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Topological defects (kinks) in a relativistic ϕ4 scalar field theory in D ¼ ð1þ 1Þ are studied using the
matrix product state tensor network. The one kink state is approximated as a matrix product state and the
kink mass is calculated. The approach used is quite general and can be applied to a variety of theories and
tensor networks. Additionally, the contribution of kink-antikink excitations to the ground state is examined
and a general method to estimate the scalar mass from equal time ground state observables is provided.
The scalar and kink mass are compared at strong coupling and behave as expected from universality
arguments. This suggests that the matrix product state can adequately capture the physics of defect-
antidefect excitations and thus provides a promising technique to study challenging nonequilibrium physics
such as the Kibble-Zurek mechanism of defect formation.
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I. INTRODUCTION: TOPOLOGICAL DEFECTS
AND TENSOR NETWORKS

A significant problem within quantum field theory
(QFT) is the calculation of nonperturbative and nonequili-
brium problems. Standard perturbation theory can be used
for near-equilibrium weak coupling problems but fails in
other cases. For equilibrium calculations, lattice theory
provides a powerful approach but has limited applicability
to nonequilibrium problems [1]. On the nonequilibrium
side, the use of 2-particle irreducible (2PI) or more
generally nPI effective actions is common [2] and can
be used in conjunction with large N expansions for a power
series approach while stochastic quantization allows for the
extension of nonperturbative lattice techniques to the case
of real-time [3]. Recently, Hamiltonian truncation tech-
niques have also emerged as an alternative to the available
functional/lattice techniques and have been applied to both
equilibrium [4] and nonequilibrium calculations [5].
A particularly good test for the various available tech-

niques is offered by the study of topological defects in
QFT. Topological defects are naturally nonperturbative
and cannot be included by perturbative expansions about
classical vacuum solutions [6]. Instead, the QFT is split
into different topological sectors, associated to a particular
topological charge, and each sector must be treated
separately in perturbative expansions. For nonperturbative
equilibrium calculations involving defects, lattice tech-
niques have been successful [7–10] and more recently
Hamiltonian truncation has also been used [11]. However,
nonequilibrium calculations can be more problematic as
highlighted in the study of defect formation during phase

transitions. Despite having a simple and general description
via the Kibble-Zurek mechanism [12], naive applications of
the 2PI effective action techniques fail to include the
contribution of defects [13] requiring the use of less
standard techniques [14]. Additionally, simple observables
such as the quasiparticle excitation density in general fail to
capture the relevant physics in such problems [15].
In this paper we apply a recent approach based on the use

of matrix product states (MPS) to the study of topological
defects. These techniques deal with states directly and are
most commonly used to approximate the ground states of
strongly-coupled quantum systems in D ¼ ð1þ 1Þ. While
originally specialized to the study of gapped, finite size
lattice systems with open boundary conditions [16], these
techniques have seen significant developments in recent
years and have been applied to e.g. periodic systems
[17–19], infinite volume systems [20,21] and nonequil-
brium calculations [22,23]. More generally, matrix product
states are part of a broader class of tensor networks (TN)
which allow further extensions to e.g. critical/gapless
systems [24,25] and the equilbrium study of excited states
(including kink excitations) [26,27]. Matrix product states
have also been applied previously to the study of field
theories in a number of settings. For example, they have
been applied to lattice regularized relativistic field theories
in D ¼ ð1þ 1Þ with both global symmetries [28,29] and
gauge symmetries with substantial progress being made in
the Schwinger model (Uð1Þ) [30–34], including an explicit
example overcoming the sign problem [35], in addition to
studies in the SUð2Þ gauge theory [36]. More recently,
there has also been a focus on the description of field
theories using MPS and TN in the continuum, providing an
alternative regularization scheme to the lattice [37–39].
Finally, while many of the studies involving TN have been
for D ¼ ð1þ 1Þ, there have been a number of recent
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developments towards the application of tensor network
methods to higher dimensions, particularly to D ¼ ð2þ 1Þ
using the projected-entangled-pairs states (PEPS) TN
[40,41]. These developments include work toward the
application of TN to gauge theories in D ¼ ð2þ 1Þ,
[42], making TN a promising tool for the future study
of high energy physics.
In the following, we apply matrix product states to

the study of topological defects (kinks) in the ϕ4 theory
in D ¼ ð1þ 1Þ. We study the equilibrium physics by
obtaining MPS approximations to the ground state and
one kink state in the lattice regularized setting. The main
goal is to assess to what degree the MPS can capture the
physics of defects nonperturbatively, both in the sense of
providing a direct approximation to the one kink state and
in capturing the contribution of kink-antikink excitations to
the ground state observables. To achieve this, we focus on
studying the kink massMK and the scalar massmS at strong
and weak couplings where we can compare with analytic
results. Confirming that the MPS can capture the physics of
defects, particularly of the kink-antikink excitations, is
essential if they are to be used to study nonequilibrium
phenomena such as defect formation.
The structure of our discussion will be as follows: First,

we will introduce the ϕ4 theory in Sec. II and review some
weak coupling and strong coupling results before intro-
ducing the lattice regularization used throughout. Second,
we review the construction of matrix product states in
Sec. III and discuss their relationship to entanglement and
tensor networks more generally. Following this, we provide
an overview of the standard methods used to find MPS
approximations to the ground state and show how they
apply directly to one kink state in Sec. IV. More details on
the information outlined in Secs. III and IV, along with a
useful guide to implementation, can be found in the review
[16]. In Sec. V we provide a discussion of how to estimate
the scalar mass from the equal time two point functions
before examining some weak and strong coupling results in
Sec. VI and concluding in Sec. VII.

II. ϕ4 SCALAR FIELD THEORY IN D= ð1 + 1Þ
A. Classical and semiclassical results

In this section, we review some classical and semiclassical
results for the ϕ4 scalar field theory in D ¼ ð1þ 1Þ as
defined by the action

S½ϕ�¼
Z

dxdt

�
1

2
ð∂tϕÞ2−

1

2
ð∂xϕÞ2−

μ20
2
ϕ2−

λ0
4!
ϕ4

�
: ð1Þ

When μ20 < 0, the classical potential density

UðϕÞ ¼ μ20
2
ϕ2 þ λ0

4!
ϕ4 ð2Þ

has two degenerate minima (vacua) �v ¼ �
ffiffiffiffiffiffiffiffi
−6μ2

0

λ0

q
corre-

sponding to the spontaneous breaking of the global Z2

symmetry ϕðxÞ → −ϕðxÞ. Such static, uniform field con-
figurations solve the classical equations of motion but there
are additional topologically nontrivial static solutions called
kinks ϕKðxÞ given by

ϕKðxÞ ¼ v tanh

�
μ0ðx − x0Þffiffiffi

2
p

�
ð3Þ

with the corresponding antikink given by −ϕKðxÞ. Such
solutions interpolate between the two minima and are not
spatially uniform. Additionally, they have a degree of
freedom (zero-mode) x0 such that they form a continuous
family of solutions. These kink solutions are the simplest
possible example of a topological defect in quantum field
theory. To relate these solutions to a topological charge, all
the finite energy field configurations of the theory can be
classified according to their homotopy. Configurations in
distinct homotopy classes cannot be continuously deformed
into one another (e.g. by time evolution) and the theory is
split into distinct topological sectors. These sectors are
labelled by a topological charge Q determined by the
boundary conditions of the configurations as

Q ¼ 1

2v
ðϕð∞Þ − ϕð−∞ÞÞ: ð4Þ

The minima �v have Q ¼ 0 while the kink and antikink
have Q ¼ 1, −1 respectively and they provide the lowest
energy configurations for each of these sectors. The exist-
ence of distinct topological sectors can be confirmed from a
few general features of a theory so that one can check easily
for the possibility of topological defects in a wide variety of
cases [43].
The classical kink mass MK can be calculated from the

classical energy

E ¼
Z

dx

�
1

2
ð∂ϕ=∂xÞ2 þ UðϕÞ

�
ð5Þ

by subtracting the classical vacuum energy to give

MK ¼ 4
ffiffiffi
2

p μ30
λ0

: ð6Þ

In the quantum theory, the kink and antikink will appear
as charged particles. Since they lie outside the Q ¼ 0
vacuum sector, they are nonperturbative in the sense one
cannot include their contribution by using perturbation
theory starting from the vacuum sector. Instead, to gain
semiclassical information about the defects, one must begin
from the appropriate sector e.g. with classical kink con-
figurations. Results in these sectors tends to require more
work than the topologically trivialQ ¼ 0 sector both due to
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the fact the classical kink is not spatially uniform and due to
the presence of the zero-mode x0.
The one-loop order calculation of the kink mass is a

classic result known as the “DHN” result following the
work of Dashen, Hasslacher and Neveu [44,45]. This can
be written in terms of the scalar massm2

