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In this paper we consider the production of proton-antiproton pairs in two-photon interactions in
electron-positron and heavy-ion collisions. We try to understand the dependence of the total cross section
on the photon-photon c.m. energy as well as corresponding angular distributions measured by the Belle
Collaboration for the γγ → pp̄ process. To understand the Belle data we include the proton-exchange, the
f2ð1270Þ and f2ð1950Þ s-channel exchanges, as well as the hand-bag mechanism. The helicity amplitudes
for the γγ → f2 → pp̄ process are written explicitly based on a Lagrangian approach. The parameters of
vertex form factors are adjusted to the Belle data. Having described the angular distributions for the
γγ → pp̄ process we present first predictions for the ultraperipheral, ultrarelativistic, heavy-ion reaction
208Pb208Pb → 208Pb208Pbpp̄. Both, the total cross section and several differential distributions for
experimental cuts corresponding to the ALICE, ATLAS, CMS, and LHCb experiments are presented.
We find the total cross section 100 μb for the ALICE cuts, 160 μb for the ATLAS cuts, 500 μb for the CMS
cuts, and 104 μb taking into account the LHCb cuts. This opens a possibility to study the γγ → pp̄ process
at the LHC.
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I. INTRODUCTION

The baryon pair production via γγ fusion wasmeasured at
electron-positron colliders by various experimental groups:
CLEO [1] at CESR,VENUS [2] at TRISTAN,OPAL [3] and
L3 [4] at LEP, and Belle [5] at KEKB. In the latter
experiment the γγ → pp̄ cross sections were extracted from
the eþe− → eþe−pp̄ reaction for the γγ center-of-mass
(c.m.) energy range of 2.025 < Wγγ < 4 GeV and in the
c.m. angular range of j cos θj < 0.6.
QCD predictions for γγ → pp̄ were first calculated in

[6,7] using the leading twist nucleon wave functions
determined from QCD sum rules, see e.g. [8]. The
calculated cross sections from the leading-twist QCD terms
turned out to be about one order of magnitude smaller than
the experimental data. To explain these experimental
observations, various phenomenological approaches were
suggested. For example, in the diquark model, which is a
variant of the leading-twist approach, see e.g. [9] and
references therein, the proton was considered to be a quark-
diquark system and a diquark form factor was introduced.
In the hand-bag approach, see e.g. [10], the γγ → pp̄
amplitude was factorized into a hard γγ → qq̄ subprocess

and form factors describing a soft qq̄ → pp̄ transition. The
transition form factors could not be calculated from first
principles in QCD and were, therefore, determined phe-
nomenologically. The pQCD-inspired phenomenological
models have more chances to describe the absolute size of
the cross section forWγγ > 2.5 GeV, however, they contain
a number of free parameters that are fitted to data.
Moreover, most data were taken at energies which are
rather low for the kinematic requirements of large s, jtj, juj
in the hand-bag approach.
The low center-of-mass energy region of γγ → pp̄may be

dominated by s-channel resonance contributions. One of the
effective approaches used for this region is the Veneziano
model [11]. While a reasonable σðWγγÞ dependence was
obtainedwithout adjustable parameters, the agreement of the
model with the angular distributions was only qualitative.
In a recent calculation [12] only the proton exchange

contribution was considered. But we think that this calcu-
lation has some problems as we shall discuss below in
Sec. II A.
In our approach we wish to include all important theory

ingredients in order to achieve a quantitative description
of the Belle data. Then we present our predictions for
the production of pp̄ pairs in the ultraperipheral, ultra-
relativistic, heavy-ion collisions at the LHC. To describe
the dynamics of the γγ → pp̄ process we take into account
not only the nonresonant proton exchange contribution but
also the s-channel tensor meson exchange contributions
and the hand-bag mechanism. A measurement of the
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208Pb208Pb → 208Pb208Pbpp̄ reaction will provide further
information on the two-photon interactions involved and,
thus, will allow further tests of existing theoretical
approaches.

