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The calculation of the ground state and thermodynamics of mass-imbalanced Fermi systems is a
challenging many-body problem. Even in one spatial dimension, analytic solutions are limited to special
configurations and numerical progress with standard Monte Carlo approaches is hindered by the sign
problem. The focus of the present work is on the further development of methods to study imbalanced
systems in a fully nonperturbative fashion. We report our calculations of the ground-state energy of mass-
imbalanced fermions using two different approaches which are also very popular in the context of the
theory of the strong interaction (quantum chromodynamics, QCD): (a) the hybrid Monte Carlo algorithm
with imaginary mass imbalance, followed by an analytic continuation to the real axis; and (b) the complex
Langevin algorithm. We cover a range of on-site interaction strengths that includes strongly attractive as
well as strongly repulsive cases which we verify with nonperturbative renormalization group methods and
perturbation theory. Our findings indicate that, for strong repulsive couplings, the energy starts to flatten
out, implying interesting consequences for short-range and high-frequency correlation functions. Overall,
our results clearly indicate that the complex Langevin approach is very versatile and works very well for
imbalanced Fermi gases with both attractive and repulsive interactions.
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I. INTRODUCTION

Ultracold quantum gases have given us the opportunity
to directly observe many-body physics at work in an
unprecedented way. Over the last few decades, with the
advent of laser trapping and cooling techniques, exper-
imentalists have progressively achieved a previously
unimagined degree of control for a wide range of atomic
systems. As a consequence, the variety of quantities that
can be measured with precision has grown dramatically [1].
As is now well known, tuning across magnetic Feshbach
resonances allows for the interaction strength to be varied
essentially at will. Additionally, the fine tuning of optical
trapping potentials has enabled the study of lattice models
of direct relevance to condensed matter physics [2],
including systems in low dimensions (by highly con-
strained traps). Similarly, the clever use of the internal
nuclear states of alkali and alkali-earth atoms has made it
possible to probe systems with multiple internal degrees
of freedom, i.e. with SUðNÞ flavor symmetry [3,4]. Most
relevant for this work, experiments involving atomic
mixtures of fermionic (or even fermionic and bosonic)
species has facilitated access to mass-imbalanced situa-
tions, a case that is interesting for a variety of reasons but
has been studied less than its spin-imbalanced counterpart.
Recent experimental setups include fermionic mixtures of
6Li and 40K [5–7]. Moreover, other systems with mixtures
of a variety of suitably chosen different fermion species

(such as 6Li, 40K, 161Dy, 163Dy, and 167Er) appear within
reach in the future (see, e.g. Refs. [8–10]).
Given the rapid experimental progress, in particular

with respect to spin- and mass-imbalanced quantum gases,
this work aims at the further theoretical development of
stochastic frameworks required for ab initio studies of
such systems in any dimension. In other words, with our
developments in the present paper, we particularly aim at
aspects which can currently only be accessed in a very
limited fashion with conventional Monte Carlo (MC)
methods, if at all. To test our developments, we examine
the equation of state of mass-imbalanced Fermi mixtures
when confined to one-dimensional (1D) situations.
Although 1D systems are also experimentally relevant
(see, e.g. Ref. [11]), we do not aim at a high-precision
calculation of the equation of state with our present study.
Our goals are rather of methodological nature. From the
latter standpoint, the 1D limit is appealing since the running
times of the computations are comparatively short and it is
therefore possible to take vastly more data than in higher
dimensions. This allows to reduce systematic errors (e.g. by
studying large lattice sizes) and focus on the underlying
methods. Moreover, as is well known, 1D systems of
fermions with contact interaction are typically solvable by
the Bethe ansatz technique for arbitrary particle numbers
[12]. In some cases the analytic investigations have been
complemented by numerical studies (see e.g. [13–16]).
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However, as soon as the system involves particles of
general unequal masses, an analytic solution is currently
out of reach. While the two-body problem can of course be
solved, the solution of mass-imbalanced few-body systems
is restricted to special mass configurations [17,18], or
infinite interaction strength [19], or specific boson-fermion
mixtures [20]. In any case, the existence of analytic
solutions in some cases and the absence of theoretical
results in other cases represents a further motivation for the
developments discussed in the present work.
It is worth noting that progress has been made in related

cases such as the half-filled asymmetric Hubbard model in
1D [21] as well as 3D [22], which does not feature a sign
problem and is directly connected to the Falicov-Kimball
model in the limit of large asymmetry (and is thus of
interest to a sector of the condensed-matter community).
Cases away from half filling were also studied in
Refs. [23,24]. Furthermore, exact diagonalization studies
have addressed harmonically trapped systems of up to 10
particles [25,26]. While these methods provide results for
the few-body regime, it is challenging to extend them
beyond low particle numbers or to higher dimensions due
to the prohibitive scaling of memory requirements. By
trading the precise knowledge of the wavefunction for
answers to specific questions, i.e. by the use of Quantum
Monte Carlo methods (QMC) to estimate specific corre-
lation functions, we may not only push further in particle
number but also to higher-dimensional systems, which has
led to great success in spin- and mass-balanced systems. As
one moves to mass-imbalanced systems, however, further
restrictions appear, namely the infamous sign problem, and
computational effort is again prohibitive.
One way to circumvent the exponentially large computa-

tional cost at finite mass difference is to “take a detour via
the complex plane.” Motivated by the use of an imaginary
chemical potential in the investigation of the QCD phase
diagram [27], it was recently shown that the same idea
also is useful for nonrelativistic fermions in 3D [28] and 1D
[29] at finite temperature. A natural move from imaginary
polarization is the step to imaginary mass imbalance, which
was investigated in Ref. [30] and later applied to the ground
state of a unitary Fermi gas on the lattice [31]. Another
approach to circumvent the sign problem by using complex
numbers is the so-called complex Langevin (CL) method,
which is a complex generalization of the idea of stochastic
quantization. Considerable progress was made in the last
decade in understandingwhen thatmethod is valid anduseful
for relativistic theories (see e.g. Refs. [32–35]) as well as for
nonrelativistic systems (see e.g. Refs. [36–38]).
Below, we first describe the model underlying our

studies, relevant scales, and dimensionless parameters,
and elaborate on both the imaginary-mass and CL
approaches. After that, we present our results for the
ground-state energy and compare the two methods at finite
mass imbalance in the case of attractive interactions in

