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The Thirring model is a four-fermion theory with a current-current interaction and Uð2NÞ chiral
symmetry. It is closely related to three-dimensional QED and other models used to describe properties of
graphene. In addition, it serves as a toy model to study chiral symmetry breaking. In the limit of flavor
number N → 1=2 it is equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase
transition. The model was already studied with different methods, including Dyson-Schwinger equations,
functional renormalization group methods, and lattice simulations. Most studies agree that there is a phase
transition from a symmetric phase to a spontaneously broken phase for a small number of fermion flavors,
but no symmetry breaking for large N. But there is no consensus on the critical flavor number Ncr above
which there is no phase transition anymore and on further details of the critical behavior. Values of N found
in the literature vary between 2 and 7. All earlier lattice studies were performed with staggered fermions.
Thus it is questionable if in the continuum limit the lattice model recovers the internal symmetries of the
continuum model. We present new results from lattice Monte Carlo simulations of the Thirring model with
SLAC fermions which exactly implement all internal symmetries of the continuum model even at finite
lattice spacing. If we reformulate the model in an irreducible representation of the Clifford algebra, we find,
in contradiction to earlier results, that the behavior for even and odd flavor numbers is very different: for
even flavor numbers, chiral and parity symmetry are always unbroken; for odd flavor numbers, parity
symmetry is spontaneously broken below the critical flavor number Ncr

ir ¼ 9, while chiral symmetry is still
unbroken.
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I. INTRODUCTION

The Thirring model [1] is a fermionic quantum field
theory with a current-current interaction. While it was
originally studied in two spacetime dimensions, a lot of
recent works were concerned with its three-dimensional
version with a varying number of N flavors. This model is
renormalizable in a 1=N-expansion for 2 < d < 4 [2–5]. Its
Lagrangian in Euclidean spacetime is given by

L¼ Ψ̄aiΓμ∂μΨa−
g2

2N
ðΨ̄aΓμΨaÞ2; a¼1;…;N; ð1Þ

with summation over fermion flavors. In three dimensions,
an irreducible representation of the Clifford algebra is
two-dimensional, but we will start with a reducible repre-
sentation here and take the well-known Γμ matrices of the
four-dimensional theory with four-component spinor
fields Ψa. This is motivated by a strong similarity to

three-dimensional QED [5–8], which is often used to
model electronic properties of materials like graphene
[9,10] or high-temperature superconductors [11,12].
The Thirring model is also interesting on its own,

because it has a large continuous chiral symmetry. It is
believed that spontaneous breaking of this symmetry can
happen with the pattern

Uð2NÞ → UðNÞ ⊗ UðNÞ; ð2Þ

but only for a small number of flavors. A critical flavor
numberNcr should exist, such that chiral symmetry breaking
(csb) only occurs forN < Ncr. The main focus of our work is
to find the value of Ncr for the reducible Thirring model.
While there is a broad agreement on this general

behavior in the literature, the predictions for Ncr vary to
some extent. Numerous works have employed a large-N
expansion: Different studies have used Dyson-Schwinger
equations (DSEs), with the first [13] reporting Ncr ≈ 3.24.
Later work [6,14] foundNcr ≈ 4.32 in the limit g2 → ∞. By
constructing an effective potential by an inversion method,
Kondo [15] reported Ncr ¼ 2 for infinite Thirring coupling.
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Additionally, these works reported relations between the
chiral condensate, N, and g2 that are qualitatively not in
agreement with each other.
A recent extensive study [16,17] of four-fermion theories

with functional renormalization group methods spotted a
structure with three interacting fixed points in the plane
spanned by Thirring and Gross-Neveu coupling. The fixed
point governing the critical behavior of the Thirring model
is only on the axis of pure Thirring interaction for N → ∞,
while it is off the axis for any finite N. On the contrary, for
small N this fixed point is dominated by another four-
fermion interaction, showing dynamical generation of a
fermion mass. This is not the case for large N. Balancing
this competition, the authors found Ncr ≈ 5.1ð7Þ.
Regarding lattice field theory, many simulations with

staggered fermions and a small mass have been performed
so far. With a setup using the standard hybrid Monte Carlo
(HMC) algorithm, simulations are only possible with an
integer number of flavors. Since for staggered fermions
each lattice flavor corresponds to two continuum flavors
[18], only simulations with even N are possible. The first
results [19] reported a change of the chiral behavior for
2 < Ncr < 6. Another series of publications [20–22] used
the same algorithm with a slightly different action and
found chiral symmetry breaking with a second-order phase
transition for N ¼ 2 and N ¼ 4, while the transition for
N ¼ 6 is different. The authors claimed that in the latter
case there is a first-order transition with coexisting sym-
metric and broken phases. They concluded that Ncr is
between 4 and 6. Simulations with a hybrid molecular
dynamics algorithm were performed in Ref. [23], allowing
also for odd and noninteger values of N. The authors
presented a phase diagram in the ðN; g2Þ plane with a
critical line. Along this line, the critical exponents and the
order of the phase transition change from a second-order
transition at N ¼ 4 to a first-order transition at N ¼ 6. For
N ¼ 5 the simulations did not lead to a conclusive result.
In a more recent lattice study [24] with this setup,

simulations in the limit g2 → ∞were performed, in order to
compare the results with those from DSE approaches.
To ensure transversality of the vacuum polarization tensor
for large N on the lattice, a renormalization of the coupling
was necessary. The renormalized coupling at leading order
in 1=N is

g2R ¼ g2

1 − g2JðmÞ with JðmÞ → 2

3
; ð3Þ

where the integral JðmÞ was given in Ref. [21]. Obviously,
g2R becomes negative if the bare coupling g2 is larger
than 3=2. Thus the strong-coupling limit is reached for
finite bare coupling. For stronger bare couplings, an
unphysical phase is present. All these works found a
nonmonotonic behavior of the chiral condensate, and it
is argued that its maximum corresponds to the point where

the renormalized coupling becomes negative, although the
coupling at the maximum does not match the value of
3=2. Looking at the maximal value of the chiral condensate
for different N at small masses, the authors concluded
that Ncr ¼ 6.6ð1Þ.
The fermion bag approach was applied by

Chandrasekharan [25] to study the Thirring model with
a single staggered flavor, corresponding to N ¼ 2, and to
obtain critical exponents for the csb phase transition
[26,27]. This was the first lattice work in the chiral limit
m ¼ 0. But since staggered fermions do not preserve all
internal symmetries it is not clear if the correct symmetry-
breaking pattern (2) is recovered in the continuum limit.
In a subsequent work the authors [28] observed that
their lattice version of the Thirring model has the same
symmetry and critical exponents as the Gross-Neveu
model. This seems to contradict our knowledge about
the continuum models. More recently, the first study with
domain-wall fermions was performed [29]. Contrary to the
older works, no remnant of csb was found in the extrapo-
lation m → 0 for N ¼ 2. Very recent preliminary results
[30] for N ¼ 1 showed no csb either.
In the present work we follow an alternative route and

simulate the Thirring model with chiral SLAC fermions
[31,32]. It is well known that these fermions should not be
used in lattice gauge theories [33], but they have been
successfully applied to simulate supersymmetric Yukawa
models [34–38], where the renormalizability of lattice
perturbation theory with SLAC fermions up to one-loop
was also established. With these fermions, the step scaling
function of the nonlinear O(3) sigma model has been
calculated to high accuracy on moderately large lattices; see
Ref. [39]. Thus there are good reasons to believe that they
work well for four-fermion theories. SLAC fermions admit
the exact internal symmetry at any finite lattice spacing.
Nevertheless, it was difficult to establish csb at any N in
previous investigations [40,41]. Including an explicit
breaking, a physical phase transition was observed, but
it seems to merge with the artifact transition explained
around Eq. (3), leaving no reliable trace of csb when
performing the limit to the massless Thirring model. An
attempt to use Fierz identities to reformulate the Thirring
model showed a very strong sign problem preventing
HMC simulations [41]. The present work will present an
approach to circumvent these problems and provide a
definite answer about the existence and values of the
critical flavor number. We shall see that there is no
symmetry breaking in all models with integer N. This is
in complete agreement with the absence of bilinear con-
densation in three-dimensional QED with an even number
of massless irreducible flavors [42]. In contrast, we present
numerical evidence that all models with half-integer
N ≤ Ncr ¼ 9=2 show a symmetry breaking.
To ease the computations, we also consider the Thirring

model in the irreducible representation, where the chiral
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symmetry is merely a flavor symmetry. Then, dynamical
generation of a fermion mass is associated to a spontaneous
breaking of parity. This was studied by DSE in the large-N
limit, where a dynamically generated mass was found [43],
implying Ncr → ∞. In Refs. [44,45] a different parity-
breaking pattern emerged when Fierz identities were used
to compute the effective potential: a dynamical mass
generation for two and three irreducible flavors was seen,
whereas the potential became unbounded from below for
N → ∞. Similarly, in the functional Schrödinger picture no
symmetry breaking in the large-N limit was found, while it
appeared when higher-order corrections in 1=N were
included [46].
With the help of an auxiliary vector field vμ, the

