allows it to decay.
According to the standard derivation of Fermi’s Golden
Rule, the decay rate of Ψ in its rest frame in infinite volume
can be calculated using the double limit3

Γ ¼ 2π lim
t→∞

lim
L→∞

X
k

jVkðLÞj2δ1=tðEkðLÞ −MÞ; ð2Þ

where VkðLÞ ¼ hk; LjVjΨi is a finite-volume transition
matrix element with unit-norm states and where

δ1=tðωÞ ¼
2

π

sin2ðωt=2Þ
ω2t

; ð3Þ

can be interpreted as a regularized delta function. The sum
extends over states with energy EkðLÞ, required to lie
within a fixed interval centered at M. A key observation
that we exploit in this paper is that, if one is only interested
in Γ, other forms of regularized delta functions can be
inserted into Eq. (2) without affecting the result, as long as
the regularization is removed at the end. Note that the order
of limits in Eq. (2) is important.
We can rewrite the particle width as

Γ ¼ 1

2M
lim
Δ→0

lim
L→∞

Z
∞

0

dω

�
4πM

X∞
k¼0

jVkðLÞj2δðω − EkðLÞÞ
�

× δ̂ΔðM;ωÞ; ð4Þ

where the resolution function δ̂ΔðM;ωÞ is a regularized
delta function centered at energy M with a characteristic
width given byΔ and falling off sufficiently rapidly at large
ω. The expression in square brackets is the finite-volume
spectral function, denoted ρðω; LÞ. Related spectral func-
tions are a central concept in finite-temperature lattice QCD
studies (see e.g. Refs. [30–34]4). Bringing these ideas
together, in this work, we present a formalism for extracting
total decay and transition rates by extracting smeared
spectral functions from appropriately constructed finite-
volume, Euclidean correlation functions. The formalism is
valid for final states with any number of outgoing hadrons
and does not require disentangling the exclusive transition
amplitudes.
Our method requires solving an inverse problem of the

Laplace type,

Gðτ; LÞ ¼
Z

∞

0

dω
2π

e−ωτρðω; LÞ; ð5Þ

where Gðτ; LÞ is a Euclidean correlator computed on the
lattice. We envision using the Backus-Gilbert method
[32,35–38] to achieve this aim.
The Backus-Gilbert method gives a linear and model-

independent approach for solving inverse problems such
as that described by Eq. (5). By following a prescribed
algorithm, outlined in Eqs. (31)–(33) below, one deter-
mines a set of coefficients CjðωÞ, one for each time slice
upon which Gðτ; LÞ has been evaluated. The coefficients
are designed so that the spectral function can be estimated
from the correlator via

ρðω; LÞ ∼
X
j

CjðωÞGðτj; LÞ; ð6Þ

where the sum runs over all available time slices. More
precisely, the Backus-Gilbert method gives an estimate for
the finite-volume spectral function, smeared by a resolution
function, δ̂Δðω̄;ωÞ. This is a normalized function of ω
peaked at some fixed ω̄ with characteristic width Δ.
This smearing is a natural consequence of attempting

to solve the inverse problem. Any approach with this aim
must somehow reflect the fact that the input information
is not sufficient to completely determine the underlying
spectral function. In the present case, the smearing is
actually desirable as it regulates the delta functions corre-
sponding to the discrete finite-volume energies. The
smeared spectral function has precisely the form appearing
in the double limit of Eq. (4). By varying the width of the
resolution function and the box size of the calculation, one
can estimate the double limit required to extract total decay
or transition rates. Of course, one can apply other methods
of solving the inverse problem to study the transition and
decay rates, provided that these offer a smearing with a
known characteristic width. Advantages and disadvantages
of the Backus-Gilbert method as compared to other
approaches are discussed, for example, in Ref. [32].
We emphasize that, in processes in which the hadronic

final states are produced with varying energy, such as in
semileptonic D or B decays, the smeared spectral function
obtained from the lattice can be compared model inde-
pendently to the experimental decay rate, at the cost of
smearing the experimental information in the exact same
way. This comparison may be performed in a model-
independent way with the Backus-Gilbert method, because
the smearing kernel (i.e. the resolution function) is known
exactly. In particular, no ad hoc functional ansatz is
required for the spectral function.
We note that the present application has two distinct

advantages over the finite-temperature studies that use the
same method. First, the larger range of Euclidean times in
zero-temperature calculations should lead to better con-
straints on the corresponding spectral function. Second, the
Backus-Gilbert method is known to work best for slowly
varying spectral functions and to struggle in determining

3To be precise, the kth term in Eq. (2) is equal to the probability
that in a measurement done at time t the system is observed in the
unperturbed state k, divided by t.

4In that context, the projector onto the initial state jΨihΨj is
replaced by the canonical thermal average 1

Z

P
ne

−βEn jnihnj.
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narrow features such as resonance peaks. In the present
case, we are interested in the spectral function near the
energy of the mother particle, but for differing QCD
quantum numbers, i.e. those of the final states after the
current-mediated transition. Thus, one can hope that in
many instances the spectral function will not exhibit a rapid
variation, in which case little information is lost due to our
lack of energy resolution.
We close the Introduction by highlighting some addi-

tional techniques for studying multihadron states, beyond
the methods related to that of Lellouch and Lüscher.
First, Ref. [39] gives an approach for using lattice QCD

to determine the shape function relevant for inclusive B
decays as well as structure functions in deep-inelastic
scattering. The method requires calculating a four-point
function and solving an inverse problem related, but not
equivalent, to Eq. (5). The main difference is that the
inverse problem of Ref. [39] is defined with respect to a
different momentum coordinate and that the integral is cut
off, in the case of heavy B decays at the mass of the B
meson. In contrast to the present approach, the earlier work
does not consider the role of the finite volume and does not
make reference to a specific algorithm, such as the Backus-
Gilbert method, for solving the inverse problem.
Second, Ref. [40] describes an idea for extracting

resonance parameters directly from Euclidean two-point
functions. The approach is applicable to systems with a
well-isolated, low-lying narrow resonance and makes use
of a model-independent parametrization that allows one
to determine resonance parameters by performing a fit to
numerical lattice data. Like our approach, the technique of
Ref. [40] requires estimating the L → ∞ limit.
Third, in Refs. [41,42], the authors consider four-point

functions, similar to those discussed here, for the purpose
of calculating semileptonic decays K → πlþl− and
K → πνν̄. In contrast to this work, in those references,
the authors do not consider the inverse problem, but rather
study the spectral decomposition of the Euclidean four-
point functions. This leads to growing exponentials that
must be removed in order to extract the quantities of
interest, and the authors describe in detail how this might
be done. In our approach, it is unnecessary—indeed
incorrect—to subtract any poles or their corresponding
exponentials. All contributions are part of the proper
definition of the spectral function. This feature comes at
the cost of tackling the difficult inverse problem.
Fourth, Ref. [43] gives a method for extracting the

optical potential from a numerical lattice calculation. This
allows one to access a particular scattering channel, for
example KK̄, above the threshold of another channel,
for example ππ. The finite-volume optical potential is
known to contain an infinite tower of poles, and one must
fit to a function of this form, apply an iϵ prescription, and
finally estimate the limit L → ∞ followed by ϵ → 0. The iϵ
provides an effective smearing of the optical potential that

makes the infinite-volume limit well defined, analogous
to the smearing that we achieve via the Backus-Gilbert
method. However, the method of Ref. [43] differs, for
example, in that it relies on extracting finite-volume energy
levels and requires twisted boundary conditions to sample
the finite-volume optical potential.
Fifth, Refs. [44–46] discuss prospects for studying the

hadronic tensor by solving the inverse problem on a
Euclidean four-point function in the same way as we
describe in this work. In contrast to the present study,
these references do not advocate the Backus-Gilbert tech-
nique and do not discuss finite-volume effects, the need for
smoothing, nor the ordered double limit that plays a central
role in the present analysis.
Sixth, and finally, Ref. [47] proposes to use, and

performs an exploratory lattice study of, Euclidean four-
point functions to study semileptonic B decays. Again, the
main contrast to our work is that the role of the finite
volume is not discussed. Reference [47] also advocates
avoiding the inverse problem by instead integrating the
experimental data against a multipole function to extract
tailored moments that can be more directly compared to
lattice data.
The remainder of this paper is organized as follows. In

the following section, we detail our formalism for estimat-
ing widths and differential rates from Euclidean correlators.
In Sec. III, we describe two specific examples in which our
approach may be applied, the transition regime between
elastic and deep-inelastic scattering as well as semileptonic
heavy-flavor decays. Next, in Sec. IV, we discuss the
relation of our approach to the Lellouch-Lüscher formalism
of Ref. [20]. This is followed by a numerical example of the
Backus-Gilbert method applied to a toy system in Sec. V.
We close with brief conclusions.

