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We study spatial isovector meson correlators in Nf ¼ 2 QCD with dynamical domain-wall fermions on
323 × 8 lattices at temperatures T ¼ 220–380 MeV. We measure the correlators of spin-one (J ¼ 1)
operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral Uð1ÞA and SUð2ÞL ×
SUð2ÞR symmetries of QCD implies degeneracies in vector–axial-vector (SUð2ÞL × SUð2ÞR) and tensor–
axial-tensor (Uð1ÞA) pairs, which are indeed observed at temperatures above Tc. Moreover, we observe an
approximate degeneracy of all J ¼ 1 correlators with increasing temperature. This approximate degeneracy
suggests emergent SUð2ÞCS and SUð4Þ symmetries at high temperatures, that mix left- and right-handed
quarks.
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I. INTRODUCTION

One of the key questions of QCD, that is of crucial
importance both for astrophysics and cosmology, is the
nature of the strongly interacting matter at high temper-
atures. This question attracts enormous experimental and
theoretical efforts. It is established in ab initio QCD
calculations on the lattice that there is a transition to the
chirally symmetric regime where the quark condensate, an
order parameter of SUð2ÞL × SUð2ÞR chiral symmetry,
vanishes. At the same time there is strong evidence from
calculations with manifestly chirally-invariant lattice fer-
mions that above the critical temperature also the Uð1ÞA
symmetry gets restored and a gap opens in the spectrum of
the Dirac operator [1–3].
To get some new insight on the symmetry structure of

high temperature QCD we calculate spatial correlators of
all possible spin J ¼ 0 and J ¼ 1 local isovector operators
using the chirally invariant domain-wall Dirac operator in
two-flavour QCD at different temperatures up to 380 MeV.
All correlators that are connected by SUð2ÞL × SUð2ÞR
or Uð1ÞA transformations are the same within errors at
temperatures above the critical one, which is in agreement
with restoration of both symmetries at high temperature.
Surprisingly, we also observe an approximate degeneracy
of some correlators that are connected neither by SUð2ÞL ×
SUð2ÞR nor by Uð1ÞA transformations.
The observed approximate degeneracies at high temper-

ature are in agreement with emergent SUð2ÞCS (chiral-spin)

and SUð4Þ symmetries [4,5], which contain transforma-
tions that mix the left- and right-handed components of
quarks. These symmetries have been observed before in
T ¼ 0 dynamical calculations upon artificial truncation of
the near-zero modes of the overlap Dirac operator [6–9].
The near-zero modes of the Dirac operator on the lattice
are strongly suppressed at high temperatures [1,2], which
motivates our present exploration of the correlators and
symmetries at high temperatures, this time without truncat-
ing the Dirac eigenmodes.

II. SIMULATION

A. Lattices

The gauge configurations used in the numerical simu-
lation of QCD are generated using the Symanzik gauge
action and two degenerate flavors of Möbius domain wall
fermions [10,11]. The gauge links are stout smeared three
times before the computation of the Dirac operator. The
length in the fifth direction Ls is chosen to achieve precise
chiral symmetry. The boundary conditions for quarks are
set antiperiodic in t-direction, and periodic in spatial
directions. The ensembles and parameters including the
lattice spacing a are listed in Table I. The degenerate up and
down quark masses mud are set to 2–15 MeV, which is
essentially negligible at the temperatures we studied, i.e.
T ≃ 220–380 MeV. More details on the chiral properties
for this set of parameters are given in [2,12]. We study
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spatial (z-direction) correlators as was first suggested in
Ref. [13] (see also [14]).

B. Operators

The observables of interest are correlators of non-singlet
local operators OΓðxÞ ¼ q̄ðxÞΓ τ⃗

2
qðxÞ, where Γ might be

any combination of γ-matrices, i.e., the Clifford algebra,
containing 16 elements; τa are the isospin Pauli matrices.
A zero-momentum projection is done by summation

over all lattice points in slices orthogonal to the measure-
ment direction. When measuring in z-direction this means

CΓðnzÞ ¼
X

nx;ny;nt

hOΓðnx; ny; nz; ntÞOΓð0; 0Þ†i: ð1Þ

For the vector and axial-vector operators Γ has the
following components:

