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The Thirring model is a four-fermion theory with a current-current interaction and U(2N) chiral
symmetry. It is closely related to three-dimensional QED and other models used to describe properties of
graphene. In addition, it serves as a toy model to study chiral symmetry breaking. In the limit of flavor
number N — 1/2 it is equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase
transition. The model was already studied with different methods, including Dyson-Schwinger equations,
functional renormalization group methods, and lattice simulations. Most studies agree that there is a phase
transition from a symmetric phase to a spontaneously broken phase for a small number of fermion flavors,
but no symmetry breaking for large N. But there is no consensus on the critical flavor number N above
which there is no phase transition anymore and on further details of the critical behavior. Values of N found
in the literature vary between 2 and 7. All earlier lattice studies were performed with staggered fermions.
Thus it is questionable if in the continuum limit the lattice model recovers the internal symmetries of the
continuum model. We present new results from lattice Monte Carlo simulations of the Thirring model with
SLAC fermions which exactly implement all internal symmetries of the continuum model even at finite
lattice spacing. If we reformulate the model in an irreducible representation of the Clifford algebra, we find,
in contradiction to earlier results, that the behavior for even and odd flavor numbers is very different: for
even flavor numbers, chiral and parity symmetry are always unbroken; for odd flavor numbers, parity

symmetry is spontaneously broken below the critical flavor number N{'

unbroken.
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I. INTRODUCTION

The Thirring model [1] is a fermionic quantum field
theory with a current-current interaction. While it was
originally studied in two spacetime dimensions, a lot of
recent works were concerned with its three-dimensional
version with a varying number of N flavors. This model is
renormalizable in a 1/N-expansion for 2 < d < 4 [2-5]. Its
Lagrangian in Euclidean spacetime is given by
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with summation over fermion flavors. In three dimensions,
an irreducible representation of the Clifford algebra is
two-dimensional, but we will start with a reducible repre-
sentation here and take the well-known I', matrices of the
four-dimensional theory with four-component spinor
fields W,. This is motivated by a strong similarity to
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9, while chiral symmetry is still

three-dimensional QED [5-8], which is often used to
model electronic properties of materials like graphene
[9,10] or high-temperature superconductors [11,12].

The Thirring model is also interesting on its own,
because it has a large continuous chiral symmetry. It is
believed that spontaneous breaking of this symmetry can
happen with the pattern

U(2N) - U(N) ® U(N), (2)
but only for a small number of flavors. A critical flavor
number N should exist, such that chiral symmetry breaking
(csb) only occurs for N < N°. The main focus of our work is
to find the value of N for the reducible Thirring model.
While there is a broad agreement on this general
behavior in the literature, the predictions for N vary to
some extent. Numerous works have employed a large-N
expansion: Different studies have used Dyson-Schwinger
equations (DSEs), with the first [13] reporting N = 3.24.
Later work [6,14] found N ~ 4.32 in the limit g — co. By
constructing an effective potential by an inversion method,
Kondo [15] reported N = 2 for infinite Thirring coupling.
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Additionally, these works reported relations between the
chiral condensate, N, and ¢ that are qualitatively not in
agreement with each other.

A recent extensive study [16,17] of four-fermion theories
with functional renormalization group methods spotted a
structure with three interacting fixed points in the plane
spanned by Thirring and Gross-Neveu coupling. The fixed
point governing the critical behavior of the Thirring model
is only on the axis of pure Thirring interaction for N — oo,
while it is off the axis for any finite N. On the contrary, for
small N this fixed point is dominated by another four-
fermion interaction, showing dynamical generation of a
fermion mass. This is not the case for large N. Balancing
this competition, the authors found N =~ 5.1(7).

Regarding lattice field theory, many simulations with
staggered fermions and a small mass have been performed
so far. With a setup using the standard hybrid Monte Carlo
(HMC) algorithm, simulations are only possible with an
integer number of flavors. Since for staggered fermions
each lattice flavor corresponds to two continuum flavors
[18], only simulations with even N are possible. The first
results [19] reported a change of the chiral behavior for
2 < N < 6. Another series of publications [20-22] used
the same algorithm with a slightly different action and
found chiral symmetry breaking with a second-order phase
transition for N = 2 and N = 4, while the transition for
N = 6 is different. The authors claimed that in the latter
case there is a first-order transition with coexisting sym-
metric and broken phases. They concluded that N is
between 4 and 6. Simulations with a hybrid molecular
dynamics algorithm were performed in Ref. [23], allowing
also for odd and noninteger values of N. The authors
presented a phase diagram in the (N, g¢?) plane with a
critical line. Along this line, the critical exponents and the
order of the phase transition change from a second-order
transition at N = 4 to a first-order transition at N = 6. For
N =5 the simulations did not lead to a conclusive result.

In a more recent lattice study [24] with this setup,
simulations in the limit g> — oo were performed, in order to
compare the results with those from DSE approaches.
To ensure transversality of the vacuum polarization tensor
for large N on the lattice, a renormalization of the coupling
was necessary. The renormalized coupling at leading order
in 1/N is

2
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where the integral J(m) was given in Ref. [21]. Obviously,
gs becomes negative if the bare coupling ¢* is larger
than 3/2. Thus the strong-coupling limit is reached for
finite bare coupling. For stronger bare couplings, an
unphysical phase is present. All these works found a
nonmonotonic behavior of the chiral condensate, and it
is argued that its maximum corresponds to the point where
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the renormalized coupling becomes negative, although the
coupling at the maximum does not match the value of
3/2. Looking at the maximal value of the chiral condensate
for different N at small masses, the authors concluded
that N = 6.6(1).

The fermion bag approach was applied by
Chandrasekharan [25] to study the Thirring model with
a single staggered flavor, corresponding to N = 2, and to
obtain critical exponents for the csb phase transition
[26,27]. This was the first lattice work in the chiral limit
m = 0. But since staggered fermions do not preserve all
internal symmetries it is not clear if the correct symmetry-
breaking pattern (2) is recovered in the continuum limit.
In a subsequent work the authors [28] observed that
their lattice version of the Thirring model has the same
symmetry and critical exponents as the Gross-Neveu
model. This seems to contradict our knowledge about
the continuum models. More recently, the first study with
domain-wall fermions was performed [29]. Contrary to the
older works, no remnant of csb was found in the extrapo-
lation m — 0 for N = 2. Very recent preliminary results
[30] for N = 1 showed no csb either.

In the present work we follow an alternative route and
simulate the Thirring model with chiral SLAC fermions
[31,32]. It is well known that these fermions should not be
used in lattice gauge theories [33], but they have been
successfully applied to simulate supersymmetric Yukawa
models [34-38], where the renormalizability of lattice
perturbation theory with SLAC fermions up to one-loop
was also established. With these fermions, the step scaling
function of the nonlinear O(3) sigma model has been
calculated to high accuracy on moderately large lattices; see
Ref. [39]. Thus there are good reasons to believe that they
work well for four-fermion theories. SLAC fermions admit
the exact internal symmetry at any finite lattice spacing.
Nevertheless, it was difficult to establish csb at any N in
previous investigations [40,41]. Including an explicit
breaking, a physical phase transition was observed, but
it seems to merge with the artifact transition explained
around Eq. (3), leaving no reliable trace of csb when
performing the limit to the massless Thirring model. An
attempt to use Fierz identities to reformulate the Thirring
model showed a very strong sign problem preventing
HMC simulations [41]. The present work will present an
approach to circumvent these problems and provide a
definite answer about the existence and values of the
critical flavor number. We shall see that there is no
symmetry breaking in all models with integer N. This is
in complete agreement with the absence of bilinear con-
densation in three-dimensional QED with an even number
of massless irreducible flavors [42]. In contrast, we present
numerical evidence that all models with half-integer
N < N =9/2 show a symmetry breaking.