II. FORMALISM

In this section, we explain our approach for estimating
total decay and transition rates from lattice QCD. We also
discuss how the technique may be used to study photo-
production processes and semileptonic decays with differ-
ential rates in the photon or lepton-neutrino invariant mass
squared.
We begin with a strongly interacting quantum field

theory, described by the Hamiltonian density HQCDðxÞ,
and including a stable single-particle state satisfying

�Z
d3xHQCDðxÞ

�
jN;P; λi ¼ jN;P; λiEN; ð7Þ

where EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ P2
p

and MN is the physical mass of
the particle. Here, we have in mind a nucleon state, but our
formalism holds for any particle that is stable under the
strong interaction. In addition to a flavor label, N, and total
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three-momentum, P, we have included λ to denote the
azimuthal component of the particle’s intrinsic spin.
We next introduce the infinite-volume matrix element

ANðλÞ→αðE;pÞ≡ hE;p; α; outjJQð0ÞjN;P; λi: ð8Þ

Here, JQðxÞ is a local current, and hE;p; α; outj is a
multihadron out-state with energy E, total momentum p,
and all other quantum numbers labeled by the combined
index α. The multiparticle states have standard relativistic
normalization. For example, a two-particle state satisfies

hE;p;Nπ;k; outjE0;p0;Nπ;k0; outi
¼ 2ωN;k2ωπ;p−kð2πÞ6δ3ðk − k0Þδ3ðp − k − p0 þ k0Þ;

ð9Þ

where we have set the collective index α to represent a two-
particle state comprising a pion and a nucleon, with the
nucleon carrying momentum k or k0, and have also defined

ωN;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ k2

q
; ωπ;p−k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ ðp − kÞ2
q

:

ð10Þ

Throughout this work, we denote the number of hadrons in
an asymptotic state by Nα, e.g. in this case Nα ¼ 2.
In Eq. (8), we have allowed the energy and momentum of

the final state to differ from the single-hadron initial state.
This type of matrix element is appropriate for describing
transitions in which photons or leptons, represented by the
current JQ, inject or carry away some amount of energy
and momentum. Another case of interest is when the
current represents an insertion of the weak Hamiltonian,
mediating a decay into a purely hadronic final state. In this
case, we denote the initial state by jD;Pi and the operator
by HQ and define

AD→α ≡ hED;P; α; outjHQð0ÞjD;Pi: ð11Þ

Here, we have in mind theDmeson of the Standard Model,
which can decay into many multihadron final states. Again,
the labeling is only suggestive, as the formalism applies to
any QCD-stable states.
In lattice QCD, it is only possible to calculate finite-

volume matrix elements of the form

Mk;NðλÞ→Qðp; LÞ≡ hEkðLÞ;p;QjJQð0ÞjN;P; λiL; ð12Þ

Mk;D→QðLÞ≡ hEkðLÞ;P;QjHQð0ÞjD;PiL: ð13Þ

Our convention is such that the state JQð0ÞjN;P; λi has
quantum numbers Q, and so the final state must have
the same quantum numbers, as indicated. We define the

finite-volume states with unit normalization throughout,
e.g. hEkðLÞ;p;QjEkðLÞ;p;Qi ¼ 1.
It is nontrivial to relate the finite-volume matrix ele-

ments, Mk;NðλÞ→Qðp; LÞ and Mk;D→QðLÞ, to the transition
amplitudes, ANðλÞ→αðE;pÞ and AD→α. As was discussed in
the Introduction, and has been argued in various contexts
in Refs. [5,6,13,15,20,23–27], the finite-volume matrix
element is equal to a linear combination of all infinite-
volume matrix elements with asymptotic final states that
carry the same quantum numbers. In the finite volume, it is
not possible to define asymptotic states, and therefore
one cannot directly isolate exclusive multihadron decay
amplitudes. For example, if one considers charm to strange
decays, D → sþ X, then one must include out-states such
as K̄π, K̄ππ, K̄πππ, K̄ππππ, K̄KK̄.
In this work, we present an alternative approach that

allows one to directly calculate transition rates that are
integrated over all hadronic kinematics but are differential
rates with respect to nonhadronic degrees of freedom. To
define such total rates, one requires the standard Lorentz-
invariant phase-space measure for an Nα-particle state,

dΦαðk1;…; kNα
Þ≡ d3k1

ð2πÞ32ωk1

� � � d3kNα

ð2πÞ32ωkNα

ð2πÞ4

× δ4
�
P −

XNα

i¼1

ki

�
: ð14Þ

The phase-space measure can be used, for example, to
express total decay widths according to

ΓD→Q ≡ 1

2MD

X
α

1

Sα

Z
dΦαðk1;…; kNα

Þ

× jhED;P; α; outjHQð0ÞjD;Pij2; ð15Þ
where integration runs over all real values of all the three-
momenta in the measure. At leading order in the weak
interaction, ΓD→Q gives the total width of theDmeson into
all open hadronic channels with quantum numbersQ. Note
that, in the mother particle’s rest frame, this is an alternative
version of Eq. (2) in which the infinite-volume limit has
been rewritten as a phase-space integral.
Both differential and total rates can be directly extracted

from a more general object that we call the transition
spectral function and define as

ρQ;PðE;pÞ≡ 1

nλ

X
λ;α

1

Sα

Z
dΦαðk1;…; kNα

Þ

× jhE;p; α; outjJQð0ÞjN;P; λij2; ð16Þ
where the sum runs over all states in the Hilbert space
carrying the four-momentum ðE;pÞ and where Sα is the
symmetry factor that avoids double counting phase-space
points related by the exchange of identical particles. Here,
we use the notation appropriate for the nucleon.
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To rewrite ρQ;PðE;pÞ in a more useful form, we now apply a Fourier transform, together with its inverse, to reach

ρQ;PðE;pÞ ¼
1

nλ

X
λ

Z
d4xeiðE−ENÞt−iðp−PÞ·x

Z
d3p0

ð2πÞ3
Z

dE0

2π
e−iðE0−ENÞtþiðp0−PÞ·x

×
X
α

1

Sα

Z
dΦαðk1;…; kNα

ÞhN;P; λjJ †
Qð0ÞjE0;p0; α; outihE0;p0;α; outjJQð0ÞjN;P; λi: ð17Þ

The expression can be further simplified by moving the second exponential inside the leftmost matrix element and
identifying it as a standard translation operator on the current

ρQ;PðE;pÞ ¼
1

nλ

X
λ

Z
d4xeiðE−ENÞt−iðp−PÞ·x

Z
d3p0

ð2πÞ3
Z

dE0

2π

×
X
α

1

Sα

Z
dΦαðk1;…; kNα

ÞhN;P; λjJ †
QðxÞjE0;p0; α; outihE0;p0;α; outjJQð0ÞjN;P; λi; ð18Þ

where the leftmost current is now evaluated at x ¼ ðt;xÞ.
We now identify the integrals over E0 and p0 together

with the sum over α and integrals over dΦα, as a sum over
all states with quantum numbers Q in the QCD Hilbert
space. This sum over states, together with the outer product
appearing between the factors of JQ, defines an insertion
of the identity. Thus, Eq. (18) can be rewritten as