S ¼ 2μ20 þOðλ0Þ up
to Oðλ0Þ to give

MK ¼ 2
m3

S

λ0
þmS

2

�
1

6

ffiffiffi
3

2

r
−

3

π
ffiffiffi
2

p
�
þOðλ0Þ: ð7Þ

From this expression one can see that in the semiclassical
region the kink appears as a heavy particle such that
MK ¼ Oðm3

SÞ. As such, in this region kink-antikink exci-
tations will provide a negligible contribution to ground
state observables. More recently, zeta-function regulariza-
tion has allowed for one-loop results in finite size systems
[46] and dimensional regularization has provided a more
systematic approach to one-loop corrections allowing for
results at finite temperatures and in higher dimensions [47].
While giving equivalent results to one-loop order, a
rigorous treatment of the zero-mode requires more work
through e.g. the use of canonical coordinates [48], which
also allow for the computation of the scalar field n-point
functions in the presence of the kink [49,50].
While semiclassical expansions can provide information

about the weak-coupling region μ20 ≫ λ0, at stronger
couplings they will breakdown. This is particularly impor-
tant for the ϕ4 theory in D ¼ ð1þ 1Þ since the phase
transition corresponds to strong couplings. Therefore, near
the critical point perturbation theory can no longer be used
and one must turn to alternative methods.

B. Strong-coupling results: Universality

On approach to the critical point, the correlation length
of the ϕ4 theory diverges. In this regime, the microscopic
(lattice) details are irrelevant and the critical behavior is
described by a simple field theory. The nature of this
critical field theory depends only a few general features of
the underlying theory, e.g. symmetry or dimensionality,
so that many different theories have the same critical
description and can be separated into universality classes.
In D ¼ 2 the ϕ4 theory falls into the same universality
class as the classical D ¼ 2 Ising model. The critical field
theory can be determined by the fixed points of a suitable
renormalization group (RG) flow and in this case corre-
sponds to a Wilson-Fisher fixed point [51]. Since the
corresponding critical field theory is not a free scalar field
theory, standard perturbation theory cannot be used and
we can say the phase transition is strongly coupled.
Analytic results can instead be gained for the universality
class by using RG or studying the Ising Model which is
integrable. The most familiar universal results are the
critical exponents and for the D ¼ 2 Ising universality

class the correlation length ξ in the symmetric and
symmetry broken phases is given by

ξ ≈ ξ0jτjντ > 0 ð8Þ

ξ ≈ ξ00jτjν
0
τ < 0 ð9Þ

where τ is the reduced temperature such that τ > 0
indicates the symmetric (high temperature) phase, τ < 0
the symmetry broken (low temperature) phase and
τ ¼ 0 the critical point. Additionally, universal amplitude
ratios [52] can be derived and in particular

ξ0=ξ00 ≈ 2: ð10Þ

These results can be related to the topological defects
in the ϕ4 theory through the Kramers-Wannier duality
present in the Ising model. While explicit kink creation
operators cannot be constructed for the ϕ4 theory, the
corresponding disorder operators μðxÞ can be introduced
in the classical Ising model [53]. The Kramers-Wannier
duality relates the disorder operator two point correlation
function on the dual lattice at coupling (temperature) K to
the spin operator two point function at a coupling K� as

hμðxÞμðx0ÞiK ¼ hσð ~xÞσð ~x0ÞiK� : ð11Þ

This duality establishes the relation μ0 ¼ ν between the
critical exponents where μ0 is the critical exponent
associated to the diverging correlation length ξK of the
disorder two point function hμðxÞμðx0Þi in the symmetry
broken phase. When combined with the universal ampli-
tude ratio Eq. (10) one can establish

ξK=ξ ≈
ξ0jτjν
ξ00jτjν

0 ≈ 2 ð12Þ

which uses the hyperscaling relation ν ¼ ν0. This result
corresponds in the ϕ4 theory to the relationshipmS ≈ 2MK
between the scalar mass mS and the kink mass MK. While
universality establishes this result rigorously in the vicin-
ity of the critical point, physically it should hold from the
point where first mS ≈ 2MK down to the critical point,
since in this region the scalar excitation will decay into a
kink-antikink pair excitation which is the lightest excita-
tion for the Q ¼ 0 sector in this region. Since this result
incorporates a simple linear scaling ν ¼ 1 with strong
coupling physics and topological defects it provides a
good test for nonperturbative calculation methods.

C. Lattice methods for nonperturbative calculations

For general nonperturbative calculations it is common
to use lattice methods. Essentially, one approximates
observables of the full theory by observables of a theory
defined on a lattice. An appropriate lattice theory can be
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obtained for a particular QFT by discretizing the continuum
action. Usually, this discretization takes place in both time
and space with Euclidean spacetime being used to allow for
sampling, effectively transforming the problem of quantum
field theory into statistical mechanics. Since analytically
continuing back to real time requires further assumptions in
the discrete case and tends to dramatically increase the
errors from sampling, this method is essentially restricted to
equilibrium physics and has been highly successful in this
regard, for an introduction to these techniques see [1].
Here, we will be interested in working with states at a
particular time so that the lattice discretization need only be
applied in the spatial dimension leaving time continuous. In
this case, the full QFT Hilbert space is truncated down to a
lattice quantum theory and we can write schematically
HQFT → Hða; LÞ where the lattice spacing a and size L act
as truncation parameters. For spatial discretization, the
Hamiltonian formalism can be used and the continuum
theory can be written as

H½ϕ�¼
Z

dx

�
1

2
ð∂tϕÞ2þ

1

2
ð∂xϕÞ2þ

μ20
2
ϕ2þλ0

4!
ϕ4

�
: ð13Þ

An appropriate lattice theory can then be constructed by
discretization of this Hamiltonian. A good option is to
simply replace the spatial derivatives by first order finite
difference approximations leading to the Hamiltonian

~H½ϕ� ¼
X
x

�
1

2
ðπxÞ2 þ

1

2
ðϕxþa − ϕxÞ2 þ

~μ20
2
ϕ2
x þ

~λ0
4!
ϕ4
x

�

ð14Þ

which is given in lattice units with ~H ¼ aH, ~μ20 ¼ a2μ20,
~λ0 ¼ a2λ0. Additionally, the time-derivatives have been
replaced by πx ¼ ∂L=∂ð∂tϕÞ ¼ að∂tϕÞ which obeys the
canonical commutation relation ½πx;ϕy� ¼ iδx;y. The finite
lattice spacing, which we will set to one throughout, serves
to restrict the possible momentum modes −π=a ≤ p ≤ π=a
so that low momentum (long distance) observables of the
full theory can be well approximated in the lattice theory,
while higher momentum (short distance) behavior will be
modified significantly by the lattice. We will be particularly
interested in the equal-time observables of the ground
state hΩjO½ϕ�jΩi and the one kink state hKjO½ϕ�jKi.
These are approximated in the lattice theory by the
corresponding lattice observables hΩða; LÞjO½ϕ�jΩða; LÞi
and hKða; LÞjO½ϕ�jKða; LÞi where the state jΩða; LÞi is
simply the minimum energy state of the lattice theory and
jKða; LÞi is the lattice one kink state. To approximate the
one kink state on the lattice it is typical to write it explicitly
as the minimum energy state of the Q ¼ 1 topological
sector which can be selected out by enforcing twisted
periodic boundary conditions (TPBC) in the spatial dimen-
sion of the theory ϕxþL ¼ −ϕx [7]. Both states of interest

can then be written in terms of energy minimization
problems as

jΩða; LÞi ¼ min
jψi

ðhψ j ~Hjψi − λ½hψ jψi − 1�Þ ð15Þ

for the lattice ground state and

jKða; LÞi ¼ min
jψi

ðhψ j ~HðTPBCÞjψi − λ½hψ jψi − 1�Þ ð16Þ

for the one kink lattice state (note that higher kink number
excitations are suppressed exponentially with the lattice
size L). Specifying states further requires the choice of a
basis. The field eigenbasis is a natural choice for mean
field theory type approximations but to go beyond these it
is better to pick a numerically stable basis of real space
harmonic oscillators [54]. Introducing real space creation
and annihilation operators via ϕx ¼ 1ffiffi