To ease the computations, we also consider the Thirring
model in the irreducible representation, where the chiral
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symmetry is merely a flavor symmetry. Then, dynamical
generation of a fermion mass is associated to a spontaneous
breaking of parity. This was studied by DSE in the large-N
limit, where a dynamically generated mass was found [43],
implying N — oo. In Refs. [44,45] a different parity-
breaking pattern emerged when Fierz identities were used
to compute the effective potential: a dynamical mass
generation for two and three irreducible flavors was seen,
whereas the potential became unbounded from below for
N — oo. Similarly, in the functional Schrodinger picture no
symmetry breaking in the large-N limit was found, while it
appeared when higher-order corrections in 1/N were
included [46].

With the help of an auxiliary vector field v,, the
Lagrangian (1) can be written in the equivalent form

_ N
L=V il'DY + Ao, d=o5.  (4)
g

with the “covariant derivative” D, = d, —iv,. In an
adapted base the reducible matrices I', and reducible
spinors take the form

F”ZG3®7/”’ lPa

l//l,a = _ _
( ) Y, = W10 W24)
l//2,41
(5)

where the two-dimensional y, form an irreducible repre-
sentation of the Clifford algebra in three dimensions. For
massless fermions the overall sign of p = y#(d, —iv,) in

ﬁ = l/_/1,aiDl//],a - lpZ,aipWZ,a + AUM’IJ” (6)

is irrelevant and the model with N reducible flavors is
equivalent to the model with N;. = 2N irreducible flavors,
for which the second term in Eq. (6) has a positive sign.
For massive fermions this is no longer true: when integrat-
ing out irreducible fermions a parity-violating (imaginary)
Chern-Simons-like term is generated.' In contrast, the
fermionic determinant is real for reducible massive fer-
mions and we do not expect parity breaking in models with
reducible fermions.

This paper is organised as follows. In Sec. II, we
summarize the symmetries of the Thirring model in the
reducible and an irreducible representation. The relation
between both formulations is further discussed. Then, in
Sec. III we use a Fierz identity to rewrite the Lagrangian for
irreducible fermions. The main derivation of the effective
potential for local condensates can be found in Sec. IV,
while its symmetries are studied in Sec. V. We also give the

'More accurately, an imaginary Chern-Simons term is gen-
erated in the limit m — oo. For small m the imaginary part of the
effective action is proportional to the # invariant.
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explicit forms of the potential for N;, = 1 and 2. Next, we
study the effective potential in the strong-coupling limit in
Sec. VI, before we present our main results from numerical
simulations in Sec. VII. Finally, a discussion of our findings
and a comparison with previous results can be found in
Sec. VIIL

II. CONTINUUM SYMMETRIES

First we discuss the internal symmetries of the Thirring
model in three dimensions. The results look different for N
fermions in the four-dimensional reducible representation
of the Lorentz group and N;, fermions in a two-dimensional
irreducible representation. The flavor numbers are related
as N, = 2N.

In the reducible representation ¥, is a four-component
Dirac spinor, where a = 1, ..., N labels the flavors. The
theory possesses a U(2N) chiral symmetry generated by

T=T;® {1,T4,T5,il,Is}, (7)

where T € u(N) generates rotations in flavor space. A
Dirac spinor transforms under the chiral and flavor rota-
tions as

T (1914141 4 +141 s +1t91T°y I
Y oy i@ 1465+ 15T s +ingT,y 5)\11’

li’ N q;e—iT;’@(ﬂI«ﬂ—tgF4—rgl”5+izjl“41‘5)' (8)

Furthermore, the theory is invariant under a discrete Z,
parity transformation
P(x) - il T,P(X)  with X' = (xg, —x1, %), (9)
where alternative formulations using ['s instead of T’y
are possible. A detailed discussion of both continuous
and discrete symmetries can be found in Refs. [13,16]. In
total, the global symmetry group is U(2N) ® Z,. Now, we
can define a parity-even chiral condensate £ = YW and a
parity-odd condensate X5 = Wil'y['s¥. The chiral con-

densate X is an order parameter for spontaneous breaking of
the continuous chiral symmetry according to

UQRN)® Z, > U(N) @ UN) ® Z,.  (10)

while the parity condensate X5 serves as an order param-
eter for discrete parity breaking,

U(2N) ® Z, =5 U(2N). (11)

For calculations it is often more convenient to reformu-
late the Thirring model in an irreducible representation.
A useful reduction is given by
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F4 = 0j ® ]],
iF4F5 = 03 ® 1. (12)

F;t =03 Q Yus
FS = 0] ® 1 and

In order to obtain a standard kinetic term in the irreducible
representation, we decompose the N four-component ¥, as

Yia I 7 7
¥, = ( ) and ¥, = (l//l,m _WZ.H)’ (13)
Y2.a

where y; , are two-component spinors in a fixed irreducible
representation. With this decomposition, the Lagrangian is
given by

2

. g _
L =W,idw, - o, (Wt Wa)?, (14)

where the irreducible flavor index a = (i,a) assumes
2N = N;, different values. Note the difference to the
decomposition (5). The condensates are

N
Y= Z (l/_/l,al//l.a - lpZ,aWQ,a) and (15)
a=1
Nir
= 245 - Vala- (16)

The parity condensate in the reducible representation z
turns into a chiral condensate in the irreducible represen-
tation, while for even N;, the former chiral condensate now
has a flavor-staggered structure. This already indicates that
in the irreducible representation the behavior is different for
even and odd flavor numbers N;.. We will further inves-
tigate this difference in the next sections.

The continuous chiral symmetry of the reducible
Thirring model becomes a pure flavor symmetry in the
irreducible representation, i.e., the theory is invariant under
U(N,,) flavor transformations given by

w— Uy and - pU' (17)

with a unitary matrix U = exp(i;T;) acting in flavor space
only. Here, the T; are generators of the algebra 1t(N;,).
Due to its relation to the chiral transformations of the four-
component spinors, this flavor symmetry will still be called
chiral symmetry in the following, although the concept of
chirality does not exist in odd dimensions.

The parity transformation of the four-component spinors
turns into a combination of flavor rotations and a parity
transformation in the irreducible representation, which is
given by

w(x) = rw() and w(x) = =@y (18)
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The irreducible chiral condensate n is invariant under
chiral transformations (i.e., two-component flavor rota-
tions) while it breaks the discrete Z, parity symmetry.

III. FIERZ IDENTITIES

To integrate over the fermionic fields in the functional
integral, it is useful to “linearize” the four-fermion term by
a Hubbard-Stratonovich transformation, which transforms
the Lagrangian (14) into the equivalent form

L=y +y,v,)w + Av2, (19)

with 1= N/2¢* and three real scalar fields v,. After
integration over the y, we obtain the effective action

Seff = _Nir Indet (la + ]/M’U”) + /1/ d3xv#(x)2. (20)

Note that this action is not gauge invariant and v, should
not be viewed as gauge potential.2

A technical problem arises if one discretizes this for-
mulation on a (hypercubic) lattice to perform Monte Carlo
simulations. Since v, is invariant under chiral transforma-
tions there is no natural order parameter for chiral sym-
metry breaking in the massless theory. But the advantage of
the vector formulation is that except for N;, = 1 it is free of
a fermion sign problem. This is obvious for even N;, since
i) +y,v, is Hermitian. For odd N;, we never observed a
negative sign in our Monte Carlo simulations except
for N;, = 1.