Lagrangian (1) can be written in the equivalent form

L ¼ Ψ̄aiΓμDμΨa þ λvμvμ; λ ¼ N
2g2

; ð4Þ

with the “covariant derivative” Dμ ¼ ∂μ − ivμ. In an
adapted base the reducible matrices Γμ and reducible
spinors take the form

Γμ ¼ σ3 ⊗ γμ; Ψa ¼
�
ψ1;a

ψ2;a

�
; Ψ̄a ¼ ðψ̄1;a; ψ̄2;aÞ;

ð5Þ

where the two-dimensional γμ form an irreducible repre-
sentation of the Clifford algebra in three dimensions. For
massless fermions the overall sign of =D ¼ γμð∂μ − ivμÞ in

L ¼ ψ̄1;ai=Dψ1;a − ψ̄2;ai=Dψ2;a þ λvμvμ ð6Þ

is irrelevant and the model with N reducible flavors is
equivalent to the model with Nir ¼ 2N irreducible flavors,
for which the second term in Eq. (6) has a positive sign.
For massive fermions this is no longer true: when integrat-
ing out irreducible fermions a parity-violating (imaginary)
Chern-Simons-like term is generated.1 In contrast, the
fermionic determinant is real for reducible massive fer-
mions and we do not expect parity breaking in models with
reducible fermions.
This paper is organised as follows. In Sec. II, we

summarize the symmetries of the Thirring model in the
reducible and an irreducible representation. The relation
between both formulations is further discussed. Then, in
Sec. III we use a Fierz identity to rewrite the Lagrangian for
irreducible fermions. The main derivation of the effective
potential for local condensates can be found in Sec. IV,
while its symmetries are studied in Sec. V. We also give the

explicit forms of the potential for Nir ¼ 1 and 2. Next, we
study the effective potential in the strong-coupling limit in
Sec. VI, before we present our main results from numerical
simulations in Sec. VII. Finally, a discussion of our findings
and a comparison with previous results can be found in
Sec. VIII.

II. CONTINUUM SYMMETRIES

First we discuss the internal symmetries of the Thirring
model in three dimensions. The results look different for N
fermions in the four-dimensional reducible representation
of the Lorentz group andNir fermions in a two-dimensional
irreducible representation. The flavor numbers are related
as Nir ¼ 2N.
In the reducible representation Ψa is a four-component

Dirac spinor, where a ¼ 1;…; N labels the flavors. The
theory possesses a Uð2NÞ chiral symmetry generated by

T ¼ Tf ⊗ f1;Γ4;Γ5; iΓ4Γ5g; ð7Þ

where Tf ∈ uðNÞ generates rotations in flavor space. A
Dirac spinor transforms under the chiral and flavor rota-
tions as

Ψ → eiT
a
f ⊗ðta

1
1þta

2
Γ4þta

3
Γ5þita

4
Γ4Γ5ÞΨ;

Ψ̄ → Ψ̄e−iTa
f ⊗ðta

1
1−ta

2
Γ4−ta3Γ5þita

4
Γ4Γ5Þ: ð8Þ

Furthermore, the theory is invariant under a discrete Z2

parity transformation

ΨðxÞ → iΓ1Γ4Ψðx0Þ with x0 ¼ ðx0;−x1; x2Þ; ð9Þ

where alternative formulations using Γ5 instead of Γ4

are possible. A detailed discussion of both continuous
and discrete symmetries can be found in Refs. [13,16]. In
total, the global symmetry group is Uð2NÞ ⊗ Z2. Now, we
can define a parity-even chiral condensate Σ ¼ Ψ̄Ψ and a
parity-odd condensate Σ45 ¼ Ψ̄iΓ4Γ5Ψ. The chiral con-
densate Σ is an order parameter for spontaneous breaking of
the continuous chiral symmetry according to

Uð2NÞ ⊗ Z2 →
Σ
UðNÞ ⊗ UðNÞ ⊗ Z2; ð10Þ

while the parity condensate Σ45 serves as an order param-
eter for discrete parity breaking,

Uð2NÞ ⊗ Z2 →
Σ45 Uð2NÞ: ð11Þ

For calculations it is often more convenient to reformu-
late the Thirring model in an irreducible representation.
A useful reduction is given by

1More accurately, an imaginary Chern-Simons term is gen-
erated in the limit m → ∞. For small m the imaginary part of the
effective action is proportional to the η invariant.
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Γμ ¼ σ3 ⊗ γμ; Γ4 ¼ σ2 ⊗ 1;

Γ5 ¼ σ1 ⊗ 1 and iΓ4Γ5 ¼ σ3 ⊗ 1: ð12Þ

In order to obtain a standard kinetic term in the irreducible
representation, we decompose the N four-componentΨa as

Ψa ¼
�
ψ1;a

ψ2;a

�
and Ψ̄a ¼ ðψ̄1;a;−ψ̄2;aÞ; ð13Þ

where ψ i;a are two-component spinors in a fixed irreducible
representation. With this decomposition, the Lagrangian is
given by

L ¼ ψ̄αi=∂ψα −
g2

2Nf
ðψ̄αγμψαÞ2; ð14Þ

where the irreducible flavor index α ¼ ði; aÞ assumes
2N ¼ Nir different values. Note the difference to the
decomposition (5). The condensates are

Σ ¼
XN
a¼1

ðψ̄1;aψ1;a − ψ̄2;aψ2;aÞ and ð15Þ

π ¼ Σ45 ¼
XNir

α¼1

ψ̄αψα: ð16Þ

The parity condensate in the reducible representation π
turns into a chiral condensate in the irreducible represen-
tation, while for even Nir the former chiral condensate now
has a flavor-staggered structure. This already indicates that
in the irreducible representation the behavior is different for
even and odd flavor numbers Nir. We will further inves-
tigate this difference in the next sections.
The continuous chiral symmetry of the reducible

Thirring model becomes a pure flavor symmetry in the
irreducible representation, i.e., the theory is invariant under
UðNirÞ flavor transformations given by

ψ → Uψ and ψ̄ → ψ̄U† ð17Þ

with a unitary matrix U ¼ expðitiTiÞ acting in flavor space
only. Here, the Ti are generators of the algebra uðNirÞ.
Due to its relation to the chiral transformations of the four-
component spinors, this flavor symmetry will still be called
chiral symmetry in the following, although the concept of
chirality does not exist in odd dimensions.
The parity transformation of the four-component spinors

turns into a combination of flavor rotations and a parity
transformation in the irreducible representation, which is
given by

ψðxÞ → γ1ψðx0Þ and ψ̄ðxÞ → −ψ̄ðx0Þγ1: ð18Þ

The irreducible chiral condensate π is invariant under
chiral transformations (i.e., two-component flavor rota-
tions) while it breaks the discrete Z2 parity symmetry.

III. FIERZ IDENTITIES

To integrate over the fermionic fields in the functional
integral, it is useful to “linearize” the four-fermion term by
a Hubbard-Stratonovich transformation, which transforms
the Lagrangian (14) into the equivalent form

L ¼ ψ̄ði=∂ þ γμvμÞψ þ λv2μ; ð19Þ

with λ ¼ N=2g2 and three real scalar fields vμ. After
integration over the ψα we obtain the effective action

Seff ¼ −Nir ln det ði=∂ þ γμvμÞ þ λ

Z
d3xvμðxÞ2: ð20Þ

Note that this action is not gauge invariant and vμ should
not be viewed as gauge potential.2

A technical problem arises if one discretizes this for-
mulation on a (hypercubic) lattice to perform Monte Carlo
simulations. Since vμ is invariant under chiral transforma-
tions there is no natural order parameter for chiral sym-
metry breaking in the massless theory. But the advantage of
the vector formulation is that except for Nir ¼ 1 it is free of
a fermion sign problem. This is obvious for even Nir since
i=∂ þ γμvμ is Hermitian. For odd Nir we never observed a
negative sign in our Monte Carlo simulations except
for Nir ¼ 1.
We can circumvent the technical problem by applying a

Fierz transformation to the four-fermion interaction

ðψ̄αγμψαÞ2 ¼ −2ðψ̄αψβÞðψ̄βψαÞ − ðψ̄αψαÞ2: ð21Þ

This identity was also applied in, for example,
Refs. [44,45]. The transformed Lagrangian reads

L ¼ ψ̄ i=∂ψ þ g2

Nf
ðψ̄αψβÞðψ̄βψαÞ þ

g2

2Nf
ðψ̄ψÞ2: ð22Þ

Now, by applying the Hubbard-Stratonovich transforma-
tion we can reproduce the four-fermion terms with the help
of a matrix-valued field,

L ¼ ψ̄

�
i=∂ þ iT þ i

2
trT

�
ψ þ λ

2
trT2 þ λ

4
ðtrTÞ2; ð23Þ

where T ¼ T† is a generic uðNirÞ-algebra valued field, i.e.,

T ¼ tiTi with i ¼ 1…Nir
2: ð24Þ

2It could be promoted to a gauge potential after introducing a
Stückelberg field [6].
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Under a chiral transformation the components of T trans-
form according to

T → UTU†; U ∈ UðNirÞ; ð25Þ

such that their expectation values serve as order parameters
for chiral symmetry breaking. They are related to fermionic
condensates by DSEs. Unfortunately, this formulation of
the model suffers from a severe sign problem on the
lattice [41].