V ¼

0
B@

γ1 ¼ Vx

γ2 ¼ Vy

γ4 ¼ Vt

1
CA; A ¼

0
B@

γ1γ5 ¼ Ax

γ2γ5 ¼ Ay

γ4γ5 ¼ At

1
CA: ð2Þ

Conservation of the vector current requires that Vz does not
propagate in z-direction. As the axial vector current jμ5 is
not conserved at zero temperature, the relevant component
γ3γ5 of the Axial-vector does propagate at zero temperature
and eventually couples to the Pseudoscalar. Above the
critical temperature—after Uð1ÞA and SUð2ÞL × SUð2ÞR
restoration—Az behaves as its parity partner Vz and does
not propagate in z-direction. For propagation in z-direction
the tensor elements σμν of the Clifford algebra are organ-
ized in the following way in components of tensor- and
axial-tensor vectors:

T ¼

0
B@

γ1γ3 ¼ Tx

γ2γ3 ¼ Ty

γ4γ3 ¼ Tt

1
CA; X ¼

0
B@

γ1γ3γ5 ¼ Xx

γ2γ3γ5 ¼ Xy

γ4γ3γ5 ¼ Xt

1
CA: ð3Þ

Table II summarizes our operators and gives the Uð1ÞA
and SUð2ÞL × SUð2ÞR relations of these operators. Given
restoration of theUð1ÞA and SUð2ÞL × SUð2ÞR symmetries

at high T we expect degeneracies of correlators calculated
with the corresponding operators.
For measurements at zero temperature the three compo-

nents of the vectors give the same expectation value due to
the SOð3Þ symmetry in continuum. In our finite temper-
ature setup this rotational symmetry is broken and the
residual SOð2Þ symmetry in the ðx; yÞ-plane connects
Vx ↔ Vy, Ax ↔ Ay etc. operators.
On the lattice at finite temperature the symmetry is D4h

where the vector components belong to one two-
dimensional (Vx,Vy) and one one-dimensional (Vt) irre-
ducible representations, and similar for A, T, X. This is
discussed in more detail in Appendix (see also [15]).
Operators from different irreducible representations are
not connected by theD4h transformations and consequently
the D4h symmetry of the lattice does not predict the E1, E2,
E3 multiplet structures discussed in Sec. III. The x and y
components of V have degenerate energy levels, and
correspondingly those for the other Dirac structures. We
therefore show only x- and t-components in the plots.

III. RESULTS

Figure 1 shows the spatial correlation functions normal-
ized to 1 at nz ¼ 1 for the operators given in Table II. As
argument we show nz which is proportional to the dimen-
sionless product zT for fixed Nt, the temporal extent of the
lattice.
As we describe in more detail later, we find that all

correlators connected by SUð2ÞL × SUð2ÞR and Uð1ÞA
transformations coincide within small deviations at
T > 220 MeV, which means that at these temperatures
both chiral symmetries get restored. More interestingly,
there are additional degeneracies of correlators. In total we
observe three different multiplets:

E1∶ PS ↔ S ð4Þ

E2∶ Vx ↔ Tt ↔ Xt ↔ Ax ð5Þ

E3∶ Vt ↔ Tx ↔ Xx ↔ At: ð6Þ

TABLE I. Gauge ensembles for 323 × 8 lattices used in this
work. Ls denotes the length of the fifth dimension in the domain
wall fermion formulation. The critical temperature for this set of
parameters is Tc ¼ 175� 5 MeV.

β muda a [fm] # configs Ls T [MeV] T=Tc

4.10 0.001 0.113 800 24 ∼220 ∼1.2
4.18 0.001 0.096 230 12 ∼260 ∼1.5
4.30 0.001 0.075 260 12 ∼320 ∼1.8
4.37 0.005 0.065 120 12 ∼380 ∼2.2

TABLE II. Bilinear operators considered in this work and their
transformation properties (last column). This classification as-
sumes propagation in z-direction. The open vector index k
denotes the components 1,2,4, i.e., x, y, t.

