
Lattice QCD exploration of parton pseudo-distribution functions

Kostas Orginos,1,2 Anatoly Radyushkin,3,2 Joseph Karpie,1,2 and Savvas Zafeiropoulos1,2
1Department of Physics, The College of William & Mary, Williamsburg, Virginia 23187, USA

2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
3Physics Department, Old Dominion University, Norfolk, Virginia 23529, USA

(Received 11 July 2017; published 8 November 2017)

We demonstrate a new method of extracting parton distributions from lattice calculations. The starting
idea is to treat the generic equal-time matrix element MðPz3; z23Þ as a function of the Ioffe time ν ¼ Pz3
and the distance z3. The next step is to divide MðPz3; z23Þ by the rest-frame density Mð0; z23Þ. Our lattice
calculation shows a linear exponential z3-dependence in the rest-frame function, expected from the Zðz23Þ
factor generated by the gauge link. Still, we observe that the ratio MðPz3; z23Þ=Mð0; z23Þ has a Gaussian-
type behavior with respect to z3 for 6 values of P used in the calculation. This means that Zðz23Þ factor was
canceled in the ratio. When plotted as a function of ν and z3, the data are very close to z3-independent
functions. This phenomenon corresponds to factorization of the x- and k⊥-dependence for the TMD
F ðx; k2⊥Þ. For small z3 ≤ 4a, the residual z3-dependence is explained by perturbative evolution, with
αs=π ¼ 0.1.

DOI: 10.1103/PhysRevD.96.094503

I. INTRODUCTION

Extraction of parton distribution functions (PDFs) fðxÞ
[1] on the lattice is a challenging problem attracting a lot of
attention. The usual method to approach PDFs on the lattice
is to calculate their moments. However, recently, X. Ji [2]
suggested a method allowing a calculation of PDFs as
functions of x.
Since the PDFs are related to matrix elements of bilocal

operators on the light cone z2 ¼ 0, this was a stumbling
block preventing a direct calculation of these functions in
the lattice gauge theory formulated in Euclidean space.
To overcome this difficulty, X. Ji proposes to use purely

spacelike separations z ¼ ð0; 0; 0; z3Þ. The functions in this
case are quasi-PDFs Qðy; p3Þ describing the distribution of
the p3 hadron momentum component. The key point is
that quasi-PDFs Qðy; p3Þ tend to usual PDFs fðyÞ in the
p3 → ∞ limit. The same method can be applied to
distribution amplitudes (DAs). The results of quasi-PDF
calculations on the lattice were reported in Refs. [3–5] and
of the pion quasi-DA in Ref. [6].
Recent papers [7,8] by one of the authors (A.R.) contain

an investigation of the nonperturbative p3-evolution of
quasi-PDFs and quasi-DAs. This study is based on the
formalism of virtuality distribution functions [9,10]. The
approach developed in Refs. [7,8] has established a con-
nection between the quasi-PDFs and the “straight-link”
transverse momentum dependent distributions (TMDs)
F ðx; k2⊥Þ. Starting from simple models for TMDs, models
were built for the nonperturbative evolution of quasi-PDFs.
The derived curves agree qualitatively with the patterns of
p3-evolution produced by lattice simulations.
The structure of quasi-PDFs was further studied in

Ref. [11]. It was shown that, when a hadron is moving,

the parton k3 momentummay be treated as coming from two
sources. The hadron’s motion as a whole yields the xp3 part,
which is governed by the dependence of the TMD F ðx; κ2Þ
on its first argument namely x. The residual part k3 − xp3 is
controlled by the way that the TMD depends on its second
argument, κ2, which dictates the shape of the primordial
rest-frame momentum distribution. Quasi-PDFs due to their
convolution nature possess a rather involved pattern of their
p3-evolution, making mandatory relatively big values
p3 ≳ 3 GeV in order to safely approach the PDF limit.
To accelerate the convergence, a different approach for

the PDF extraction from lattice calculations was proposed
[11]. It is based on the concept of pseudo-PDFs Pðx; z23Þ.
They generalize the light-cone PDFs fðxÞ onto spacelike
intervals like z ¼ ð0; 0; 0; z3Þ. The pseudo-PDFs are
Fourier transforms of the Ioffe-time [12] distributions
[13] Mðν; z23Þ which are generically given by matrix
elements hpjϕð0ÞϕðzÞjpi written as functions of ν ¼
p3z3 and z23. In contrast to quasi-PDFs, the pseudo-PDFs
have the “canonical” −1 ≤ x ≤ 1 support for all values of
z23. In the limit z3 → 0 they tend to PDFs, showing, in this
limit, a typical perturbative evolution with the scale 1=z3
being the parameter of evolution.
As discussed in [7,8], the fast nonperturbative decrease

with z33 of the pseudo-PDFs Pðx; z23Þ or the Ioffe-time
distribution Mðν; z23Þ, is responsible for delaying the
approach of quasi-PDFs Qðy; p3Þ to the PDF fðyÞ. An
important observation is that one can strongly reduce the
z23-dependence by simply dividing the Ioffe-time distribu-
tion Mðν; z23Þ by an appropriate factor Dðz23Þ satisfying
Dð0Þ ¼ 1 and having the z23-dependence close (on average)
to that of Mðν; z23Þ. The absence of the ν-dependence in
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this factor and its Dð0Þ ¼ 1 normalization guarantees that
the ratio Mðν; z23Þ=Dðz23Þ taken in the z23 → 0 limit will
produce the same PDF as the original function Mðν; z23Þ
taken in the same limit.
The choice for Dðz23Þ advocated in Ref. [11], is to take it

to be equal to the rest-frame function Mð0; z23Þ. An
additional advantage of this choice is that both Mðν; z23Þ
and Mð0; z23Þ contain the same multiplicative factor Zðz23Þ
generated by the renormalization of the gauge link. In the
ratio, it should cancel out.
Our goal in the present work is an exploratory lattice

calculation of the u-d proton PDF using the strategy
outlined in Ref. [11]. To make this article self-contained,
we reproduce in Sec. II and Sec. III the main ideas of
Ref. [11]. The description of the method used for the lattice
extraction of the reduced Ioffe-time distribution is given in
Sec. IV. The data analysis and interpretation is discussed in
Sec. V. The summary of the paper is given in Sec. VI.