IV. EFFECTIVE POTENTIAL

The vector formulation (19) and matrix formulation (23)
each have their own advantages and disadvantages. The
former can (except for Nir ¼ 1) be simulated without a sign
problem, but information about chiral symmetry is not
directly accessible. On the other hand, in the matrix
formulation we have direct access to order parameters
for csb, but there is a strong sign problem that prevents
reliable simulations. We proceed with an analytical treat-
ment in the matrix formulation and calculate the resulting
expectation values in the vector formulation. We begin with
splitting the matrix field in Eq. (23) as

TðxÞ ¼ TcðxÞ þ T⊥ðxÞ; ð26Þ

where the first term is in the Cartan subalgebra of uðNirÞ
and the second is in its orthogonal complement. We shall
introduce a dual-variables formulation in Sec. IVA and
afterwards present a calculation of the (constraint) effective
potential

VeffðTcÞ ¼ − ln
Z

DTDϕe−SeffðT;ϕÞδðTc − Tcðx0ÞÞ

¼ − ln
X2Nir

n¼0

XNir

i¼1

an;iðtiÞn; Tc ¼ tiHi;

in which the constraint fixes the field at an arbitrary point x0
to the prescribed value Tc in Sec. IV B. The matrix field
Tðx0Þ is Hermitian and can be diagonalized by a global
chiral transformation. Hence it is sufficient to calculate the
effective potential for a field in the Cartan subalgebra with
generators Hi. In Sec. IV C we will relate the coefficients
an;i to expectation values of observables On;i in the vector
field formulation,

an;i ¼ hOn;iivμ : ð27Þ

This allows us to employ Monte Carlo simulations in the
vector field formulation to calculate the effective potential
defined in the matrix formulation.

A. The partition function in the dual
variables formulation

First we reformulate the partition function of the Thirring
model with massive fermions in terms of discrete spin
(or dual) variables. Then we take derivatives with respect to
the mass to relate observables in the dual formulation to
powers of fermionic bilinears. Actually, we introduce an
x-dependent and diagonal fermion mass matrix

MðxÞ ¼ diagðm1ðxÞ;…; mNir
ðxÞÞ: ð28Þ

The partition function for the massive model is now given
by (an integral over spacetime is assumed in the exponent)

Zðλ;MÞ ¼
�
π

λ

�V
2

Z
DT ZF½T;M�e−λ

2
trT2−λ

4
ðtrTÞ2 ; ð29Þ

where the fermionic partition function ZF½T;M� is given by
the fermionic integral

ZF½T;M� ¼
Z

Dψ̄Dψe−ψ̄ i=∂ψe−ψ̄ iHψ : ð30Þ

Here, the shifted field H ¼ T þ 1
2
trT þM was introduced.

With spinor index i and flavor indices α and β the product
expansion of the second exponent leads to

ZF½T;M� ¼
Z

Dψ̄Dψe−ψ̄ i=∂ψ
Y
xiαβ

ð1 − ψ̄α
xiiH

αβ
x ψβ

xiÞ; ð31Þ

where we used that ψα
xi and ψ̄α

xi are Grassmann variables.
A similar expansion is met in the fermion bag approach,
where one expands the integrand directly in powers of the
four-fermion term [27]. After integrating over the auxiliary
field the two expansions yield the same results, although
the intermediate expressions are different. A related expan-
sion is also encountered in attempts to dualize gauge
theories [47].
At this point we introduce a spin field kαβxi ∈f0;1g¼Z2,

rearrange the weight function as a sum over configurations
of the k-field and perform the integration over the fermions
to get

ZF½T;M� ¼
X
fkαβxi g

ð−iÞk det ði=∂½k�ÞY
xαβ

ðHαβ
x Þkαβx ; ð32Þ

where we introduced the abbreviations

kαβx ¼
X
i

kαβxi ¼ kαβx0 þ kαβx1 ; k ¼
X
xiαβ

kαβxi ð33Þ

and =∂½k� is the matrix in which the fxiαgth row and fxiβgth
column of =∂ are removed whenever kαβxi ¼ 1. A similar
expansion in terms of minors of a fermionic matrix was
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recently presented within a transfer matrix approach in
Ref. [48]. It is important to note that in the minor expansion
there are constraints on the spin field kαβxi in order to get
nonvanishing contributions to the weight function: due to
ψα
xiψ

α
xi ¼ ψ̄α

xiψ̄
α
xi ¼ 0 for fixed x, i, the sum over rows and

columns of the matrix kαβ has to be zero or one,

X
α

kαβxi ∈ f0; 1g and
X
β

kαβxi ∈ f0; 1g: ð34Þ

Summing over the spinor index i leads to the following
local constraints on the elements of the matrix kx ¼ ðkαβx Þ in
Eq. (33):

X
α

kαβx ∈ f0; 1; 2g and
X
β

kαβx ∈ f0; 1; 2g: ð35Þ

We can summarize these constraints in a local constraints
function:

δconstrðkxÞ¼
�
1 all local constraints are fulfilled ;

0 else:
ð36Þ

Inserting Eq. (32) into the partition function (29), we
observe that all contributions, with the exception of the
minors, are given by a product over the lattice sites.
After rescaling the variables ~T ¼ ffiffiffi

λ
p

T and ~M ¼ ffiffiffi
λ

p
M,

the partition function reads

Zðλ; ~MÞ ¼ C
X
fkαβxi g

λ−
k
2 det ð=∂½k�Þ

·
Y
x

δconstrðkxÞWlocðkx; ~MðxÞÞ; ð37Þ

with an overall factor C ¼ ðπ=λÞγ=2, where γ ¼
VðNir

2 þ 1Þ. The local weight function is defined for
any kx by

Wlocðk; ~MÞ ¼
Z YNir

2

i¼1

�
d~tiffiffiffi
π

p
�
e−

1
2
tr ~T2−1

4
ðtr ~TÞ2

·
Y
αβ

�
~Tαβ þ 1

2
tr ~Tδαβ þ ~Mαβ

�
kαβ

: ð38Þ

In the following we drop the tilde above variables again to
simplify our notation. Because of Eq. (35) the exponent kαβ

only takes the values 0,1, and 2. The integration variables
are the expansion coefficients in T ¼ tiTi.
The integration over the non-Cartan fields is performed

in Appendix A and leads to the final form of the local
weight function

Wlocðk;MÞ ¼ woðk⊥ÞWpðkÞðMÞ; ð39Þ

where pðkÞ ¼ ðk11; k22;…Þ is the Nir-component vector
that collects the diagonal entries of kαβ. Recall that these
entries can assume the values 0, 1, or 2. In addition, the first
factor woðk⊥Þ is a non-negative integer depending on the
nondiagonal entries of the matrix ðkαβÞ. The explicit form
of wo is given in Appendix A. The second factor is an
integral over the Cartan subalgebra,

WpðMÞ ¼
Z YNir

i¼1

�
dtiffiffiffi
π

p
�
e−tAt

·
Y
α

�
Tαα þ 1

2
trT þmα

�
pα

: ð40Þ

The symmetric matrix A in the exponent can be written as

Aij ¼
1

2
trðHiHjÞ þ

1

4
trHitrHj ð41Þ

and the integration is only over the Cartan subalgebra with
generatorsHi. Although the final result does not depend on
a specific choice of the generators, we use the generators
given in Appendix A for the explicit calculations. Wp is a
polynomial in mα of degree pα. The explicit form of
Wlocðk;MÞ is also given in Appendix A.
In this form it looks like the partition function can be

simulated with a fermion-bag-like algorithm. Unfortunately
the minors induce a severe sign problem. So far we could
solve this problem for Nir ¼ 1, where we applied the
fermion bag algorithm to the model with chiral SLAC
fermions [49]. In the following we refer to the integer
number k in Eq. (33) as the lattice filling factor, because
it counts how many fermions take part in the local
interaction. Due to Pauli blocking it can only take the
values k ¼ 0;…; 2VNir. In the strong-coupling limit
(λ → 0) we find k ¼ 2VNir on every configuration such
that every lattice site is occupied by the maximal number of
fermions. Here we expect strong lattice artifacts due to
saturation effects. In the weak-coupling limit (λ → ∞) we
have k ¼ 0 and the theory reduces to a theory of free
fermions on the lattice.