Sec. IV. In the same section, our main result, namely the
equation of state as a function of both mass imbalance and
interaction strength (both attractive and repulsive) is shown.
We summarize and present our conclusions in the last
section.

II. MODEL, SCALES, AND PARAMETERS

In this work we focus on nonrelativistic 1D fermions
with contact interaction among the spin species, which are
governed by the Hamiltonian

Ĥ ¼ T̂ þ V̂; ð1Þ

with

T̂ ¼
X
s¼↑;↓

Z
dxψ̂†

sðxÞ
�
−

ℏ2

2ms
∂2
x

�
ψ̂ sðxÞ;

V̂ ¼ g
Z

dxψ̂†
↑ðxÞψ̂↑ðxÞψ̂†

↓ðxÞψ̂↓ðxÞ: ð2Þ

Here, ψ̂†
sðxÞ and ψ̂ sðxÞ denote operators that create and

annihilate fermions of spin s, respectively. Note the spin
dependence of the mass in the kinetic part T̂ renders the
model insoluble, as opposed to the integrable Gaudin-Yang
model [39].
The above expressions describe dilute Fermi gases when

the effective interaction range r0 is much smaller than the
average interparticle distance ∼k−1F , with kF ¼ π

2
n being

the Fermi momentum. In such systems, the sole physical
parameter describing the interaction between particles is
the s-wave scattering length a which is connected to the
coupling through g ¼ 2=a (see e.g. Ref. [40]). In our case,
additional physical input are the total particle number
N ¼ N↑ þ N↓ and the box size L, which we use to define
the conventional dimensionless coupling γ ¼ g=n, with
n ¼ N=L being the particle density.
From now on, we work in units such that kB ¼ ℏ ¼ 1

and normalize our results for the ground-state energy using
the energy of the noninteracting mass- and spin-balanced
Fermi gas in the continuum

EFG ¼ 1

3
NϵF; ð3Þ

where ϵF ¼ k2F=2. To simplify the discussion of mass
imbalanced systems, we define the dimensionless mass-
imbalance parameter

m̄ ¼ m↑ −m↓

m↑ þm↓
; ð4Þ

which is consistent with the literature [30,31]. Note that the
system is invariant under m̄ → −m̄ as long as the system is
unpolarized, which is always the case in this work.
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III. MANY-BODY METHODS

Here we present the essential ingredients of our ground-
state formalism for Fermi gases with short-range inter-
actions described by Eq. (2). We start with the approach
previously employed to 1D, 2D, and 3D Fermi gases with
equal masses and attractive interaction on a lattice with
periodic boundary conditions [13,41,42]. The partition sum
Zβ is written as

Zβ ¼ hψ0je−βĤjψ0i≡ hψ0jÛβjψ0i; ð5Þ

which projects the guess state jψ0i onto the ground state in
the limit β → ∞. Here, β refers to the extent of the
imaginary time direction. The central object to compute
is the transfer matrix Ûβ, which is challenging for any
nontrivial Ĥ because T̂ and V̂ do not commute. To deal with
the two-body operator V̂, a discretization of the imaginary
time axis is performed followed by symmetric Trotter-
Suzuki factorization [43]. This is in turn followed by a
Hubbard-Stratonovich (HS) transformation to replace the
quadratic occurrence of the density operator with a linear
one coupled to an auxiliary field σðx; τÞ (see Refs. [44]).
Eventually, these steps yield the following path integral:

Zβ ¼
Z

Dσ detU↑
β ½σ� detU↓

β ½σ�: ð6Þ

The determinants in the above expression are taken
over the single-particle representation of the respective
(HS-transformed) transfer matrices Us

β½σ�, which reflects
the use of a Slater determinant as a trial state jψ0i (see
Ref. [45]). It is crucial for conventional Monte Carlo
approaches that the product of these determinants be
non-negative, since only then one may interpret the
integration kernel as a probability measure:

Zβ ≡
Z

DσP½σ�≡
Z

Dσe−S½σ�: ð7Þ

Here, we defined the action S½σ� ¼ − lnP½σ�, which is real
only when P½σ� is positive. To evaluate the path integral, we
apply the hybrid Monte Carlo (HMC) algorithm [46],
which is an essential method for lattice QCD calculations.
The objective of HMC is to perform global updates on the
auxiliary field σ as opposed to a number of random local
updates. This goal is achieved by introducing a conjugate
momentum field πðx; τÞ and multiplying the path integral
by an immaterial constant factor:

Zβ ≡
Z

Dπ

Z
Dσe−H½σ;π�; ð8Þ

where

H½σ; π�≡ S½σ� þ
Z

dx
Z

dτ
1

2
½πðx; τÞ�2: ð9Þ

To obtain an updated field configuration, the equations of
motion, given by

∂σ
∂t ¼

δH
δπ

¼ π;