II. PARTON DISTRIBUTIONS

A. Generic matrix element and parton distributions

The basic object for defining parton distributions is a
matrix element of a bilocal operator that (skipping ines-
sential details of its spin structure) may be written generi-
cally like hpjϕð0ÞϕðzÞjpi. Due to invariance under Lorentz
transformations, it is given by a function of two scalars,
ðpzÞ (which will be denoted by −ν) and z2 (or −z2, in order
to have a positive value for spacelike z)

hpjϕð0ÞϕðzÞjpi ¼ Mð−ðpzÞ;−z2Þ ¼ Mðν;−z2Þ: ð1Þ

One can demonstrate [7,14] that, for all relevant Feynman
diagrams, its Fourier transform Pðx;−z2Þ with respect to
ðpzÞ has −1 ≤ x ≤ 1 as support, i.e.,

Mð−ðpzÞ;−z2Þ ¼
Z

1

−1
dxe−ixðpzÞPðx;−z2Þ: ð2Þ

Eq. (2) serves as a covariant definition of x. In this definition
of x, one does not need to assume that p2 ¼ 0 or z2 ¼ 0.
Choosing a lightlike z, e.g., having solely the light-front

component z−, we parametrize the matrix element by fðxÞ,
the twist-2 parton distribution

Mð−pþz−; 0Þ ¼
Z

1

−1
dxfðxÞe−ixpþz− : ð3Þ

One can rewrite this definition as

Mðν; 0Þ ¼
Z

1

−1
dxfðxÞeixν: ð4Þ

The inverse relation is given by

fðxÞ ¼ 1

2π

Z
∞

−∞
dνe−ixνMðν; 0Þ ¼ Pðx; 0Þ: ð5Þ

Due to the fact that fðxÞ ¼ Pðx; 0Þ, the function
Pðx;−z2Þ provides a generalization of the concept of
PDFs onto nonlightlike intervals z2 (in principle, z2 may
be even timelike). Following [11], we will be referring to it
as the pseudo-PDF. The variable ðpzÞ ¼ −ν is called often
the Ioffe time [12], and consequently Mðν;−z2Þ is the
Ioffe-time distribution [13].
In renormalizable theories (including QCD), the function

Mðν;−z2Þ has logarithmic ∼ lnð−z2Þ singularities which
generate the perturbative evolution of parton densities. In
the approach based on the operator product expansion
(OPE), the standard procedure is to remove these singu-
larities with the help of some prescription. The most
popular of them is the MS scheme based on dimensional
regularization. Consequently the resulting PDFs have a
dependence on the renormalization scale μ, and therefore
one should write the PDFs as fðx; μ2Þ.
At small spacelike z2 and at the leading logarithm level,

the pseudo-PDFs are related to the MS distributions by a
simple rescaling of their second arguments. In particular,
when z2 ¼ −z23, one has

Pðx; z23Þ ¼ fðx; ð2e−γE=z3Þ2Þ; ð6Þ

where γE is the Euler’s constant. The rescaling factor
between μ and 1=z3 is very close to 1, since 2e−γE ¼ 1.12.

B. Transverse momentum dependent
and quasidistributions

Treating the target momentum p as longitudinal,
p ¼ ðE; 0⊥; PÞ, one can introduce transverse degrees of
freedom. In particular, taking z that has z− and z⊥ ¼
fz1; z2g components only, one defines the TMD F ðx; k2⊥Þ

Pðx; z2⊥Þ ¼
Z

d2k⊥eiðk⊥z⊥ÞF ðx; k2⊥Þ: ð7Þ

In this context, the pseudo-PDFs Pðx; z2⊥Þ actually coincide
with the impact parameter distributions, a familiar object
used in many TMD studies.
Since one cannot arrange lightlike separations on the

lattice, it was proposed [2] to consider equal-time spacelike
separations z ¼ ð0; 0; 0; z3Þ (or, for brevity, z ¼ z3). Then,
in the p ¼ ðE; 0⊥; PÞ frame, one can introduce the quasi-
PDF Qðy; PÞ through a parametrization

hpjϕð0Þϕðz3Þjpi ¼
Z

∞

−∞
dyQðy; PÞeiyPz3 : ð8Þ

According to this definition, the quasi-PDF Qðy; PÞ
describes the probability that the parton carries the fraction
y of the parent hadron’s third momentum component P.
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The variables ν and−z2 in this case are given by Pz3 and z23,
so we have

Mðν; z23Þ ¼
Z

∞

−∞
dyQðy; PÞeiyν: ð9Þ

Since z23 ¼ ν2=P2, the inverse Fourier transformation may
be written as

Qðy; PÞ ¼ 1

2π

Z
∞

−∞
dνe−iyνMðν; ν2=P2Þ: ð10Þ

It shows that Qðy; PÞ tends to fðyÞ in the P → ∞ limit,
since formally Mðν; ν2=P2Þ → Mðν; 0Þ when P → ∞.
As established in Ref. [7], quasi-PDFs may be written in

terms of TMDs

Qðy;PÞ=P¼
Z

∞

−∞
dk1

Z
1

−1
dxF ðx;k21þðy− xÞ2P2Þ: ð11Þ

C. Quantum chromodynamics (QCD) case

In case of the nonsinglet parton densities of QCD, one is
considering matrix elements