2
p ða†x þ axÞ and

½ax; a†y� ¼ δx;y, a natural basis set is then the tensor products
jnxi ¼ jn1i ⊗ jn2i ⊗ … ⊗ jnLi where jnxi are the eigen-
states of the number operator Nx ¼ a†xax at each site.
All basis states are now labeled by a L-tuple nx ¼
ðn1; n2; n3;…; nLÞ with nx ∈ Z and a general state jψi
can be written as

jψi ¼
X∞
n1¼0

…
X∞
nL¼0

hn1n2…nLjψijn1n2…nLi

¼
X
nx

ψnx
jnxi ð17Þ

where the state coefficient ψnx
(wave function) now

specifies the state in this basis.

III. TENSOR NETWORKS AND MATRIX
PRODUCT STATES

A. Matrix product states

To study the ground state and one kink state observables
in the ϕ4 theory, we would like to solve the minimization
problems Eqs. (15) and (16) directly. Of course, this is not
possible in general since even a finite dimensional Hilbert
space grows exponentially with the number of lattice sites.
However, matrix product states provide a method to
truncate the Hilbert space further down to a tiny subset
where states can be specified efficiently i.e. with a cost
that rises at most polynomially in the number of lattice
sites. Within this subset, the minimization problems can
be solved numerically and direct approximations of the
ground state and one kink state can be obtained.
To proceed, one first rewrites the expression for a generic

state in the theory Eq. (17) in the matrix product form. For
the lattice MPS used here, this first requires an additional
truncation in the local Hilbert space dimension such that the
resulting total state space is finite. This can be achieved by
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simply keeping the first n ¼ 0; 1;…; nmax basis states at
each site. A state can then be expressed as

jψi ¼
Xnmax

n1¼0

…
Xnmax

nL¼0

hn1n2…nLjψijn1n2…nLi: ð18Þ

When using the field eigenbasis, the error associated with a
similar truncation can be rigourously bound by the magni-
tude of local expectation values hψ jϕ2

xjψi and hψ jπ2xjψi or
alternatively the energy expectation value E ¼ hψ jHjψi
[55]. In practice, since the limit nmax → ∞ tends to be well
behaved, it is usually possible to simply increase the value
of nmax in calculations until convergence in the desired
observables is reached. To keep notation standard, we will
let nmax ¼ d − 1 so that the total dimension of the regu-
larized theory is now given by dL. The matrix product form
can now be introduced by considering the wave function
ψnx

as a rank-L tensor. Such a tensor can always be
decomposed using a tensor train decomposition into a
matrix product state form so that

ψnx
¼

X
α1;α2;…;αL

Mn1
α1;α2ð1ÞMn2

α2;α3ð2Þ…MnL
αL;α1ðLÞ

¼ trðMn1ð1ÞMn2ð2Þ…MnLðLÞÞ

¼ tr

�Y
x

MnxðxÞ
�
: ð19Þ

Here, the state coefficient ψnx
has been reexpressed as the

nearest-neighbor contraction of a set of rank-3 tensors, one
per site. The size of the tensors can vary site-to-site but we
fix them for simplicity to all be ðd; χ; χÞ. The first index
provides the physical index corresponding to the local basis
state jnxi ¼ j0i; j1i;…; jd − 1iwhile the latter two provide
the internal or virtual degrees of freedom. All the internal
indices are contracted over while the physical indices
remain uncontracted. The MPS form is made more intuitive
by the convenient diagrammatic notation available for
tensor networks. In this notation, tensors are represented
by shapes with legs corresponding to the indices of the
tensor. Contractions between indices are then indicated by
the joining of two legs. For example, the rank-3 tensorMi

α;β

is represented by

such that the PBC lattice MPS with L ¼ 7 sites is
represented by

Often, as in the original DMRG algorithm, MPS with
open boundary conditions (OBC) are used. These can be
written by considering the first and last tensors as rank-2
tensors so that

ψnx
¼ ðmn1

L ÞT
�YL−1

x¼2

MnxðxÞ
�
mnL

R ð20Þ

where mn1
L , mnL

R are rank-2 tensors of size ðd; χÞ and the
trace is no longer needed. The diagrams for OBC MPS
are somewhat simpler than their PBC counterparts e.g.
for L ¼ 5

Due to this simplification, for convenience we will often
use OBC in diagrams, though calculations will tend to
involve PBC.
We emphasize that this MPS form is complete in the

sense that all states can be expressed in this manner.
However, the real power of MPS is revealed by considering
the subset of states that can be efficiently parametrized
by the MPS form. The number of parameters required to
specify a MPS is simply given by the lattice size multiplied
by the size of the tensor i.e. Ldχ2. A general state requires
an exponentially large number of parameters to specify so
that at most χ ∼ dL=2. However, some states, often simply
called “matrix product states” require only χ ∼ const and
these states make up the natural efficiently parametrized
subset of the MPS form. By working with the MPS form and
picking some value of χ, we can truncate the Hilbert space
sufficiently so that we can deal with states directly, i.e.
without the need for sampling. This allows one to approxi-
mate the states of interest by solving minimization problems
within this subset. Schematically, the series of truncations
can then be shown as HQFT → Hða; LÞ → MPSða; L; d; χÞ
where the subset of states MPSða; L; d; χÞ no longer retains
the structure ofH but can be shown in many cases to form a
smooth manifold, for details see [56].
While states in the subset MPSða; L; d; χÞ can be

represented efficiently by a tensor network, the central
question is which states actually belong to the subset and
what physics is well approximated within it. The answer to
this is given by considering the entanglement entropy of a
reduced state ρA for a state in the subset, defined over a
spatial subregion A. The entanglement entropy is then
defined as

SðρAÞ ¼ −trðρA log ρAÞ: ð21Þ

A generic, random state in the Hilbert space displays
an entanglement entropy that is extensive SðρAÞ ∼ VA.
However, states in the MPS subset have an entanglement
entropy that is bound by a constant SðρAÞ ¼ Oðlog χÞ. This
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is an example of a low entanglement law and is extremely
restrictive making matrix product states highly atypical.
However, perhaps surprisingly at first, many of the physical
states of interest are also low entanglement states. This can
be seen somewhat intuitively from the more familiar fact
that often physical states are actually quite special in that
they do not have arbitrarily long distance correlations.
In particular, the ground states of gapped, local systems
tend to have exponentially decaying correlations while the
ground states of gapless/critical systems tend to have
algebraically decaying correlations. As such, one would
not expect the entire subregion A of a system to be
correlated with the rest of the system but for the dominant
contribution to come from the boundary of the subsystem
∂A. This intuition is indeed correct in many cases and e.g.
it has been shown that states with exponentially decaying
correlations defined on a ring obey entanglement area laws
SðρAÞ ∼ ∂A [57], see [58] for a review of entanglement
area laws.
The understanding that a lot of relevant physics is indeed

low entanglement physics has been a driving force behind
the development of tensor networks generally, see the
review [59]. By using a tensor network form to parametrize
the Hilbert space of interest, one can truncate down to a tiny
low entanglement subset throwing out the vast majority of
(highly entangled) states. In this way tensor networks
provide a low entanglement effective theory with low
entanglement observables being well approximated while
high entanglement observables/contributions are lost. In
the MPS case, the fact that SðρAÞ ¼ Oðlog χÞ means that
they are suited to the description of area law states in
D ¼ ð1þ 1Þ, since in that case the area law is simply a
constant. In fact, one can show that all ground states of
local, gapped, lattice Hamiltonians in D ¼ ð1þ 1Þ can be
efficiently represented as MPS and that MPS always have
exponentially decaying correlations asymptotically, as
expected of an area law state [59].
In terms of the observables of interest here, the effect