∂π
∂t ¼ −

δH
δσ

¼ −
δS½σ�
δσ

ð10Þ

are integrated along a trajectory of length ∼1 in the
fictitious HMC time t. By this on-shell propagation of
the auxiliary-field, governed by the auxiliary classical
Hamiltonian H½σ; π� (whose value is preserved throughout
the evolution), the acceptance rate for the Metropolis
accept-reject step is almost 100%, as the same
Hamiltonian H is used to decide that step. The latter is
allowed because, as noted above, the introduction of the
field π into the action is immaterial to the dynamics of the
system. Indeed, it factors out of Zβ completely.
To calculate physical observables we can take derivatives

with respect to associated source terms introduced in the
action S½σ�. In this work, we focus on the ground-state
energy, which we obtain by taking a log-derivative of the
partition sum with respect to imaginary time:

Eβ ¼ −
∂ lnZβ

∂β ¼ −
1

Zβ

∂Zβ

∂β : ð11Þ

As mentioned above, for a method based on importance
sampling [47], a positive probability measure P½σ� in
Eq. (7) needs to be guaranteed, or in other words: the
action S½σ� must be real. This is only the case for systems
with an even number of equally populated spin species with
uniform masses. In this case, the transfer matrices of all
spin species are equal. Additionally, within our approach, it
is necessary for the interaction to be attractive such that the
operator Ûβ in Eq. (5) is real. For any other fermionic
system our QMC-based approach is subject to the infamous
sign problem, rendering the simulation time exponentially
growing in system size (particle number or spatial extent,
depending on the specific algorithm). Below, we elaborate
on the two methods used here to circumvent the sign
problem for systems of fermions with unequal masses as
well as repulsive interactions.

A. Imaginary mass-imbalance

As outlined in the previous section, it is necessary to
provide a non-negative integral kernel in Eq. (7) to enable
QMC sampling. By choosing the masses of the particles
to be complex and such that they satisfy the condition
m↑ ¼ m�

↓, one can show that the transfer matrices U↑
β ½σ�

and U↓
β ½σ� for spin-up and -down fermions are complex
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conjugate of each other. It is instructive to write the
masses as

m↑ ¼ m0 þ i
δm
2

;

m↓ ¼ m0 − i
δm
2

; ð12Þ

which using Eq. (4) yields

m̄ ¼ i
δm
2m0

: ð13Þ

In the following, we set m0 ¼ 1 which fixes the scale for
the masses in our calculations.
With these definitions, the product of the determinants

can be written as an absolute square and thus remains
positive semidefinite for arbitrary imaginary mass
asymmetry:

P½σ� ¼ detU↑
β ½σ� detU↓

β ½σ� ¼ j detU↑
β ½σ�j2: ð14Þ

The partition sum (6) can now be obtained via standard
QMC methods and we are able to extract observables as a
function of the imaginary mass imbalance m̄. In order to
obtain physical results, however, we need to perform an
analytic continuation to real mass imbalance via e.g. a
polynomial fit or a fit to a Padé approximant. Strictly
speaking, such a continuation to the real plane is only
defined if the partition sum Zβ is an analytic function of m̄,
a fact that is not trivially confirmed in practice. To gain
analytic insight, however, we discuss below the noninter-
acting Fermi gas along with our results using the QMC
approach discussed above.
It is important to note here that this approach is fully

nonperturbative. The results do contain systematic uncer-
tainties, but those are by definition controllable as they arise
from the discretization of spacetime. Naturally, the analytic
continuation has limitations and actually fails at very high
mass imbalances [31], as we will also discuss below. For
low to intermediate mass-imbalances, however, the use
of imaginary mass-imbalances enable the calculation of
few- to many-body properties of Fermi gases in arbitrary
dimension. Below, we will use the abbreviation iHMC to
refer to the above approach of combining HMC data at
imaginary m̄ followed by analytic continuation.

B. Complex Langevin dynamics

Instead of adapting the method such that a positive
probability measure is guaranteed, one may rethink the
update process of the auxiliary field σ altogether. More
specifically, we may let σ evolve according to a different
equation of motion

∂σðtÞ
∂t ¼ −

δS½σ�
δσ

þ ηðtÞ; ð15Þ
i.e. the Langevin equation. Here, t is a ficticious Langevin
time and η comprises a random noise field with expectation
value hηðtÞi ¼ 0 and autocorrelation hηðtÞηðt0Þi ¼ 2δt;t0 .
The above expression is borrowed from the context of
statistical physics, where it describes the stochastic move-
ment of a heavy (slow) particle immersed in a rapidly
changing background of lighter (fast) particles, i.e. the
Brownian motion. In a computational context, on the other
hand, the use of Eq. (15) is termed (real) Langevin
dynamics (RL), whose foundation lies in the concept of
stochastic quantization. The latter interprets the stationary
distribution of a stochastic process as the probability
measure in the path integral of the corresponding
Euclidian field theory [48].
Although the RL algorithm is again restricted to real

actions, complex actions can be considered by complex-
ifying the auxiliary field σ. We then obtain a new set of
equations of motion [49]:

∂σRðtÞ
∂t ¼ −Re

�
δS½σ�
δσ

�
þ ηðtÞ;

∂σIðtÞ
∂t ¼ −Im

�
δS½σ�
δσ

�
: ð16Þ

Unfortunately, there is no rigorous mathematical founda-
tion for the CL approach and despite its elegance there are
two caveats with the method. First of all, convergence is
not guaranteed due to numerical instabilities and, even if
convergence is achieved, it is not certain that the correct
result is reproduced. The former difficulty is of numerical
nature and has been cured by using adaptive time-step
solvers [33]. The issue regarding the correctness of the
result is much more delicate and is due to singularities in
the imaginary part of the auxiliary field [34,35,50]. More
precisely, these singularities occur in our case through the
use of an HS transformation that depends on sin σ:

sin σ ¼ sin σR cosh σI þ i cos σR sinh σI: ð17Þ

Thus, the imaginary direction is not bounded and expect-
ation values of observables must be assumed to be con-
taminated by singularities i.e. cannot be trusted without
further analysis even if convergence is achieved.
To prevent the CL algorithm from uncontrolled