ρQ;PðE;pÞ ¼
1

nλ

X
λ

Z
d4xeiðE−ENÞt−iðp−PÞ·x

× hN;P; λjJ †
QðxÞJQð0ÞjN;P; λi: ð19Þ

We deduce that the transition spectral function can be
written as the expectation value of a product of field
operators in a one-particle external state. We emphasize
here that the matrix element on the right-hand side is
evaluated in infinite volume, with real Minkowski time
coordinates, and is not time ordered.
In Sec. III, we describe in specific cases how the

transition spectral function can be used to compute decay
rates and cross sections. Here, we simply note that the total
decay width (15) into hadronic final states can be written as

ΓD→Q ¼ 1

2MD
ρQ;PðED;PÞ

¼ 1

2MD

Z
d4xhD;PjHQðxÞHQð0ÞjD;Pi: ð20Þ

The main focus of this work, however, is the more
interesting case in which the energy of the outgoing
hadrons differs from that of the initial state.
At this point, we have established that the transition

spectral function, defined in Eq. (16), gives access to
differential transition rates and total decay rates, and have
also shown how it may be expressed as a matrix element
with two current insertions. However, the discussion thus
far, summarized by Eqs. (19) and (20), has relied crucially
on the fact that all quantities are defined in an infinite

volume and with real, Minkowski-signature time coordi-
nates. Thus, the relations do not seem to be of relevance for
calculations in lattice QCD, necessarily restricted to a finite
volume and to a Euclidean signature.
To bridge this gap, we now consider the finite-volume

Euclidean correlator most closely related to that used above,

GQ;Pðτ;x; LÞ
≡ 2ENL3e−ENτþiP·x lim

τf→∞
lim

τi→−∞

×

P
λhΨλðτf;PÞJ †

Qðτ;xÞJQð0ÞΨ†
λðτi;PÞiconnP

λhΨλðτf;PÞΨ†
λðτi;PÞi

;

ð21Þ

where Ψ†
λðτi;PÞ is an interpolator for the nucleon with

total momentum P and spin component λ and the
subscript “conn” indicates subtraction of hJ †

Qðτ;xÞJQð0Þi
hΨλðτf;PÞΨ†

λðτi;PÞi. Throughout this work, we take τ > 0.
Evaluating the large time limits, we reach

GQ;Pðτ;x;LÞ ¼ 2ENL3e−ENτþiP·x

×
1

nλ

X
λ

hN;P; λjJ †
Qðτ;xÞJQð0ÞjN;P;λiL:

ð22Þ
Next, we project the current to a definite three-
momentum, defining

~GQ;Pðτ;p; LÞ≡
Z

d3xe−ip·xGQ;Pðτ;x; LÞ; ð23Þ

¼ 2ENL3e−ENτ

Z
d3xe−iðp−PÞ·x

×
1

nλ

X
λ

hN;P; λjJ †
Qðτ;xÞJQð0ÞjN;P; λiL: ð24Þ
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Finally, inserting a complete set of finite-volume states into
Eq. (23) gives

~GQ;Pðτ;p;LÞ¼2ENL6
X
k

e−EkðLÞτjMk;D→Qðp;LÞj2; ð25Þ
where the squared magnitudes on the right-side are given
by spin averaging the squared magnitudes of the matrix
elements defined in Eq. (12).
Equation (25) can be rewritten as

~GQ;Pðτ;p; LÞ ¼
Z

∞

0

dω
2π

e−ωτρQ;Pðω;p; LÞ; ð26Þ

where

ρQ;PðE;p;LÞ≡2ENL6
X
k

jMk;N→Qðp;LÞj22πδðE−EkðLÞÞ

ð27Þ
is the finite-volume spectral function. Substituting this sum
of delta functions into Eq. (26) and evaluating the integral
immediately gives back Eq. (25). We emphasize at this
stage that, while the infinite-volume spectral function gives
direct access to the decay width, in the finite volume, we
have a sum of delta peaks. Naively sampling ρQ;PðE;p; LÞ
at a specific energy cannot give any useful information as
the result will either vanish or diverge.
To recover the total decay width, we need to construct

a sensible infinite-volume limit of the spectral function.
To do so, we introduce δ̂Δðω̄;ωÞ as a regularized delta
function, centered at ω̄ with width Δ. We require only that
this satisfies Z

∞

0

dω δ̂Δðω̄;ωÞ ¼ 1;

lim
Δ→0

Z
∞

0

dω δ̂Δðω̄;ωÞϕðωÞ ¼ ϕðω̄Þ; ð28Þ

for a smooth test function ϕðωÞ. In our approach, δΔðω̄;ωÞ
will tend to zero exponentially for large ω. We then define

ρ̂Q;Pðω̄;p; L;ΔÞ≡
Z

∞

0

dω δ̂Δðω̄;ωÞρQ;Pðω;p; LÞ: ð29Þ

This smoothing procedure replaces the sum over delta
functions with a smooth function that has a well-defined
infinite-volume limit.
In particular, the smoothing allows us to make contact

with the discussion of Fermi’s Golden Rule in the
Introduction. There, we described how the width of the
mother particle is given by studying the system in finite
volume and summing over the squared magnitudes of
individual finite-volume matrix elements, multiplied by
regularized delta functions. That construction is identical
to that of the smoothed, finite-volume spectral function,
defined in Eq. (29). Thus, it follows that differential

transition rates can be accessed from the lattice framework
via the limits

ρQ;PðE;pÞ ¼ lim
Δ→0

lim
L→∞

ρ̂Q;PðE;p; L;ΔÞ; ð30Þ

where the order of limits is important.
The Backus-Gilbert method applied to the inverse

problem of determining ρQ;PðE;p; LÞ from ~GQ;Pðτ;p; LÞ
leads precisely to smoothed quantities of the form given in
Eq. (29). If the correlation function is known at a discrete
set of Euclidean times, τj, then the “resolution function”
δ̂Δðω̄;ωÞ should be constructed from the Laplace kernel,

δ̂Δðω̄;ωÞ ¼
X
j

Cjðω̄;ΔÞe−ωτj ; ð31Þ

with coefficients Cj chosen so as to minimize the width

Δ ¼
Z

∞

0

dωðω̄ − ωÞ2δ̂Δðω̄;ωÞ2; ð32Þ

under the unit-area constraint of Eq. (28). The Backus-
Gilbert method then yields an estimate of the smoothed
spectral function

ρ̂Q;Pðω̄;p; L;ΔÞ ¼ 2π
X
j

Cjðω̄;ΔÞ ~GQ;Pðτj;p; LÞ: ð33Þ

It is well-known that, due to the numerically ill-posed
nature of the inverse Laplace transform, reducing the width
Δ is computationally very costly. Nevertheless, we note
that the positivity property of the spectral function ameli-
orates the inverse problem. To gain some intuition on this,
in Fig. 1, we show the accuracy of estimating the infinite-
volume spectral function via the smeared finite-volume
result, for various values of 1=ðMπLÞ and Δ=Mπ , in the
case of a constant decay amplitude AK→ππ and negligible
interactions of the outgoing pions. In this example, we
use a normalized Gaussian for the resolution function, δ̂Δ.

5

While not equivalent to the resolution functions that result
from the Backus-Gilbert method, these results give an idea
of the optimal trajectory to follow in the ½Δ=Mπ; 1=ðMπLÞ�
plane. In particular, it is manifest that, if one decreases
Δ=Mπ at a fixedMπL, then the estimator completely fails at
some stage, when the value of width becomes too small.
This emphasizes the importance of the order in which the
limits are to be taken.