of the entanglement cutoff can be seen easily in the
connected equal-time two-point function G2ðrÞ ¼
hΩjϕðxÞϕðxþ rÞjΩi − hΩjϕðxÞjΩi2. In the simple lattice
truncation, such an observable is approximated by
hΩða; LÞjϕxϕxþrjΩða; LÞi − hΩða; LÞjϕxjΩða; LÞi2 which
will agree with the full observable in the region
a ≪ r ≪ L. Outside this region the lattice effects will be
significant and the approximation poor. Since the relevant
physics of the full theory takes place on a scale determined
by the correlation length ξ, this means that the physics of
the full theory will be well approximated by the lattice
theory whenever a ≪ ξ ≪ L. The additional truncation to
the low entanglement subset MPSða; L; d; χÞ then restricts
this region of validly further and one can think of an
additional infrared length scale ξχ being introduced after
which the inevitable exponential decay of the MPS will
dominate and the observable G2ðrÞ will be heavily

modified by the entanglement restriction. Additionally,
the truncation parameter χ provides a short distance ultra-
violet cutoff which, while essential when studying MPS
formulated in the continuum [60], is made irrelevant by the
lattice spacing a. Similarly, the lattice size L will tend to be
less relevant that the long distance scale ξχ and so we can
summarize that G2ðrÞ will be well approximated by the
MPS theory within the range a ≪ r ≪ ξχ so that to capture
the relevant physics of the full theory we require the
hierarchy a ≪ ξ ≪ ξχ.

B. Representation of observables as tensor networks

Once a MPS representation for a state has been obtained,
one would like to be able to calculate observables in an
efficient way. This can often be achieved by representing
the observable as a tensor network. The simplest example
of this is the representation of the overlap between two
states h ~ψ jψi which can be found explicitly from the MPS
form as

h ~ψ jψi ¼
X
nx

~ψ�
nx
ψnx

¼
X
nx

tr

�Y
x

ð ~MnxÞ�ðxÞ
�
tr

�Y
x

MnxðxÞ
�

¼
X
nx

tr
�Y

x

ð ~MnxÞ�ðxÞ ⊗ MnxðxÞ
�

¼ tr

�Y
x

�X
nx

ð ~MnxÞ�ðxÞ ⊗ MnxðxÞ
��

: ð22Þ

This expression is clearer in the diagrammatic representa-
tion and can be written by introducing the convention that
the conjugation of a tensor is represented by flipping the
vertical, physical index such that

The overlap can then be represented as

In words, one simply contracts the physical indices of the
states together site-by-site. This tensor network represen-
tation for the overlap contains no uncontracted indices
so that contracting it fully will produce a single number i.e.
the value of the overlap. To represent more general operator
matrix elements h ~ψ jÔjψi as tensor networks it is standard
to introduce a form for operators that corresponds to the
MPS form. Such a representation for lattice systems is
called a matrix product operator (MPO) form which can be
found for a particular operator using some tricks (see
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Sec. III C) or using more generic construction methods
[61]. To specify an operator, a natural basis choice is the
transition basis consisting of tensor products of local
operators T̂nx;mx

¼ jnxihmxj so that the basis element is
T̂nx;mx

¼ T̂n1;m1
⊗ T̂n2;m2

⊗ … ⊗ T̂nL;mL
which is labelled

by 2 L-tuples ðnx;mxÞ. In this basis an operator can be
expanded as

Ô ¼
X
nx;mx

hnxjÔjmxiT̂nx;mx
¼

X
nx;mx

Onx;mx
T̂nx;mx

: ð23Þ

A matrix operator form is then given by rewriting the
coefficient Onx;mx

as a set of rank-4 tensors Wnx;mx
αx;αxþ1

ðxÞ
of size ðd; d; χW; χWÞ contracted in nearest-neighbor
fashion as

Onx;mx
¼

X
α1;α2;…;αL

Wn1;m1
α1;α2 ð1ÞWn2;m2

α2;α3 ð2Þ…WnL;mL
αL;α1 ðLÞ

¼ trðWn1;m1ð1ÞWn2;m2ð2Þ…WnL;mLðLÞÞ

¼ tr

�Y
x

Wnx;mxðxÞ
�
: ð24Þ

A diagrammatic expression for operators in (OBC) MPO
form is then

such that operator matrix elements can be represented as a
tensor network by sandwiching the MPO between two
MPS as

Once an observable has been expressed as a tensor
network in terms of MPS and MPO, it must be evaluated by
contracting the tensors together in the pattern indicated.
However, not all patterns will be equally efficient and can
be exponentially expensive in the number of sites. In the
present case, an efficient contraction ordering is given by
proceeding horizontally from the left or right boundary.
This can be expressed in terms of transfer matrices by
defining the object EA

B½O�, or EA
B if no operator is included,

where A and B label the rank-3 tensors placed in the
upper and lower positions respectively. Diagrammatically
we have

and

In this notation, the matrix element h ~ψ jÔjψi is given by

h ~ψ jÔjψi ¼ trðEA1

B1
½O1�EA2

B2
½O2�…EAL

BL
½OL�Þ

¼ trðE1E2…ELÞ

¼ tr

�Y
x

Ex

�
: ð25Þ

Viewing Ex as matrix of size ðχ2χW; χ2χWÞ the cost of this
matrix multiplication would naively be Oðχ6χ3WÞ though
this can be lowered in a variety of ways which we discuss
further in Sec. IV B.
Since any state can be expressed as an MPS and any

operator as an MPO this representation for observables can
always be used. However, we will only be interested in
those observables which can be represented efficiently. For
the operators this means finding which can be represented
with sufficiently small χW . The set of operators that can be
represented trivially, i.e. with χW ¼ 1, are simply operators
of the tensor product form e.g. all equal-time n-point
functions. It is not so obvious that other important operators
such as the lattice Hamiltonian can also be expressed in an
efficient MPO form. However, this is indeed possible and
we review the construction in the next section.

C. Representation of lattice Hamiltonian as MPO

To represent the lattice Hamiltonian ~H½ϕ� as an MPO
it is helpful to first simplify the expression by collecting
all one site terms into a single operator hx so that the
Hamiltonian takes the form

~H½ϕ� ¼
X
x

− ϕxϕxþ1 þ hx ð26Þ

with

hx ¼
2þ ~μ20

2
ϕ2
x þ

~λ0
4!
ϕ4
x: ð27Þ

Clearly, this has the same nearest neighbor structure as
the Ising model Hamiltonian and we can use the same
MPO construction methods as in that case [23]. A correct
MPO representation can then be obtained by building the
Hamiltonian up iteratively from the rightmost site to the
left. To see this, consider the matrix of operators
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Wx ¼

0
B@

1 0 0

−ϕx 0 0

hx ϕx 1

1
CA: ð28Þ

The matrix is tri-diagonal so that multiplying WxWxþ1

gives

WxWxþ1 ¼

0
B@

1 0 0

−ϕx 0 0

hx þ hxþ1 − ϕxϕxþ1 ϕxþ1 1

1
CA: ð29Þ

The general structure remains the same while the
Hamiltonian is built up in the bottom-left corner. The bulk
terms of the Hamiltonian can be built up iteratively in this
way. It then only remains to pick a single boundary term
(e.g. at site x ¼ 1) to correctly select out the bottom-left
corner, where the bulk of the Hamiltonian has been built up,
and encode any remaining boundaries using the trace
appearing in the MPO definitions. For PBC a consistent
choice is

W1 ¼

0
B@

0 ϕ1 1

0 0 −ϕ1

0 0 h1

1
CA: ð30Þ

Open boundary conditions can also be encoded by setting
W1 and WL to be vectors W1 ¼ w1, WL ¼ wL e.g. by the
choice

wT
1 ¼ ð h1 ϕ1 1 Þ; ð31Þ

wL ¼

0
B@

1

−ϕL

hL

1
CA: ð32Þ

To specialize to TPBC such that ϕðxþ LÞ ¼ −ϕðxÞ, we
can introduce the field variable

~ϕðxÞ ¼
�
ϕðxÞ if x ≤ L

−ϕðxÞ if x > L

for x ¼ 1; 2;…; 2L. This means we can treat the finite size
Hamiltonian as having an impurity (the twist) at a particular
lattice site and observables such as correlations functions
must be transformed back to the original variables to keep
the periodicity intact. The boundary matrix then takes the
form

W1 ¼

0
B@

0 − ~ϕ1 1

0 0 − ~ϕ1

0 0 h1

1
CA: ð33Þ

Through the above constructions we have found that indeed
the nearest-neighbor Hamiltonian ~H½ϕ� can be expressed
efficiently as a MPO with χW ¼ 3, reflecting its local
nature. Longer range interactions can also be considered, as
would be the case if higher-order finite difference approx-
imations were used. However, in that case larger values of
χW would be required reflecting the less local nature of the
operator. Having an efficient representation of the lattice
Hamiltonian as an MPO allows for the efficient computa-
tion of observables such as the energy expectation value or
energy variance, which are central to obtaining approx-
imations of the ground state and one kink state as MPS.