“excursions” in the complex plane, the insertion of a
“regulator” in the equation of motion was proposed
recently [38]. The discretized equations of motion then read

δσR ¼ −Re
�
δS½σ�
δσ

�
ht − 2ξσRht þ η

ffiffiffiffi
ht

p
;

δσI ¼ −Im
�
δS½σ�
δσ

�
ht − 2ξσIht; ð18Þ
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where ht is the (adaptive) step size in CL time t. The
parameter ξ determines the strength of the regulating term
which can be thought of as a damping force that keeps the
auxiliary field from wandering to large values of σ. Of
course, this term represents a systematic influence whose
effect needs to be studied carefully. Practically, we can
calculate observables at different values of ξ and then
consider the extrapolation ξ → 0. We have checked this
issue carefully and observe the same convergence pattern as
reported in Ref. [38]. In our explicit calculations, we have
found that ξ has to be chosen such that the regulator term is
rendered sufficiently large compared to the average mag-
nitude of the drift term ∼δS=δσ. At the same time, we also
have to keep ξ sufficiently small to ensure that the regulator
term does not exceed the average magnitude of the drift
term and therefore dominates the physics.
Although several runs at different values of ξ are needed

to obtain results, this procedure only introduces a linear
increase of computational effort as the simulation time of
a single run does not depend on the value of ξ explicitly.
To illustrate the extrapolation procedure, we show in
Appendix A how the energy of a Fermi gas with m̄ ¼
0.3 and m̄ ¼ 0.6 has been extracted from the numerical data
obtained with different values of ξ. In addition, a discussion
of the role of the parameter ht controlling the (adaptive)
step size in Eq. (18) can be found in Appendix A as well.
Using Eq. (18), it is possible to estimate path integrals

that would be subject to a sign-problem in conventional
QMC approaches. Thus, we have a method at hand to
study, in a fully nonperturbative way, many-body systems
of mass- and spin-imbalanced Fermi gases, at least poten-
tially without constraints on any imbalance parameters. In
the following, we apply the method to 1D fermions with
arbitrary mass imbalance and underline its correct behavior
by comparison with other approaches.
Like iHMC, the CL method involves systematic uncer-

tainties associated with the discretization of spacetime,
which are controllable. While no analytic continuation is
involved, it should be stressed that the CL method remains
a method “under construction” in the sense that its
mathematical underpinning is still under development.
However, we interpret the remarkable agreement between
CL and iHMC for mass-imbalanced systems, and between
CL and a renormalization-group approach across a wide
range of interaction strengths (including repulsive cou-
plings), as strong evidence that our CL approach works for
the systems studied here, see our discussion below.

IV. RESULTS AND DISCUSSION

In this section we present our fully nonperturbative
results for the ground-state energy of interacting fermions
of unequal masses. Wherever possible, we compare our
results to those obtained by other methods. Additionally,
we show the equation of state for the ground-state energy as
a function of (attractive and repulsive) interaction strength

across a wide range of mass imbalances. To our knowledge,
this is the first determination of the full equation of state for
mass-imbalanced fermions interacting via a contact inter-
action in one dimension.
In the following, all values will be shown as dimension-

less quantities relative to the ground-state energy of the
noninteracting system in the continuum EFG ¼ 1

3
NϵF at the

same density and particle number. We set the number of 1D
spatial lattice sites to Nx ¼ 40, which we found to be
sufficient for the methodological purpose of the present
work, see also Ref. [14] for a study of the Nx scaling
behavior of 1D mass-balanced Fermi gases. The spatial
lattice spacing is fixed to unity, which sets the length and
momentum scales in our problem. The temporal lattice
spacing was chosen to be τ ¼ 0.05 and is sufficient to
study the interaction strengths under consideration [13].
Furthermore, we numerically extrapolate to the limit of
large imaginary time βϵF by fitting a constant to a few
values obtained at sufficiently large propagation times
(following Ref. [13]) to save numerical effort. To carry
out that extrapolation, we performed calculations on
temporal lattices as large as Nτ ∼ 1500, which we found
in previous work to be sufficient for the particle numbers
and couplings considered here [13]. Each data point shown
was computed using an average of 5000 decorrelated
samples (both in the iHMC and CL approaches).

A. Imaginary mass imbalance

In order to study the interacting Fermi gas, it is
instructive to first investigate its noninteracting counterpart.
To calculate the noninteracting energy on the lattice, we
simply sum the single-particle energies and as a function of
the mass imbalance m̄ we obtain