II. THE γγ → pp̄ REACTION

We consider the reaction (see Fig. 1)

γðk1; ϵ1Þ þ γðk2; ϵ2Þ → pðp3; s3Þ þ p̄ðp4; s4Þ;
s3; s4 ∈ f1=2;−1=2g; ð2:1Þ

where the momenta, the polarization vectors of the photons,
and the helicity indices for proton and antiproton are
indicated in brackets. In the following we shall calculate
the T -matrix element for the reaction (2.1),

hpðp3; s3Þ; p̄ðp4; s4ÞjT jγðk1; ϵ1Þ; γðk2; ϵ2Þi
¼ Mμνðp3; p4; k1; k2Þϵ1μϵ2ν
≡Mγγ→pp̄; ð2:2Þ

for nonresonant proton exchange, exchange of spin 2
mesons in the s-channel, and for the hand-bag mechanism.
We note that gauge invariance requires

Mμνðp3; p4; k1; k2Þk1μ ¼ 0;

Mμνðp3; p4; k1; k2Þk2ν ¼ 0: ð2:3Þ

Since the photons are bosons we must have

Mμνðp3; p4; k1; k2Þ ¼ Mνμðp3; p4; k2; k1Þ: ð2:4Þ

The kinematical variables used in the present paper are
(see Fig. 1)

s ¼ ðk1 þ k2Þ2 ¼ ðp3 þ p4Þ2 ¼ W2
γγ;

t ¼ ðk1 − p3Þ2 ¼ ðk2 − p4Þ2;
u ¼ ðk1 − p4Þ2 ¼ ðk2 − p3Þ2;
sþ tþ u ¼ 2m2

p; ð2:5Þ

ps ¼ k1 þ k2 ¼ p3 þ p4;

pt ¼ k2 − p4 ¼ p3 − k1;

pu ¼ k1 − p4 ¼ p3 − k2; ð2:6Þ

p2
s ¼ s; p2

t ¼ t; p2
u ¼ u: ð2:7Þ

We shall work in the c.m. frame of the reaction (2.1); see
Fig. 18 in Appendix A. For the incoming photons we use
the polarization vectors (A27) and the helicity spinors for
the proton are as in (A2)–(A4) with θ → θ, ϕ → 0. The
helicity spinors for the antiproton are obtained from (A20)
and (A10), (A11), with θ → π − θ, ϕ → π.
There are 16 helicity amplitudes

hpðp3; s3Þ; p̄ðp4; s4ÞjT jγðk1; m1Þ; γðk2; m2Þi
≡ h2s3; 2s4jT jm1; m2i: ð2:8Þ

Here s3, s4 ∈ f1=2;−1=2g and m1, m2 ∈ f1;−1g are the
helicity labels of proton, antiproton and the photons,
respectively. We have also introduced a convenient short-
hand notation for the amplitudes. Using rotational, parity,
and charge-conjugation invariance one finds that only 6 of
the 16 helicity amplitudes are independent which we
denote by ψ1ðs; tÞ;…; ψ6ðs; tÞ; see (A39) and Table V of
Appendix A.
The unpolarized differential cross section for the reaction

(2.1) is given by

dσ
d cos θ

¼ 1

32πs
jp3j
jk1j

1

4

X
spins

jMγγ→pp̄j2; ð2:9Þ

where s is the invariant mass squared of the γγ system, θ
denotes the angle of the outgoing nucleon relative to the

(a) (b)

(c) (d)

FIG. 1. Diagrams for the production of pp̄ in γγ collisions. We consider the t- and u-channel proton exchange [diagrams (a) and (b),
respectively], the exchange of f2 meson in the s-channel [diagram (c)], and the hand-bag mechanism [diagram (d) plus the one with the
photon vertices interchanged]. Here f2 stands generically for a JPC ¼ 2þþ meson.
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beam direction in the c.m. frame, see Fig. 18 in AppendixA,
and k1 and p3 are the c.m. 3-momenta of the initial photon
and final nucleon, respectively; see (A26).

A. Nonresonant proton exchange contribution

The amplitude for the proton exchange mechanism [see
the diagrams (a) and (b) in Fig. 1] is written as

Mðp exchangeÞ
bare ¼ ð−iÞϵ1μϵ2νūðp3Þ

�
iΓðγppÞμðp3; ptÞ

×
iðpt þmpÞ
t −m2

p þ iϵ
iΓðγppÞνðpt;−p4Þ

þ iΓðγppÞνðp3; puÞ
iðpu þmpÞ
u −m2

p þ iϵ

× iΓðγppÞμðpu;−p4Þ
�
vðp4Þ: ð2:10Þ

Here we use the free proton propagator for the internal
proton lines and the photon-proton vertex function as for
on-shell protons respectively antiprotons. This photon-
proton vertex function is, with q ¼ p0 − p, given by

iΓðγppÞ
μ ðp0; pÞ ¼ −ie

�
γμF1ðq2Þ þ

i
2mp

σμνqνF2ðq2Þ
�
;