Mαðz; pÞ≡ hpjψ̄ð0ÞγαÊð0; z;AÞψðzÞjpi; ð12Þ

where Êð0; z;AÞ is the standard 0 → z straight-line gauge
link in the quark (fundamental) representation. These
matrix elements can be decomposed into pα and zα parts

Mαðz; pÞ ¼ 2pαMpð−ðzpÞ;−z2Þ þ zαMzð−ðzpÞ;−z2Þ:
ð13Þ

Only the Mpð−ðzpÞ;−z2Þ part gives the twist-2 distribu-
tion when z2 → 0.
Introducing TMDs, one takes z ¼ ðz−; z⊥Þ and the

α ¼ þ component of Mα. Hence, the zα-part drops out.
After that, Mpðν; z2⊥Þ is the only surviving part of
Mαðz; pÞ, and in the remaining discussion we use the
short hand notation of M≡Mp.
In the case of quasidistributions Qðy; PÞ, we can avoid

the zα contamination by considering the time component of
Mαðz ¼ z3; pÞ and defining

M0ðz3; pÞ ¼ 2p0

Z
1

−1
dyQðy; PÞeiyPz3 : ð14Þ

D. Factorized models

The structure of the quasi-PDFs may be illustrated on the
example of the simplest models in which the nonperturba-
tive (or soft) part of the TMDs F ðx; k2⊥Þ is represented by a
product

F softðx; k2⊥Þ ¼ fðxÞKðk2⊥Þ ð15Þ

of the collinear parton distribution fðxÞ and a k2⊥-dependent
factor Kðk2⊥Þ, usually modeled by a Gaussian. As we shall
see, the quasi-PDFs have a rather complicated structure,
even when they are built from these simple factorized
models.
For the Ioffe-time distribution Mðν;−z2Þ, this Ansatz

corresponds to the factorization assumption

Msoftðν; z23Þ ¼ Msoftðν; 0ÞMð0; z23Þ ð16Þ

for its soft part. Still, even if the soft TMD factorizes, the
soft part of the quasi-PDF has the convolution structure of
Eq. (11). Taking, for example, a Gaussian form

KGðk2⊥Þ ¼
1

πΛ2
e−k

2⊥=Λ2

; ð17Þ

one gets the following model for the quasi-PDF

QGðy; PÞ ¼
P

Λ
ffiffiffi
π

p
Z

1

−1
dxfðxÞe−ðx−yÞ2P2=Λ2

: ð18Þ

Choosing for fðxÞ a simple toy PDF resembling the nucleon
valence densities fðxÞ ¼ 4ð1 − xÞ3θð0 ≤ x ≤ 1Þ, one gets
the curves shown in Fig. 1. For largeP, the quasi-PDF clearly
tends to the fðyÞ PDF form. However, only for P ∼ 10Λ one
gets a quasi-PDF that is rather close to the P → ∞ limiting
shape. Still, since Λ ∼ hk⊥i, one translates the P ∼ 10Λ
estimate into P ∼ 3 GeV, which is rather large.

III. PSEUDO-PDFS

The involved structure of a quasi-PDF Qðy; PÞ can be
attributed to the formal fact that it is given by the Fourier
ν-transform of the function Mðν; ν2=P2Þ, in which ν
appears both in the first and second argument of the
Ioffe-time distribution. One should take P-values that are

FIG. 1. Evolution of quasi-PDF Qðy; PÞ in the factorized
Gaussian model for P=Λ ¼ 1, 5, 10, 50.
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sufficiently large to neglect the ν-dependence coming from
the second argument.
Another way [11] is to try to eliminate the z23-dependence

induced by Mðν; z23Þ. The main idea is based on the
observation that if one takes the ν-Fourier transform of the
modified function Mðν; z23Þ=Dðz23Þ, the z3 → 0 limit will
give the same PDF as the original Ioffe-time distribution,
provided thatDðz23Þ is a function of z23 only (but not of ν) and
is equal to 1 for z23 ¼ 0.
Thus, the strategy is to find a function Dðz23Þ whose

z23-dependence would compensate, as much as possible, the
z23-dependenceofMðν; z23Þ. The next step is to fit the residual
polynomial z23-dependence by polynomials of z23 (they may
be different for different values of ν), and in this way
extrapolate the data to z23 ¼ 0 limit. The Fourier transform
of the resulting function would correspond to the same
PDF as the z23 limit of the original Ioffe distribution
Mðν; z23Þ.
In the most lucky situation, the ratio Mðν; z23Þ=Dðz23Þ

would have no polynomial z23-dependence (or just a very
mild one). In particular, when Mðν; z23Þ factorizes, i.e.,
Mðν; z23Þ ¼ Mðν; 0ÞMð0; z23Þ, one should take Dðz23Þ ¼
Mð0; z23Þ. In this case, the reduced function