Em̄ ¼ E0

�
1

1 − m̄2

�
¼ E0

�
1

1þ ð−im̄Þ2
�
; ð19Þ

where E0 is the corresponding noninteracting energy for
mass-balanced systems on the lattice. This expression is
symmetric in m̄, as it should be, since we investigate
equally populated spin species. Note also that the energy as
obtained from a calculation in the mean-field approxima-
tion exhibits the same dependence on m̄ as detailed here
for the noninteracting system (see, e.g. Ref. [31]).
The top panel of Fig. 1 shows our results for the ground-

state energy (black diamonds) for various couplings as
function of imaginary m̄ along with the noninteracting line
(solid black) according to Eq. (19). The noninteracting
form suggests the use of a Padé approximant fit to the data,
which takes the form

fðm̄Þ ¼
P

i≥1bim̄
2i

1þP
j≥1cjm̄

2j ; ð20Þ

where the even powers reflect the symmetry under
m̄ → −m̄, and the bj’s and cj’s are fit parameters.
The colored lines in Fig. 1 represent a least-squares fit
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of the above form with a polynomial of order 2 (4) in the
numerator (denominator). The nearly perfect agreement
with the numerical data is crucial when performing an
analytic continuation to real m̄ as small variations in the fit
parameters can greatly influence the final results for real
mass imbalances. In principle, higher orders can be
included in the polynomials; however, we have found that
doing this limits the stability of the fit procedure. Therefore,
we only use the before-mentioned order of the Padé
approximant in this work.
To obtain results for real m̄, we perform an analytic

continuation to the real axis via

iδm → δm ð21Þ

which implies

m̄ →
δm
2m0

: ð22Þ

The results of the analytic continuation are shown in the
bottom panel of Fig. 1 along with the 95% confidence level
(shaded). We find very good agreement with the form of
the noninteracting result (solid black line) and the results
for the energies are very stable with the order of the Padé
approximant up to m̄ ∼ 0.5…0.6. For mass imbalances
beyond m̄ ∼ 0.6, however, the associated uncertainties
grow rapidly and a quantitative prediction for the
ground-state energy (or any other observable) is not
guaranteed, particularly at strong couplings. At very high
imbalances (not shown in this plot), it is even possible that
the qualitative trend as a function of m̄ changes due to the
effect of the higher-order terms in the functional form of the
fit. A possible solution to this issue may be to use a larger
amount of data and a finer grid for the ð−im̄Þ-axis. While
this is feasible (albeit tedious) in 1D, the numerical effort
in 2D and 3D would be definitely prohibitive.

B. Complex Langevin approach

In this section we present our results obtained with the
CL approach, as introduced above, and benchmark our
results with those from our iHMC study and (semi) analytic
calculations. In what follows, we discuss results for the
strength of the regulating term to be ξ ¼ 0.1 and the target
CL integration step h0 ¼ 0.01. From an analysis of the
dependence of our results on these parameters, we found
that these values are well suited to study the ground-state
energy within a precision on the 1% level. We stress,
however, that those values could change when considering
different quantities such as correlation functions and
density matrices.

1. Mass balanced case: Arbitrary interaction

We begin by considering the mass-balanced scenario,
which provides a valuable cross-check as such systems
are accessible with a variety of other methods. In particular,
we compare our results to those previously obtained
with HMC in Ref. [13] for attractive systems which have
also been found to agree with exact results from the
Bethe ansatz. Additionally, we show results from a
renormalization-group approach to density functional
theory based on the microscopic interactions defining
our model [51]. We will abbreviate this approach as
DFT-RG which was put forward in Refs. [52–54]. As
shown in Fig. 2, we find outstanding agreement among all
methods for −2≲ γ < 0 (attractive coupling). Moreover,
the results from our CL study and those from the DFT-RG
approach also agree very well for the repulsive case in the
regime 0 < γ ≲ 2, where our QMC approach is bound to
fail due to the sign problem. Note that jγj≲ 2 is roughly the

FIG. 1. Ground-state energy of N ¼ 3þ 3 fermions as a
function of imaginary (top) and real (bottom) mass imbalance
for various couplings γ from weak to strong attractive interaction
(lines ordered from top to bottom). Top: iHMC results for
imaginary m̄ (black diamonds, statistical error bars are of the
size of the symbols) with Padé approximations according to
Eq. (20) (solid colored lines). The black solid line shows the
noninteracting result on the lattice. Bottom: analytically con-
tinued ground-state energies as a function of real mass imbalance
(solid lines). Although the fits as a function of imaginary mass
imbalance are precise, small uncertainties result in wide con-
fidence bands (shaded areas) when displayed as a function of real
mass imbalance. The plot range in the bottom panel was limited
to m̄ ¼ 0.65 due to large uncertainties beyond that point.
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range where the DFT-RG approach is able to formulate
reliable predictions based on state-of-the-art truncations
presently restricted to mass-balanced systems.

2. Mass imbalanced case: Comparison with iHMC

Motivated by the excellent agreement between CL and
other methods in mass-balanced systems, we expand our
investigation to mass-imbalanced systems using the CL
approach. As mentioned above, there is no need for analytic
continuation, which saves in computational effort since we
only have to compute single data points (as opposed to a
grid of data points which is then fitted). Although it is
possible to run calculations for an arbitrary configuration of
the fermion masses m↑ and m↓, we stick to the definition
Eq. (12) introduced with the iHMC method to facilitate a
straightforward comparison.
Our CL results are shown in Fig. 3 for various attractive

coupling strengths on top of results from iHMC calcula-
tions for the same parameter values. We find excellent
agreement between the methods up to m̄ ∼ 0.5–0.6, which
is where the iHMC algorithm incurs large uncertainties
(as mentioned in a previous section). Remarkably, the
results obtained with the CL algorithm continue to be
smooth well beyond that regime and the statistical uncer-
tainties are of roughly constant magnitude across all
imbalances considered.