B. Effective potential

In this section we derive an effective theory for the local
chiral condensates hψ̄αψαi (no sum), or equivalently the
expectation values of scalar fields in the Cartan subalgebra,
that are related to the condensates by DSEs. Therefore, we
constrain the local mass matrix defined in Eq. (28) to

M ¼ diagðm1;…; mNir
Þδx;x0 ð42Þ

with a fixed lattice point x0 and determine the dependence
of the partition function on the parameters mα. This allows
us to relate contributions to the partition function Zðλ;MÞ
in the dual formulation to expectation values of chirally
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invariant local observables in the original vector formu-
lation by differentiating with respect to these local mass
parameters. Formally, the M-dependent partition function
is given by

Zðλ;MÞ ¼
X
P

X
p∈SP

apWpðMÞ; ð43Þ

where the first sum extends over the ðNir þ 1ÞðNir þ 2Þ=2
triplets

P ¼ ðP0; P1; P2Þ: ð44Þ

The elements of P obey

Pk ∈ f0; 1;…; Nirg and
X2
k¼0

Pk ¼ Nir: ð45Þ

The second sum in Eq. (43) extends over the

VolðSPÞ ¼
Nir!

P0!P1!P2!
ð46Þ

permutations SP of the Nir-tuple p with P0 elements equal
to zero, P1 elements equal to one, and P2 elements equal to
two. All together, the double sum in Eq. (43) consists of
3Nir terms. The coefficients ap depend on λ, the volume,
and further details of the lattice formulation such as, for
example, the choice of lattice fermion derivative.
When all flavors have the same mass ðmα ¼ mÞ, the

coefficients ap do not depend on a specific permutation
(permutation of flavors) but only on the three numbers Pk
and we can write the partition function as

Zðλ; mÞ ¼
X
P

aP · VolðSPÞWPðmÞ; ð47Þ

where

WPðmÞ ¼ Wpsort
ðMÞjMðmα→mÞ

with psort ¼ ð0;…; 0|fflfflffl{zfflfflffl}
P0 times

; 1;…; 1|fflfflffl{zfflfflffl}
P1 times

; 2;…; 2|fflfflffl{zfflfflffl}
P2 times

Þ ð48Þ

is the weight of a particular representative in an orbit of the
permutation group.
The constraint effective potential in the limit of a

constant mass in flavor space is then given by the negative
logarithm of the distribution function, i.e.,

Veffðλ;T;mÞ ¼ 1

2
trðTcÞ2þ 1

4
ðtrTcÞ2

− ln

�X
P

aP
X
p∈SP

YNir

α¼1

�
Tααþ 1

2
trTþm

�pα
�
:

ð49Þ

Here, we have to sum over all permutations again, because
no integration over the diagonal scalar fields is performed
in the effective potential.

C. Relation to observables

In order to relate the coefficients aP to expectation
values, we take derivatives of the partition function (43)
with respect to the local masses mα and afterwards set
mα ¼ m. With the definition of moments of the Gaussian
weights

Wp;qðmÞ ¼
YNir

α¼1

� ∂qα

∂mqα
α

�
WpðMÞjmα→m ð50Þ

we can write the partition function and its derivatives with
respect to the local masses as

Zqðλ; mÞ ¼
X
P

aP
X
p∈SP

Wp;qðmÞ: ð51Þ

Since WpðMÞ is a polynomial of degree pα in mα we only
get a nonzero result in Eq. (50) when qα ≤ pα. In the limit
of a constant mass in flavor space, the expectation values
Zq do not depend on the ordering of the flavors, but only on
the number Q0 of zeroth, Q1 of first, and Q2 of second
derivatives. Denoting the triple fQ0; Q1; Q2g by Q, we can
write

σQ ¼ 1

VolðSQÞ
X
q∈SQ

Zqðλ; mÞ: ð52Þ

The index sets Q and P are identical, with the constraints
that their three entries sum to Nir. The sum in Eq. (52) is
over the VolðSQÞ ¼ Nir!=ðQ0!Q1!Q2!Þ permutations SQ of
q. The derivatives of the partition sum are directly related to
expectation values via

σQ ¼ λ−
jqj
2 Z ·

�Y
α

ðψ̄αψαÞqα
�
: ð53Þ

Here, the right-hand side can be computed, up to the
arbitrary normalization factor Z ¼ σNir ;0;0, with conven-
tional simulations of the Thirring model in the vector field
formulation. Inserting Eq. (51) into Eq. (52), we obtain
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σQ ¼
X
P

aP
X
p∈SP

1

VolðSPÞ
X
q∈SQ

Wp;qðmÞ: ð54Þ

We can also write this equation as a matrix equation,

σQ ¼ KQPaP with

KQP ¼
X
p∈SP

1

VolðSQÞ
X
q∈SQ

Wp;qðmÞ; ð55Þ

where K is a square matrix that can always be represented
in an upper triangular form (due to qα ≤ pα) with nonzero
diagonal elements. Therefore a unique solution for the
coefficients aP is given by

a⃗ ¼ K−1σ⃗: ð56Þ

For symmetry reasons, the double sum for the matrix
coefficients simplifies to

KQP ¼ VolðSPÞ
VolðSQÞ

X
q∈SQ

WpðPÞ;qðmÞ; ð57Þ

where pðPÞ is one representative in the equivalence class
defined by P. In this way, we can uniquely relate the
coefficients a⃗ to expectation values σ⃗ of the Thirring model.
Alternatively, the coefficients a⃗ can be calculated directly
with a fermion bag simulation of the partition function (37).

V. SYMMETRIES OF THE EFFECTIVE
POTENTIAL

A suitable order parameter for chiral symmetry breaking
is the position of the global minimum of the effective
potential. We can simplify the discussion of the potential, if
we locally apply a chiral transformation such that the local
condensates are in the Cartan subalgebra of uðNirÞ. As part
of the remaining symmetry of the Cartan subalgebra, it is
possible to exchange flavors and the sign of the condensate,
without changing physics. Therefore, minima of the effec-
tive potential can only occur in the directions

Tc
min ¼

2x
Nir

0
BB@

�1

. .
.

�1

1
CCA ∈ ZNir

2 ; ð58Þ

where x ∼ ðψ̄ψÞα is a free parameter. These directions
where also spotted by the simulation results for the full
effective potential. Once a direction is fixed we are left
with the problem of finding the minimizing x. Physically
equivalent solutions are related by a reflection x → −x or a
permutation of flavors. The latter is given by the action of
the Weyl group of UðNirÞ. We conclude that physically
distinct solutions are characterized by the trace of Tc

min,

trTc
min ¼

2x
Nir

n with

n ¼
�
0; 2; 4;…; Nir Nir even;

1; 3; 5;…; Nir Nir odd:
ð59Þ

This leads to nsol ¼ ½1
2
Nir� þ 1 different solutions for the

potential. Every solution gives rise to a different breaking
pattern of chiral symmetry, leaving different subgroups
intact. A nonvanishing expectation value in direction n
breaks the symmetry down to

UðNirÞ → UðnþÞ ⊗ Uðn−Þ; n� ¼ Nir � n
2

: ð60Þ

A symmetric breaking with nþ ¼ n− is only possible for
even Nir with n ¼ 0. This is the proposed breaking of the
reducible Thirring model. For the solution with n ¼ Nir
and x ≠ 0, only parity symmetry is broken. Therefore, the
solution with n ¼ 0 is called a Thirring-like breaking
while the solution with n ¼ Nir is called a Gross-Neveu-
like breaking.
Along the different directions, the effective potential in

the massless case is

Veffðx;nÞ¼
2Nirþn2

Nir
2

x2

− ln

�X
P

aP
X
p∈SP

ðnþ2Þjpj<ðn−2Þjpj>
�

x
Nir

�jpj�
;

ð61Þ

where the exponents are given by the (partial) sums,

jpj<¼
X
α≤nþ

pα; jpj>¼
X
α>nþ

pα; jpj¼
XNir

α¼1

pα: ð62Þ

In the massive case, n� 2 in Eq. (61) is replaced
by n� 2þmNir. Evaluating the above potential in the
Thirring-like direction, we get

VTh
effðxÞ ¼

2x2

Nir
− ln

�X
P

aP
X
p∈SP

ð−1Þjpj>
�
2x
Nir

�jpj�
; ð63Þ

and in the Gross-Neveu-like direction

VGN
eff ðxÞ ¼

Nir þ 2

Nir
x2 − ln

�X
P

aP
X
p∈SP

�
Nir þ 2

Nir
x

�jpj�
:

ð64Þ

An important quantity to determine chiral symmetry break-
ing is the curvature κ of the effective potential at the origin,
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κðnÞ ¼ d2Veffðx; nÞ
dx2

				
x¼0

: ð65Þ

Possible phase transitions are expected to be second order.
Thus, we conclude that chiral symmetry is unbroken if all
curvatures κðnÞ are positive, while it is spontaneously
broken if at least one of the κðnÞ is negative.