5More precisely, we define

δ̂Δðω̄;ωÞ ¼
1ffiffiffiffiffi
2π

p
Δ
e−ðω̄−ωÞ2=ð2Δ2Þ: ð34Þ

We caution that the Δ used here differs from that defined in
Eq. (32) by a factor of 4

ffiffiffi
π

p
.
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In the case of the K → ππ decay, this method is likely to
be less accurate than the Lellouch-Lüscher method. For
example, for the continuum ΔI ¼ 3=2 results for K → ππ
from the RBC/UKQCD Collaboration, the uncertainty
associated with the Lellouch-Lüscher factor together with
residual finite-volume effects is at the few-percent level
[21]. By contrast, in our Fig. 1, the relative uncertainty for
the rate ranges from ∼5% to ∼15% for reasonable choices
of MπL and Δ=Mπ .
Our method has the advantage of not requiring a detailed

understanding of the connection between the finite-volume
and infinite-volume matrix elements, which presumably
becomes untractable when many channels are open. As
already mentioned in the Introduction, for differential
transition rates, the limited energy resolution means that
our approach can only yield predictions in relatively broad
“energy bins” of width Δ, but it does not imply an
uncontrolled systematic error, given that the resolution
function (31) is known exactly. In the following section, we
discuss various specific examples in which the formalism
presented here seems particularly promising.

III. EXAMPLE APPLICATIONS

In this section, we present two examples of phenomeno-
logically interesting cases in which our formalism for
extracting total transition rates might be applied. In
Sec. III A, we discuss deep-inelastic scattering, and in
Sec. III B, we discuss semileptonic decays of heavy hadrons.

A. Deep-inelastic scattering

Deep-inelastic scattering (DIS), the collision of high-
energy leptons with hadrons via virtual photon exchange,

has played a major role in particle and nuclear physics.
The deep-inelastic scattering experiments in the late 1960s
revealed structure within the nucleon with initially surpris-
ing scaling laws, leading to partonic models and eventually
to the formulation of quark and gluon degrees of freedom
in QCD. In this subsection, we describe the application of
our general formalism to studying deep-inelastic scattering
in lattice QCD.
To make the presentation self-contained, we review some

of the basics of DIS. In Fig. 2, we give a schematic of
the events of interest. A hadron, usually a nucleon, with
mass M and four-momentum p collides with a hard lepton
carrying momentum k via the exchange of a virtual,
spacelike photon with momentum q. Defining k0 as the
outgoing lepton momentum, we have q≡ k − k0. The final
hadronic state produced in the collision is not detected, so
that we only have information about the total rates into all

q = k − k′
k

k′

p
px = p + q

FIG. 2. The kinematics of deep-inelastic scattering. A proton
with momentum p collides with a hard lepton carrying
momentum k via exchange of a virtual, spacelike photon with
momentum q.

FIG. 1. Accuracy of the infinite-volume spectral function as estimated from the smeared finite-volume spectral function for various values
ofMπL andΔ=Mπ . These plots were constructed assuming a single channel of noninteracting pions coupled via a constant amplitudeAK→ππ

to an initial kaon. The smearing herewas performedusing a normalizedGaussian for the resolution function δ̂Δ withΔ, defined in Footnote 4,
differing from the definition of Eq. (32) by a simple numerical factor. In the left panel,weplot the difference of the spectral function integrated
from E ¼ 0 to E ¼ 4Mπ , whereas in the right panel, we consider the fixed value E ¼ MK , that directly gives the decay rate.
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allowed states with momentum px ¼ pþ q ¼ pþ k − k0.
It is further convenient to define Q2 ¼ −q2, which is
positive for spacelike photon momenta. We also introduce
the Lorentz-invariant parameters

ν ¼ q · p
M

; x ¼ Q2

2Mν
: ð35Þ

Following the discussion of Ref. [48], we note that the
unpolarized cross section in the nucleon rest frame,

dσ ¼ e4

Q4

Z
d3k0

ð2πÞ32ωk0

4πlμνWμνðp; k − k0Þ
2k02Mðvrel ¼ 1Þ ; ð36Þ

is given by contracting the hadronic tensor, Wμν, discussed
in the following paragraphs, with the leptonic tensor, lμν,
defined as

lμν ¼
X
s0l

ūs0lðk0ÞγνuslðkÞūslðkÞγμus0lðk0Þ; ð37Þ

¼ 2ðkμk0ν þ kνk0μ − gμνk · k0 − iϵμναβqαslβÞ
þOðml=ΛÞ; ð38Þ

where ml is the lepton mass and Λ is a typical scale
of the scattering process. Here, us and ūs are standard
spinors, projected to spin state s and normalized so thatP

susðkÞūsðkÞ ¼ =kþml, and the γμ are standard Dirac
matrices. Note that the spin-independent part of lμν is
symmetric, while the spin-dependent part is antisymmetric.
Thus, an unpolarized lepton beam only probes the sym-
metric part of the hadronic tensor and the polarization
asymmetry of cross sections depends only on the hadronic
tensor’s antisymmetric structure. Here, we focus on the
unpolarized case.
The spin-averaged hadronic tensor, denoted Wμν, is

defined as

Wμνðp;qÞ¼
1

4πnλ

X
λ

Z
d4xeiq·xhN;p;λjjμðxÞjνð0ÞjN;p;λi;

ð39Þ

where nλ ¼ 2 for the nucleon and jμ ¼
P

fQfψ̄fγμψf is
the electromagnetic current, expressed as a sum over
all flavors f of quark bilinears, weighted by their charge,
Qf. The notation here is slightly different from the
previous section with the incoming nucleon carrying
three-momentum p. Following Ref. [48], we write

Wμν ¼ F1

�
−gμν þ

qμqν
q2

�

þ F2

p · q

�
pμ −

p · qqμ
q2

��
pν −

p · qqν
q2

�
; ð40Þ

where F1 and F2 are the structure functions and depend
only on q2 and p · q. Defining spq ¼ M2 − ðp · qÞ2=q2, the
individual structure functions can be isolated by taking the
linear combinations

F1 ¼
1

2

�
−Wμ

μ þ
1

spq
pμpνWμν

�
; ð41Þ

F2 ¼
p · q
2spq

�
−Wμ

μ þ
3

spq
pμpνWμν

�
: ð42Þ

The unpolarized cross section (36) for the inclusive
eþ p → e0 þ hadrons process can be written in terms of
these as

d2σ
dxdy

¼ e4ME
2πQ4

½xy2F1 þ ð1 − yÞF2�; ð43Þ

where y ¼ ðp · qÞ=ðp · kÞ represents the fractional energy
loss of the lepton in the nucleon rest frame.
Combining the definition of Wμν with the discussion of

the previous section, the task is to invert

~Gμν;pðτ;px; LÞ ¼
1

2π

Z
∞

0

dωe−ωτρμν;pðω;px; LÞ; ð44Þ

with the correlator

~Gμν;pðτ;px; LÞ

≡ 2EpL3e−Epτ

Z
d3xe−iq·x lim

τf→∞
lim

τi→−∞

×

P
λhΨλðτf;pÞjμðτ;xÞjνð0ÞΨ†

λðτi;pÞiconnP
λhΨλðτf;pÞΨ†

λðτi;pÞi
; ð45Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
. The important point is that the

role of ω, in terms of which the spectral representation is
written, is played by the energy p0

x of the final state.
Applying the Backus-Gilbert method leads to a

smoothed spectral function,

ρ̂μν;pðp0
x;px; L;ΔÞ≡

Z
∞

0

dω δ̂Δðp0
x;ωÞρμν;pðω;px; LÞ;

ð46Þ

from which one can estimate the hadronic tensor via

Wμνðp; qÞ ¼
1

4π
lim
Δ→0

lim
L→∞

ρ̂μν;pðp0
x;px; L;ΔÞ: ð47Þ

This expression makes manifest how the lattice calculation
yields a sharply defined outgoing total hadron momentum
px, but only limited resolution in the corresponding energy
p0
x. The Lorentz-scalar combinations
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pμpνWμν ¼ spq