3. Equation of state for arbitrary mass imbalance

Thus far, we have compared our CL results to various
methods and found excellent agreement for all cases
considered. Most of parameter space, however, is generally
difficult to access due to analytic and numerical problems,
as pointed out above. The CL method is, however, able to
predict values for arbitrary m̄ and across a wide range of
both attractive and repulsive interaction strengths, although

the results for strong repulsion (γ ≳ 1) have to be taken care
with some care at present as we discuss in Appendix B.
To underscore this ability, we present in Fig. 4 our
determination of the equation of state for mass-imbalanced
fermions. As can be appreciated in the figure, the results
are smooth as a function of interaction strength and mass
imbalance and intersect the correct noninteracting results
on the vertical line at γ ¼ 0.
It is also evident in Fig. 4 that the equation of state

becomes linear in a region around γ ¼ 0. This linear region
can be compared with a first-order perturbative calculation
of the ground state energy, as shown in Fig. 4, which is
given by

E
EFG

¼ Em̄

EFG
þ γ

24

π2
N↑N↓

ðN↑ þ N↓Þ2
þOðγ2Þ: ð23Þ

Here, Em̄ is as in Eq. (19). Note that the first-order
correction in γ does not depend on the mass imbalance
m̄, which is reflected in Fig. 4 in the fact that the slope at
γ ¼ 0 does not change as m̄ is increased. Moreover, we
observe that our numerical data agrees very well with this
perturbative result around γ ¼ 0, indicating that our CL
approach indeed works reliably, at least in the weak-
coupling limit. Interestingly, we deduce from this com-
parison that the size of the linear region depends on m̄ and
the sign of the coupling γ. In fact, the linear region is not
symmetric around γ ¼ 0 and even appears to increase with
increasing m̄ for attractive couplings (γ < 0).
Our results make the versatility of our CL approach

evident. In fact, very promisingly, this enables us to predict

FIG. 2. Ground-state energy of N ¼ 5þ 5 fermions of equal
mass (m̄ ¼ 0) as a function of interaction strength computed
with iHMC (red error bars), CL (blue squares), and DFT-RG
(dash-dotted line).

FIG. 3. Ground-state energy of N ¼ 5þ 5 fermions computed
using iHMC (solid lines) and CL (symbols). The shaded areas
represent the 95%-confidence interval of iHMC data, the un-
certainties in the CL data are smaller than the symbol sizes. We
find agreement in the ground-state energies at low imbalances
up to m̄ ∼ 0.5. Beyond that point the higher-order terms in the
Padé approximants reduce the curvature of the iHMC lines.
The energies calculated with CL increase monotonically as m̄
approaches unity as naively expected for a species with diverging
kinetic energy (zero mass).
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values for the ground-state energy at couplings and mass
imbalances relevant to experimental setups where analytic
expressions are not available and stochastic calculations
have only been of limited use so far because of the sign
problem. Such experiments include for instance mixtures of
the fermionic atoms 6Li and 40K corresponding to m̄ ≈ 0.74
but also mixtures with smaller values of m̄ set up from
a variety of suitably chosen different fermion species (such
as 6Li, 40K, 161Dy, 163Dy, and 167Er) in the future (see, e.g.
Refs. [8–10]).
Finally, it is worth noting a peculiar feature in the

equation of state: depending on the actual value of the
mass imbalance, the energy flattens with increasing cou-
pling constant (repulsive case) and its derivative with
respect to γ appears to vanish in the limit of infinite
repulsion. Moreover, the onset of the flattening behavior
is shifted to larger coupling when the mass imbalance is
decreased. This can be seen explicitly in the results for
5þ 5 fermions in Fig. 4 but we also observe such a
behavior for systems with 3þ 3 and 4þ 4 fermions. This
does not come unexpected as our results should only
exhibit an explicit dependence on the dimensionless
coupling γ and m̄ in the infinite-volume limit but no
dependence on the actual particle number and box size
(i.e. the actual density of the system), provided that the box
has been chosen sufficiently large. In any case, this flat-
tening behavior is reminiscent of what is sometimes called
fermionization, referring to the fact that an interacting
system of distinguishable fermions becomes equivalent to a
system of noninteracting identical fermions in the limit of
infinite repulsion, see, e.g. Refs. [55–57] for a discussion of
this feature for mass-balanced systems. Evidence for this
behavior has also been observed in experiments [58–61].
While this behavior may naively seem like a mere curious
feature, it may actually have many interesting conse-
quences. For example, the derivative of the energy with

respect to the coupling is related to Tan’s contact [62,63],
which in turn governs the short-range and high-frequency
tails of all correlation functions. However, a detailed
analysis of the energy and the correlation functions in this
truly nonperturbative regime is beyond the scope of the
present work aiming at methodological developments and
cross-verification of stochastic methods. A quantitative
study of phenomenologically highly appealing effects,
such as the observed flattening behavior of the equation
of state, is therefore deferred to future work as it requires a
detailed study of finite-size effects and the related approach
of the numerical data to the thermodynamic limit. Most
prominently, it requires a detailed analysis of systematic
effects associated with the CL approach in case of strong
repulsive couplings γ ≳ 1, see also Appendix B. Still,
detailed quantitative studies of at least the onset of this
flattening behavior for mass-imbalanced system appears
now in reach based on the present developments.