A. Effective theory for Nir = 1

For one irreducible flavor the Thirring model is equiv-
alent to the Gross-Neveu model. This follows from the
Fierz identity (21) for one flavor. For massless fermions
the integral (40) vanishes for p ¼ ð1Þ such that only
p ¼ ð0Þ and p ¼ ð2Þ remain. Likewise only multideriva-
tives with q ¼ ð0Þ and q ¼ ð2Þ appear. The K-matrix is
then given by

K ¼
�
1 3

2

0 2

�
: ð66Þ

The explicit form of the matrix depends on the normali-
zation of the generators Hi given in Appendix A. With
the arbitrary normalization σ1;0;0 ¼ 1, we find for the
coefficients a⃗

a1;0;0 ¼ 1 −
3

4
σ0;0;1 and a0;0;1 ¼

1

2
σ0;0;1; ð67Þ

and obtain for the effective potential

VeffðxÞ ¼ 3x2 − ln

�
1 −

3

4
σ0;0;1 þ

9

2
σ0;0;1x2

�
: ð68Þ

The curvature of the potential at the origin is then

κ ¼ 18
σ0;0;1 − 4=9
σ0;0;1 − 4=3

; σ0;0;1 ¼
1

λ
hðψ̄ψÞ2im¼0: ð69Þ

At the critical inverse coupling λc the curvature vanishes
and we get σ0;0;1ðλcÞ ¼ 4=9. The condensate hðψ̄ψÞ2i is
later calculated within the strong-coupling expansion
since Monte Carlo simulations in the vector formulation
face a severe sign problem.
The fermion bag approach, which is free of a sign

problem and directly yields the coefficients a⃗, will be
discussed in a follow-up paper [49].

B. Effective theory for Nir = 2

For two massless irreducible flavors the Thirring model
is equivalent to the massless reducible model with N ¼ 1.
For a vanishing m the nonvanishing p configurations
are p ¼ fð0; 0Þ; ð1; 1Þ; ð2; 0Þ; ð0; 2Þ; ð2; 2Þg. The configu-
rations p ¼ ð0; 2Þ and p ¼ ð2; 0Þ are equivalent under
flavor exchange and the corresponding coefficients are

the same. The weights are listed in Table I. The K-matrix
and its inverse are then given by

K ¼

0
BBB@

1 1
2

3 11
4

0 1 0 2

0 0 2 3

0 0 0 4

1
CCCA;

K−1 ¼

0
BBBBB@

1 − 1
2

− 3
2

11
16

0 1 0 − 1
2

0 0 1
2

− 3
8

0 0 0 1
4

1
CCCCCA: ð70Þ

We obtain with the normalization σ2;0;0 ¼ 1

a2;0;0 ¼ 1 −
1

2
σ0;2;0 −

3

2
σ1;0;1 þ

11

16
σ0;0;2;

a0;2;0 ¼ σ0;2;0 −
1

2
σ0;0;2;

a1;0;1 ¼
1

2
σ1;0;1 −

3

8
σ0;0;2;

a0;0;2 ¼
1

4
σ0;0;2: ð71Þ

The Gross-Neveu-type potential is given by

VGN
eff ðxÞ¼2x2− lnða2;0;0þ4a0;2;0x2þ8a1;0;1x2þ16a0;0;2x4Þ

ð72Þ

and the Thirring-type potential is given by

VTh
effðxÞ ¼ x2 − ln ða2;0;0 − a0;2;0x2 þ 2a1;0;1x2 þ a0;0;2x4Þ:

ð73Þ

In the following sections, the observables σ are calculated
first in the strong-coupling expansion and after that with
Monte Carlo simulations in the vector formulation of the
Thirring model which for Nir ≥ 2 has no sign problem.

TABLE I. Configurations and weights for Nir ¼ 2 in the
massless limit.

I a p Wð0;0Þ Wð1;1Þ Wð2;0Þ Wð0;2Þ Wð2;2Þ

1 a2;0;0 (0, 0) 1 0 0 0 0
2 a0;2;0 (1, 1) 1

2
1 0 0 0

3 a1;0;1 (2, 0) 3
2

0 2 0 0

3 a1;0;1 (0, 2) 3
2

0 0 2 0

4 a0;0;2 (2, 2) 11
4

2 3 3 4
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VI. STRONG-COUPLING EXPANSION

In this section we compute the effective potential in the
strong-coupling expansion. The lattice partition function in
the presence of fermion sources is given by

Z½η; η̄� ¼
Z

DvDψDψ̄e−
P

x
ðλv2−ψ̄ði=∂þ=vÞψ−ψ̄η−η̄ψÞ

¼ K



δ

δη
;
δ

δη̄

� Z
DvDψDψ̄e−

P
x
ðλv2−ψ̄=vψ−ψ̄η−η̄ψÞ;

ð74Þ

where the sum is over all lattice points x and where we
already use dimensionless fields and inverse coupling λ.
The kinetic operator is given by

K



δ

δη
;
δ

δη̄

�
¼ e−

P
x;y

δ
δηx

i=∂xy δ
δη̄y ð75Þ

and =∂xy is a lattice-regularized derivative operator. With a
rescaling of the sources according to χ ¼ λ1=4η we shift the
explicit λ dependence to the kinetic operator. Furthermore,
derivatives with respect to the sources χ exactly reproduce
the expectation values (52) needed in the effective potential.
After performing the integration over the vector field and
the fermions (details are given in Appendix B), we obtain
our master equation for the strong-coupling expansion:

Z½χ; χ̄� ¼ K



δ

δχ
;
δ

δχ̄
; λ

�Y
x

XNir

k¼0

Γð3
2
þ Nir − kÞ

Γð2kþ 2Þ ððχ̄xγμχxÞ2Þk:

ð76Þ

In the following we are only interested in local fermionic
observables. Therefore, after applying the kinetic operator
K we set the source χ at all points xwith the exception of x0
to zero. With the definitions

KðnÞ ¼ ð−1Þn λ
n=2

n!

�X
x;y

δ

δχx
i=∂xy

δ

δχ̄y

�
n
;

FðkÞðxÞ ¼ Γð3
2
þ Nir − kÞ

Γð2kþ 2Þ ððχ̄xγμχxÞ2Þk ð77Þ

we can write the partition function as

Z½χx0 ; χ̄x0 � ¼
X
n

KðnÞY
x

X
k

FðkÞðxÞjχx≠x0¼0: ð78Þ

In Appendix B we show, that in the infinite-volume limit
and up to any finite order n in the expansion of the kinetic
operator, the partition function has the form

Z½χx0 ; χ̄x0 � ¼ CðλÞ
X
k

FðkÞðx0Þ

¼ CðλÞ
XNir

k¼0

Γð3
2
þ Nir − kÞ

Γð2kþ 2Þ ððχ̄x0γμχx0Þ2Þk;

ð79Þ

where CðλÞ is an unknown function that cancels in expect-
ation values. Then the solution for the expectation values is

σQ ¼ λ−Q2−Q1=2
YQ1

α¼1

∂mα

YQ1þQ2

β¼Q1þ1

∂2
mβ

lnZðMÞjM¼0

¼ Γð3
2
þ Nir −Q2Þ
Γð3

2
þ NirÞ

δQ1;0: ð80Þ

For the vector interaction we obtain

1

4λ
hðψ̄γμψÞ2i ¼ Nir ð81Þ

and it follows that the normalized lattice filling factor
takes its maximal value hknormi ¼ 1. In conclusion, within
the strong-coupling expansion we are not able to leave the
strong-coupling phase where strong lattice artifacts domi-
nate due to complete Pauli blocking on every lattice site.

A. Results for the effective potential

With the observables from the strong-coupling expan-
sion we can calculate the effective potential in the lattice
artifact phase [which was discussed around Eq. (3)] in
the infinite-volume limit. The results for various flavor
numbers Nir are shown in Fig. 1. For Nir ¼ 1, the Gross-
Neveu-type potential reads

VGN
eff ðxÞ ¼ 2x2 þ ln

�
1

4x2

�
¼ −2 lnð2xÞ þ 2x2: ð82Þ

It has a global minimum at x ¼ �1=
ffiffiffi
2

p
and parity

symmetry is spontaneously broken. Its curvature at the
origin diverges.
For odd flavor numbers parity symmetry is always broken

at strong coupling with a minimum of the potential in the
Gross-Neveu-like direction. With increasing Nir the curva-
ture at the origin decreases. Extrapolating the curvature of
the Gross-Neveu-type potential to Nir ¼ ∞ predicts a
broken symmetry in this limit. At strong lattice coupling
there is no critical flavor number and parity symmetry is
always broken for odd Nir. For Nir ¼ 7 we observe that the
potential with n ¼ 1 has a positive curvature while this is not
the case for smaller Nir, indicating that the breaking of parity
symmetry becomes weaker for larger flavor numbers.
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For Nir ¼ 2, the potentials at strong coupling read

VGN
eff ðxÞ ¼ 2x2 − ln ð8x4 − 4x2 þ 1Þ þ ln

�
15

8

�

¼ ln

�
15

8

�
þ 6x2 −

32x6

3
þOðx8Þ;

VTh
effðxÞ ¼ x2 − ln ðx4 þ 2x2 þ 2Þ þ ln

�
15

4

�

¼ ln
�
15

8

�
þ x6

6
þOðx8Þ: ð83Þ

The curvature in the Gross-Neveu direction is positive. In
the Thirring-like direction the leading power is x6 with a
positive coefficient such that the minimum of the potential
is at x ¼ 0. Hence chiral symmetry is unbroken. For larger
even Nir the curvature in all directions is positive. In
conclusion, chiral and parity symmetry is unbroken for any
even Nir and parity symmetry is broken for any odd Nir in
the strong-coupling limit. In the next section we will
investigate with Monte Carlo simulations whether these
results hold outside the lattice artifact phase and in the
continuum limit.