�
−F1 þ

spq
p · q

F2

�
; ð48Þ

Wμ
μ ¼ −3F1 þ

spq
p · q

F2 ð49Þ

are the more primary quantities in our lattice approach than
F1 and F2, because the kinematic factors spq and p · q (but
not pμ) are affected by the limited resolution of p0

x.
In a lattice calculation, the four variables6 p2;q2;p · q,

and p0
x can be varied independently, with the first three

sharply defined, up to statistical uncertainties. Due to
Lorentz symmetry, however, the nucleon structure func-
tions only depend on two invariants: the photon virtuality
Q2 and the photon energy in the nucleon rest frame, ν, or
alternatively for the latter, the Bjorken variable x [see
Eq. (35)]. In general, there is therefore a two-parameter
family of lattice kinematic variables that realize a given
ðQ2; xÞ pair. This redundancy can be exploited to minimize
the impact of the limited resolution in p0

x. For instance, in
the deep-inelastic regime, the structure functions depend
only weakly onQ2, and therefore one might wish to reduce
the impact of the limited resolution in p0

x on the Bjorken
variable x and accept a broader “bin” in Q2.
Explicitly, the connection between the four lattice

variables and the relativistic invariant variables reads

Mν ¼ Epp0
x − E2

p − q · p; ð50Þ

Q2 ¼ q2 − ðp0
x − EpÞ2: ð51Þ

At fixed p and q, ν is thus an affine function of the
dispersion variable p0

x. Given these relations, it is straight-
forward to compute the linear propagation of the uncer-
tainty in the variable p0

x on the variables ν, Q2, and x.
Eliminating the “fuzzy” variable p0

x from Eqs. (50)–(51),
we obtain

1 ¼ Q2

q2
þ M2

E2
pq2

�
νþ q · p

M

�
2

: ð52Þ

In other words, fixed values of p and q define an ellipse in

the ðν;
ffiffiffiffiffiffi
Q2

p
Þ plane, centered at ð−q · p=M; 0Þ with long

radius Epjqj=M along ν and short radius jqj along
ffiffiffiffiffiffi
Q2

p
.

Thus, while the ellipse is “certain” in a given kinematic
setup on the lattice, the finite resolution in the variable p0

x
results in a spread along the ellipse. Contours of constant x

in the ðν;
ffiffiffiffiffiffi
Q2

p
Þ plane correspond to square-root functions.

Of particular interest is the point of maximum virtuality
Q2 for given q, which is reached when p0

x ¼ Ep, implying

Q2 ¼ q2; x ¼ q2

−2p · q
: ð53Þ

At that point, corresponding to the top of the ellipse, to
linear order, the uncertainty in p0

x only affects the variable ν
and not Q2; at the same level of approximation, the spread
Δx in Bjorken x reads

Δx
x

¼ −
Δν
ν

¼ E2
p

−p · q
Δ
p0
x

ðat Q2 ¼ q2Þ: ð54Þ

In Fig. 3, we plot the ellipses (52) for the case
px ¼ pþ q ¼ 0, corresponding to the rest frame of the
outgoing hadronic state, along with the x ¼ constant curves.
In this frame, the maximum value of Q2 at fixed q2

corresponds to x ¼ 1=2. For a more general frame defined
by p ¼ −βq, the maximum value of Q2 corresponds to

x ¼ 1

2β
;

Δx
x

≈
p2≫M2

β
Δ
p0
x
: ð55Þ

For β ¼ 1=2, the maximum Q2 point then corresponds
to probing elastic e, p scattering in the Breit frame,
p ¼ −q=2 ¼ −px. For β ¼ 1, px ¼ 0, and one is probing
x ¼ 1=2. To reach ever smaller values of xwhile keeping the
virtuality large, β must be increased further, and one
approaches the “infinite-momentum” frame of the nucleon.
However, it becomes increasingly difficult to maintain a
useful resolution in x, since the relative spread of p0

x gets
amplified by a factor β. Hence, x and its spread Δx become
comparable when β ¼ Oðp0

x=ΔÞ, and for a given relative
resolution on p0

x, effectively the smallest x that can be probed
is x ¼ OðΔ=p0

xÞ.
In summary, while there are kinematic limitations and

numerical challenges to a lattice calculation of hadronic
structure functions, there does not seem to be a conceptual
obstacle to probing structure functions down to x ≈ 1=3 at
Q2 ≈ 4 GeV2. It is well known to be difficult to achieve
a good signal-to-noise ratio even in nucleon two-point
functions at large separations. This problem is an algo-
rithmic one. To test the ideas presented here, it would be
interesting to first calculate the structure functions of the
pion, for which the signal-to-noise ratio is more favorable,
although it also deteriorates as the pion momentum p
increases. For that reason, the most promising opportunity
for lattice calculations may be to cover the transition region
from real photons to the onset of deep-inelastic scattering.
The formalism presented may also prove useful at the
conceptual level, e.g. in rederiving the theoretical predic-
tions for deep-inelastic scattering, in particular the develop-
ment of the amplitude in a series of twist-2 operators or its
representation through lightlike Wilson lines. The formal-
ism is also flexible enough to accommodate the spin-
dependent structure functions g1 and g2, different local
currents, for instance those determining neutrino DIS or the

6Here, we ignore possible violations of O(3) rotation symmetry
by the cubic box.
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interference of γ and Z exchange, and off-forward nucleon
matrix elements.
We also note that our method is complementary to the

approach of Ji, presented in Refs. [49,50]. In that work, the
author shows how structure functions may be studied via
equal-time matrix elements in the large momentum limit.
Such equal-time matrix elements can be directly extracted
from Euclidean correlation functions without solving the
inverse problem, but the large momentum limit is challeng-
ing in a realistic lattice calculation, and the renormalization
of the relevant operators is not yet well understood. It would
be interesting to compare the two approaches in more detail.
Finally, we remark that the Euclidean correlation func-

tion (45), after applying Euclidean-time ordering and
Fourier transforming with an imaginary frequency (eωτ),
gives direct access [51] to the nucleon forward Compton
amplitude for photon virtuality Q2 ¼ q2 − ω2, a very
worthwhile goal in itself.

B. Semileptonic decays: HQ → l + ν̄l +X

The matrix elements relevant for deep-inelastic scatter-
ing, discussed in the previous subsection, have a character
similar to those that enter semileptonic weak decays of
heavy mesons. The process of interest is shown in Fig. 4: an
incoming hadron, denoted HQ with four-momentum pH,
decays into a lepton, carrying momentum pl; an antineu-
trino, with momentum pν; and a hadronic state. The
subscript Q indicates the heavy quark contained within
the incoming hadron. We have in mind mesons with Q ¼ c
or b, but the approach described here can be used to
describe any semileptonic decay.
Defining q≡ pl þ pν, the hadronic matrix element

needed for HQ → lþ ν̄l þ X is very similar to that
described in the previous subsection: the only distinctions
are that q flows away from the vertex and is timelike and
that the current mediating the decay is modified. Following
Ref. [52], we aim to calculate the differential decay rate
with respect to the lepton energy, El; the lepton-neutrino

invariant mass, q2; and the lepton-neutrino combined
energy, q0. The final result can be expressed as

d3Γ
dEedq2dq0

¼ jVqQj2
G2

F

32π2
½2q2w1þ½4Eeðq0 − EeÞ− q2�w2

þ 2q2ð2Ee − q0Þw3�; ð56Þ

where VqQ is the Cabibbo-Kobayashi-Maskawa matrix
element describing the flavor change in the decay, GF is
the Fermi decay constant, and the wi are hadronic structure
functions.
The structure functions result from decomposing

W
HQ→X
μν ðv;qÞ

¼ 1

2MHQ

Z
d4xe−iq·xhHQ;pjJ †

μðxÞJ νð0ÞjHQ;pi; ð57Þ

where J μ ¼ q̄γμð1 − γ5ÞQ is the flavor-changing current
built from one heavy and one light flavor and MHQ

is the
mass of the mother particle. Here, we have expressed the
tensor in terms of the lepton-neutrino four-momentum, qμ,
together with the four-velocity of the incoming hadron,
vμ ¼ pμ

H=MHQ
. Given that the tensor only depends on these

two four-vectors, one can show that it must satisfy

FIG. 4. The kinematics of semileptonic decay. The incoming
hadron carriesmomentumpH , and the outgoing lepton and neutrino
carry pl and pν, respectively. We also define q ¼ pl þ pν.