IV. APPROXIMATION OF ϕ4 GROUND
STATE AND ONE KINK STATE VIA

VARIATIONAL SEARCH

A. Variational energy minimization
for matrix product states

We now turn to the approximation of the ground state
and one kink state using MPS. While the minimization
problems given by Eqs. (15) and (16) are too difficult to
solve in the full lattice Hilbert space, we can restrict them
to the MPS subset. The approximations to the states then
become

jΩða; χÞi ¼ min
jψi∈MPSða;χÞ

ðhψ j ~Hjψi − λ½hψ jψi − 1�Þ ð34Þ

for the ground state and

jKða; χÞi ¼ min
jψi∈MPSða;χÞ

ðhψ j ~HðTPBCÞjψi − λ½hψ jψi − 1�Þ

ð35Þ

for the one kink state, where only the most important
truncation parameters a and χ have been kept explicit.
Despite the restriction, such a problem is still too hard to
solve globally but one can try an iterative procedure that
minimizes the energy at each step, converging to a best
estimate for the global solution. This is now a standard
procedure for approximating ground states with MPS and
has been highly successful in a variety of cases, see [16] for
a detailed guide to implementation. The tensor network
structure of the MPS provides a natural way to proceed: one
can minimize the energy with respect to just a single tensor
(i.e. at a single site) while keeping all other tensors fixed.
One then proceeds tensor by tensor minimizing the energy
iteratively. This is most efficiently performed in a sweeping
pattern moving from site to site in a given direction until
some convergence criteria are met. In the tensor network
representation of observables this local minimization has a
useful form in terms of a generalized eigenvalue problem.
To see this, consider the tensor network representation of
the energy expectation value with ~H in MPO form with
L ¼ 5
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If we are only interested in varying a single tensor at a
particular site, e.g. the central site x ¼ 3, all other tensors
can be contracted together, giving

for OBC while in PBC the boundary tensors would include
additional indices to be traced over. This expression can
then be thought of as the action of an effective Hamiltonian
on the tensor at the uncontracted site. In terms of the tensor
network, the effective Hamiltonian then takes the form

which is a linear operator on the space of rank-3 tensors.
As such, it can be considered a matrix of size ðdχ2; dχ2Þ
that acts on vectors of size ðdχ2Þ (i.e. the rank-3 tensors). In
a similar way, an effective normalization matrix can be
constructed by replacing the MPO representing the
Hamiltonian by the identity operator via hψ jψi¼hψ j1jψi
where 1 ¼ 11 ⊗ 12 ⊗ … ⊗ 1L. To emphasize this struc-
ture we can use the notation vM ¼ Mnx

αx;αxþ1
and write the

two effective operators as matrices on this space, Heff and
Neff . In this notation the (ground state) minimization
problem at this site can be written as

min
vM∈Cdχ2

ðv†MHeffvM − λ½v†MNeffvM − 1�Þ ð36Þ

which can be solved by finding the minimum eigenvector
of the generalized eigenvalue problem

HeffvM ¼ λNeffvM: ð37Þ

To find an approximation to the ground state one then
initiates a (random) MPS, chooses a site i, forms the
effective operators Heff , Neff , finds the minimum eigen-
vector ~vM of the generalized eigenvalue problem Eq. (37)
and updates the current MPS by replacing the rank-3 tensor
at the site i with the rank-3 tensor corresponding to the
minimum eigenvector ~vM. The updated MPS will have a
lower energy and so by proceeding to the next site the
energy can be lowered iteratively until convergence is
achieved.

The above method can also be used to find an MPS
approximation to the one kink state by simply exchanging
the PBC Hamiltonian with the TPBC Hamiltonian.
However, there are important differences to consider that
make the approximation of the one kink state more difficult
than the ground state. In particular, the matrix product state
techniques described here are naturally inhomogeneous and
during the minimization procedure translational invariance
will be broken numerically leading to spatial dependence of
the tensors MnxðxÞ. As such, the translational invariance of
observables is only approximated. In the case of the ground
state, this is no problem since the MPO representation of
the lattice Hamiltonian is reasonably homogeneous and
translational invariance can be easily approximated with
a low χ MPS. However, for the one kink state, the
Hamiltonian appears quite inhomogeneous with a particu-
lar location being selected for the twist. This makes it much
harder to approximate translational invariance and the kink
must be “delocalized” by using a sufficiently high χ.
The approximation of translational invariance tends to

happen quickly so that one can think of a threshold ~χðd; LÞ
after which the spatial variance of local observables drops
dramatically. The value of ~χðd; LÞ will depend on the
observable in question as well as the values of d and L with
higher d and larger L leading to an increased ~χðd; LÞ. The
dependence on d is particularly important since it means
that in regions of parameter space requiring high d it will
become impossible to approximate translational invariance
for the kink state with this method. Since the size of d is
determined by the value of the field expectation value hϕi
(or hϕ2i to allow for Z2 invariant cases) we see that it is the
semiclassical region μ20 ≫ λ0 that will be hard to approxi-
mate in this sense, while the strong coupling region will be
less problematic. Of course, this is not too much of an issue
since the semiclassical region can be treated perturbatively
and observables that include contributions from the entire
lattice, e.g. the kink mass, do not depend strongly on the
translational invariance of the state.
Similar issues are present when approximating excited

states with MPS more generally and have led to the
development of various tensor network excitation ansatz,
including one for kinks, that enforce translational invari-
ance explicitly [22]. However, there is some evidence that
an inhomogeneous representation could better capture
certain aspects of the kinks, which are naturally nonlinear
field configurations [14]. This would likely make little
difference when considering an observable such as the
kink mass, but might be important with observables that
have significant contributions from the kink “width” e.g.
the form factor or the equal time two point functions in
the presence of a kink near the critical point. We do not
explore this further but the excitation ansatz is at least more
efficient when determining the mass of excitations near the
critical point and we will use them for comparison with the
methods here.
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B. Computational efficiency, numerical stability
and uMPS minimisation