We can circumvent the technical problem by applying a
Fierz transformation to the four-fermion interaction

War o) = =2Wawp) Wpwa) — (Wawa)®.  (21)

This identity was also applied in, for example,
Refs. [44,45]. The transformed Lagrangian reads
[: - g2 — — gz — 2
= Wiy + - W) Wpwe) + 5 (o)™ (22)
f f

Now, by applying the Hubbard-Stratonovich transforma-
tion we can reproduce the four-fermion terms with the help
of a matrix-valued field,

i A A
L=y <ia +iT + %trT)l// - 5trT2 +3 (uT)?,  (23)

where T = T7 is a generic u(N;,)-algebra valued field, i.e.,

’It could be promoted to a gauge potential after introducing a
Stiickelberg field [6].
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Under a chiral transformation the components of 7" trans-
form according to

T - UTU", U € U(Ny), (25)
such that their expectation values serve as order parameters
for chiral symmetry breaking. They are related to fermionic
condensates by DSEs. Unfortunately, this formulation of
the model suffers from a severe sign problem on the

lattice [41].

IV. EFFECTIVE POTENTIAL

The vector formulation (19) and matrix formulation (23)
each have their own advantages and disadvantages. The
former can (except for N;, = 1) be simulated without a sign
problem, but information about chiral symmetry is not
directly accessible. On the other hand, in the matrix
formulation we have direct access to order parameters
for csb, but there is a strong sign problem that prevents
reliable simulations. We proceed with an analytical treat-
ment in the matrix formulation and calculate the resulting
expectation values in the vector formulation. We begin with
splitting the matrix field in Eq. (23) as

T(x) = T°(x) + T+(x), (26)
where the first term is in the Cartan subalgebra of 1(N;;)
and the second is in its orthogonal complement. We shall
introduce a dual-variables formulation in Sec. IVA and
afterwards present a calculation of the (constraint) effective

potential

Ve (T¢) = —1In / DT Dpe5x TP §(T¢ — T¢(x,))
2Nir Nir

= —anZan’i(l‘i)", T¢ = tl'Hi,
n=0 i=1

in which the constraint fixes the field at an arbitrary point x,
to the prescribed value 7° in Sec. IV B. The matrix field
T(xy) is Hermitian and can be diagonalized by a global
chiral transformation. Hence it is sufficient to calculate the
effective potential for a field in the Cartan subalgebra with
generators H'. In Sec. IV C we will relate the coefficients
a,; to expectation values of observables O,,; in the vector
field formulation,

ani = (Oni),,- (27)

"

This allows us to employ Monte Carlo simulations in the
vector field formulation to calculate the effective potential
defined in the matrix formulation.

PHYSICAL REVIEW D 96, 094504 (2017)

A. The partition function in the dual
variables formulation

First we reformulate the partition function of the Thirring
model with massive fermions in terms of discrete spin
(or dual) variables. Then we take derivatives with respect to
the mass to relate observables in the dual formulation to
powers of fermionic bilinears. Actually, we introduce an
x-dependent and diagonal fermion mass matrix

M (x) = diag(m;(x), ..., (28)

my, (x)).
The partition function for the massive model is now given
by (an integral over spacetime is assumed in the exponent)

Z(. M) = @/ DT Z,[T. M]e 0 T~40T7 | (29)

where the fermionic partition function Zz[T, M] is given by
the fermionic integral

ZF[T’ M} — /Dl/_/Dlllé_V_’i v p—WiHy (30)

Here, the shifted field H =T + 5 trT + M was introduced.
With spinor index i and flavor 1ndlces a and f the product
expansion of the second exponent leads to

Zy[T, M] —/'Dl/_/Dllle P [0 - wsimdyl). ()

xiaf

where we used that y¢; and ¢, are Grassmann variables.
A similar expansion is met in the fermion bag approach,
where one expands the integrand directly in powers of the
four-fermion term [27]. After integrating over the auxiliary
field the two expansions yield the same results, although
the intermediate expressions are different. A related expan-
sion is also encountered in attempts to dualize gauge
theories [47].

At this point we introduce a spin field k% € {0,1} = Z,,
rearrange the weight function as a sum over configurations
of the k-field and perform the integration over the fermions
to get

Zy[7. M)

= 3 (i) det (gl [ (H)™,

(K" xaf

(32)

where we introduced the abbreviations

@S-t =S o

xiaf

and @[k is the matrix in which the {xia}th row and {xif}th

column of ¢ are removed whenever ki’,ﬂ = 1. A similar
expansion in terms of minors of a fermionic matrix was
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recently presented within a transfer matrix approach in
Ref. [48]. It is important to note that in the minor expansion
there are constraints on the spin field k;’lﬁ in order to get
nonvanishing contributions to the weight function: due to
yiws = wiws = 0 for fixed x, i, the sum over rows and
columns of the matrix k% has to be zero or one,

Y kfe{o.1} and Y kFefo.1}.  (34)
a B

Summing over the spinor index i leads to the following

local constraints on the elements of the matrix k, = (k%) in
Eq. (33):

DK efo1.2) and 3AY e{0.1.2) (3)
a ﬂ

We can summarize these constraints in a local constraints
function:

1 alllocal constraints are fulfilled,

Sumnll) = { (36)

0 else.

Inserting Eq. (32) into the partition function (29), we
observe that all contributions, with the exception of the
minors, are given by a product over the lattice sites.
After rescaling the variables T = /AT and M = v/AM,
the partition function reads

Z(3.M) = C> A det (P[k])
{x7)

: Héconstr(kx)Wloc (kx’ M('x))’ (37)

X

with an overall factor C = (z/A)"/?, where y=
V(N> +1). The local weight function is defined for
any k, by

N/ di
Wloc(k, M) = / <—’> e—%trTz—ﬁ(trT)z
(A

- 1 - - kel
11 (T“ﬂ - 5trmaﬂ - M"ﬂ> . (38)
aff

In the following we drop the tilde above variables again to
simplify our notation. Because of Eq. (35) the exponent k%
only takes the values 0,1, and 2. The integration variables
are the expansion coefficients in T = ;T;.

The integration over the non-Cartan fields is performed
in Appendix A and leads to the final form of the local
weight function

Wloc(k’ M) = Wo(kJ_)Wp(k) (M)’ (39)

PHYSICAL REVIEW D 96, 094504 (2017)

where p(k) = (k'',k*2,...) is the Nj-component vector
that collects the diagonal entries of k%’. Recall that these
entries can assume the values 0, 1, or 2. In addition, the first
factor w, (k) is a non-negative integer depending on the
nondiagonal entries of the matrix (k). The explicit form
of w, is given in Appendix A. The second factor is an
integral over the Cartan subalgebra,

o i)

1 Pa
11 (T‘m + T + ma> . (40)

a

The symmetric matrix A in the exponent can be written as
1 1

and the integration is only over the Cartan subalgebra with
generators H;. Although the final result does not depend on
a specific choice of the generators, we use the generators
given in Appendix A for the explicit calculations. W, is a
polynomial in m, of degree p,. The explicit form of
Wioe(k, M) is also given in Appendix A.

In this form it looks like the partition function can be
simulated with a fermion-bag-like algorithm. Unfortunately
the minors induce a severe sign problem. So far we could
solve this problem for N, = 1, where we applied the
fermion bag algorithm to the model with chiral SLAC
fermions [49]. In the following we refer to the integer
number k in Eq. (33) as the lattice filling factor, because
it counts how many fermions take part in the local
interaction. Due to Pauli blocking it can only take the
values k=0,...,2VN;. In the strong-coupling limit
(4 — 0) we find Kk = 2VN;. on every configuration such
that every lattice site is occupied by the maximal number of
fermions. Here we expect strong lattice artifacts due to
saturation effects. In the weak-coupling limit (1 — o) we
have k =0 and the theory reduces to a theory of free
fermions on the lattice.