Mðν; z23Þ≡Mðν; z23Þ
Mð0; z23Þ

ð19Þ

is equal to Mðν; 0Þ, and the task of obtaining the z3 → 0
limit is accomplished.
While there is no “first principle” reason for such a

factorization, one may expect that the functions Mðν; z23Þ
for different ν have more or less similar dependence on z3,
basically reflecting the finite size of the nucleon.
As we mentioned already, the soft part of Mðν; z23Þ

factorizes if the soft part of TMD F ðx; k2⊥Þ factorizes. That
this happens, is a standard assumption of the TMD
practitioners (see, e.g., Ref. [15]). So, there are good
chances that this part of the z23-dependence of Mðν; z23Þ
will be canceled or strongly reduced by the rest-frame
function Mð0; z23Þ.
On the lattice, there is another (and troublesome, see,

e.g., Ref. [16]) source of z3-dependence: the Zðz23Þ factor
generated by the renormalization of the gauge link
Êð0; z3;AÞ. Fortunately, this problematic factor Zðz23Þ does
not depend on ν and is the same for the numerator and
denominator of the ratio Mðν; z23Þ. This provides another
motivation for using Mð0; z23Þ as a factor Dðz23Þ.
Thus, the proposal is to perform a lattice study of the

reduced Ioffe-time functionMðν; z23Þ. Even if itwould have a
residual polynomial z23-dependence, it should bemuch easier
to extrapolate this dependence to z3 ¼ 0, than the z3-
dependence of the original Ioffe-time distributionMðν; z23Þ.

Furthermore, if one observes that the ratioMðν; z23Þ does
not have z3-dependence, one should conclude thatMðν; z23Þ
factorizes. In fact, such a factorization has been already
observed several years ago in the pioneering study [17] of the
transverse momentum distributions in lattice QCD.
Still, there is an unavoidable source of factorization

breaking. When z3 is small, Mðν; z23Þ has logarithmic ln z23
singularities generating the perturbative evolution of PDFs.
As we discussed, 1=z3 is analogous then to the renorm-
alization parameter μ of the scale-dependent PDFs fðx; μ2Þ
within the standard OPE approach.
More specifically, for small values of z3, the pseudo-PDF

Pðx; z23Þ satisfies a leading-order evolution equation with
respect to 1=z3 that is identical to the evolution equation
for fðx; μ2Þ with respect to μ. The evolution equation for
the reduced Ioffe-time distribution Mðν; z23Þ can also be
written [11]

d
d ln z23

Mðν; z23Þ ¼ −
αs
2π

CF

Z
1

0

duBðuÞMðuν; z23Þ; ð20Þ

where CF ¼ 4=3, and the leading-order evolution kernel
BðuÞ for the nonsinglet quark case is given [13] by

BðuÞ ¼
�
1þ u2

1 − u

�
þ
; ð21Þ

where ½…�þ denotes the “plus” prescription, i.e.,

Z
1

0

du

�
1þ u2

1 − u

�
þ
MðuνÞ

¼
Z

1

0

du
1þ u2

1 − u
½MðνÞ −MðuνÞ�: ð22Þ

Note that being a Fourier transform,

MðνÞ ¼
Z

1

−1
dxfðxÞeixν; ð23Þ

the Ioffe-time distribution has real and imaginary parts even
if the function fðxÞ is real (which is the case with parton
distributions). In particular,

ReMðνÞ ¼
Z

1

−1
dxfðxÞ cosðxνÞ; ð24Þ

and

ImMðνÞ ¼
Z

1

−1
dxfðxÞ sinðxνÞ: ð25Þ

In Fig. 2, we show the function ReMðνÞ for a model
PDF
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qðxÞ ¼ 315

32

ffiffiffi
x

p ð1 − xÞ3θð0 ≤ x ≤ 1Þ: ð26Þ

Its integral is normalized to 1, and it is nonzero for positive
x only, which corresponds to the absence of antiquarks. As
we shall see, this particular form appears in the description
of actual lattice data. In Fig. 3, we show the function
ImMðνÞ for the same model PDF.
We also show in these figures the convolution integrals

governing the evolution, namely −B ⊗ ReMðνÞ and
B ⊗ ImMðνÞ. The reader can notice that B ⊗ MðνÞ is
zero for ν ¼ 0, resulting from the vector current conserva-
tion. As a consequence, the perturbative evolution leaves
the rest-frame density Mð0; z23Þ (which is always real)
unaffected. In other words, the ln z23 terms are present only
in the numerator Mðν; z23Þ of the Mðν; z23Þ ratio, but not in
its Mð0; z23Þ denominator.
Note also that the evolution of the real part always leads

to a decrease of ReMðν; z23Þ when z23 increases. For the
imaginary part, the evolution pattern is more complicated.
Namely, below ν ∼ 5.5, the function ImMðν; z23Þ increases
when z23 increases. Only above ν ∼ 5.5, the evolution leads
to a decrease of ImMðuν; z23Þ with z23, and the evolution
pattern becomes similar to that of the real part.

IV. NUMERICAL INVESTIGATION

In order to check numerically the ideas discussed above
we performed lattice QCD calculations in the quenched
approximation at β ¼ 6.0 on 323 × 64 lattices (lattice
spacing a ¼ 0.093 fm). We used the nonperturbatively
tuned clover fermion action with the clover coefficients
computed by the Alpha collaboration [18].
We used a total of 500 configurations separated by 1000

updates, each one consisting of four over-relaxation and
one heat bath sweeps. On each configuration we computed
correlation functions from six randomly selected point
sources. The pion and nucleon masses in this setup were
determined to be 601(1) MeV and 1411(4) MeV, respec-
tively. Conversion to physical energy units was performed
using the Alpha collaboration scale setting for quenched
QCD [19].
Our nucleon states were boosted up to a total momentum

of 2.5 GeV (corresponding to the 6th lattice momentum).
Inside this momentum range, the continuum dispersion
relation for the nucleon was satisfied within the errors of
the calculation, indicating small lattice artifacts ofOðaPÞ. In
Fig. 4we plot the nucleon energy as a function ofmomentum
along with the continuum dispersion relation corresponding
to our lattice nucleon zero momentum energy.
The computation of the matrix elements was performed

using the methodology described in [20] with an operator
insertion given by Eq. (12). Taking the time component of
the current we can isolate Mpð−z · p;−z2Þ, which, as
discussed above, is directly related to PDFs.
Following [20] we need to compute two types of corre-

lation functions. The first is a regular nucleon two point
function given by

CPðtÞ ¼ hN PðtÞN̄ Pð0Þi; ð27Þ

FIG. 3. Imaginary part of model Ioffe-time distribution MðνÞ
and the function B ⊗ ImM that governs its evolution.