VII. SIMULATION RESULTS

The simulations have been performed with the lattice
action

SðλÞ ¼ Nir

�
λ

2

X
x

v2μðxÞ − ln detði=DÞ
�

ð84Þ

for fermions in the irreducible representation of the
Clifford algebra with γμ ¼ σμ. Note, that we have rescaled
λ → Nirλ for our simulations. We use the SLAC derivative
for fermions with a Hermitian Dirac operator,

i=D ¼ σμði∂SLAC
μ þ vμÞ; ð85Þ

because it preserves the continuumUðNirÞ chiral symmetry
and the discrete parity symmetry exactly even at finite
lattice spacing. Note that Wilson fermions in the irreducible
representation also preserve the continuum chiral symmetry
but break parity. In order to implement antiperiodic
boundary conditions for the fermions in the time direction,
we simulate on lattices with volumes V ¼ L × ðL − 1Þ2
with even L. Most of our simulations have been carried out
on lattices with L ¼ 8, 12, 16, and 20 with statistics of 1000
to 10 000 configurations. For all flavor numbers we use a
rational HMC algorithm with

ðdetð=D=D†ÞNir=2NPFÞNPF ; ð86Þ

where the number of pseudofermions is NPF ¼ 2Nir. In
order to calculate the expectation values of powers of
the condensate, we use Nest ¼ 200 × Nir stochastic estima-
tors for the fermion propagator on every Monte Carlo
configuration.
The fermion determinant detði=DÞ is real but not neces-

sarily positive. Therefore we do not have a sign problem
for even flavor numbers. Furthermore, simulations on
smaller lattices, where we can compute the fermion
determinant numerically, showed that we only have a
sign problem for Nir ¼ 1. In this case, the sign problem
can be solved with a fermion-bag-inspired algorithm and

FIG. 1. Effective potentials in the strong-coupling expansion for Nir ¼ 1, 2, 3, 4, 5, 7 with different values of n.
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appropriate resummations of certain weights. More details
on the sign problem will be published in Ref. [49]. For
Nir ¼ 2 to Nir ¼ 11 we determined the observables σQ
in Eq. (53) via Monte Carlo simulations in the vector
formulation and calculated the effective potential with the
formalism described in the previous sections.
The potentials for Nir ¼ 4 and corresponding values

of n on a 16 × 15 × 15 lattice are depicted in Fig. 2 for
λ ¼ 0.118. Statistical errors are always obtained with a
jackknife procedure and are indicated by the width of the
curves. It turns out that for every value of λ the minimum of
the potential is always at the origin x ¼ 0. Therefore we
conclude that there is no spontaneous chiral or parity
symmetry breaking for Nir ¼ 4, at least on the lattice with
L ¼ 16.
For Nir ¼ 5 the potentials are depicted in Fig. 3 for two

values of λ. For λ ¼ 0.102 the potential has two global
minima in the Gross-Neveu direction at x ≈�0.22 while
for the larger value λ ¼ 0.118 the minimum of the potential
is at x ¼ 0. This suggests that forNir ¼ 5 parity is broken at
strong coupling (small λ). On larger lattices this result still
holds true.
To check, that our conclusions are not blurred by lattice

artifacts we investigated the transition from the strong to
weak coupling regime more carefully and determined the
critical coupling where the lattice theory shows a transition
from an artificial lattice phase at strong coupling to a
continuum phase at weak coupling for all simulated Nir. In
the lattice artifact phase and in the infinite-volume limit,
observables should only trivially depend on λ. An impor-
tant quantity to investigate here is the first derivative of the
partition function with respect to λ. It is connected to the
normalized fermion filling factor in the dual variables
approach,

hknormi ¼
hki

2VNir
∈ ½0; 1�; ð87Þ

where k has been defined in Eq. (33), and therefore is an
interesting quantity to investigate lattice artifacts. The
relation is

λ

2NirV
d lnZðλÞ

dλ
¼ Cþ hknormiðλÞ; ð88Þ

where the constant C only depends on the flavor number. At
the transition from the lattice-artifact phase to the physical
weak-coupling phase, we expect a jump or a peak in the first
derivative ∂λhknormi. The critical value λ� is then obtained as
the position of the jump (or peak) in the infinite-volume
limit. The results for hknormi are shown in Fig. 4 for different
Nir and volumes. Below λ�, the expectation value hknormi
depends only weakly on the volume and increases towards
its strong-coupling value hknormi ¼ 1 with increasing lattice
volume. The curves for different volumes intersect close to
the critical λ�. In the physical phase hknormi decreases with
increasing lattice volume.
The variation of hknormi with λ for Nir ¼ 9 is depicted in

Fig. 5. It stays finite in the infinite-volume limit and
develops a jump at the critical coupling. We observe that
for larger flavor numbers the curves for L ¼ 16 and L ¼ 20

FIG. 2. Effective potentials for Nir ¼ 4 and λ ¼ 0.118 along
the different directions labeled by n ¼ 0, 2, and 4 on a lattice
with L ¼ 16.

FIG. 3. Effective potentials for Nir ¼ 5 at λ ¼ 0.102 (upper
panel) and λ ¼ 0.118 (lower panel) for the different directions
n ¼ 1, 3, and 5 on a lattice with L ¼ 16.

WELLEGEHAUSEN, SCHMIDT, and WIPF PHYSICAL REVIEW D 96, 094504 (2017)

094504-12



lie almost on top of each other, indicating that finite-volume
effects are already small on these relatively small lattices.
Even for smaller Nir, finite-volume effects are small on the
larger lattices. Therefore, we identify the critical coupling
on our largest lattice as the infinite-volume coupling λ�.
The relatively small finite-size effects are an additional
advantage of the SLAC derivative that approximates the
continuum derivative for a fixed number of lattice points
much better than the naive central derivative used for
Wilson or staggered fermions [35]. The results for the

critical λ� for all Nir between 1 and 11 are displayed in
Table II. The results for Nir ¼ 1 with a lattice size L ¼ 8
were obtained with a fermion bag algorithm directly
calculating the coefficients aP of the effective potential.
The lower curve in the phase diagram in Fig. 8 shows the
phase boundary, separating the strong-coupling lattice-
artifact regime from the physical weak-coupling regime.
We see that with increasing flavor number the critical value
λ� decreases monotonically.
After having localized the transition point between the

artifact and physical phases, we calculate the curvature κ of
the effective potential at the origin as a function of λ and
compare the critical value λc, at which the curvature
vanishes, to the critical value λ� of the artifact transition.
For even Nir we show κ for both the Gross-Neveu-like
breaking as well as the Thirring-like breaking. The results
for Nir ∈ f2; 4g are depicted in Fig. 6, together with the
results from the strong-coupling expansion (solid lines).
The grey bars show the allowed critical values λ�. For
Nir ¼ 2 the curvature in the Thirring direction vanishes at
strong coupling and increases at the transition from the
strong-coupling lattice-artifact phase to the weak-coupling
physical phase. The potential in the Gross-Neveu direction
is always positive. Therefore, we conclude that there is no
chiral symmetry breaking for Nir ¼ 2, which corresponds
to one reducible flavor. For Nir ¼ 4 the curvature for all
directions is always positive and there is clearly no chiral
symmetry breaking. We also checked this for larger even
numbers of flavors with the same result: chiral symmetry is
always unbroken for even flavor numbers. This implies that
there is no spontaneous symmetry breaking for all reducible
Thirring models. This is one important conclusion of our
work which conflicts with earlier findings but agrees with
very recent simulations [30,41,42].
For odd flavor numbers there is no Thirring-like poten-

tial. Furthermore, we checked that the minimum of the full
potential is either at the origin or in the Gross-Neveu
direction. Therefore we show the curvature in the Gross-
Neveu direction in Fig. 7 for Nir ¼ 3, 5, 7, 9, and 11 on the
16 × 152 lattice. The critical inverse coupling λc is defined
by vanishing curvature and values are shown in Table III.
Again we compare the coupling λc to the critical value of
the strong-coupling transition λ�. For Nir ¼ 3, 5, and 7 we
observe that the parity phase transition at λc lies within the
physical phase, i.e., λc > λ� and we conclude that parity

FIG. 5. Derivative of the lattice filling factor hknormi for Nir ¼ 9
and different lattice volumes.

TABLE II. Critical λ� for different flavor numbers and lattice volumes. For larger lattices there are small finite-size
effects. Simulations for Nir ¼ 1 were done with a fermion bag algorithm.