B. Effective potential

In this section we derive an effective theory for the local
chiral condensates (¥ ,y,) (no sum), or equivalently the
expectation values of scalar fields in the Cartan subalgebra,
that are related to the condensates by DSEs. Therefore, we
constrain the local mass matrix defined in Eq. (28) to

M = diag(my, ..., my. )8, , (42)
with a fixed lattice point x, and determine the dependence
of the partition function on the parameters m,,. This allows
us to relate contributions to the partition function Z(4, M)
in the dual formulation to expectation values of chirally
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invariant local observables in the original vector formu-
lation by differentiating with respect to these local mass
parameters. Formally, the M-dependent partition function
is given by

Z(A, M)

Z Z a,W, (43)

P peSp

where the first sum extends over the (N, + 1)(Ny, +2)/2
triplets

P:(Po’Pth)- (44)

The elements of P obey

2
P €{0.1,...N;} and > Py=N;. (45
k=0

The second sum in Eq. (43) extends over the

Nlr'

VO](S'p) 7P0‘P1 'Pz

(40)

permutations Sp of the N;-tuple p with P, elements equal
to zero, P elements equal to one, and P, elements equal to
two. All together, the double sum in Eq. (43) consists of
3V terms. The coefficients a, depend on 4, the volume,
and further details of the lattice formulation such as, for
example, the choice of lattice fermion derivative.

When all flavors have the same mass (m, = m), the
coefficients a, do not depend on a specific permutation
(permutation of flavors) but only on the three numbers P,
and we can write the partition function as

Z(j.m) =" ap-Vol(Sp)Wp(m), (47)
P

where

W’P( ) prn ( ) |M(ma_’m>

with per = (0,....0,1,...,1,2,....2) (48
Psort = ( ) (48)

Py times Pj times P, times

is the weight of a particular representative in an orbit of the
permutation group.

The constraint effective potential in the limit of a
constant mass in flavor space is then given by the negative
logarithm of the distribution function, i.e.,

PHYSICAL REVIEW D 96, 094504 (2017)

1 1
Veff(j,, T, m) = Etr(Tc>2 +_ (trTC)2

4

“in (Zapz H(Ta" jurem)”).

peSpa=1

(49)

Here, we have to sum over all permutations again, because
no integration over the diagonal scalar fields is performed
in the effective potential.

C. Relation to observables

In order to relate the coefficients ap to expectation
values, we take derivatives of the partition function (43)
with respect to the local masses m, and afterwards set
m, = m. With the definition of moments of the Gaussian
weights

Wy q(m)

Nic aqa
(e LA

a=1

we can write the partition function and its derivatives with
respect to the local masses as

ZaPZW (51)

PESP

Since W, (M) is a polynomial of degree p,, in m, we only
get a nonzero result in Eq. (50) when ¢, < p,. In the limit
of a constant mass in flavor space, the expectation values
Z4 do not depend on the ordering of the flavors, but only on
the number Q, of zeroth, O, of first, and Q, of second
derivatives. Denoting the triple {Q, Q;, O, } by O, we can

write

%0 =g 1 z Zy(A,m) (52)
quQ

The index sets Q and P are identical, with the constraints
that their three entries sum to N;.. The sum in Eq. (52) is
over the Vol(Sg) = N;;!/(Q0!0Q;!0,!) permutations Sg of
q. The derivatives of the partition sum are directly related to
expectation values via

co= 11z (T[war). (5

a

Here, the right-hand side can be computed, up to the
arbitrary normalization factor Z = oy, (o, With conven-
tional simulations of the Thirring model in the vector field
formulation. Inserting Eq. (51) into Eq. (52), we obtain
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oo = Z PY oo VO Z Wpq(m (54)

pPESH qu
We can also write this equation as a matrix equation,
09 = K Qpap with

Kop = Z Vol
pESH

Z Wi (55)

where K is a square matrix that can always be represented
in an upper triangular form (due to ¢, < p,) with nonzero

diagonal elements. Therefore a unique solution for the
coefficients ap is given by

i=K'G, (56)

For symmetry reasons, the double sum for the matrix
coefficients simplifies to

Kop = Vol(Sg) > Wop)q(m), (57)

where p(P) is one representative in the equivalence class
defined by P. In this way, we can uniquely relate the
coefficients @ to expectation values & of the Thirring model.
Alternatively, the coefficients @ can be calculated directly
with a fermion bag simulation of the partition function (37).

V. SYMMETRIES OF THE EFFECTIVE
POTENTIAL

A suitable order parameter for chiral symmetry breaking
is the position of the global minimum of the effective
potential. We can simplify the discussion of the potential, if
we locally apply a chiral transformation such that the local
condensates are in the Cartan subalgebra of 1(N;;). As part
of the remaining symmetry of the Cartan subalgebra, it is
possible to exchange flavors and the sign of the condensate,
without changing physics. Therefore, minima of the effec-
tive potential can only occur in the directions

+1
e 7}, (58)
+1

where x ~ (yy), is a free parameter. These directions
where also spotted by the simulation results for the full
effective potential. Once a direction is fixed we are left
with the problem of finding the minimizing x. Physically
equivalent solutions are related by a reflection x - —x or a
permutation of flavors. The latter is given by the action of
the Weyl group of U(N;;). We conclude that physically
distinct solutions are characterized by the trace of T¢

min?

PHYSICAL REVIEW D 96, 094504 (2017)

2
tr7c. _N—xn with

0,2,4,...,N;; N, even,
= (59)
173757""Nir Nir odd.

This leads to ny, = [% N;] + 1 different solutions for the
potential. Every solution gives rise to a different breaking
pattern of chiral symmetry, leaving different subgroups
intact. A nonvanishing expectation value in direction n
breaks the symmetry down to

UV = Un) @ Uln), ne =" (60)

A symmetric breaking with n, = n_ is only possible for
even N;. with n = 0. This is the proposed breaking of the
reducible Thirring model. For the solution with n = N;;
and x # 0, only parity symmetry is broken. Therefore, the
solution with n =0 is called a Thirring-like breaking
while the solution with n = N;, is called a Gross-Neveu-
like breaking.

Along the different directions, the effective potential in
the massless case is

2Nir+l’l
Verr(x,n) = N2 >
X [p|
_1n(zapz(n+2)p<(n_2)p> (_> )
P peESp Nir

(61)

where the exponents are given by the (partial) sums,

|p|< Zpa’ |p|> Zpa’ |p|_zpa (62)

asn, a>n.

In the massive case, n+2 in Eq. (61) is replaced
by n +2 + mN,. Evaluating the above potential in the

Thirring-like direction, we get
2x\ Ipl

ln(zapz DR (Z)7).

and in the Gross-Neveu-like direction

PESP
N1 +2 Ny +2 P
VW =Nt om(Sa 3 (M) ")

pES)H lr

Vait(x)

(64)

An important quantity to determine chiral symmetry break-
ing is the curvature x of the effective potential at the origin,
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_ dzveff(x’ n)
dx2 x:O.

k(n) (65)

Possible phase transitions are expected to be second order.
Thus, we conclude that chiral symmetry is unbroken if all
curvatures «(n) are positive, while it is spontaneously
broken if at least one of the x(n) is negative.