Name Dirac structure Abbreviation

Pseudoscalar γ5 PS �Uð1ÞAScalar 1 S

Axial-vector γkγ5 A �SUð2ÞAVector γk V

Tensor-vector γkγ3 T �Uð1ÞAAxial-tensor-vector γkγ3γ5 X
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E1 describes the pseudoscalar-scalar multiplet connected
by the Uð1ÞA symmetry, that is realized in the absence
of chiral zero-modes [16]. Note that we only consider the
isospin triplet channels so S corresponds to the a0- rather
than the σ-particle. The E2 and E3 multiplets on the other
hand contain some operators that are not connected by
either SUð2ÞL × SUð2ÞR or Uð1ÞA transformations.
Figure 2 shows the correlators of the E1 and E2

multiplets in detail at the highest available temperature
T ¼ 380 MeV. Here we also show correlators calculated
with noninteracting quarks. The noninteracting (free) data
have been generated on the same lattice sizes using a unit
gauge configuration [17]. Due to the small quark mass the

difference between chiral partners is negligible for the free
case, therefore they are omitted.
We observe a precise degeneracy between S and PS

correlators, which is consistent with the effective Uð1ÞA
restoration on these lattice ensembles [1]. The logarithmic
slope of the interacting (dressed) S and PS correlators is
substantially smaller than that for free quarks. In the latter
case the slope is given by 2π=Nt. A system of two free
quarks cannot have “energy” smaller than twice the lowest
Matsubara frequency [13]. For the E2 multiplet we observe
asymptotic slopes that are quite close to 2π=Nt in agree-
ment with previous studies [18].
Figure 3 shows normalized ratios of Xt and Tt correlators

on the left, as well as of Vx and Tt correlators on the right
side. The Uð1ÞA symmetry is restored, as is evident from
the left side of this Figure, where a ratio of correlators in
the Xt and Tt channels is plotted. We also find a similar
degeneracy between Vx and Ax due to SUð2ÞA (See also,
e.g. [19,20]).
Figures 2 and 3 suggest a possible higher symmetry

(SUð2ÞCS symmetry, see next section) that connects Vx
and Tt channels. The right panel of Fig. 3 shows the
corresponding ratio, which demonstrates an approximate
degeneracy at the level of 5% above T ≃ 320 MeV. We
notice that this degeneracy is not expected in the free quark
limit which is plotted by a dashed curve. This unexpected
symmetry requires that the cross-correlator calculated with
the Vx and Tt operators (both create the 1−− states) should
vanish. We have carefully checked that it indeed vanishes to
high accuracy.
Figure 4 shows the E3 multiplet. Here again we observe

a precise degeneracy in all SUð2ÞL × SUð2ÞR and Uð1ÞA
connected correlators, as well as the approximate degen-
eracy in all four correlators. We also see qualitatively
different data between free and dressed correlators at
nz ≥ 11, as also seen in [21]. This implies that we do
not observe free non-interacting quarks but instead systems
with some interquark correlation, which is in accordance
with the known results for energy density and pressure at
high temperatures [22].
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FIG. 1. Normalized spatial correlators. The temperatures cor-
respond to the ensembles listed in Table I.
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IV. SUð2ÞCS AND SUð4Þ SYMMETRIES

In this section we introduce the SUð2ÞCS and SUð4Þ
transformations, which connect operators from multiplet
E2 (5) as well as from multiplet E3 (6) and contain chiral
transformations as a subgroup. The basic ideas of SUð2ÞCS
and SUð4Þ symmetries at zero temperature are given in [5].
Here we adapt the group structure to our setup.
We use the γ-matrices given by

γiγj þ γjγi ¼ 2δij; γ5 ¼ γ1γ2γ3γ4: ð7Þ
The transformations and generators of the SUð2ÞCS chiral-
spin group, defined in the Dirac spinor space and diagonal
in flavor space, are given by

q → exp

�
i
2
ϵ⃗ · Σ⃗

�
q; Σ⃗ ¼ fγk;−iγ5γk; γ5g: ð8Þ

SUð2ÞCS contains Uð1ÞA as a subgroup. The suð2Þ algebra
½Σα;Σβ� ¼ 2iϵαβγΣγ is satisfied with any k ¼ 1, 2, 3, 4. The
SUð2ÞCS transformations mix the left- and right-handed
components of the quark field. It is not a symmetry of the
free massless quark Lagrangian. For z-direction correlators
the following representations of SUð2ÞCS are relevant:

R1∶ fγ1;−iγ5γ1; γ5g ¼ fσ23iγ5γ4; σ23γ4; γ5g; ð9Þ
R2∶ fγ2;−iγ5γ2; γ5g ¼ fσ31iγ5γ4; σ31γ4; γ5g: ð10Þ

Those differ from the representation fγ4;−iγ5γ4; γ5g
relevant for t-direction correlators [5] by the rotations
σ23 ¼ i

2
½γ2; γ3� and σ31 ¼ i

2
½γ3; γ1�.