FIG. 3. Plot of constant-jqj contours (ellipses) and constant x contours (square-root functions) in the ν;
ffiffiffiffiffiffi
Q2

p
plane. The smearing

limits resolution along the ellipses, as indicated in the right panel.
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W
HQ→X
μν ðv; qÞ ¼ −w1gμν þ w2vμvν − iw3ϵμναβvαqβ

þ w4qμqν þ w5ðqμvν þ vμqνÞ: ð58Þ

This defines the structure functions appearing in Eq. (56).
Thus, the task is to invert

~G
HQ→X
μν;p ðτ;px; LÞ ¼

1

2π

Z
∞

0

dω e−ωτρ
HQ→X
μν;p ðω;px; LÞ;

ð59Þ
with the correlator

~G
HQ→X
μν;p ðτ;px; LÞ

≡ 2EpL3e−Epτ

Z
d3xeiq·x lim

τf→∞
lim

τi→−∞

×
hΨQðτf;pÞJ †

μðτ;xÞJ νð0ÞΨ†
Qðτi;pÞiconn

hΨQðτf;pÞΨ†
Qðτi;pÞi

; ð60Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

HQ
þ p2

q
. Applying the Backus-Gilbert

method leads to a smoothed spectral function from which
one can estimate the hadronic tensor via

W
HQ→X
μν ðp; qÞ ¼ 1

2MHQ

lim
Δ→0

lim
L→∞

×
Z

∞

0

dω δ̂Δðp0
x;ωÞρHQ→X

μν;p ðω;px; LÞ:

ð61Þ
We note that this matrix element receives contributions from
intermediate states with dozens of hadrons, well beyond
the regime in which an exclusive, Lellouch-Lüscher-based
method can be applied. The utility of our approach is that all
states are included automatically. However, it remains to be
seen if the Backus-Gilbert approach can provide useful
information for such heavy mother particles.
We close this section by commenting that our formalism

may also be applied to extract total decay widths for
purely hadronic decays. One example in which total
decay widths are of interest is charm to strange decays,
in which a weak vector boson mediates a flavor change,
c → sud̄. This transition, relevant for Cabibbo-allowed
D-meson decays, is given at leading order by a weak
Hamiltonian of the form [53]

HQðxÞ ¼
GFffiffiffi
2

p V�
csVud½s̄ðxÞγμð1 − γ5ÞcðxÞ�

× ½ūðxÞγμð1 − γ5ÞdðxÞ�; ð62Þ
where s̄ðxÞ, cðxÞ, ūðxÞ, and dðxÞ are Dirac fields in the
various flavors.
This weak Hamiltonian couples the D meson to many

decay channels with two or more hadrons. To study this
transition via the Lellouch-Lüscher approach, one would

first need to generalize the formalism to accommodate all
multihadron states, including those with four outgoing
particles. One would then aim to disentangle the individual
decay rates by calculating finite-volume matrix elements in
different volumes, all tuned so that the final finite-volume
state has the same energy as the incoming D meson. In our
approach, the total width, ΓD→sþX, can be accessed by
calculating the appropriate four-point function and then
estimating the corresponding spectral function.
A closely related application is the calculation of the

lifetime of charmed baryons. Providing estimates of the
lifetime of the doubly charmed baryons Ξþ

cc [54] and Ξþþ
cc

would help their search at the LHCb. The spectroscopy
of these heavy baryons has recently been studied on the
lattice [55].
We comment that operator (62) mixes under renormal-

ization with a second operator in which color indices are
contracted between the two bilinears. Thus, the full
calculation requires defining HQ as a linear combination
with appropriate Wilson coefficients. We direct the reader
to Ref. [53] for details.

IV. COMPARISON TO THE
LELLOUCH-LÜSCHER METHOD

In this section, we study the relation between the
formalism presented above and the method of Lellouch
and Lüscher, described in Ref. [20]. For the case ofK → ππ
decays, Lellouch and Lüscher derived a relation between
finite- and infinite-volume matrix elements

jMk;K→ππðLÞj2 ¼
Ck

4MKEkðLÞ2L9
jAK→ππ½EkðLÞ�j2; ð63Þ

where

Ck ≡
�

1

4π2q2
∂ϕðqÞ
∂q þ 2π

p2L3

∂δππðpÞ
∂p

�
; ð64Þ

with p ¼ Lp=ð2πÞ and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EkðLÞ2=4 −m2

p
. Here, ϕðqÞ

is a known geometric function, and δππðpÞ is the s-wave
ππ → ππ scattering phase shift due only to QCD. This
relation holds up to neglected, exponentially suppressed
corrections of the form e−MπL. In order to extract a
physically meaningful decay amplitude directly, one
demands that the final two-pion state has the energy of
the initial kaon. In the center-of-mass frame, this requires
tuning the box size, so that one of the energy levels
coincides with the kaon mass, EkðLÞ ¼ MK.
This result has since been generalized to states with

nonzero total momentum in the finite-volume frame; multi-
ple coupled two-particle channels with nonidentical and
nondegenerate particles; particles with intrinsic spin; and
transitions in which the current carries angular-momentum,
momentum, and energy, so that these quantum numbers
differ between the initial and final states [5,6,13,15,23–27].
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In the present work, we do not require the precise
definition of ϕðqÞ. For our purposes, it is sufficient to
note that

lim
L→∞

Ck ¼ νk; ð65Þ

where νk is the degeneracy of the kth state in the non-
interacting theory, with the counting appropriate to non-
identical particles, i.e. ν0 ¼ 1, ν1 ¼ 6;…. To see this, we
first recall 4π2q2k=ϕ

0ðqkÞ ¼ νk where qk is the dimension-
less momentum of the kth noninteracting state [20].7

Equation (65) then follows from the fact that, as
L → ∞, any given finite-volume level will coincide with
its noninteracting counterpart. In addition, the second, δππ-
dependent term is suppressed for fixed k and large L and
thus vanishes in the infinite-volume limit.
Substituting Eq. (63) into the definition of the finite-

volume spectral function, Eq. (27), we find

ρQ;0ðE; 0; LÞ≡
X
k

Ck
2EkðLÞ2L3

jAK→ππ½EkðLÞ�j2

× 2πδðE − EkðLÞÞ; ð66Þ

and applying the smearing procedure then gives

ρ̂Q;0ðE; 0; L;ΔÞ≡
X
k

Ck
2EkðLÞ2L3

jAK→ππ½EkðLÞ�j2

× 2πδ̂ΔðE;EkðLÞÞ: ð67Þ

Here, we restrict our attention to the case in which the
incoming kaon and the outgoing two-pion state both have
zero spatial momentum.
The procedure outlined in Sec. II dictates that one must

now perform the L → ∞ limit followed by Δ → 0 in order
to recover the infinite-volume spectral function and from
this the kaon width. We begin with the infinite-volume limit
in isolation:

lim
L→∞

ρ̂Q;0ðE; 0; L;ΔÞ

¼ lim
L→∞

1

2

1

L3

X
k

1

ð2ωkÞ2
jAK→ππ½2ωk�j22πδ̂ΔðE; 2ωkÞ;

ð68Þ

¼ 1

2

Z
d3k

ð2πÞ3ð2ωkÞ2
jAK→ππ½2ωk�j22πδ̂ΔðE; 2ωkÞ: ð69Þ

In the first step, we used Eq. (65) and then replacedP
kνk →

P
k. We also used that, for a given state, the

difference between EkðLÞ and the corresponding 2ωk must
vanish as L → ∞. In the second step, we replaced the
sum over finite-volume momenta with an integral. This is
justified for smooth integrands and in particular relies on
the fact that the integrand depends only on smoothed delta
functions with finite width Δ.
At this stage, we can sendΔ → 0 and see that we recover

the total width as is guaranteed by the general formalism
presented in the previous section,

ΓK→ππ ¼
1

2MK
lim
Δ→0

lim
L→∞

ρ̂Q;0ðMK; 0; L;ΔÞ; ð70Þ

¼ 1

4MK

Z
d3k

ð2πÞ3ð2ωkÞ2
jAK→ππj22πδðMK − 2ωkÞ; ð71Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