A. Effective theory for N;. =1

For one irreducible flavor the Thirring model is equiv-
alent to the Gross-Neveu model. This follows from the
Fierz identity (21) for one flavor. For massless fermions
the integral (40) vanishes for p = (1) such that only
p = (0) and p = (2) remain. Likewise only multideriva-
tives with ¢ = (0) and q = (2) appear. The K-matrix is

then given by
I3
K= . 66
(o 1) (66)

The explicit form of the matrix depends on the normali-
zation of the generators H; given in Appendix A. With
the arbitrary normalization ¢,y = 1, we find for the
coefficients @

1
ajoo =1 —160,0,1 and ap0,1 = 500,0,1’ (67)

and obtain for the effective potential

3 9
Veff(x) = 3.X2 - 1I1<1 - ZO-O'O’] + 50’0'0.1)62) . (68)

The curvature of the potential at the origin is then

c — 1800,0.1 —4/9’
60,0,1 — 4/3

6001 = 5 ((FY)?*),mo-  (69)

)=

At the critical inverse coupling 4. the curvature vanishes
and we get 600(A.) = 4/9. The condensate {(yy)?) is
later calculated within the strong-coupling expansion
since Monte Carlo simulations in the vector formulation
face a severe sign problem.

The fermion bag approach, which is free of a sign
problem and directly yields the coefficients a, will be
discussed in a follow-up paper [49].

B. Effective theory for N;. =2

For two massless irreducible flavors the Thirring model
is equivalent to the massless reducible model with N = 1.
For a vanishing m the nonvanishing p configurations
are p = {(0,0),(1,1),(2,0),(0,2),(2,2)}. The configu-
rations p = (0,2) and p = (2,0) are equivalent under
flavor exchange and the corresponding coefficients are

PHYSICAL REVIEW D 96, 094504 (2017)

TABLE 1. Configurations and weights for N;, =2 in the
massless limit.

I a p Wooo Wan Weo Wz Weo
1 o 0,00 1 0 0 0 0
2 gy (LDl 1 0 0 0
3 an (2,0 2 0 2 0 0
3 a0 3 0 0 2 0
4 appn (2,2 14—1 2 3 3 4

the same. The weights are listed in Table 1. The K-matrix
and its inverse are then given by

1
113
01 0 2
K= ,
0 0 2 3
0O 0 0 4
1 3 1
I =3 =3 %
P 0 1 0 —% (70)
00 3
0 O 0 }1
We obtain with the normalization 6, = 1
1 3 11
aroo =1 —500,2,0 - 561,0,1 + Rdo,o,z’
1
ap20 = 0020 — 560,0,2,
1 3
ajon = 501.0,1 —go"o,o,z,
1
02 = 100,0,2- (71)

The Gross-Neveu-type potential is given by

VerIf\I (X) = 2x2 —In (02.0’0 -+ 4a072.0x2 —+ 8a 1,0,1 x2 -+ 1600’0.2)(?4)

(72)
and the Thirring-type potential is given by

VIR(x) = x* —In(ag00 — agp0X* + 2a191x* + agoox*).
(73)

In the following sections, the observables ¢ are calculated
first in the strong-coupling expansion and after that with
Monte Carlo simulations in the vector formulation of the
Thirring model which for N;. > 2 has no sign problem.
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VI. STRONG-COUPLING EXPANSION

In this section we compute the effective potential in the
strong-coupling expansion. The lattice partition function in
the presence of fermion sources is given by

Zn,q) = /DvDy/Dy‘/e_ZA(’1”2“/7(i§l+ﬁv'—v7ﬂ—ﬁw)
=K ﬁi_ / DvDy/Dy‘/e'Zx(17’2—’/7/1//—1/7'7—711//)’
on i

(74)

where the sum is over all lattice points x and where we
already use dimensionless fields and inverse coupling A.
The kinetic operator is given by

K ii_ = o Lttty (75)
on on

and ﬁxy is a lattice-regularized derivative operator. With a
rescaling of the sources according to y = A'/*; we shift the
explicit 4 dependence to the kinetic operator. Furthermore,
derivatives with respect to the sources y exactly reproduce
the expectation values (52) needed in the effective potential.
After performing the integration over the vector field and
the fermions (details are given in Appendix B), we obtain
our master equation for the strong-coupling expansion:

+N1r_ )

Zly. 7] =
e 7] T2k +2)

P I s

(76)

In the following we are only interested in local fermionic
observables. Therefore, after applying the kinetic operator
K we set the source y at all points x with the exception of x,,
to zero. With the definitions

an 5., 5\"
r 3 Nir —k -
P () = % (ol )

we can write the partition function as

=Y KOT[Y FO@L,,,. o (78)
n X k

ZMX()?ZXQ]

In Appendix B we show, that in the infinite-volume limit
and up to any finite order n in the expansion of the kinetic
operator, the partition function has the form

(avux) ).

PHYSICAL REVIEW D 96, 094504 (2017)

ZF )CO

i F +N1r_ )
Z rok+2) ((Txo¥ )"

k=

Zb{x(]?)(xo -

(79)

where C(4) is an unknown function that cancels in expect-
ation values. Then the solution for the expectation values is

0, 0,10,

60 =22702T]0,, [] &, nzM)u,
a=1 p=0,+1

TG+ Ny —0))
- oo (80)

For the vector interaction we obtain

) =Ny (81)

and it follows that the normalized lattice filling factor
takes its maximal value (k) = 1. In conclusion, within
the strong-coupling expansion we are not able to leave the
strong-coupling phase where strong lattice artifacts domi-
nate due to complete Pauli blocking on every lattice site.

A. Results for the effective potential

With the observables from the strong-coupling expan-
sion we can calculate the effective potential in the lattice
artifact phase [which was discussed around Eq. (3)] in
the infinite-volume limit. The results for various flavor
numbers N;, are shown in Fig. 1. For N;, = 1, the Gross-
Neveu-type potential reads

1
VN (x) = 202 +1n(4—xz) = 2In(20) + 2% (82)

It has a global minimum at x = =41/v/2 and parity
symmetry is spontaneously broken. Its curvature at the
origin diverges.

For odd flavor numbers parity symmetry is always broken
at strong coupling with a minimum of the potential in the
Gross-Neveu-like direction. With increasing N;, the curva-
ture at the origin decreases. Extrapolating the curvature of
the Gross-Neveu-type potential to N; = oo predicts a
broken symmetry in this limit. At strong lattice coupling
there is no critical flavor number and parity symmetry is
always broken for odd N;.. For N;, = 7 we observe that the
potential with n = 1 has a positive curvature while this is not
the case for smaller N, indicating that the breaking of parity
symmetry becomes weaker for larger flavor numbers.
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FIG. 1.

For N;, = 2, the potentials at strong coupling read
GN 2 4 2 15
Vg () =2x" —In(8x* —4x*+ 1) +1In 5
15
= In| —
()
Th 2 4 2 15
Vip(x) =x* —In(x* +2x* +2) +In T

15 X0
—n(2) + X 4 o0,
n<8>+6+ (x®)

32x8
+6x% — Tx + 0(x%),

(83)

The curvature in the Gross-Neveu direction is positive. In
the Thirring-like direction the leading power is x® with a
positive coefficient such that the minimum of the potential
is at x = 0. Hence chiral symmetry is unbroken. For larger
even N; the curvature in all directions is positive. In
conclusion, chiral and parity symmetry is unbroken for any
even N;. and parity symmetry is broken for any odd N;, in
the strong-coupling limit. In the next section we will
investigate with Monte Carlo simulations whether these
results hold outside the lattice artifact phase and in the
continuum limit.