FIG. 4. Nucleon dispersion relation. Energies and momenta are
in lattice units. The solid line is the continuum dispersion relation
(not a fit) while the error band is an indication of the statistical
error of the lattice nucleon energies.

FIG. 2. Real part of model distribution MðνÞ and the function
−B ⊗ ReM that governs its evolution (the minus sign here is for
convenience of placing two curves on one figure).
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where N PðtÞ is a helicity averaged, nonrelativistic
nucleon interpolating field with momentum p. The quark
fields in N pðtÞ are smeared with a gauge invariant
Gaussian smearing. This choice of an interpolation field
is known to couple well to the nucleon ground state (see
discussion in [20]). The quark smearing width was
optimized to give good overlap with the nucleon ground
state within the range of momenta in our calculation. The
second correlator is given by

CO0ðzÞ
P ðtÞ ¼

X
τ

hN PðtÞO0ðz; τÞN̄ Pð0Þi; ð28Þ

where

O0ðz; tÞ ¼ ψ̄ð0; tÞγ0τ3Êð0; z;AÞψðz; tÞ; ð29Þ
with τ3 being the flavor Pauli matrix. The proton
momentum and the displacement of the quark fields were
both taken along the ẑ axis (z⃗ ¼ z3ẑ and p⃗ ¼ Pẑ). We
define the effective matrix element as

Meffðz3P; z23; tÞ ¼
CO0ðzÞ
P ðtþ 1Þ
CPðtþ 1Þ −

CO0ðzÞ
P ðtÞ
CPðtÞ

: ð30Þ

As it was shown in [20], our matrix element J can then
be extracted at the large Euclidean time separation as

J ðz3P; z23Þ
2E

¼ lim
t→∞

Meffðz3P; z23; tÞ; ð31Þ

where E is the energy of the nucleon. This method of
extracting the matrix element, contrary to the traditional
sequential source approach, allows for the computation of
the matrix element using all source-sink separations for
the nucleon creation and annihilation operators.
The resulting effective matrix element has contamina-

tions from excited states that scale as e−tΔE, where t is
the Euclidean time separation of the nucleon creation and
annihilation operators, and ΔE is the mass gap to the first
excited state of the nucleon. Furthermore, it allows for the
computation of all nucleon matrix elements that corre-
spond to different nucleon momentum spin polari-
zation and flavor structure without additional computa-
tional cost.
As a result, the total computational cost of this approach

is less than the equivalent cost of performing the calcu-
lations with the sequential source method, especially
because in our approach we put emphasis on having as
many nucleon momentum states as possible. This approach
has recently been successfully used for both single and
multinucleon matrix element calculations [21–23].
In order to normalize our lattice matrix elements we note

that, for z3 ¼ 0, the matrix element Mðz3P; z23Þ corre-
sponds to a local vector (iso-vector) current, and therefore

should be equal to 1. However, on the lattice this is not the
case due to lattice artifacts. Therefore we introduce a
renormalization constant

ZP ¼ 1

J ðz3P; z23Þjz3¼0

: ð32Þ

The factor ZP has to be independent from P. However,
again due to lattice artifacts or potential fitting systematics,
this is not the case. For this reason, we renormalize the
matrix element for each momentum with its own ZP factor
taking this way advantage of maximal statistical correla-
tions to reduce statistical errors, as well as the cancellation
of lattice artifacts in the ratio. Therefore, our matrix element
is extracted using the ratio

Mðz3P; z23Þ ¼ lim
t→∞

Meffðz3P; z23; tÞ
Meffðz3P; z23; tÞjz3¼0

: ð33Þ

In order to determine the reduced matrix element Mðν; z23Þ
we introduce the double ratio

FIG. 5. Typical fits used to extract the reduced matrix element.
The upper panel corresponds to p ¼ 2π=L · 2 and z ¼ 4 and the
lower panel to p ¼ 2π=L · 3 and z ¼ 8, where momentum and
position are in lattice units.
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Mðν; z23Þ ¼ lim
t→∞

Meffðz3P; z23; tÞ
Meffðz3P; z23; tÞjz3¼0

×
Meffðz3P; z23; tÞjP¼0;z3¼0

Meffðz3P; z23; tÞjP¼0

; ð34Þ

which takes care of the renormalization of the vector
current according to Eq. (32). In practice, the infinite t
limit is obtained with a fit to a constant for a suitable choice
of a fitting range. In all cases we studied, the average χ2 per
degree of freedom wasOð1Þ. Typical fits used to extract the
reduced matrix element are presented in Fig. 5. All fits are
performed with the full covariance matrix and the error bars
are determined with the jackknife method.
We note here that the reduced matrix element defined in

Eq. (34) has a well-defined continuum limit and no addi-
tional renormalization is required. This continuum limit is
obtained at fixed ν and z2 as well as at fixed quark mass.
In this calculation we used momenta up to 6 · 2π=L

along the z-axis. This corresponds to a physical momentum
of about 2.5 GeV.