The computational efficiency and numerical stability
of the minimization procedure must be considered at two
main stages. First, observables must be calculated effi-
ciently corresponding to the correct choice of contraction
ordering. This also covers the construction of the effective
operators Heff , Neff which are built up by the partial
contraction of a similar tensor network. Second, the
generalized eigenvalue problem Eq. (37) must be solved.
In the first case, an efficient contraction pattern is given

by simply multiplying the transfer matrices Ex as matrices
for a computational cost Oðχ6Þ. A more efficient way to
multiply the transfer matrices can be found by making use
of their tensor network structure, reducing the cost to
Oðχ4Þ. In the case of OBC MPS and MPO, a significant
speed up is possible since the boundaries act as vectors and
only matrix-vector multiplications are needed. In this case,
the naive scaling (i.e. without taking advantage of the
tensor network structure) is simply Oðχ4Þ, which can be
reduced to Oðχ3Þ when exploiting the tensor network
structure. When considering sufficiently long chains of
transfer matrices, the cost of PBC contractions can be
reduced as the boundaries become less relevant (becoming
completely irrelevant in the infinite distance limit), see [18]
for details and implementation. In principle this reduces the
cost to Oðχ3Þ, equal to OBC, but numerical stability tends
to require Oðχ4Þ.
The second case, that of solving the generalized eigen-

value problem, also demonstrates the significant computa-
tional advantage of OBC vs PBC. Naively, the cost of
solving a generalized eigenvalue problem scales as matrix-
matrix multiplication Oðχ6Þ. However, if a sparse imple-
mentation is possible then only matrix-vector multiplications
are required for a naive cost of Oðχ4Þ. For OBC this can
again be reduced to Oðχ3Þ. Unfortunately, solving a
generalized eigenvalue problem tends to be ill-conditioned
and additional stabilization steps must be taken. In MPS and
tensor networks more generally, stabilization is often
achieved by exploiting the significant gauge freedom in
the MPS representation. This freedom can be easily seen
since any MPS can be equivalently rewritten by inserting
identity matrices 1 of size ðχ; χÞ between any of the rank-3
tensors. Decomposing the identities as 1 ¼ GðxÞ−1GðxÞ
then leads to an equivalent MPS form of the state as

ψnx
¼ tr

�Y
x

GðxÞMnxðxÞG−1ðxþ 1Þ
�

¼ tr

�Y
x

~MnxðxÞ
�
: ð38Þ

Equivalently, and more commonly in practice, one can think
of performing a matrix decomposition on the tensors which

can be chosen so that the eigenvalue problem to be solved
is better conditioned, see [16] for details. In the case of OBC
it is possible to choose the gauge such that the effective
normalization matrix simply becomes equal to the identity
matrix i.e. the generalized eigenvalue problem is transformed
into a standard eigenvalue problem which is considerably
more stable. For PBC, this transformation is not possible and
we have instead followed the stabilization strategy outlined
in [18]. Unfortunately, in the case of TPBC this was not
sufficient to be able to solve the generalized eigenvalue
problem with sparse methods and we have used dense
methods at a cost ofOðχ6Þ. Despite the relative expense, we
find that the reachable χ ≈ 20 are sufficient for studying the
kink mass at strong couplings though for studying other
observables e.g. the two point function in the presence of the
kink, higher χ would be needed and an alternative stabiliza-
tion strategy would be useful such as the one in [19] which
was applied to a spin system with TPBC.
For the approximation of the ground state, since

TPBC are not required, it is possible to gain the computa-
tional advantage of OBC by using a MPS with an explicitly
translationally invariant representation which can be
achieved by simply requiring all tensors to be identical
i.e. MnxðxÞ ¼ Anx for all x ¼ ð1;…; LÞ. Since there is no
spatial variation this MPS can be defined in the infinite size
limit L → ∞ such that the boundaries are irrelevant and the
computational savings of OBC can be taken advantage of.
Such MPS are called uniform matrix product state (uMPS)
and, due to the greatly decreased number of free param-
eters, more standard minimization procedures can be used
to obtain approximations to the ground state [20,62].
Due to the greatly increased efficiency we use uMPS to
approximate the ground state following the conjugate
gradient procedure outlined in [29]. The use of uMPS
allows for much higher values of χ which is essential
for capturing the relevant physics of the ground state near
the critical point due to the diverging correlation length.
Additionally, we note there is an efficient time evolution
procedure associated to uMPS known as the time depen-
dent variational principle (TDVP) [22] making uMPS a
good candidate for the study of nonequilibrium physics.
For an open source uMPS code, which aided the develop-
ment of the code used here, see [63].

V. SCALAR MASS

A. Long-distance behavior of G2ðrÞ
Since tensor networks represent the state of the quantum

system directly, a possible method for obtaining the scalar
mass is to try and directly approximate the one particle
excitation in the system. However, since tensor networks
are often particularly suited to the description of ground
states, it is useful to have a general procedure for extracting
the scalar mass from ground state observables alone. While
it is possible to extract the scalar mass from the long time

EDWARD GILLMAN and ARTTU RAJANTIE PHYSICAL REVIEW D 96, 094509 (2017)

094509-10



behavior of two point functions, for MPS it is much easier
to consider the ground state equal time two point functions
G2ðrÞ which can be directly calculated once a ground state
approximation is found.
To see how the scalar mass can be extracted, we can

consider the Källén-Lehmann spectral representation of
the time ordered ground state two point function which can
be constructed quite generally for a Lorentz invariant
theory [51]. This representation relates the full two point
function to the two point function of the noninteracting
theory, specifically the Feynman propagatorDFðx − y;M2Þ
via

hΩjTϕðxÞϕðyÞjΩi ¼
Z

∞

0

dM2

2π
ρðM2ÞDFðx − y;M2Þ

ð39Þ

where x and y are space-time coordinates, ρðM2Þ is the
spectral density given by

ρðM2Þ ¼
X
λ

ð2πÞδðM2 −m2
λÞjhΩjϕð0Þjλ0ij2 ð40Þ

¼
X
λ

ð2πÞδðM2 −m2
λÞZ ð41Þ

and jλ0i is a zero-momentum energy eigenstate. We can
evaluate the Feynman propagator easily in D ¼ ð1þ 1Þ at
equal times to give

DFðr;M2Þ ¼ 1

2π
K0ðMrÞ ð42Þ

where K0ðzÞ is a modified Bessel function of the second
kind. The equal time two point function can then be
written as

G2ðrÞ ¼
Z

∞

0

dM2

4π
ρðM2ÞK0ðMrÞ: ð43Þ

If the spectrum contains an isolated pole then we can
extract this contribution and write schematically

G2ðrÞ¼
Z

ð2πÞ2K0ðmSrÞþ
Z

∞

4M2

dM2

4π
ρðM2ÞK0ðMrÞ: ð44Þ

This suggests that at sufficiently long distances, the non-
interacting form of the two-point function will be dominant
and depend on the dimensionless combination mSr.

B. Extracting mS from G2ðr; a; χ Þ
The above arguments motivate the use of the ansatz

G2ðrÞ ¼ AK0ðmSrÞ ð45Þ

to extract the scalar mass. This can be achieved by taking
the appropriate ratios (finite differences) to cancel overall
factors as

G2ðrþ 1Þ
G2ðrÞ

¼ K0ðmsðrþ 1ÞÞ
K0ðmsrÞ

: ð46Þ

This equation can then be solved numerically to extract
mSðrÞ which depends on r due the fact that G2ðrÞ is not a
pure Bessel function. Following the previous arguments we
can expect for some initial r≲ ξ the value of mSðrÞ will
vary due to the lattice effects and higher M2 eigenstate
contributions before becoming uniform such thatmS can be
extracted (in practice, the uniform region must be selected
by some criteria e.g. the gradient of mSðrÞ falling below
some specified tolerance, with mS then estimated by
averaging over the selected region). As discussed previ-
ously, the use of MPS will modify the long-distance
behavior of the observableG2ðrÞ due to finite entanglement
effects ultimately leading to a pure exponential decay. The
distance where this occurs is determined by the truncation
parameter χ and we denote the length scale associated to
this as ξχ . We can therefore expect a constant region of
mSðrÞ to occur in some intermediate distance region above
the scale of higher mass contributions and below the scale
of finite entanglement corrections. A method to diagnose
the finite entanglement effects is to repeat the procedure
used to extract mSðrÞ but now use an exponentially
decaying form as

δG2ðrÞ
G2ðrÞ

¼ ðG2ðrþ 1Þ −G2ðrÞÞ
G2ðrÞ

¼ G2ðrþ 1Þ
G2ðrÞ

− 1

¼ e−mD − 1 ð47Þ

so that

mDðrÞ ¼ − log

�
G2ðrþ 1Þ
G2ðrÞ

�
: ð48Þ

One again, mDðrÞ will vary with r since only at long
distances where the finite entanglement effects dominate
will G2ðrÞ become a true exponential. This expression can
be used to quickly get a sense of the distance where the
correlation function becomes strongly modified by the
finite entanglement effects of the MPS.