VII. SIMULATION RESULTS

The simulations have been performed with the lattice
action

S(4) = N, (5 D vi(x) —In det(ip)> (84)

X

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

x

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

T

Effective potentials in the strong-coupling expansion for N;, = 1, 2, 3, 4, 5, 7 with different values of n.

for fermions in the irreducible representation of the
Clifford algebra with Yu = Ou Note, that we have rescaled
A — N4 for our simulations. We use the SLAC derivative
for fermions with a Hermitian Dirac operator,

ip =0,(i05HAC + v,), (85)
because it preserves the continuum U (N;;) chiral symmetry
and the discrete parity symmetry exactly even at finite
lattice spacing. Note that Wilson fermions in the irreducible
representation also preserve the continuum chiral symmetry
but break parity. In order to implement antiperiodic
boundary conditions for the fermions in the time direction,
we simulate on lattices with volumes V =L x (L —1)?
with even L. Most of our simulations have been carried out
on lattices with L = 8, 12, 16, and 20 with statistics of 1000
to 10000 configurations. For all flavor numbers we use a
rational HMC algorithm with

(det(pp+)Nir/2NPF)NPF’

where the number of pseudofermions is Npgr = 2N;.. In
order to calculate the expectation values of powers of
the condensate, we use N = 200 x N, stochastic estima-
tors for the fermion propagator on every Monte Carlo
configuration.

The fermion determinant det(if?) is real but not neces-
sarily positive. Therefore we do not have a sign problem
for even flavor numbers. Furthermore, simulations on
smaller lattices, where we can compute the fermion
determinant numerically, showed that we only have a
sign problem for N;, = 1. In this case, the sign problem
can be solved with a fermion-bag-inspired algorithm and

(86)
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FIG. 2. Effective potentials for N;; =4 and 4 = 0.118 along
the different directions labeled by n = 0, 2, and 4 on a lattice
with L = 16.

appropriate resummations of certain weights. More details
on the sign problem will be published in Ref. [49]. For
Ny =2 to N;, = 11 we determined the observables g
in Eq. (53) via Monte Carlo simulations in the vector
formulation and calculated the effective potential with the
formalism described in the previous sections.

The potentials for N;, =4 and corresponding values
of n on a 16 x 15 x 15 lattice are depicted in Fig. 2 for
A =0.118. Statistical errors are always obtained with a
jackknife procedure and are indicated by the width of the
curves. It turns out that for every value of A the minimum of
the potential is always at the origin x = 0. Therefore we
conclude that there is no spontaneous chiral or parity
symmetry breaking for N;. = 4, at least on the lattice with
L =16.

For N;, = 5 the potentials are depicted in Fig. 3 for two
values of A. For 4 = 0.102 the potential has two global
minima in the Gross-Neveu direction at x ~ +0.22 while
for the larger value 4 = 0.118 the minimum of the potential
is at x = 0. This suggests that for N;, = 5 parity is broken at
strong coupling (small 1). On larger lattices this result still
holds true.

To check, that our conclusions are not blurred by lattice
artifacts we investigated the transition from the strong to
weak coupling regime more carefully and determined the
critical coupling where the lattice theory shows a transition
from an artificial lattice phase at strong coupling to a
continuum phase at weak coupling for all simulated N;,. In
the lattice artifact phase and in the infinite-volume limit,
observables should only trivially depend on A. An impor-
tant quantity to investigate here is the first derivative of the
partition function with respect to 4. It is connected to the
normalized fermion filling factor in the dual variables
approach,

(k) e [0,1], (87)

k =
< norm> 2VN1;
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FIG. 3. Effective potentials for N;, =5 at A = 0.102 (upper
panel) and 1 = 0.118 (lower panel) for the different directions
n =1, 3, and 5 on a lattice with L = 16.

where k has been defined in Eq. (33), and therefore is an
interesting quantity to investigate lattice artifacts. The
relation is

A dInZ(2)
N,V da

= C+ (knom) (4). (88)

where the constant C only depends on the flavor number. At
the transition from the lattice-artifact phase to the physical
weak-coupling phase, we expect a jump or a peak in the first
derivative 0, (kyom)- The critical value A* is then obtained as
the position of the jump (or peak) in the infinite-volume
limit. The results for (ko) are shown in Fig. 4 for different
N, and volumes. Below 1%, the expectation value (ko)
depends only weakly on the volume and increases towards
its strong-coupling value (ko) = 1 with increasing lattice
volume. The curves for different volumes intersect close to
the critical A*. In the physical phase (ko) decreases with
increasing lattice volume.

The variation of (k) With 4 for N;; = 9 is depicted in
Fig. 5. It stays finite in the infinite-volume limit and
develops a jump at the critical coupling. We observe that
for larger flavor numbers the curves for L = 16 and L = 20
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FIG. 4. Lattice filling factor (k) for different N;, and lattices
volumes. Larger volumes are indicated by a darker color shade.
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FIG. 5. Derivative of the lattice filling factor (k) for Njy =9
and different lattice volumes.

lie almost on top of each other, indicating that finite-volume
effects are already small on these relatively small lattices.
Even for smaller N, finite-volume effects are small on the
larger lattices. Therefore, we identify the critical coupling
on our largest lattice as the infinite-volume coupling A*.
The relatively small finite-size effects are an additional
advantage of the SLAC derivative that approximates the
continuum derivative for a fixed number of lattice points
much better than the naive central derivative used for
Wilson or staggered fermions [35]. The results for the

PHYSICAL REVIEW D 96, 094504 (2017)

critical 1* for all N, between 1 and 11 are displayed in
Table II. The results for N;, = 1 with a lattice size L = 8
were obtained with a fermion bag algorithm directly
calculating the coefficients ap of the effective potential.
The lower curve in the phase diagram in Fig. 8 shows the
phase boundary, separating the strong-coupling lattice-
artifact regime from the physical weak-coupling regime.
We see that with increasing flavor number the critical value
A* decreases monotonically.

After having localized the transition point between the
artifact and physical phases, we calculate the curvature x of
the effective potential at the origin as a function of 4 and
compare the critical value A., at which the curvature
vanishes, to the critical value A* of the artifact transition.
For even N; we show « for both the Gross-Neveu-like
breaking as well as the Thirring-like breaking. The results
for N, € {2,4} are depicted in Fig. 6, together with the
results from the strong-coupling expansion (solid lines).
The grey bars show the allowed critical values A*. For
N;. = 2 the curvature in the Thirring direction vanishes at
strong coupling and increases at the transition from the
strong-coupling lattice-artifact phase to the weak-coupling
physical phase. The potential in the Gross-Neveu direction
is always positive. Therefore, we conclude that there is no
chiral symmetry breaking for N;, = 2, which corresponds
to one reducible flavor. For N; = 4 the curvature for all
directions is always positive and there is clearly no chiral
symmetry breaking. We also checked this for larger even
numbers of flavors with the same result: chiral symmetry is
always unbroken for even flavor numbers. This implies that
there is no spontaneous symmetry breaking for all reducible
Thirring models. This is one important conclusion of our
work which conflicts with earlier findings but agrees with
very recent simulations [30,41,42].

For odd flavor numbers there is no Thirring-like poten-
tial. Furthermore, we checked that the minimum of the full
potential is either at the origin or in the Gross-Neveu
direction. Therefore we show the curvature in the Gross-
Neveu direction in Fig. 7 for N;, = 3,5,7,9, and 11 on the
16 x 15 lattice. The critical inverse coupling A, is defined
by vanishing curvature and values are shown in Table III.
Again we compare the coupling /. to the critical value of
the strong-coupling transition A*. For N;, = 3, 5, and 7 we
observe that the parity phase transition at 4. lies within the
physical phase, i.e., 4. > 4* and we conclude that parity

TABLEII.  Critical 2* for different flavor numbers and lattice volumes. For larger lattices there are small finite-size
effects. Simulations for N;. = 1 were done with a fermion bag algorithm.