V. DISCUSSION OF RESULTS

A. Rest-frame density and Z factor

An important object is the rest-frame densityMð0; z23Þ. It
is produced by data at P ¼ 0. The results for its imaginary
part are compatible with zero, as required. The real part,
shown in Fig. 6, is a symmetric function of z3, and has a
clearly visible linear component in its falloff with jz3j for
small and middle values of jz3j. In fact, a linear exponential
factor Zðz23Þ ∼ e−cjz3j=a is expected as a manifestation of
the nonperturbative effects generated by the straight-line
gauge link.

B. Reduced Ioffe-time distributions

In Fig. 7, we plot the results for the real part of the
ratio MðPz3; z23Þ=Mð0; z23Þ as a function of z3 taken at six
fixed values of the momentum P. One can see that all the

curves have a Gaussian-like shape. Thus, the Zðz23Þ link
renormalization factor has been canceled in the ratio, as
expected.
Furthermore, the curves look similar to each other,

differing only by a decreasing width with P. In Fig. 8,
we plot the same data, but change the axis to ν ¼ Pz3. As
one can see, now the data practically fall on the same curve.
For the imaginary part, the situation is similar.
This phenomenon corresponds to factorization of the

x- and k⊥-dependence for the soft TMD F ðx; k2⊥Þ, as
discussed in previous sections.

C. Quark-antiquark decomposition

The real part of the Ioffe-time distribution is obtained
from the cosine Fourier transform

MRðνÞ≡
Z

1

0

dx cosðνxÞqvðxÞ ð35Þ

of the function qvðxÞ given by the difference qvðxÞ ¼
qðxÞ − q̄ðxÞ of quark and antiquark distributions. In our

FIG. 6. Real part of the rest-frame density Mð0; z23Þ

FIG. 7. Real part of the reduced distributionMðPz3; z23Þ plotted
as a function of z3. Here, P ¼ 2πp=L.

FIG. 8. Real part of Mðν; z23Þ plotted as a function of ν ¼ Pz3
and compared to the curve given by Eqs. (35) and (36).
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case, q is u − d and q̄ ¼ ū − d̄. The x-integral of u − ū
equals to the number of u-quarks in the proton, which is 2,
while the x-integral of d − d̄ equals 1. Thus, the x-integral
of qvðxÞ should be equal to 1.
We found that our data for the real part are well described

if one chooses the function

qvðxÞ ¼
315

32

ffiffiffi
x

p ð1 − xÞ3; ð36Þ

whose x-integral is normalized to 1. To get it, we formed
cosine Fourier transforms Mðν; a; bÞ of the normalized
xað1 − xÞb-type functions and found the parameters a, b by
fitting our data. The comparison of the data with the curve
based on Eqs. (35) and (36) is shown in Fig. 8.
While all the data points were used in the fit, the latter is

clearly dominated by the points with the smaller values of
ReMðν; z23Þ. For ν < 10, the data points lying above the
curve, correspond to values of z3 ¼ 3a to 5a. As we will see
later, they reflect the perturbative evolution: ReMðν; z3Þ
increaseswhen z3 decreases. In this context, the overall curve
(36) corresponds to PDF “at low normalization point”, i.e., in
the region, where the perturbative evolution stops.
In general, it is more appropriate to fit ReMðν; z23Þ as a

function of two variables, ν and z3, even though the
dependence on z3 is rather weak and noticeable just for
a few points. Since we made a fit of ReMðν; z3Þ as a
function of just one variable ν, there are points that visibly
deviate from the curve, but we do not think that it makes
sense to translate the evolution z3-dependence of small-z3
points into an error band to our curve in Fig. 8. In the
Sec. V D, we evolve the data points to a common reference
scale z0 ¼ 2a and show the error band for the results
obtained in this way.
We realize that our lattice setup is rather crude (quenched

approximation, very large pion mass), and for this reason
we do not attempt to perform a thorough comparison of our
results with experimental data. Still, we think that some
kind of comparison is rather useful as an illustration.
Thus, we compare our qvðxÞ with three global fits for the

difference uvðxÞ − dvðxÞ of the valence distributions, see
Fig. 9. These global fits curves correspond to μ ¼ 1 GeV
scale, while our “low normalization point” curve corre-
sponds to μ ≲ 0.3 GeV. Still, one can see that our curve is
not very far from the Neural Networks PDF (NNPDF)
Collaboration next-to-next-to-leading (NNLO) fit
NNPDF31 [24] down to x ¼ 0.1 and from the Martin-
Stirling-Thorne-Watt (MSTW) [25] NNLO fit down to
x ¼ 0.05. We also show the next-to-leading (NLO) fit
CJ15 [26].
Since the areas under each curve are equal to 1, our curve

compensates the strong deficiency in the x < 0.1 region by
exceeding the NNLO curves at x > 0.1 values. In other
words, if our curve would better describe data in the

x < 0.1 region, it would necessarily be smaller in the
x > 0.1 region.
The sine Fourier transform

MIðνÞ≡
Z

1

0

dx sinðνxÞqþðxÞ ð37Þ

is built from the function qþðxÞ ¼ qðxÞ þ q̄ðxÞ, which may
be also represented as qþðxÞ ¼ qvðxÞ þ 2q̄ðxÞ. If we neglect
the antiquark contribution and useqþðxÞ ¼ qvðxÞ, weget the
curve shown in Fig. 10 [call itMv

I ðνÞ]. The agreement with
the data is strongly improved if we use a nonvanishing
antiquark contribution, namely

q̄ðxÞ ¼ ūðxÞ − d̄ðxÞ ¼ 0.07½20xð1 − xÞ3�; ð38Þ

FIG. 9. Valence distribution qvðxÞ as given by Eq. (36) com-
pared with theQ2 ¼ 1 GeV2 NNLO global fits NNPDF31_nnlo_
pch_as_0118_mc_164 [24] and MSTW2008nnlo68cl_nf4 [25];
and the NLO global fit CJ15nlo [26], all extracted using the
LHAPD6 library [27]. The bands around the global fits indicate
their experimental and systematic uncertainties.