K=4 −M2
π

p
16πM2

K
jAK→ππj2; ð72Þ

where AK→ππ indicates the physical decay amplitude, in
which the outgoing pion pair carries energy MK.
We see that, in contrast to the standard Lellouch-Lüscher

approach in which one calculates the finite-volume matrix
element and converts it to AK→ππ via Eq. (63), in this
approach, one removes the factor of dδππðpÞ=dp by
sending L → ∞. This is only possible given the utility
of the Backus-Gilbert method for directly extracting the
smeared spectral function, together with the observation
that the latter has a well-defined infinite-volume limit.
In the case of a single two-particle decay channel, it is
unlikely that this approach will be competitive with the
Lellouch-Lüscher method. However, as more channels
open, our result continues to provide a viable method
for estimating total decay widths.
We have performed this same exercise with the gener-

alization of the Lellouch-Lüscher relation to coupled two-
particle channels [13,26,27] and find that the expected
result emerges in a similar manner. In the coupled-channel
case, the squared finite-volume matrix element can be
expressed as a vector product of the infinite-volume matrix
elements

jMk;D→QðLÞj2 ¼
1

2MDL9
AD→αðEkÞRαβðEk; LÞAβ→DðEkÞ;

ð73Þ

where AD→αðEÞ ¼ hE; α; outjHQð0ÞjDi and Aβ→DðEÞ ¼
hDjHQð0ÞjE; β; ini, with α and β representing all quantum
numbers of the two-particle asymptotic states. Deriving the
corresponding smeared spectral function, and applying
the infinite-volume limit, we find that the matrix becomes
diagonal with each entry given by the degeneracy of the
corresponding noninteracting state together with various
kinematic factors. One thus perfectly recovers the integral

7In the zero-momentum frame, the noninteracting energies
take the form EkðLÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ n2ð2π=LÞ2
p

corresponding to
q2k ¼ n2 where n is a three-vector of integers.
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over all three-momenta and the sum over channels,
weighted with the proper factors. Sending Δ → 0 gives
the total decay rate, equal to the individual rates summed
over all open two-particle channels.
We close this section by noting that one might combine

the Lellouch-Lüscher relations with our approach in order
to improve the smoothed spectral function. In particular,
if the S-matrix is known in the two-particle sector, then
one might fit the first few exponentials in ~GQ;Pðτ;p; LÞ,
subtract these states, and replace them with an integrated
contribution of the infinite-volume matrix elements.
Extracting ρ̂Q;PðE;p; LÞ from this modified correlation
function would give a flatter extrapolation toward L→∞
and Δ → 0, improving the precision of the extracted widths
and differential rates.

V. NUMERICAL TEST CASE

This section is devoted to illustrating, by means of a
numerical example, to what extent our procedure is able to
reproduce infinite-volume total decay widths. The input data
will consist of a Euclidean correlation function ~GQ;0ðτi;0;LÞ
of the type presented in Eq. (21), evaluated at Nτ discrete
Euclidean time slices up to a maximum extent L, at which
point we assume that the signal is lost. In this example, we
ignore finite-temperature effects. i.e. we take the Euclidean
temporal direction to have infinite extent.
We study a toy theory with three scalar particles denoted

by, π, K, and ϕ, with physical masses Mπ , MK , and Mϕ,
respectively, satisfying the hierarchy

3Mπ < 2MK < Mϕ; ð74Þ

and with interactions given by

LðxÞ ⊃ λ

6
ϕðxÞπðxÞ3 þ gMϕ

2
ϕðxÞKðxÞ2: ð75Þ

Treating these interactions perturbatively, our goal is, given
the Euclidean correlator, to reproduce the complete spectral
function ρQ;0ðω; 0Þ, which, when evaluated at ω ¼ Mϕ,
gives access to the total decay width of the ϕ particle to
leading order in the dimensionless couplings λ and g.
We stress that this is only a toy setup and bears no relation
(other than superficial kinematic similarity) to the physical
particles that carry these names. We will neglect final-state
interactions altogether.

A. Finite volume

Before turning to the inverse problem of calculating
ρ̂Q;0ðω̄; 0; L;ΔÞ, we need to construct the finite-volume
Euclidean correlator that will serve as input data. To
proceed, note that the finite-volume matrix element
[Eq. (13)] between a ϕ state and a two-K state projected
to p ¼ 0 is given by

jMk;ϕ→KKð0; LÞj2

¼ g2M2
ϕ

νk
4MϕEkðLÞ2L9

����
EkðLÞ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Kþð2π=LÞ2q2k
p ; ð76Þ

where q2
k ¼ k starting with k ¼ 0 and where νk is the

number of integer vectors q, satisfying q2 ¼ k. For
example, ν0 ¼ 1, and ν1 ¼ 6. Following Eq. (25) leads
to a correlation function of the form

1

M3
π

~GKKðτi; 0; LÞ

¼ g2M2
ϕ

2ðMπLÞ3
X
k

νk
EkðLÞ2

e−EkðLÞτi
����
EkðLÞ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Kþð2π=LÞ2q2k
p ;

ð77Þ

where we have divided by M3
π to give a dimensionless

quantity. Analogously, one obtains for the three-π amplitude

jMk;ϕ→πππð0; LÞj2 ¼ λ2
νk

12Mϕ2ωnk
2ωmk

2ωnkþmk
L12

;

ð78Þ

where nk;mk ∈ Z3 are integer vectors representing the kth
state and

ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ ð2π=LÞ2n2

q
: ð79Þ

For example, the k ¼ 0 ground state is represented by
n ¼ m ¼ 0 corresponding to E0ðLÞ ¼ 3Mπ with degen-
eracy 1. The next state can be represented with n ¼ −m,
with jnj ¼ jmj ¼ 1, and has degeneracy ν1 ¼ 18. The
Euclidean correlator can then be written as

1

M3
π

~Gπππðτi; 0; LÞ ¼
λ2

48M3
πL6

X
k

νk
ωnk

ωmk
ωnkþmk

× e−EkðLÞτi jEkðLÞ¼ωnk
þωmk

þωnkþmk
:

ð80Þ

The full correlator that serves as input for the Backus-Gilbert
procedure is then

~GQðτi; 0; LÞ ¼
1

M3
π

~GKKðτi; 0; LÞ þ
1

M3
π

~Gπππðτi; 0; LÞ:

ð81Þ

B. Infinite volume

Since we want to compare the outcome of the Backus-
Gilbert spectral-function reconstruction to the exact
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infinite-volume result, we briefly derive the infinite-volume
contributions to the total decay width for both the two-K
and three-π channels. Starting with ϕ → KK, the decay
amplitude is given by

Aϕ→KK ¼ gMϕ: ð82Þ

The main point here is that the amplitude is energy
independent—the mass Mϕ appears only because we have
chosen to parametrize the interaction by a dimensionless
coupling constant g. Integration over the two-particle phase
space yields a decay width,

Γϕ→KK

Mπ
¼ g2

32π

Mϕ

Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
K

M2
ϕ

s
: ð83Þ

Analogously, the three-π decay amplitude is energy inde-
pendent,

Aϕ→πππ ¼ λ: ð84Þ

Integrating over the three-particle phase space yields

Γϕ→πππ

Mπ
¼ λ2

3072π3
Mϕ

Mπ
F ðMϕ=MπÞ: ð85Þ

Here, F ðMϕ=MπÞ, shown in the left panel of Fig. 5,
measures the reduction of phase space relative to the case
of Mπ ¼ 0 where the decay products are massless. The
definition is

F ðxÞ≡ 2

x4

Z ðx−1Þ2

4

dm2
12

Z
m2

23;þ

m2
23;−

dm2
23; ð86Þ

where

m2
23;� ≡ x2 −m2

12 þ 3

2
� 1

2

�
ðm2

12 − 4Þ

×
�ðx2 − 1Þ2

m2
12

− 2ðx2 þ 1Þ þm2
12

��
1=2

: ð87Þ

Note in particular that F ð3Þ ¼ 0 and F ð∞Þ ¼ 1. This
function has no simple analytic form but can easily be
calculated numerically to arbitrary precision.
Finally, since we want to reconstruct the full spectral

function, it is instructive to write the full infinite-volume
result for every ω,