Ny 1 2 3 5 7 9 11
(L =138) 0.35(1)  0.223(6)  0.158(4) 0.122(4)  0.098(2)  0.073(2)  0.058(2)  0.048(2)
(L =12) e 0.214(4)  0.1494) 0.1143)  0.094(3) 0.068(2)  0.054(2)  0.046(2)
A*(L = 16) 0.208(4)  0.146(4) 0.112(3)  0.091(2)  0.067(1)  0.054(1)  0.045(1)
(L =20) o e e e 0.066(1)  0.053(1)  0.045(1)
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FIG. 6. Curvature of the effective potential at the origin for
N;; =2 (top) and N; =4 (bottom) compared to the critical
coupling A* (grey bar). The width of the grey bar indicates the
statistical error of A*.

FIG. 7. Curvature of the effective potential for different odd
flavor numbers N;, on the lattice with L = 16 (darker shade) and
L = 20 (lighter shade). The colored bars and their widths denote
the corresponding transition from the lattice-artifact phase to the
physical phase at A* including the statistical error.
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TABLEIII.  Critical inverse coupling 4. on a lattice with L = 16
and L =20 separating the parity-broken from the parity-
symmetric phase.

N, 1 3 5 7 9 11

A(L =16) 0.39(1) 0.172(2) 0.110(4) 0.077(1) 0.054(2) ---
A(L=20) - -+ 0.0742) 0.051(2) ---

symmetry is spontaneously broken for these flavor num-
bers. For N;, = 11 the curvature is always positive and
therefore parity symmetry is always unbroken. For N, =9
both critical couplings coincide within error bars and it is
still unclear whether parity symmetry is spontaneously
broken or not.

The upper curve in Fig. 8 shows the linear interpolation
between the critical values A, for the Thirring model with
odd flavor numbers. We conclude that the critical flavor
number for parity breaking is N = 9. The minimum x,;,
of the effective potential is an order parameter for the
breaking of parity symmetry and therefore related to a
parity condensate z. For a second-order phase transition, 7
should decrease continuously to zero with increasing
coupling A. In Fig. 9 we show the condensate for different
odd flavor numbers in the physical phase on a lattice with
L = 16. For N;, € {3,5,7} it decreases monotonically to
zero while for N;, = 9 the condensate approaches zero at
vanishing renormalized inverse coupling Ag = A — A*. This
observation is consistent with the scenario proposed in
Refs. [6,14,15] where parity at the critical flavor number is
only broken at vanishing inverse coupling.

The length dimension of the physical inverse coupling is
[Apnys) = —1 and therefore the dimensionless lattice cou-
pling is related to a physical coupling by alyyys = 4. In
the cases where we did not find a second-order phase

0.4 | ‘
0.35 ]
03} ]

Parity symmetric phase
0.25 |
< 02fF ]
0.15 | {ﬁty broken phase |
o \\ B
0051 Artefact phase \
0 1 I | |
! } 5 7 9 11
Nir
FIG. 8. Phase diagram for odd flavor numbers. The lower curve

separates the strong-coupling lattice-artifact phase from the
physical weak-coupling phase and is known for odd and even
flavor numbers. The upper curve for odd flavor numbers shows
the physical phase transition associated with breaking of the
discrete parity symmetry.
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FIG. 9. Parity condensate 7 ~ x.;, for odd flavor numbers in
the physical phase as a function of the renormalized inverse
coupling Ag = 4 — A",

transition, we can perform the continuum limit by iz — 0
for a fixed physical inverse coupling within the physical
phase. For odd N;, < N§{, where we spotted a second-order
phase transition, we build the continuum limit by 1 — 4,
corresponding to a non-Gaussian fixed point. Both limits
coincide for N;, = N7/

VIII. CONCLUSIONS AND DISCUSSION

Our main observation is that the irreducible Thirring
model with an odd number of irreducible flavors behaves
differently compared to the model with an even number of
flavors. For massless fermions the latter class is equivalent
to the class of well-studied reducible models with
N = 2N;.. While for odd flavor numbers we find a critical
flavor number N’ =9 below which the Thirring model
shows spontaneous parity breaking, for even flavor num-
bers, neither parity nor chiral symmetry is broken. This
implies that no spontaneous breaking of chiral symmetry
exists for all reducible models, which are usually discussed
in the literature. Our earlier, more straightforward simu-
lations with SLAC fermions already pointed to this result
[40,41]. Furthermore, our conclusions are also consistent
with recent simulations with domain-wall fermions [29,30].

Regarding the older lattice simulations with staggered
fermions [19-24], including the fermion bag formulation
[27], their results seem not to be valid for the reducible
Thirring model, likely because their lattice formulation
does not have the correct symmetry. To see this more
clearly we should recall that for massive fermions the
reducible models are no longer equivalent to the irreducible
models with N;, = 2N flavors. For reducible massive
models logdet(i) +im) is real and does not contain
any imaginary Chern-Simons-type term as it does for all
irreducible massive models. After the infinite-volume limit
has been taken the zero-mass limits of the reducible models
are not equal to the zero-mass limits of the irreducible
models with N;, = 2N. Thus any lattice simulation (or any
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other regularization) which needs a fine-tuning to reach the
chiral limit may yield erroneous results. It may very well
happen that instead of the massless reducible model one
simulates an irreducible model at small masses. This could
be a partial explanation of why the earlier prediction
8 < Nj7 < 12 is consistent with ours, but only for odd
flavor numbers in the irreducible representation.

Also note that most of the previous analytical studies
focused on csb in the reducible representation assuming
conservation of the reducible parity (9) [6,14,15,43] or did
not distinguish between irreducible and reducible models
[13,46]. For example, the authors of Ref. [13] used DSEs
to investigate mass generation either from parity or chiral
symmetry breaking and found N =~ 12.97/D, where D is
the dimension of the representation of the Clifford algebra.
These earlier results are not consistent with ours and other
ongoing simulations with chiral fermions [29,30], where
csb is not present at all.

Not much emphasis was put on parity breaking for odd
flavor numbers in the irreducible representation, but most
studies found a cancellation of the Chern-Simons terms for
even N;, [6,15,43]. Asdiscussed above, thisis adelicate issue
and the answer depends on the order of limits limy_, ., and
lim,,_,,. We obtained our results for zero masses in a finite
volume, in which case the fermion determinant is real and no
(imaginary) Chern-Simons term can be generated. If one
considers the Thirring model on R, such a term can show up
for even N, [44,45,50]. It also can show up if one uses a
regularization which breaks chiral symmetry explicitly.

To obtain our novel results it was essential to employ
chiral fermions. But with massless chiral fermions it seems
impossible to calculate the chiral condensates directly [40].
The main ingredient to circumvent this difficulty was to use
both the vector and the matrix formulations of the Thirring
models. By introducing auxiliary (local) masses we could
relate expansion coefficients for effective potentials of a
massless model in the matrix formulation to expectation
values of condensates in the vector formulation of the
same model. The actual proof and explicit mapping from
coefficients to condensates are based on a reformulation of

the matrix models in terms of dual spin variables k;’f. They
are introduced to represent the result of the integration over
the fermionic variables.

Our analytic results hold for other types of chiral
fermions. Actually, at present we replace SLAC fermions
by overlap fermions in our simulation code to calculate
the condensates related to the coefficients of effective
potentialls.3 We expect to find results comparable to
SLAC fermions and in particular a similar value for N .