C. Extracting mS for lattice MPS at strong couplings

At strong couplings, the lightest excitations will become
kink-antikink pairs. This motivates the use of a Bessel-
squared function ansatz for the two point function

G2ðrÞ ¼ AK0ðmSrÞ2 ð49Þ
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corresponding to the form for two noninteracting excitations.
The behavior of G2ðrÞ can be established more rigorously in
the critical region by considering the critical behavior of the
classical D ¼ 2 Ising model which is described by a field
theory of free massive Majorana fermions [64].
At strong couplings, the Bessel-squared ansatz can then

be used in a similar way to the Bessel function form. In fact,
bothK0ðzÞ and K0ðzÞ2 have similar exponentially decaying
asymptotic forms

K0ðzÞ → e−z
ffiffiffi
1

z

r
ð50Þ

½K0ðzÞ�2 → e−2z
1

2z
: ð51Þ

As such, in principle either form can be used to estimate
mS. However, unlike K0ðzÞ, we can expect ½K0ðzÞ�2 to be
valid outside the asymptotic regime which is essential since

then shorter distances of G2ðrÞ will need to be approxi-
mated, requiring smaller χ.

VI. RESULTS

We study the ϕ4 QFT using MPS in the lattice regular-
ized setting. An approximation to the ground state is
obtained using uMPS while a finite size lattice MPS is
used to approximate the one kink state. We study both
weak and strong coupling behavior by fixing the value of
λ0 ¼ 0.1 or 2 while using a range of μ20. When the effective
coupling is small we compare the MPS approximation
to the classical continuum. The lowest order mass renorm-
alization is included numerically by fitting the classical
forms to the MPS data, replacing the bare mass with μ2 ¼
μ20 −m2

C where m2
C is treated as a free parameter. In the

region ξ ≫ 1 the lattice effects will be small and the
comparison with the classical continuum is appropriate.
In the strong coupling region the MPS approximations can

FIG. 1. The field expectation value for various effective couplings using a uMPS approximation to the ground state. In the left-hand
plot, weak-couplings are displayed with λ0 ¼ 0.1 and ðd; χÞ ¼ ð40; 32Þ (blue triangles). These can be compared to low χ ¼ 4
approximations (hollow red circles) which look almost identical on this scale. This contrasts the low d ¼ 12 approximations (hollow
black squares) for which the expectation value appears truncated agreeing with the higher d approximations only when the field
expectation value is relatively low. The insets show the convergence for the selected inverse coupling g−10 ¼ −1.5 (the best estimate has
been subtracted so that the plots tend to zero) and the difference in scales between the two indicate that d is the relevant parameter to
achieve a good approximation in the weak coupling regime. The semiclassical result is also shown in the main figure and lower-left inset
(solid red line) with v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6μ2=λ0

p
where μ2 ¼ μ20 −m2

C and m2
C ¼ −0.019 is determined by fitting to the data. The stronger coupling

data (right-hand plot) with ðd; χÞ ¼ ð18; 32Þ and λ0 ¼ 2 (blue diamonds) shows the usual symmetry breaking pattern. Here, the relevant
parameter to achieve a good approximation is χ as shown by the scale difference between the insets and also by the fact that the low d
approximation agrees well with the data on the main plot while the low χ data fails to agree near the critical point.
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be compared with universal results and we will focus on a
comparison of the mass ratio mS=MK to the universal
result mS=MK ≈ 2.
The accuracy of our approximations will depend on the

observable in question. Essentially, the important features
are the observation distance and to what degree the
observable represents an average over the system. In the
first case, only the truncation parameter χ is important and
increasing χ will allow longer distances to be better
approximated. This can be seen clearly in ground state
connected two point function G2ðrÞ where larger χ are
required to approximate the observable at larger distances
r. We can associate this behaviour to a length scale ξχ
corresponding to the distance at which the approximation
of G2ðrÞ is dominated by finite entanglement effects and
decays as a pure exponential. In the second case, one
can think of a particular threshold χ ≈ ~χðd; LÞ being
required before the translational invariance of observables
is well approximated. This will depend strongly on
the observable/state in question and on the truncation
parameters d and L.
The issues surrounding the approximation of transla-

tional invariance can be seen clearly when calculating
the field expectation values hΩjϕjΩi and hKjϕjKi. Since
both observables are local, they will converge quickly in χ
so long as the threshold χ ≈ ~χðd; LÞ is met. In the ground
state case, ~χðd; LÞ is essentially negligible and the approxi-
mation of hΩjϕjΩi converges rapidly. However, in the one
kink state ~χðd; LÞ is important and, for sufficiently large
values of d or L, local expectation values such as hKjϕjKi
will show significant spatial variations and cannot be

accurately approximated. We note that, even in the
ground-state case, the field expectation value is in principle
zero, respecting theZ2 symmetry but is broken numerically
during the approximation and must be enforced explicitly
if desired [65]. The uMPS approximation of the vacuum
expectation value hΩjϕjΩi is shown in Fig. 1 for pertur-
bative and nonperturbative bare couplings g0 ¼ λ0=μ20.
In the first case, the results (blue triangles) can be
compared with the classical continuum result (red line)
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6μ2=λ0

p
. In the stronger coupling case, there is no

analytic comparison but the expected symmetry breaking
pattern can be seen. In principle, such plots can be used to
determine the location of the critical point e.g. by using the
critical exponent associated with the vanishing field expect-
ation value. However, as discussed in [29], such fits are
highly sensitive and it is much better to use observables
with a simpler scaling, e.g. the kink mass, to determine the
location of the critical point.
The more problematic behavior of hKjϕjKi is shown

in Fig. 2. In the semiclassical case with bare coupling
g0 ≈ −0.33, the high field expectation value requires a
relatively high value of d to converge and the threshold
~χðd; LÞ is higher than the shown χ ¼ 6, 10, 16. This means
that a classical-like kink profile can be seen and increasing
χ achieves only very slight changes to the width such that
the correct hϕiK ¼ 0 value is not obtained. Moreover, the
zero-mode means that the point at which hϕðxÞiK crosses
zero is independent of the energy making convergence in χ
or d difficult to quantify. However, at stronger couplings
the field expectation value is much lower, corresponding to
a lower d, which makes it easy to approximate translational

FIG. 2. The field expectation value of the finite size lattice MPS approximation to the one kink state for weak coupling g0 ≈ −0.33
(left-hand plot) and stronger coupling g0 ≈ −2.58 (right-hand plot) with lattice sizes L ¼ 32, 64 and 28 ≤ d ≤ 32, 14 ≤ d ≤ 18
respectively. These can be compared with the corresponding field expectation values of a uMPS approximation to the ground state �v
(solid black lines) with ðd; χÞ ¼ ð40; 32Þ and (18,32) for the weak coupling and stronger coupling respectively. For the low χ ¼ 6 runs
(solid red line) a classical kinklike profile is visible for both couplings which interpolates between �v such that the correct hϕiK ¼ 0 is
not found. Increasing χ delocalizes the kink and translational invariance can be approximated in the stronger coupling case such
that hϕiK ≈ 0.
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invariance and obtain hϕiK ≈ 0 even for the modest values
of χ shown.
Observables that average over the whole system can be

much less sensitive to spatial variations in the MPS
representation than observables evaluated at a particular
point. For example, the behavior of hKjϕ2ðxÞjKi ¼ hϕ2iK

displays similar spatial variations at weak coupling as for
the case of hKjϕðxÞjKi, see Fig. 3. However, the spatial
average of this expectation value ⟪ϕ2⟫K has a much weaker
dependence on χ. This is shown in Fig. 4 where the spatial
variation of the expectation values of both ⟪ϕ⟫K and
⟪ϕ2⟫K are shown by error bars corresponding to their

FIG. 3. The ϕ2 expectation value corresponding to the one kink approximations in Fig. 2. As with hϕiK , translational invariance can
only be approximated in the stronger coupling case. Nevertheless, since the operator is Z2 invariant, the spatial average is well behaved
and its convergence can be studied as shown in the insets.