Nir 1 2 3 4 5 7 9 11

λ�ðL ¼ 8Þ 0.35(1) 0.223(6) 0.158(4) 0.122(4) 0.098(2) 0.073(2) 0.058(2) 0.048(2)
λ�ðL ¼ 12Þ � � � 0.214(4) 0.149(4) 0.114(3) 0.094(3) 0.068(2) 0.054(2) 0.046(2)
λ�ðL ¼ 16Þ � � � 0.208(4) 0.146(4) 0.112(3) 0.091(2) 0.067(1) 0.054(1) 0.045(1)
λ�ðL ¼ 20Þ � � � � � � � � � � � � � � � 0.066(1) 0.053(1) 0.045(1)

FIG. 4. Lattice filling factor hknormi for different Nir and lattices
volumes. Larger volumes are indicated by a darker color shade.
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symmetry is spontaneously broken for these flavor num-
bers. For Nir ¼ 11 the curvature is always positive and
therefore parity symmetry is always unbroken. For Nir ¼ 9
both critical couplings coincide within error bars and it is
still unclear whether parity symmetry is spontaneously
broken or not.
The upper curve in Fig. 8 shows the linear interpolation

between the critical values λc for the Thirring model with
odd flavor numbers. We conclude that the critical flavor
number for parity breaking is Ncr

ir ¼ 9. The minimum xmin

of the effective potential is an order parameter for the
breaking of parity symmetry and therefore related to a
parity condensate π. For a second-order phase transition, π
should decrease continuously to zero with increasing
coupling λ. In Fig. 9 we show the condensate for different
odd flavor numbers in the physical phase on a lattice with
L ¼ 16. For Nir ∈ f3; 5; 7g it decreases monotonically to
zero while for Nir ¼ 9 the condensate approaches zero at
vanishing renormalized inverse coupling λR ¼ λ − λ�. This
observation is consistent with the scenario proposed in
Refs. [6,14,15] where parity at the critical flavor number is
only broken at vanishing inverse coupling.
The length dimension of the physical inverse coupling is

½λphys� ¼ −1 and therefore the dimensionless lattice cou-
pling is related to a physical coupling by aλphys ¼ λ. In
the cases where we did not find a second-order phase

FIG. 6. Curvature of the effective potential at the origin for
Nir ¼ 2 (top) and Nir ¼ 4 (bottom) compared to the critical
coupling λ� (grey bar). The width of the grey bar indicates the
statistical error of λ�.

FIG. 7. Curvature of the effective potential for different odd
flavor numbers Nir on the lattice with L ¼ 16 (darker shade) and
L ¼ 20 (lighter shade). The colored bars and their widths denote
the corresponding transition from the lattice-artifact phase to the
physical phase at λ� including the statistical error.

TABLE III. Critical inverse coupling λc on a lattice with L ¼ 16
and L ¼ 20 separating the parity-broken from the parity-
symmetric phase.

Nir 1 3 5 7 9 11

λcðL ¼ 16Þ 0.39(1) 0.172(2) 0.110(4) 0.077(1) 0.054(2) � � �
λcðL ¼ 20Þ � � � � � � � � � 0.074(2) 0.051(2) � � �

FIG. 8. Phase diagram for odd flavor numbers. The lower curve
separates the strong-coupling lattice-artifact phase from the
physical weak-coupling phase and is known for odd and even
flavor numbers. The upper curve for odd flavor numbers shows
the physical phase transition associated with breaking of the
discrete parity symmetry.
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transition, we can perform the continuum limit by λR → 0
for a fixed physical inverse coupling within the physical
phase. For odd Nir < Ncr

ir , where we spotted a second-order
phase transition, we build the continuum limit by λ → λc,
corresponding to a non-Gaussian fixed point. Both limits
coincide for Nir ¼ Ncr

ir .

VIII. CONCLUSIONS AND DISCUSSION

Our main observation is that the irreducible Thirring
model with an odd number of irreducible flavors behaves
differently compared to the model with an even number of
flavors. For massless fermions the latter class is equivalent
to the class of well-studied reducible models with
N ¼ 2Nir. While for odd flavor numbers we find a critical
flavor number Ncr

ir ¼ 9 below which the Thirring model
shows spontaneous parity breaking, for even flavor num-
bers, neither parity nor chiral symmetry is broken. This
implies that no spontaneous breaking of chiral symmetry
exists for all reducible models, which are usually discussed
in the literature. Our earlier, more straightforward simu-
lations with SLAC fermions already pointed to this result
[40,41]. Furthermore, our conclusions are also consistent
with recent simulations with domain-wall fermions [29,30].
Regarding the older lattice simulations with staggered

fermions [19–24], including the fermion bag formulation
[27], their results seem not to be valid for the reducible
Thirring model, likely because their lattice formulation
does not have the correct symmetry. To see this more
clearly we should recall that for massive fermions the
reducible models are no longer equivalent to the irreducible
models with Nir ¼ 2N flavors. For reducible massive
models log detði=Dþ imÞ is real and does not contain
any imaginary Chern-Simons-type term as it does for all
irreducible massive models. After the infinite-volume limit
has been taken the zero-mass limits of the reducible models
are not equal to the zero-mass limits of the irreducible
models with Nir ¼ 2N. Thus any lattice simulation (or any

other regularization) which needs a fine-tuning to reach the
chiral limit may yield erroneous results. It may very well
happen that instead of the massless reducible model one
simulates an irreducible model at small masses. This could
be a partial explanation of why the earlier prediction
8 < Ncr

ir < 12 is consistent with ours, but only for odd
flavor numbers in the irreducible representation.
Also note that most of the previous analytical studies

focused on csb in the reducible representation assuming
conservation of the reducible parity (9) [6,14,15,43] or did
not distinguish between irreducible and reducible models
[13,46]. For example, the authors of Ref. [13] used DSEs
to investigate mass generation either from parity or chiral
symmetry breaking and found Ncr ≈ 12.97=D, where D is
the dimension of the representation of the Clifford algebra.
These earlier results are not consistent with ours and other
ongoing simulations with chiral fermions [29,30], where
csb is not present at all.
Not much emphasis was put on parity breaking for odd

flavor numbers in the irreducible representation, but most
studies found a cancellation of the Chern-Simons terms for
evenNir [6,15,43].Asdiscussedabove, this is a delicate issue
and the answer depends on the order of limits limV→∞ and
limm→0. We obtained our results for zero masses in a finite
volume, inwhich case the fermion determinant is real and no
(imaginary) Chern-Simons term can be generated. If one
considers the Thirringmodel onR3, such a term can showup
for even Nir [44,45,50]. It also can show up if one uses a
regularization which breaks chiral symmetry explicitly.
To obtain our novel results it was essential to employ

chiral fermions. But with massless chiral fermions it seems
impossible to calculate the chiral condensates directly [40].
The main ingredient to circumvent this difficulty was to use
both the vector and the matrix formulations of the Thirring
models. By introducing auxiliary (local) masses we could
relate expansion coefficients for effective potentials of a
massless model in the matrix formulation to expectation
values of condensates in the vector formulation of the
same model. The actual proof and explicit mapping from
coefficients to condensates are based on a reformulation of
the matrix models in terms of dual spin variables kαβxi . They
are introduced to represent the result of the integration over
the fermionic variables.
Our analytic results hold for other types of chiral

fermions. Actually, at present we replace SLAC fermions
by overlap fermions in our simulation code to calculate
the condensates related to the coefficients of effective
potentials.3 We expect to find results comparable to
SLAC fermions and in particular a similar value for Ncr

ir .
We already mentioned that the irreducible one-flavor

model (which is equivalent to the irreducible one-flavor
Gross-Neveu model) has a severe sign problem. We could
show that in the dual formulation there are subtle

FIG. 9. Parity condensate π ∼ xmin for odd flavor numbers in
the physical phase as a function of the renormalized inverse
coupling λR ¼ λ − λ�.