1

2MϕMπ
ρQ;0ðω; 0Þ

¼ λ2

3072π3
Mπ

Mϕ

�
ω

Mπ

�
2

F ðω=MπÞθðω − 3MπÞ

þ g2

32π

Mϕ

Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
K

ω2

s
θðω − 2MKÞ: ð88Þ

C. Inverse problem and smoothing procedure:
Backus-Gilbert reconstruction

The aim is to recover the full spectral function

ρQ;0ðω̄; 0Þ ¼ lim
Δ→0

lim
L→∞

ρ̂Q;0ðω̄; 0; L;ΔÞ; ð89Þ

where in particular for ω̄ ¼ Mϕ we get an estimate for the
total decay width,

1

2MϕMπ
lim
Δ→0

lim
L→∞

ρ̂Q;0ðMϕ; 0; L;ΔÞ ¼
Γϕ→KK

Mπ
þ Γϕ→πππ

Mπ
:

ð90Þ

FIG. 5. Left: The function F ðω=MπÞ gives the three-body phase space with respect to the massless case. The function interpolates
from 0 at the three-particle threshold [F ð3Þ ¼ 0] to unity at infinite ω [limω→∞F ðω=MπÞ ¼ 1]. Right: Various resolution functions,
plotted as a function of ω with ω̄ ¼ Mϕ. The resolution functions with λreg ¼ 10−4 were used in the analysis. The unregulated curves,
with λreg ¼ 1.0, show how the Backus-Gilbert method converges to sharply peaked resolution functions as Nτ is increased.
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For the numerical application, we choose MK=Mπ ¼ 3.55
and Mϕ=Mπ ¼ 7.30, g ¼ 1, and λ ¼ 10

ffiffiffi
8

p
. We use as

input points τi ¼ i · a, with aMπ ¼ 0.066 and 1 ≤ i ≤ Nτ.
Following the discussion of Sec. II, we construct a family

of resolution functions δ̂Δðω̄;ωÞ by finding the optimal
coefficients Ciðω̄;ΔÞ ði ¼ 1;…; NτÞ that minimize the
width subject to the area constraint of Eq. (28). The width
is controlled by the number of points, as can be seen from
Fig. 5, where we give examples of resolution functions
used in the analysis, centered at ω ¼ Mϕ. The corre-
sponding estimator ρ̂Q;0ðω̄; 0Þ is calculated via Eq. (33).
Since Backus-Gilbert is a linear method, an error estimate

on ρ̂Q;0ðω̄; 0Þ has to come through the covariance matrix
of the input data ~GQðτi; 0; LÞ. We take a realistic covari-
ance matrix, Sij, from a pseudoscalar meson two-point
function calculated on an Nf ¼ 2 coordinated lattice
simulations ensemble, that we have used in the past in
a similar context. (See Appendix C of Ref. [38].) We scale
the covariance matrix to give the same relative uncer-
tainty (about 2%) on the toy correlator, ~GQðτi; 0; LÞ, as
was observed on the actual lattice data. For Nτ ¼ 64, we
take the entire matrix, and for Nτ ¼ 32, we take the block
corresponding to source-sink separations, τ, satisfying
32a ≤ τ < 64a.

FIG. 6. Output of the regulated Backus-Gilbert algorithm for different values of MπL ¼ 5, 7, 10 and Nτ ¼ 32, 64. The ratios of
Mϕ=Mπ;MK=Mπ and the coupling constants are given in the text.
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In order to determine the optimal coefficients, Ciðω̄;ΔÞ,
a poorly conditioned matrix,

Wijðω̄Þ ¼
Z

∞

0

dωe−ωτiðω − ω̄Þ2e−ωτj ; ð91Þ

must be inverted (ideally with high precision). The error on
ρ̂Q;0ðω̄; 0Þ is kept under control by making the replacement
Wijðω̄Þ → λregWijðω̄Þ þ ð1 − λregÞSij. In this way, the mag-
nitudes of the coefficients Ciðω̄;ΔÞ, which otherwise
exhibit large oscillations as a function of i, are tamed,
and the statistical error on ρ̂Q;0ðω̄; 0Þ can be kept under
control. In the present example, we aim for a precision of
5%–10% and find that this is achieved with λreg ∼ 10−4.
The regulation parameter, λreg, parametrizes a trade-off
between resolving power (smaller Δ) and statistical error.
For a more detailed explanation on the choice of λreg, see
the discussion in Sec. IV E of Ref. [38].
The results of our Backus-Gilbert analysis are summarized

in Fig. 6. As can be seen from the figure, the agreement of
the Backus-Gilbert result with the infinite-volume spectral
function is reasonable and improves for increasing MπL
as expected. The agreement is worse in the vicinity of the
two-particle cusp since the convolution with the resolution
function is most noticeable at this singular point. However,
even for this challenging region, the Backus-Gilbert result
must approach the cusped form if one first takes MπL
arbitrarily large and then reduces Δ=Mπ. If one instead tries
to reduceΔ=Mπ at constantMπL, the result becomes unstable
since the finite-volume energy levels start to be resolved
individually, and the result is eventually dominated by finite-
volume effects. This illustrates the importance of the order
of the limitsL → ∞ andΔ → 0. Nevertheless, thewindowof
reasonable Δ for a given L seems to be large enough that it
may well be useful in realistic numerical lattice applications.
As previously mentioned, the resolution function from the
Backus-Gilbert method can be used to smoothen the exper-
imental data in the case of differential decay rates. This
procedure removes the uncertainty inherent in the solution
of the inverse problem at the cost of comparing a somewhat
less differential quantity.

VI. CONCLUSIONS

In this work, we have introduced a new method for
directly determining hadronic decay widths and transition
rates for semileptonic scattering and decay processes. The
central advantage of our approach is that it can accom-
modate final states with any number of hadrons.
As we detail in Sec. II, our idea is to construct a

Euclidean correlator such that the corresponding spectral
function directly gives the decay width or transition rate of
interest. We then propose applying the Backus-Gilbert
method, which gives an estimator of the finite-volume
spectral function, smeared by a known resolution function

δ̂Δðω̄;ωÞ of width Δ. Taking the limit L → ∞ followed by
Δ → 0 then directly gives the experimental observable. As
we discuss in Sec. II, and illustrate with a toy example in
Sec. V, in a realistic numerical calculation, we expect that
reducing 1=L and Δ along a suitable trajectory will provide
a good estimate of the target infinite-volume unsmeared
spectral function.
Although we have focused on the Backus-Gilbert method,

we would like to stress that a vast number of different
methods exist for solving the inverse Laplace problem. Any
of these may be applied in the formalism presented in this
work, provided that one can define a width, Δ, that can be
varied together with the box size, L, to estimate the double
limit. Indeed, even within the Backus-Gilbert approach, one
has freedom to adjust the regulation parameter, λreg, intro-
duced in Sec. V as well as the minimization condition given
in Eq. (32). We have applied the Backus-Gilbert method on
vacuum correlators in Refs. [32,38].
The central advantage of the Backus-Gilbert approach is

that it offers a model-independent, unbiased estimator of the
smeared, finite-volume spectral function with a precisely
known resolution function that is independent of the corre-
lator data. For every value of the final-state energy that one
aims to extract, one may vary all inputs into the Backus-
Gilbert approach to design the optimal resolution function
given the quality of the data available. Nonetheless, it may
often be the case that the difficulty of reducing the width Δ
is the limiting factor of the calculation. To this end, we
reemphasize that one may also smear experimental or model
data with the same resolution function to perform a fully
controlled comparison.
In certain cases, the resolution function may wash away

features that one aims to extract. While this is undesirable,
the method does faithfully return the information contained
in the Euclidean correlator data about the width or rate of
interest. Indeed, in the context of constraining scattering
amplitudes via Lüscher’s quantization condition, it is in
practice well known that a single correlation function
provides limited information on finite-volume energies.
The modern approach here is to instead construct a matrix
of correlators, with a large operator basis, and diagonalize
this in order to reliably extract the excited finite-volume
states. Analogous methods in the context of finite-volume
spectral functions are under investigation [56].
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