FIG. 10. Imaginary part of Mðν; z23Þ compared to the curve
Mv

I ðνÞ based on q̄ðxÞ ¼ 0.
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see Fig. 11. This function was obtained by fitting the data
for the difference ImMðν; z23Þ −Mv

I ðνÞ by sine Fourier
transforms of Axað1 − xÞb functions. This result corre-
sponds to

Z
1

0

dx½ūðxÞ − d̄ðxÞ� ¼ 0.07: ð39Þ

The combined distribution

qðxÞ ¼ uðxÞ − dðxÞ
¼ ½qvðxÞ þ q̄ðxÞ�θðx > 0Þ − q̄ð−xÞθðx < 0Þ ð40Þ

defined on the −1 ≤ x ≤ 1 interval is shown in Fig. 12.

D. Evolution

While an overall agreement of the data with a
z3-independent curve looks satisfactory, one can easily
notice a residual z3-dependence in the data. It is especially
visible when, for a particular ν, there are several data points
corresponding to different values of z3. It is interesting

to check if this dependence corresponds to perturbative
evolution.
To begin with, the evolution of the real part should lead

to its decrease when z23 increases. On the other hand, as
pointed out at the end of Sec. III, the function ImMðν; z23Þ
increases when z23 increases as long as ν≲ 5.5. Our data
follow these patterns.
As we discussed, the evolution corresponds to ln z23

singularities of the Ioffe-time distributions for small z23.
Thus, a natural idea is to check if the data corresponding to
small z03 and z3 may be related by

Mðν;z023Þ¼Mðν;z23Þ−
2

3

αs
π
lnðz023 =z23ÞB⊗Mðν;z23Þ ð41Þ

for some value of αs. Here B is the evolution kernel (21). In
our case,

B ⊗ MðνÞ ¼
Z

1

0

du
1þ u2

1 − u
½MðνÞ −MðuνÞ�: ð42Þ

More specifically, we fix the point z03 at the value z0 ¼
2a corresponding, at the leading logarithm level, to the
MS-scheme scale μ0 ¼ 1 GeV and build the function

~Mðν; z20Þ≡Mðν; z23Þ −
2

3

αs
π
lnðz20=z23ÞB ⊗ Mðν; z23Þ ð43Þ

from the data points forMðν; z23Þ using various values for αs.
Since the perturbative evolution is expected for small z3,

we include in this analysis the data with z3 up to 4 lattice
spacings, which corresponds to energy scales μ ¼ 2, 1, 0.7
and 0.5 GeV.
For the real part, these data points are shown in Fig. 13.

As one can see, there is a visible scatter of the data points.
Using αs=π ¼ 0.1, we calculate the “evolved” data points
corresponding to the function ~Mðν; z20Þ. The results are

FIG. 12. Overall distribution qðxÞ as defined by Eq. (40). FIG. 13. Real part of Mðν; z23Þ for z3=a ¼ 1, 2, 3, and 4.

FIG. 11. Imaginary part of Mðν; z23Þ compared to the curve
based on q̄ðxÞ given by Eq. (38).
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shown in Fig. 14. The evolved data points are now very
close to a universal curve.
In Fig. 15, we show the initial data points for the

imaginary part. The evolved data points constructed using
the same αs=π ¼ 0.1 value are shown in Fig. 16. Again,

they are close to a universal curve. This analysis indicates
that the residual z23-dependence of Mðν; z23Þ at fixed ν is
compatible with the expected logarithmic evolution at small
z23. Clearly this is an important feature of our calculation
which needs to be further studied as it will play an essential
role in reliable extraction of renormalized PDFs from this
type of lattice calculations.
With a smaller lattice spacing, the use of perturbative

evolution may be justified in a wider region of ν. While our
data extend to rather large separations ∼1 fm, we find it
instructive to use them as an example to illustrate the trends
generated by the perturbative evolution.
To this end, we applied the leading logarithm for-

mula (43) with z0 ¼ 2a and αs=π ¼ 0.1 to our data points

FIG. 15. Imaginary part of Mðν; z23Þ for z3=a ¼ 1, 2, 3, and 4.

FIG. 14. Evolved data points for the real part.

FIG. 16. Evolved data points for the imaginary part.

FIG. 17. Data points for ReMðν; z23Þ with z3 ≤ 10a evolved to
z0 ¼ 2a as described in the text.

FIG. 18. Curve for uvðxÞ − dvðxÞ built from the evolved
data shown in Fig. 17 and treated as corresponding to the
μ2 ¼ 1 GeV2 scale and then evolved to the reference point
μ2 ¼ 4 GeV2 of the global fits.
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with z3 ≤ 6a. Assuming that evolution stops for z3 ≳ 6a (as
indicated by our data), the data points with 7a ≤ z3 ≤ 10a
were evolved to z0 using Eq. (43) with z3 ¼ 6a, The data
points evolved in this way are shown in Fig. 17.
Fitting the evolved points by cosine Fourier transforms

Mðν; a; bÞ of the normalized Nða; bÞxað1 − xÞb-type func-
tions, we found that they may be described if one takes a ¼
0.36ð6Þ and b ¼ 3.95ð22Þ. Treating z0 ¼ 2a as theMS scale
μ ¼ 1 GeV, one can further evolve the curve to the standard
reference scale μ2 ¼ 4 GeV2 of the global fits, see Fig. 18.
Comparing with Fig. 9, we see that the perturbative evolution
shifts our curves, moving them closer to the global fits.