3In collaboration with Rajamani Narayanan.
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cancellations of terms such that the sign problem actually
goes away [49]. It would be interesting to show that a
similar fermion-bag-type algorithm without sign problems
exists for multiflavor Thirring models.
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APPENDIX A: FERMION BAG

Here we present further details concerning the functional
integral in the dual formulation introduced in Sec. IVA. We
summarize relevant results up to the point where simu-
lations with a fermion bag algorithm are possible. For that
purpose it is convenient to use the Lagrangian

L ¼ ψ̄ði=∂ þ iT þ iϕÞψ þ λ

2
trT2 þ λϕ2; ðA1Þ

with an additional scalar field ϕ in place of the equivalent
Lagrangian (23). In the formulation with a scalar field the
integrals that occur over the Hermitian matrix T are more
readily calculated. The equivalence of the two formulations
can be seen after splitting T into its trace-free contribution
and a multiple of the identity. Then one observes that the
integration over trT in the formulation (23) and over trT
and ϕ in the formulation (A1) yield the same results, up to
an overall factor ∝ λV=2. The transition to dual variables is
the same as for the Lagrangian without scalar fields,
with the only difference being that the matrix ðHαβ

x Þ in
the interaction term is now

Hαβ
x ¼ Tαβ

x þ ϕxδ
αβ þMαβ

x ; ðA2Þ

and this gives rise to a slightly different local weight and
an additional integration over ϕ. Instead of Eq. (38) one
obtains

Wlocðk;MÞ ¼
Z YNir

2

i¼1

�
dtiffiffiffi
π

p
�Z

dϕe−
1
2
trT2−ϕ2

·
Y
αβ

ðTαβ þ ϕδαβ þMαβÞkαβ ; ðA3Þ

up to an irrelevant overall factor ∝
ffiffiffi
λ

p
. Since T is

Hermitian, the exponential function factorizes as follows:

e−
1
2
trT2 ¼

Y
α<β

e−jTαβ j2Y
α

e−ðTααÞ2 : ðA4Þ

It implies the following factorization of the local weight:

Wlocðk;MÞ ¼
Z

dϕe−ϕ
2

WpðkÞðϕ;MÞwoðk⊥Þ; ðA5Þ

where the integral over the off-diagonal matrix elements
produces the M- and ϕ-independent factor

woðk⊥Þ ¼
Y
α<β

W⊥ðkαβ; kβαÞ: ðA6Þ

The function W⊥ is determined by a complex Gaussian
integral

W⊥ðk; k0Þ ¼
Z

dzdz̄
π

e−jzj2zkðz�Þk0 ¼ k!δkk0 ; ðA7Þ

leading to the local constraints kαβ ¼ kβα. Thus we obtain

woðk⊥Þ ¼
Y
α<β

ðkαβÞ! ðA8Þ

Recall that the entries of the symmetric matrix ðkαβÞ must
obey the local constraints in Eq. (35).
The integral over the Cartan variables leads to a term

similar to Eq. (40) and given by

WpðkÞðϕ;MÞ ¼
Z YNir

i¼1

�
dtiffiffiffi
π

p
�
e−tAt ·

Y
α

ðTαα þϕþmαÞpαðkÞ;

ðA9Þ

with pαðkÞ ¼ kαα ∈ f0; 1; 2g. Note that the diagonal matrix
elements Tαα are linear functions in the integration vari-
ables ti. The symmetric positive matrix A has matrix
elements

Aij ¼
1

2
trðHiHjÞ ðA10Þ

and differs slightly from the matrix (41) in the formulation
without a scalar field ϕ. The normalization of the gen-
erators Hi is such that

trðHiHjÞ ¼

0
BBBBBBBBBB@

4
Nirþ2

0 0 0 … 0

0 2 −1 0 … 0

0 −1 2 −1 . .
. ..

.

..

. . .
. . .

. . .
. . .

.
0

0 … 0 −1 2 −1
0 … 0 0 −1 2

1
CCCCCCCCCCA
: ðA11Þ
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The final integration over the variables ti yields the factor

Wpðϕ;MÞ ¼
Y

α∶pα¼1

ðϕþmαÞ
Y

α∶pα¼2

ð1þ ðϕþmαÞ2Þ:

ðA12Þ

In the limit of m → 0, the ϕ integral (A5) vanishes for
odd P1, and for even P1 it is given by the confluent
hypergeometric function,

WlocðkÞ ¼ woðk⊥ÞΓ
�
1þP1

2

�
U

�
1þP1

2
;
3þP1

2
þP2;1

�
;

ðA13Þ

where, as in the main body of the text, the number Pk with
k ∈ f0; 1; 2g counts the number of indices pα with pα ¼ k.
In this form, the local weights are suitable for simulations
with a fermion bag algorithm. Unfortunately, this formu-
lation does not solve the sign problem that was introduced
by the Fierz transformation.

APPENDIX B: STRONG-COUPLING EXPANSION

The partition function in the vector formulation of the
Thirring model with fermionic sources is given by Eq. (74).
Here we perform the integration over the vector field vμ
and the fermions. After rescaling the vector field according
to ~vμ ¼

ffiffiffi
λ

p
vμ (and afterwards dropping the tilde) the

integration over the fermions yields

Z½η; η̄� ¼ ðλÞ−ð3=2þNirÞVK


δ

δη
;
δ

δη̄

�

×
Z

Dvðdet=vxÞNire−
P

x
v2xe

P
x

ffiffi
λ

p
η̄x

1
vx
ηx : ðB1Þ

The integral over the vector field factorizes and we can
expand in powers of the fermionic bilinear in the exponent,

Z½η; η̄� ¼ ðλÞ−ð3=2þNirÞVK


δ

δη
;
δ

δη̄

�

×
Z

Dve−
P

x
ðv2xþNir ln v2xÞe

ffiffi
λ

p P
x
η̄x=vxηx=v2x

¼ ðλÞ−ð32þNirÞVK


δ

δη
;
δ

δη̄

�Y
x

XNir

k¼0

Ikðηx; η̄xÞ; ðB2Þ

where Ik is the three-dimensional one-site integral

Ikðη; η̄Þ ¼
λk

ð2kÞ!
Z

d3ve−v
2ðv2ÞNir−2kðη̄=vηÞ2k: ðB3Þ

Here, we already used that only even powers of =v contribute
to the integrals over vμ. In spherical coordinates v ¼ rv̂, the
integration over the radial direction is simple and we obtain

Ikðη; η̄Þ ¼
λk

ð2kÞ!
Z

drd2v̂e−r
2

r2ðNirþ1−kÞðη̄=̂vηÞ2k

¼ λkΓð3
2
þ Nir − kÞ
2ð2kÞ!

Z
S2
d2v̂ðη̄=̂vηÞ2k: ðB4Þ

The remaining integral can be calculated from the gen-
erating function

zðjÞ ¼
Z

d2v̂e
P

jμv̂μ ¼ 4π
sinh jjj
jjj ; j ∈ R3; ðB5Þ

by taking derivatives. This way we find

Z
d2v̂ðη̄γμηv̂μÞ2k ¼

�
η̄γμη

∂
∂jμ

�
2k
zðjÞjj¼0

¼ 4π

2kþ 1
ððη̄γμηÞ2Þk: ðB6Þ

Hence, the integral over the vector field yields

Ikðη; η̄Þ ¼ 2π
λkΓð3

2
þ Nir − kÞ

Γð2kþ 2Þ ððη̄γμηÞ2Þk; ðB7Þ

such that the final expression for the partition function
after integration over vector and fermion fields is given
by Eq. (76).
In the main body of the paper, just after Eq. (78), we

remark that in the infinite-volume limit the partition
function only has a trivial dependence on the inverse
coupling λ and that local expectation values do not depend
on λ at all. In order to show this, we write the nth order in
the corresponding expansion as a sum over the configu-
rations ǩ ¼ fkxjx ≠ x0g, where kx is the order of the
function FðkxÞðxÞ. We obtain for the partition function

ZðnÞ½χx0 ; χ̄x0 � ¼ KðnÞY
x

X
kx

FðkxÞðxÞjχx≠x0¼0

¼
X
ǩ

KðnÞY
x≠x0

FðkxÞðxÞ
X
kx0

Fðkx0 Þðx0Þjχx≠x0¼0;

ðB8Þ

where a particular point x ¼ x0 was singled out, because
we later differentiate the partition function with respect to
the source at this point. The operator KðnÞ contains ðn; nÞ
derivatives with respect to ðχ; χ̄Þ at all lattice points while
the function FðkÞðxÞ contains ð2k; 2kÞ fermion sources
ðχ; χ̄Þ at the lattice point x. Symbolically, we introduce
the operator Dði;iÞ, that collects ði; iÞ derivatives together
with the 2i sums over the lattice points. This allows us to
write the partition function as
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ZðnÞ½χx0 ; χ̄x0 � ¼
Xn
i¼1

AðiÞBðiÞ; ðB9Þ

with the functions A and B defined as

AðiÞ ¼
�
Dði;iÞX

ǩ

Y
x≠x0

FðkxÞðxÞ
�				

χ¼0

;

BðiÞ ¼ Dðn−i;n−iÞX
kx0

Fðkx0 Þðx0Þ: ðB10Þ

To investigate the volume dependence of the A functions
we act with i derivatives on the F functions and afterwards
set the sources to zero. Only terms with 2

P
kx ¼ i yield

a nonvanishing contribution to the partition function.
Furthermore, we need more than one lattice point, because
the massless inverse fermion propagator vanishes for x ¼ y
(this is true for SLAC fermions on lattices with even L).
Therefore, the number nx of lattice points with sources in

the product of the F function is nx ¼ 2;…; i=2. For the
first lattice point, we have V − 1 possibilities, for the
second lattice point we have V − 2, etc. Thus the volume
dependence of AðiÞ is

AðiÞ ∼
Xi=2
nx¼2

anx

�
V − 1

nx

�
→
V≫i

Xi=2
nx¼2

anx
Vnx

nx!
: ðB11Þ

We conclude that the dominant contribution to the partition
function in the infinite-volume limit and for a fixed order of
the expansion is

ZðnÞ½χx0 ; χ̄x0 � ¼ AðnÞBðnÞ ∼ CðλÞ
X
k

FðkÞðx0Þ: ðB12Þ

This leads to the form of the partition function given
in Eq. (79).
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