We already mentioned that the irreducible one-flavor
model (which is equivalent to the irreducible one-flavor
Gross-Neveu model) has a severe sign problem. We could
show that in the dual formulation there are subtle

*In collaboration with Rajamani Narayanan.
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cancellations of terms such that the sign problem actually
goes away [49]. It would be interesting to show that a
similar fermion-bag-type algorithm without sign problems
exists for multiflavor Thirring models.
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APPENDIX A: FERMION BAG

Here we present further details concerning the functional
integral in the dual formulation introduced in Sec. IV A. We
summarize relevant results up to the point where simu-
lations with a fermion bag algorithm are possible. For that
purpose it is convenient to use the Lagrangian

=y(id +iT +ig)y + %trTZ +A*, (A1)
with an additional scalar field ¢ in place of the equivalent
Lagrangian (23). In the formulation with a scalar field the
integrals that occur over the Hermitian matrix 7" are more
readily calculated. The equivalence of the two formulations
can be seen after splitting 7 into its trace-free contribution
and a multiple of the identity. Then one observes that the
integration over tr7 in the formulation (23) and over tu7T
and ¢ in the formulation (A1) yield the same results, up to
an overall factor  A"/2. The transition to dual variables is
the same as for the Lagrangian without scalar fields,

with the only difference being that the matrix (HY) in
the interaction term is now

H? =T + § 5 + MY (A2)

and this gives rise to a slightly different local weight and
an additional integration over ¢. Instead of Eq. (38) one

obtains

Wloc k M / <

(Ta/i + ¢5aﬂ + Maﬂ)k"ﬁ
aﬁ

(A3)

up to an irrelevant overall factor \//_1 Since T is
Hermitian, the exponential function factorizes as follows:

PHYSICAL REVIEW D 96, 094504 (2017)

e_%H.TZ _ He_lTa/i‘ZHe_(Taa)Z' (A4)

a<p a

It implies the following factorization of the local weight:

Wi (k. M) = / dpe P W, (. Mwy(ky).  (AS)

where the integral over the off-diagonal matrix elements
produces the M- and ¢-independent factor

wol(ky) = HWL(ka/j’kﬁa)-

a<fp

(A6)

The function W is determined by a complex Gaussian
integral

dzdz

Wik k)= [ —=e Bk () = ko, (A7)
T

leading to the local constraints k% = k”®. Thus we obtain

wo(ky) = [Tk

a<p

(A8)

Recall that the entries of the symmetric matrix (k%) must
obey the local constraints in Eq. (35).

The integral over the Cartan variables leads to a term
similar to Eq. (40) and given by

Nir
w(p. M) —/H(&) e AT H(T‘m b+ my)Pel®),
AW

a

(A9)

with p, (k) = k** € {0, 1,2}. Note that the diagonal matrix
elements 7% are linear functions in the integration vari-
ables #;. The symmetric positive matrix A has matrix
elements

1
and differs slightly from the matrix (41) in the formulation

without a scalar field ¢. The normalization of the gen-
erators H; is such that

ﬁ 0
0 2 -1
wmy=| ° 0 7 (A1)
0
0 -1 2 -1
0 0o -1 2
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The final integration over the variables ¢#; yields the factor

Wy M) =[] (@+ma) T (1+ (b +my)?).

a:p,=1 a:p,=
(A12)
In the limit of m — 0, the ¢ integral (AS) vanishes for

odd Py, and for even P; it is given by the confluent
hypergeometric function,
+P2,1),

(A13)

1+P\, (14+P 3+P,
= r
Wloc (k) W0<kl) ( D) ) U( D) , )

where, as in the main body of the text, the number P, with
k € {0, 1,2} counts the number of indices p, with p, = k.
In this form, the local weights are suitable for simulations
with a fermion bag algorithm. Unfortunately, this formu-
lation does not solve the sign problem that was introduced
by the Fierz transformation.

APPENDIX B: STRONG-COUPLING EXPANSION

The partition function in the vector formulation of the
Thirring model with fermionic sources is given by Eq. (74).
Here we perform the integration over the vector field v,
and the fermions. After rescaling the vector field according
to v, = \/Ev” (and afterwards dropping the tilde) the
integration over the fermions yields

6 0
Zn, il = A (’%/2+Nl,)VK
.71 = (4)~ 50’57

y / Du(det f,)Vre 2o Do VAidkn (Bl

The integral over the vector field factorizes and we can
expand in powers of the fermionic bilinear in the exponent,

6 o
Zn, il = 2 (’5/2+N,,)VK
[.71) = (4)~ 50’ 57

y / Do NaInd) VIS Ruons/ 02

- NV
— k|22 }1:[21,( ). (B2)
where [ is the three-dimensional one-site integral
i) = gy [ e 0 . (83)
(2k)!

Here, we already used that only even powers of # contribute
to the integrals over v,,. In spherical coordinates v = r?, the
integration over the radial direction is simple and we obtain

PHYSICAL REVIEW D 96, 094504 (2017)
k

107) =y [ e R
k
_A—F(z—(;]lj)li k) Azd%(ﬁﬁn)z" (B4)

The remaining integral can be calculated from the gen-
erating function

smh sinh ||

z2(J) I/dZ@eZM“ =4 jeR,  (B5)
by taking derivatives. This way we find
2a (5 oA \2k = 9 \* .
/ d*o(qy,md,) ™ = ('77”'78_') z(7)lj=0
Ju
= T ()" (B6)
T2k 1
Hence, the integral over the vector field yields
_ ikF( + NII' - k) _
L(n.7) = 2n——=———((r,m)*)*. (BT

T(2k +2)

such that the final expression for the partition function
after integration over vector and fermion fields is given
by Eq. (76).

In the main body of the paper, just after Eq. (78), we
remark that in the infinite-volume limit the partition
function only has a trivial dependence on the inverse
coupling A and that local expectation values do not depend
on A at all. In order to show this, we write the nth order in
the corresponding expansion as a sum over the configu-
rations k = {k,|x # xo}, where k, is the order of the
function F(*)(x). We obtain for the partition function

KO re
=K T

XFXg

n
Z b(xo v)(xo - )(r;exo =0

ZF

|Xx#v0 =0
(B3)

where a particular point x = x, was singled out, because
we later differentiate the partition function with respect to
the source at this point. The operator K") contains (1, n)
derivatives with respect to (y,7) at all lattice points while
the function F(*)(x) contains (2k,2k) fermion sources
(r.j) at the lattice point x. Symbolically, we introduce
the operator D(-9), that collects (i,i) derivatives together
with the 2i sums over the lattice points. This allows us to
write the partition function as
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n

VAL = Z ADB) (B9)
i=1
with the functions A and B defined as
A6 — (Du,wz I] F* (x)> ,
k X#Xxo x=0
(B10)

Bl — D(n—iﬂ—i)ZF(kxo)(xo)_
kg

To investigate the volume dependence of the A functions
we act with 7 derivatives on the F functions and afterwards
set the sources to zero. Only terms with 2> k, = i yield
a nonvanishing contribution to the partition function.
Furthermore, we need more than one lattice point, because
the massless inverse fermion propagator vanishes for x =y
(this is true for SLAC fermions on lattices with even L).
Therefore, the number 7, of lattice points with sources in

PHYSICAL REVIEW D 96, 094504 (2017)

the product of the F function is n, =2, ...,i/2. For the
first lattice point, we have V — 1 possibilities, for the
second lattice point we have V — 2, etc. Thus the volume

dependence of Al is

(B11)

i/2 i/2
. V-1 Vi
(i) ~
A Za"*'( n )V;iZaan!.
n,=2 X n,=2 X

We conclude that the dominant contribution to the partition
function in the infinite-volume limit and for a fixed order of
the expansion is

20y ) = AWBY ~ C(2)Y FW(xp).  (B12)
k

This leads to the form of the partition function given
in Eq. (79).
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