FIG. 4. The spatial average (red dots) of the ϕ and ϕ2 expectation values for the finite size lattice MPS approximation to the one kink
state at weak coupling g0 ≈ −0.33 (left-hand plots) and stronger coupling g0 ≈ −2.58 (right-hand plots) with the same parameters as in
Fig. 2. The spatial standard deviation of the expectation values, shown as error bars, changes strongly with χ and becomes small only for
strong couplings. However, the spatial averages changes only weakly and the value of ⟪ϕ2⟫K can be reliably approximated in both
regions. Note that, due to its antisymmetry, the value of ⟪ϕ⟫K is only correct and equal to zero (indicated by the black line) in the
stronger coupling case.
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standard deviation with x. Despite the strong spatial
variation in hϕ2iK , the spatial average changes only very
weakly with χ in both cases indicating that this observable
can be well approximated even in the weak coupling case.
This behavior can be compared with that of hϕiK; while the
spatial average does not display much variation in the weak
coupling case, since the operator is Z2 anti-symmetric, it
still gives the incorrect nonzero value and is only correctly
approximated in the stronger coupling region where trans-
lational invariance is approximated. In general, observables
corresponding to Z2 antisymmetric operators cannot be
reliably approximated outside the translational invariant
region, while the spatial average of those corresponding to
Z2 symmetric operators can be.
The kink mass MK is calculated from the difference

of the one kink energy expectation value hKj ~HTPBCjKi,
obtained from the finite size lattice MPS, and the ground
state energy density, obtained from the uMPS. The latter
converges quickly in χ and the only potential issue is the
approximation of hKj ~HTPBCjKi. However, since the kink
mass both includes contributions from the whole system, is
fairly local and Z2 symmetric, we can expect a reasonable
convergence with χ even in the weak coupling case. In the
case of the scalar mass, since it is estimated from the
ground state observable G2ðrÞ, approximating translational

invariance should not be an issue and we can focus on the
need to increase χ so that the region up to r ≈ ξ is well
approximated. At weak couplings, ξ is relatively small so
that the required χ should not be too high allowing for an
estimate of mS to be extracted relatively easily. The kink
mass and scalar mass are shown for a variety of weak
couplings in Fig. 5 along with the classical continuum results
for comparison.
At stronger couplings the correlation length ξ increases

so that longer distances of G2ðrÞ need to be approximated
requiring larger χ. Ultimately, this means that this method
cannot be used with MPS arbitrarily close to the critical
point where the scalar mass vanishes. This is reflected in
the fact that at the critical point the correlation length
diverges leading to algebraically decaying correlations
which correspond to a logarithmic violation of the entan-
glement area law i.e. SA ∼ logðLAÞ∂A. While an MPS can
still be used to approximate short distance observables
in the critical region [66] an alternative tensor network,
e.g. the multiscale entanglement renormalization ansatz
(MERA) [24], that obeys the correct low entanglement
law will also allow the approximation of the long range
physics. Of course, this means that MPS are not especially
suited to the study of universal physics and we can expect
difficulty when trying to reproduce the strong coupling
behavior e.g. the universal mass ratio.

FIG. 5. The kink mass MK (left-hand plot) and scalar mass mS (right-hand plot) for various weak couplings (data in blue triangles).
The kink mass is calculated from the energy expectation value of the finite size lattice MPS approximation of the one kink state with
χ ¼ 14 and the approximation of the ground state energy density obtained from a uMPS approximation with χ ¼ 32. The scalar mass
is extracted from the uMPS approximation to the ground state connected equal time two point function G2ðrÞ via a Bessel function
ansatz (45). Both are compared with the semiclassical continuum results (solid red lines) MK ¼ 4

ffiffiffi
2

p
μ3=λ0 and mS ¼

ffiffiffi
2

p
μ where

μ2 ¼ μ20 −m2
C and m2

C is determined by fitting to the data to give −0.025, −0.037 respectively. The convergence of the approximations
with d and χ is shown in the insets.

TOPOLOGICAL DEFECTS IN QUANTUM FIELD THEORY … PHYSICAL REVIEW D 96, 094509 (2017)

094509-15



The scalar mass at strong couplings is plotted along with
the kink mass in Fig. 6 and the qualitative change in the
scaling can been seen in the left-hand plot at the point when
2MK ≈mS as expected. However, the estimate of mS with
χ ¼ 32 in the critical region extracted from the Bessel
function tends to be somewhat higher than the value of
2MK suggesting that, as might be expected, it is inaccurate in
this region. The scalar mass extracted from the excitation
ansatz with χ ¼ 32 is also plotted (red dashed line) and is
somewhat closer to the value of 2MK suggesting that it can
provide a more efficient and accurate method to extract the
scalar mass in the critical region. To increase the accuracy
of the uMPS method one can simply increase the value of χ
but it is also possible to use the Bessel-squared ansatz
Equation (49). A comparison of these methods is shown
for the strong coupling region in the right-hand plot. The
estimate of the scalar mass is closer to the expected behavior
when χ is increased (red dots and diamonds) but the use of
the Bessel-squared ansatz improves the estimate again (black
squares) agreeing fairly well with the excitation ansatz. The
significant improvement of the Bessel-squared method over
the single Bessel method suggests that the uMPS is able to
capture the contributions coming from the kink-antikink
excitations in this observable. To achieve higher accuracies
than obtained here, larger χ can be used by following more
recently developed algorithms than the conjugate gradient
minimization used here [62]. Alternatively, one can also turn

to better suited tensor networks such as MERA and both the
methods to obtain the kink mass and scalar mass should
be easily adaptable to this case. Of course, if one is only
interested in the equilibrium physics chosen here, the
excitation ansatz provides good accuracy and efficiency.
However, it is less flexible and cannot be readily applied to
different tensor networks and instead must be built explicitly
for each case.

VII. CONCLUSION

We have studied the topological defects (kinks) of
the relativistic ϕ4 quantum field theory (QFT) in D ¼
ð1þ 1Þ using matrix product states (MPS). We have
shown how a finite size lattice MPS approximation to
the one kink state can be obtained by making use of
twisted periodic boundary conditions (TPBC) and that
the resulting kink mass agrees with expectations. While
alternative specific excitation ansatz provide a more
efficient method to calculate the kink mass, the TPBC
method can be easily adapted to other theories and
tensor networks while also allowing for the easy calcu-
lation of a wide variety of observables e.g. equal time
field n-point functions in the presence of the kink. We
have also outlined a general method to extract the scalar
mass from the ground state equal time two point
functions. A comparison of the one kink and ground

FIG. 6. Estimate of the scalar mass mS extracted from the uMPS approximation to the ground state connected equal time two point
function G2ðrÞ via a Bessel function ansatz (45) (χ ¼ 32 red dots, χ ¼ 64 red diamonds). This can be compared with the estimate
extracted from the excitation ansatzmA

S (dashed red line) and twice the kink mass 2MK (blue triangles) calculated from the L ¼ 64 finite
size lattice MPS approximation to the one kink state. The left-hand plot shows a larger range of bare coupling 2.5≲ g0 ≲ 5 while the
right-hand plot focuses on the strong coupling region with 2.95≲ g0 ≲ 3.39. A qualitative change can be seen when entering the strong
coupling region at mS ≈ 2MK but the χ ¼ 32 Bessel ansatz (45) does not provide a good quantitative agreement with the expected
behavior mS ≈ 2MK in the strong coupling region. The higher χ ¼ 64 Bessel ansatz does improve the estimate but the χ ¼ 64 Bessel-
squared ansatz (49) (black squares, only in right-hand plot) improves the estimate further in agreement with the χ ¼ 32 excitation ansatz
estimate (dashed red line). As mentioned in Sec. V, the scalar mass is estimated from averaging over a “uniform” region ofmSðrÞ chosen
here by a single tolerance for all values of g−10 . While this has the advantage of being “blind” using a single tolerance can lead to
somewhat anomalous points (e.g. see the point at g−10 ≈ −0.331) and instead one can choose the tolerance adaptively for each g−10 which
eliminates such points, improving the estimates of mS.
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state approximations with universal results suggests that
the MPS (specifically the uMPS) is able to capture the
contribution of kink-antikink excitations to observables
making it an interesting candidate to study challenging
nonequilibrium phenomena such as defect formation via
the Kibble Zurek mechanism during quantum phase
transitions.
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