ð2:11Þ

see, e.g., (3.26) of [13]. In (2.11) σμν ¼ i
2
½γμ; γν�, F1 and F2

are the Dirac and Pauli form factors of the proton,
respectively. For real photons we have F1ð0Þ ¼ 1 and
F2ð0Þ ¼ κp ¼ 1.7928, where κp is the anomalous magnetic
moment of the proton. The amplitude (2.10) satisfies the
gauge-invariance relations (2.3) and the Bose-symmetry
relation (2.4).
Of course, the virtual protons in the diagrams of Fig. 1(a)

and 1(b) are off shell. Their propagators will, in general, not
be the ones of free protons and the photon-proton vertex
functions also will have an off-shell dependence. We take
these off-shell dependences into account via multiplication
of the amplitude (2.10) by an extra form factor. We adopt
here the scheme used in previous works [14–17] and set

Fðt; u; sÞ ¼ ½FðtÞ�2 þ ½FðuÞ�2
1þ ½ ~FðsÞ�2 ; ð2:12Þ

with the exponential parametrizations

FðtÞ ¼ exp

�
t −m2

p

Λ2
p

�
;

FðuÞ ¼ exp

�
u −m2

p

Λ2
p

�
;

~FðsÞ ¼ exp

�
−ðs − 4m2

pÞ
Λ2
p

�
: ð2:13Þ

The parameter Λp should be fitted to the experimental data.
Note that the form factor FðtÞ is normalized to unity
for t ¼ m2

p.
Our complete result for the nonresonant proton exchange

contribution reads, therefore,

MðpexchangeÞ ¼ MðpexchangeÞ
bare Fðt; u; sÞ: ð2:14Þ

The multiplication of the “bare” amplitude with a common
form factor guarantees that the gauge-invariance relations
(2.3) are satisfied forMðpexchangeÞ. Also the Bose-symmetry

relation (2.4) is satisfied.1 by (2.14) since MðpexchangeÞ
bare

satisfies (2.4) and the form factor Fðt; u; sÞ is symmetric
under the exchange t ↔ u; see (2.10) and (2.12).

B. f 2 meson contributions

In this section we discuss the contributions from the s-
channel exchange of JPC ¼ 2þþ mesons, generically
denoted by f2 in diagram (c) of Fig. 1. In the following
we shall take into account the f2ð1270Þ and f2ð1950Þ
resonances. That is, in the formulas f2 stands for any of
these resonances. In the final calculations their contribu-
tions are summed.
The amplitude for the pp̄ production through the s-

channel exchange of a tensor meson f2 [the corresponding
diagram is shown in Fig. 1(c)] is written as

Mðf2exchangeÞ ¼ ð−iÞūðp3ÞiΓðf2pp̄Þαβðp3; p4Þvðp4ÞiΔðf2Þ
αβ;κλðpsÞiΓðf2γγÞμνκλðk1; k2Þϵ1μϵ2ν: ð2:15Þ

The f2γγ vertex is given as

iΓðf2γγÞ
μνκλ ðk1; k2Þ ¼ i½2af2γγFðf2γγÞ

a ðp2
sÞΓð0Þ

μνκλðk1; k2Þ − bf2γγF
ðf2γγÞ
b ðp2

sÞΓð2Þ
μνκλðk1; k2Þ�; ð2:16Þ

1The amplitude for γγ → pp̄ considered in Eqs. (8)—(10) of [12] does not satisfy the Bose-symmetry relation (2.4). Therefore, this
amplitude and the corresponding cross section, (16) and (20) of [12], cannot correspond to reality.
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with two rank-four tensor functions,

Γð0Þ
μνκλðk1; k2Þ ¼ ½ðk1 · k2Þgμν − k2μk1ν�

h
k1κk2λ þ k2κk1λ −

1

2
ðk1 · k2Þgκλ

i
; ð2:17Þ

Γð2Þ
μνκλðk1; k2Þ ¼ ðk1 · k2Þðgμκgνλ þ gμλgνκÞ þ gμνðk1κk2λ þ k2κk1λÞ − k1νk2λgμκ − k1νk2κgμλ − k2μk1λgνκ − k2μk1κgνλ

− ½ðk1 · k2Þgμν − k2μk1ν�gκλ; ð2:18Þ

see (3.39) and (3.18)—(3.22) of [13]. In our case we have
k21 ¼ k22 ¼ 0.
For the f2ð1270Þmeson, the coupling constants af2γγ and

bf2γγ are estimated in Secs. 5.3 and 7.2 of [13]. In the case of
the f2ð1950Þ meson the numerical values of the a and b
parameters will be obtained here from a fit to the Belle data

[5]. In (2.16) we have introduced form factors Fðf2γγÞ
a;b ðp2

sÞ
describing the s dependence of the f2γγ coupling. These
form factors will be particularly important for the diagram