These R1 and R2 SUð2ÞCS transformations connect the
following operators from the E2 multiplet:

R1∶ Vy ↔ Tt ↔ Xt; ð11Þ
R2∶ Vx ↔ Tt ↔ Xt; ð12Þ

as well as the operators from the E3 multiplet:

R1∶ Vt ↔ Ty ↔ Xy; ð13Þ
R2∶ Vt ↔ Tx ↔ Xx: ð14Þ

Our lattice symmetry group includes both the permuta-
tion operator P̂xy and 1 transformations, which form a
group S2. P̂xy permutes γ1 and γ2, and transforms γ5 to −γ5.
Then PxyR1 is isomorphic to R2. This means that
S2 × SUð2ÞCS contains multiplets

ðVx; Vy; Tt; XtÞ; ðVt; Tx; Ty; Xx; XyÞ: ð15Þ
The degeneracy between V and A means SUð2ÞL ×

SUð2ÞR symmetry. A minimal group that includes
SUð2ÞL × SUð2ÞR and SUð2ÞCS is SUð4Þ. The 15 gener-
ators of SUð4Þ are the following matrices:

fðτa ⊗ 1DÞ; ð1F ⊗ ΣiÞ; ðτa ⊗ ΣiÞg ð16Þ
with flavor index a¼ 1, 2, 3 and SUð2ÞCS index i ¼ 1, 2, 3.
Predictions of S2 × SUð4Þ symmetry for isovector oper-
ators are the following multiplets:

ðVx; Vy; Tt; Xt; Ax; AyÞ; ðVt; Tx; Ty; Xx; Xy; AtÞ: ð17Þ
S2 × SUð4Þ multiplets include in addition the isoscalar
partners of Vx, Vy, Tt and Xt operators for the first multiplet
in (17) as well as of Vt, Tx, Ty, Xx,Xy for the second
multiplet in (17).

V. CONCLUSIONS AND DISCUSSION

Our lattice results are consistent with emergence of
approximate SUð2ÞCS and SUð4Þ symmetries in spin
J ¼ 1 correlators by increasing temperature. The consid-
ered correlation functions do not seem to approach the free
quark limit.
How could these approximate SUð2ÞCS and SUð4Þ

symmetries arise at high temperatures? They are not
symmetries of the QCD Lagrangian. They are both sym-
metries of the confining chromo-electric interaction in
Minkowski space since any unitary transformation leaves
the temporal part of the fermion Lagrangian q̄γμDμq
invariant. The chromo-magnetic interaction described by
the rest of the Lagrangian breaks both symmetries [5].
Consequently the emergence of these symmetries suggests
that the chromo-magnetic interaction is suppressed at high
temperature while the chromo-electric interaction is still
active. This could have implications on the nature of the
effective degrees of freedom in the high temperature phase
of QCD since these symmetries are incompatible with
asymptotically free deconfined quarks.
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APPENDIX: REPRESENTATIONS OF D4H

The symmetry of the ðx; y; tÞ–volume (the fixed nz
subvolume, where the discussed operators are defined) is
D4h [23]. Consider the transformations of the Euclidean
interpolators OðnÞ ¼ q̄ðnÞΓqðnÞ with n ¼ ðnx; ny; nz; ntÞ:

rot∶ q̄Γq → q̄ exp

�
i
2
ωμνσ

μν

�
Γ exp

�
−
i
2
ωμνσ

μν

�
q

P̂z∶ q̄Γq → q̄γ3Γγ3q ðA1Þ

under discrete rotations and P̂z that performs inver-
sion n → nPz ¼ ð−nx;−ny; nz;−ntÞ.
The relevant symmetry group D4h has ten classes of

group elements and ten irreducible representations identi-
fied by characters in Table III: C4 and C2 are rotations
around t for π=2 and π, respectively, C0

2 is a rotation for π
around x, while C00

2 is a rotation for π around xþ y. Further

five classes are obtained by multiplication of the elements
with P̂z and the characters with ð−1ÞPz

.
According to these transformations, the interpolators for

V, A, T, X operators of Table II transform under the
irreducible representations given in Table IV. Note that
group elements of D4h transform interpolators only within
one box of that table and indeed the observed energy levels
for the x and y components of an operator agree. However,
no group element of D4h transforms components of V to T
(or A to X).
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