V. SUMMARY AND OUTLOOK

We have computed ground-state properties of 1D Fermi
gases by means of two stochastic numerical methods,
namely iHMC and CL. Both methods are able to produce
fully nonperturbative results. While the iHMC approach
performs well for low to intermediate mass imbalances,
large mass imbalances remain elusive due to the instability
of the analytic continuation. Remarkably, the CL method
possesses no such restriction and is capable of producing
quantitative results across all mass imbalances. For small
mass imbalances, also accessible to our iHMC approach,
the corresponding results agree very well. Although this
technique has been known for more than three decades,
applications are remarkably scarce in nonrelativistic sce-
narios; our work aims to fill that gap. Moreover, we have
shown excellent agreement with other methods wherever
possible, including with perturbative results at small
coupling γ.
A word of caution may be in order at this point. It is

known that the CL method, being still an approach under
construction, may converge to an incorrect answer (see e.g.
Ref. [34]). It is also possible for the analytic continuation
of iHMC results to the real axis to yield an answer that
depends strongly on the choice of fit function. However, the
fact that both nonperturbative methods yield essentially the
same result in wide swath of parameter space (i.e. as a
function of both γ and m̄) is remarkable and supports the
idea that the answer is indeed correct.
Finally, we have shown the full equation of state as a

function of interaction strength and mass imbalance. To the
best of our knowledge, there is no previous determination
of the equation of state of 1D mass-imbalanced fermions
over such a wide range of mass imbalances and coupling
strengths. Thus, although more detailed studies of system-
atic effects are required to push our calculations towards
high precision, our main result of Fig. 4 can already be

FIG. 4. Ground-state energy of N ¼ 5þ 5 fermions as a
function of the dimensionless coupling γ for several mass
imbalances m̄ as obtained from our CL approach. Error bars
are of the size of the symbols and below. The dashed-dotted lines
show the first-order perturbative result of Eq. (23).
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considered as a first prediction for future ultracold atom
experiments with Fermi mixtures. In particular, we have
found a feature in the equation of state which appears
particularly pronounced at intermediate and large mass
imbalances where the equation of state starts to flatten and
approaches a m̄-dependent constant already at compara-
tively small values of the coupling, γ ∼Oð3Þ, which
appears to point to corresponding significant changes in
the short-range (or high-frequency) behavior of correlation
functions. A detailed analysis of this strong-coupling
regime is deferred to future work.
Our use of periodic boundary conditions aims to repro-

duce the uniform system, which has now been realized in
experimental setups with flat-bottom traps [64] in two-
dimensional systems. However, our calculations can be
straightforwardly extended to harmonically trapped sys-
tems, hard-wall confinement, as well as higher dimensions
(see, e.g. Refs. [31,65,66]). The discussion of these
systems, however, is left to subsequent studies.
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APPENDIX A: EFFECTS OF THE REGULATOR
IN THE COMPLEX LANGEVIN APPROACH

In this Appendix we investigate the dependence of our
results on two numerical parameters which appear in the
CL equations (18): the regulator strength ξ and the step size
h0 entering the solver for the CL equations.
In Ref. [67], it has been shown that the probability

measure has to decay sufficiently fast in the limit of large
fields σ in order to render the associated CL study reliable.
The insertion of a regulator term in our study is related to
this issue. Indeed, the regulator term is included to control
the excursions in the imaginary direction of the field σ.
In Fig. 5, we show −S½σ� as a function of jσj in order to
show the result on the action S½σ� of scaling up in
magnitude the value of σ at a particular location (starting
from an otherwise typical field configuration in the CL
evolution) which illustrates the necessity of the regulator.
Specifically, we show −ℜ½S½σ��, i.e. the real part of the
logarithm of the fermion determinant in the absence of the
regulator as well as the corresponding answer with the extra
term −ξ

P
xσ

2ðxÞ for ξ ¼ 0.1. As can be appreciated in the
figure, without the regulating term the action remains at
best approximately constant. Even worse, we also find
cases where the action grows as the magnitude of σ
increases. It is for these reasons that the ξ term is needed.

We now turn our attention to studying the influence of
the target step size h0 and its interplay with the regulator
term ξ, and illustrate the extrapolation procedure for two
values of the mass-imbalance parameter m̄.
As mentioned in the main part of this work, within the

CL approach, it is useful to employ an adaptive step size ht
for the integration of the equations of motion [33]. In our
approach, the step size is determined by rescaling the target
step size h0 with the maximum value of the sigma-drift
Dmax on the spacetime lattice Λ:

Dmax ¼ max
i∈Λ

����δS½σ�δσ

����
σ¼σi

− 2ξσi

����: ðA1Þ

Naturally, this renders the results dependent on the target
step size and appropriate extrapolations to vanishing h0 are
required. In the top panels of Fig. 6, the dependence on h0
is shown for systems with N ¼ 5þ 5 particles with m̄ ¼
0.3 and m̄ ¼ 0.6 on a spatial lattice with Nx ¼ 40 sites.
Furthermore, data sets for multiple values of the regulator
strength ξ are shown. In order to enable a comparison with
iHMC results, we consider an attractive coupling. To be
specific, we have set the coupling to γ ¼ −1.0 here, but we
add that the general behavior of the CL results for systems
with a repulsive interaction is the same. For our extrapo-
lations to vanishing target step size in this work, we have
always performed a linear fit of the data which appears to
be justified given our data sets, see top panels of Fig. 6
for an illustration. Note that the slope decreases with an
increasing regulator strength.
Once the extrapolation to h0 ¼ 0 has been performed for

a given system, the dependence of the h0-extrapolated
values on the regulator strength ξ has to be considered. For
the latter, we observe an approximately linear behavior.

FIG. 5. Real part of the logarithm of the fermion determinant
(see Sec. III for our conventions) as a function of the magnitude
of the auxiliary field (at a randomly chosen point on the lattice)
for an exemplaric choice of parameters (random seed, time of CL
evolution, and coupling) for an unregulated (i.e. :ξ ¼ 0; dashed
lines) and an action regulated by choosing ξ ¼ 0.1 (solid lines).
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Therefore, we use again a linear fit to extrapolate ξ → 0.
This is shown in the lower panels of Fig. 6. Remarkably, the
extrapolated values agree very nicely with those obtained
by our iHMC approach via analytic continuation.
We conclude by noting that the results from these two

extrapolations are essentially independent of the order in
which they are performed, i.e. if we first extrapolate to
ξ ¼ 0 and then perform the extrapolation to h0 ¼ 0, we
obtain the same results for the energy within the presented
error bars.