Fig. 1(c) with f2ð1270Þ exchange since in pp̄ production
this meson significantly contributes but only far off shell.
Let us now discuss in detail the f2pp̄ vertex. From the

l-S analysis, presented in Appendix B, we know that there
are two independent couplings corresponding to ðl; SÞ ¼
ð1; 1Þ and (3,1). In accord with this we choose two coupling
Lagrangians, (2.19) and (2.20) below, which correspond to
two linearly independent combinations of the two ðl; SÞ
possibilities; see Appendix B. We set

L0ð1Þ
f2pp

ðxÞ ¼ −
gð1Þf2pp

M0

f2κλðxÞ
i
2
ψ̄pðxÞ ×

�
γκ∂λ

↔

þ γλ∂κ
↔

−
1

2
gκλγρ∂ρ

↔
�
ψpðxÞ; ð2:19Þ

L0ð2Þ
f2pp

ðxÞ ¼ gð2Þf2pp

M2
0

f2κλðxÞψ̄pðxÞ
�
∂κ
↔ ∂λ

↔

−
1

4
gκλ∂ρ

↔ ∂ρ

↔
�
ψpðxÞ; ð2:20Þ

where ψpðxÞ and f2ðxÞ are the proton and f2 meson field operators, respectively. The corresponding vertices, including
form factors, are

iΓðf2pp̄Þð1Þ
κλ ðp3; p4Þ ¼ −i

gð1Þf2pp

M0

�
1

2
γκðp3 − p4Þλ þ

1

2
γλðp3 − p4Þκ −

1

4
gκλðp3 − p4Þ

�
× Fðf2pp̄Þð1Þ½ðp3 þ p4Þ2�; ð2:21Þ

iΓðf2pp̄Þð2Þ
κλ ðp3; p4Þ ¼ −i

gð2Þf2pp

M2
0

�
ðp3 − p4Þκðp3 − p4Þλ −

1

4
gκλðp3 − p4Þ2

�
× Fðf2pp̄Þð2Þ½ðp3 þ p4Þ2�: ð2:22Þ

Here gðjÞf2pp
(j ¼ 1, 2) are dimensionless coupling constants andM0 ≡ 1 GeV. The complete f2pp̄ vertex function is given

by

iΓðf2pp̄Þ
κλ ðp3; p4Þ ¼

X
j¼1;2

iΓðf2pp̄ÞðjÞ
κλ ðp3; p4Þ: ð2:23Þ

For the f2 propagator we use the simple formula

iΔðf2Þ
αβ;κλðpsÞ ¼ iPð2Þ

αβ;κλðpsÞΔð2Þðp2
sÞ ¼ i

�
1

2
ðĝακĝβλ þ ĝαλĝβκÞ −

1

3
ĝαβĝκλ

�
1

p2
s −m2

f2
þ imf2Γf2

; ð2:24Þ

where ĝμν ¼ −gμν þ psμpsν=p2
s . Γf2 is the total decay width of the f2 resonance and mf2 its mass. For a more detailed

analysis we should use a model for the f2 propagator along the lines considered in [13]; see (3.6)—(3.8) and Appendix A
of [13].
With the expressions from Appendix Awe get the helicity amplitudes for the reaction γγ → f2 → pp̄, using the notation

of (A36) and ε ¼ ðεrsÞ as defined in (A16), as follows
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h2s3; 2s4jT jþ;þi ¼ h2s3; 2s4jT j−;−i

¼ −
1

2
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q
Δð2ÞðsÞaf2γγFðf2γγÞ

a ðsÞ ×
�
gð1Þf2pp

M0

Fðf2pp̄Þð1ÞðsÞ
�
−2mp

�
cos2θ −

1

3

�
δs3s4

−
ffiffiffi
s

p
sin θ cos θεs3s4

�
þ gð2Þf2pp

M2
0

Fðf2pp̄Þð2ÞðsÞðs − 4m2
pÞ
�
cos2θ −

1

3

�
δs3s4

�
; ð2:25Þ

h2s3; 2s4jT j�;∓i ¼ −
1

2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q
Δð2ÞðsÞbf2γγFðf2γγÞ

b ðsÞ ×
�
gð1Þf2pp

M0

Fðf2pp̄Þð1ÞðsÞ½−2mpsin2θδs3s4 þ
ffiffiffi
s

p
sin θ cos θεs3s4

� ffiffiffi
s

p
sin θδs3;−s4 � þ

gð2Þf2pp

M2
0

Fðf2pp̄Þð2ÞðsÞðs − 4m2
pÞsin2θδs3s4

�
: ð2:26Þ

Note the different s dependences in (2.25) and (2.26) that are
due to the different dimensions of af2γγ and bf2γγ. Using
different functional forms for the form factors Fa and Fb
these s dependences could be adjusted to experimental data.
In the calculation we assume the same form forFa andFb