VI. SUMMARY

In this paper, we demonstrated a new method of
extracting parton distributions from lattice calculations.
It is based on the ideas, formulated in Ref. [11].
First, we treat the generic equal-time matrix element as a

function Mðν; z23Þ of the Ioffe time ν ¼ Pz3 and the
distance z3. The next idea is to form the ratio Mðν; z23Þ≡
Mðν; z23Þ=Mð0; z23Þ of the Ioffe-time distributionMðν; z23Þ
and the rest-frame density given by Mð0; z23Þ.
Our lattice calculation clearly shows the presence of a

linear component in the z3-dependence of the rest-frame
function, that may be attributed to the expected Zðz23Þ ∼
e−cjz3j=a behavior generated by the gauge link. On the next
step, we observe that the ratio MðPz3; z23Þ=Mð0; z23Þ has a
Gaussian-type behavior with respect to z3 for all 6 values of
P that were used in the calculation. This means that Zðz23Þ
factors entering into the numerator and denominator of the
MðPz3; z23Þ ratio have been canceled, as expected.
Still, there is no a priori principle predicting that

the remaining nonlogarithmic z23-dependence cancels
between the numerator and the denominator of the ratio
Mðν; z23Þ=Mð0; z23Þ. Such a z23-dependence can be removed
if needed with a systematic fitting procedure from which
the Ioffe time PDF will be extracted in the z23 ¼ 0 limit.
However, we found that when plotted as a function of ν

and z3, the data both for the real and imaginary parts of
Mðν; z23Þ are very close to the respective universal functions.
This observation indicates that the soft part of the
z23-dependence of Mðν; z23Þ has been canceled by the rest-
frame density Mð0; z23Þ. This phenomenon corresponds to
factorization of the x- and k⊥-dependence for the
TMD F ðx; k2⊥Þ.
While this evidence in favor of the factorization property

is an important result on its own, we want to stress that our
approach is not based on the factorization. It is based on the
use of the ratio Mðν; z23Þ=Mð0; z23Þ. Its residual soft
z23-dependence may be systematically analyzed and fitted,
so that the z23-limit may be taken in a controllable way.
Luckily, the data do not show a visible polynomial

dependence on z23 within our current statistical and

systematic errors. In future work we intend to carefully
study the residual polynomial z23 effects and incorporate
them in the extraction of PDFs using the lattice method-
ology introduced here.
In addition, we have checked that, for small z3 ≤ 4a, the

residual z3-dependence may be explained by perturbative
evolution, with the αs value corresponding to αs=π ¼ 0.1.
We have evolved these small-z3 data points to the z3 ¼ 2a
scale, which corresponds to μ2 ¼ 1 GeV2. The evolved
data better approximate universal curves both for real and
imaginary parts of M, supporting the argument that
perturbative evolution is observed.
Thus, these ν≲ 4 parts of the universal curves may be

treated as corresponding to the μ ¼ 1 GeV scale. Other
data points correspond to z3 > 4a values, and formally
should be treated as corresponding to scales μ≲ 0.3 GeV.
All these data points basically lie on the same universal
curve. This indicates that evolution stops at such scales. We
compared this “low normalization point” curve with three
global fits evolved to the μ ¼ 1 GeV scale, and observed
that our curve (36) for the valence uvðxÞ − dvðxÞ distribu-
tion shows the ð1 − xÞ3 behavior for x → 1 in accord with
usual expectations. Also, it rather closely follows the
NNPDF31 and, especially, MSTW NNLO global fits down
to rather small x values.
Still, our curve strongly deviates from the global fits for

x < 0.1 in the NNPDF31 case and for x < 0.05 in the
MSTW case.
However, the shape of PDFs is affected by the pertur-

bative evolution. To illustrate the scope of these effects, we
evolved all our points with z3 ≤ 10a to a universal scale
z0 ¼ 2a corresponding to μ ¼ 1 GeV, and then further
evolved the resulting PDF to μ ¼ 2 GeV, that is the
standard reference scale for global fits. Our final curve
is rather close to these fits, which demonstrates that the
perturbative evolution plays an important role in compari-
son of lattice results with the data. Again, one needs smaller
lattice spacings to justify the use of the perturbative
evolution equation in a sufficiently wide interval of Ioffe
time parameters ν.
The data also indicate a nonzero positive antiquark

distribution q̄ðxÞ ¼ ūðxÞ − d̄ðxÞ. It changes the x-integral
of qðxÞ by 7% and has ∼xð1 − xÞ3 behavior. Since we are
using the quenched approximation, these antiquarks come
from “connected diagrams”. Hence, one should expect that
the ratio ū=d̄must follow the flavor content of the proton, i.e.
ū=d̄ ∼ 2 and ū > d̄. Our data agree with this expectation.
The present study has an exploratory nature, and its main

goal was to develop techniques for lattice extraction of
PDFs based on the ideas of Ref. [11]. Our results indicate
that the basic method we put forward has a strong potential
for obtaining reliable PDFs from lattice QCD. In future
work we will refine our methods for incorporating evolu-
tion and controlling residual polynomial z23 effects in the
extraction of the Ioffe time distributions.
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To achieve this, it is evident that smaller lattice spacings
are required as well as a larger range of nucleon momenta.
Furthermore, we need to study finite volume effects as well
as to incorporate dynamical fermions with pion masses
closer to the physical point. We plan to address all these
issues in our future work.
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