APPENDIX B: DISTRIBUTION OF THE
PATH-INTEGRAL MEASURE IN THE
COMPLEX LANGEVIN APPROACH

In order to ensure correct convergence of observables
calculated with our CL approach, we investigate the
distribution of ground-state energies as well as the path

integral measure in this appendix. To this end, we consider
a system composed of N ¼ 5þ 5 particles with a mass
imbalance of m̄ ¼ 0.6. The general conclusions, however,
are valid also for all other systems studied in this work.
During the evaluation of the results obtained from

stochastic methods, such as iHMC and CL, it is instru-
mental to monitor histograms of the calculated observables
in order to gain an insight into the behavior of the
simulations. Furthermore, it is common practice to define
the error bar as the standard deviation over all samples with
an assumed Gaussian distribution. A deviation from such a
distribution may hint to systematic errors. In the left panel
of Fig. 7, we show the distribution of the ground-state
energies for a strongly attractive (top) and strongly repul-
sive (bottom) case. While the histograms associated with
attractive systems follow a Gaussian very closely, the
repulsive systems exhibit so-called “fat tails,” i.e. an
excessive amount of “outliers” with respect to the assumed

FIG. 6. Top panels: Ground-state energy of a system with N ¼ 5þ 5 fermions with mass imbalance m̄ ¼ 0.3 (top left panel) and
m̄ ¼ 0.6 (top right panel) as a function of the target CL step h0 for different strengths ξ of the regulating term appearing in the CL
equations. The interaction strength is set to γ ¼ −1.0 in both cases. Dashed lines represent linear fits which have been used to extrapolate
to the limit h0 → 0. The latter are marked by diamonds. Bottom panels: Ground-state energy of a system with N ¼ 5þ 5 fermions with
mass imbalance m̄ ¼ 0.3 (bottom left panel) and m̄ ¼ 0.6 (bottom right panel) as obtained from an extrapolation to h0 ¼ 0 is shown as a
function of the regulator strength ξ. The interaction strength is set to γ ¼ −1.0 in both cases. Dashed lines represent linear fits of the data.
For comparison, we also show the results obtained from our iHMC approach via analytic continuation. Note that, whereas the error bars
on the CL data points originate from statistical errors, the error bars on all extrapolated CL values as well as the iHMC values refer to
errors from associated fits.
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normal distribution. In fact, more generally speaking, we
find that the distributions in the latter case do not exhibit a
fixed variance. The origin of this problem is depicted in the
right panel of Fig. 7, where we show the distribution (as
obtained from the CL time evolution) of the real part of the
action S: Depending on the absolute value of the coupling,
the distribution peaks at small positive to large negative
values for attractive systems (from weak to strong attrac-
tion). For increasing repulsion, on the other hand, the peak
wanders to large positive values and the imaginary part
of the action is found to be a flat distribution whereas
the imaginary part is strongly localized about zero in the
attractive case. Note that an increase of the value of the
action corresponds to a decrease of the probability measure
e−S. Eventually, we even find that the associated proba-
bilities will decrease below the machine precision
(∼10−16). This unavoidably implies that information is
lost and immediately leads to a poor signal-to-noise ratio.
As a consequence, error bars calculated with the
assumption of a Gaussian distribution become unreliable.
The occurrence of signal-to-noise problem is not limited

to the CL approach and has been studied for other methods
based on a Hubbard-Stratonovich transformation [68] (see
also Refs. [69,70], where a very similar signal-to-noise
problem was solved for the calculation of entanglement
entropies). Although not implemented in our approach,
methods have been proposed to mitigate this issue. Within
the CL approach, however, zeroes of the determinant entail

S → ∞ and therefore exhibit an additional problem,
namely singularities in the drift term. These singularities,
when encountered, possibly spoil the computed expectation
values [67]. This may be rated as conceptual problem, in
contrast to a vanishing signal due to excessive noise. The
latter is at least in principle solvable by (drastically)
increasing the sample number. However, note that it may
very well be that both problems are related in our case. In
fact, a zero of the determinant yields a vanishing proba-
bility which is reminiscent of the situation of strong
repulsion as reported above. At present, we cannot resolve
whether the CL dynamics at strong repulsive couplings is
governed by zeroes of the determinant or whether we only
deal with a conventional signal-to-noise problem which
could at least in principle be solved.
In conclusion, we have found that our simulations yield

“fat-tailed distributions” of observables in the repulsive
regime (at least for strong repulsion), which are associated
with potentially spoilt expectation values. For small to
intermediate repulsion (0 < γ ≲ 1) the problem appears to
be absent or at least strongly suppressed and our results
agree very well with DFT-RG, perturbation theory, and
exact solutions from the Bethe ansatz [71] where applicable
(i.e. for m̄ ¼ 0). Finally, we have found that our CL
approach behaves very well for attractive systems for the
studied range of mass imbalances which is not accessible
for conventional HMC approaches and exact calculations
with the Bethe ansatz.

FIG. 7. Left panels: (logarithmic y-scale) of the measured ground-state energies for an attractively (top) and a repulsively (bottom)
interacting system. While the former follows a Gaussian distribution, the latter exhibits so-called “fat tails” as a consequence of a signal-
to-noise problem. Right panel: distributions of the real part of the path integral measure, i.e. the real part of the negative logarithm of the
fermion determinant for various systems from strongly attractive to strongly repulsive (from left to right).
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