Fðf2γγÞ
a ðsÞ ¼ Fðf2γγÞ

b ðsÞ ¼ Fðf2γγÞðsÞ: ð2:27Þ
A convenient ansatz for such a form factor is the exponential
one (see (4.22) of [18])

Fðf2γγÞðsÞ ¼ exp

�
−
ðs −m2

f2
Þ2

Λ4
f2;exp

�
ð2:28Þ

withΛf2 a parameter of the order 1–2GeV.Alternatively, we
can use

Fðf2γγÞðsÞ ¼ Λ4
f2;pow

Λ4
f2;pow

þ ðs −m2
f2
Þ2 : ð2:29Þ

The form factors (2.28) and (2.29) are normalized to
Fðf2γγÞðm2

f2
Þ ¼ 1. For the f2pp̄ form factors we assume

Fðf2pp̄Þð1ÞðsÞ ¼ Fðf2pp̄Þð2ÞðsÞ ¼ Fðf2γγÞðsÞ: ð2:30Þ
The numerical values of the form factor parameters will be
adjusted to the Belle experimental data.

C. Hand-bag approach

The hand-bag contribution to γγ → BB̄ processes was
described in detail in [10]. The hand-bag amplitude can be
written in terms of the hard scattering kernel for γγ → qq̄
and a soft matrix element describing the qq̄ → pp̄ tran-
sition. Their c.m. helicity amplitudes, which we denote by
~M, are written in terms of the light-cone helicity ampli-
tudes A (see Eq. (30) in [10]) as

~Ms3s4;m1m2
¼ As3s4;m1m2

þmpffiffiffi
s

p ½2s3A−s3s4;m1m2

þ 2s4As3−s4;m1m2
� þOðm2

p=sÞ: ð2:31Þ

The light-cone helicity amplitudes, including terms sup-
pressed only by mp=

ffiffiffi
s

p
, read [10]

As3s4;þ−¼−ð−1Þs3−s4A−s3−s4;−þ

¼4παem
sffiffiffiffiffi
tu

p
�
δs3;−s4

t−u
s

RVðsÞþ2s3δs3;−s4 ½RAðsÞ

þRPðsÞ�−
ffiffiffi
s

p
2mp

δs3s4RPðsÞ
�
: ð2:32Þ

The authors of [10] argue that the amplitudes with identical
photon helicities will be nonzero only at next-to-leading
order in αs, in analogy to the photon helicity flip transitions
in large-angle Compton scattering [19]. Note that for zero
mass the light-cone helicity amplitudes (2.32) are identical
with the helicity amplitudes (2.31), but not if the mass is
finite. The qq̄ → pp̄ transition form factors RVðsÞ, RAðsÞ,
and RPðsÞ were determined phenomenologically in [10]. In
our calculation we neglect the term with RVðsÞ and assumeffiffi

s
p
2mp

j RPðsÞ
RAðsÞ j ¼ 0.37 (see formula (45) from [10]). In addition

we take RAðsÞ and RPðsÞ as real and positive. We para-
metrize RAðsÞ ¼ CA=s (in parameter set A) with CA a
parameter of dimension GeV2 or RAðsÞ ¼ ~CA=s2 (in
parameter set B) with ~CA a parameter of dimension
GeV4 which we shall determine from a fit to the Belle
data in Sec. IV C; see Table II. Note that the s-dependence
of RA with CA is different (less steep) than in [10], where
only the hand-bag contribution was fitted to rather old
experimental data. In [10] different phase conventions
compared to ours are used. Taking this into account we find

h2s3; 2s4jT jþ;−ihb ¼ 2s4 ~Ms3s4;þ−;

h2s3; 2s4jT j−;þihb ¼ 2s4 ~Ms3s4;−þ; ð2:33Þ

see Appendix C.
The hand-bag helicity amplitudes (2.33) must be added

coherently within our approach (see previous subsections).
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At small momentum transfer jtj or juj the hand-bag and
proton-exchange mechanisms compete and it would be a
double counting to include both of them simultaneously.We
emphasize, however, that in regions of small jtj or juj the
hand-bag approach has to be taken with a grain of salt. To
avoid in addition double counting (we include explicitly the
proton-exchange mechanism) we suggest to multiply the
hand-bag amplitudes by a purely phenomenological factor:

Fcorrðt; uÞ ¼
�
1 − exp

�
t

Λ2
hb

���
1 − exp

�
u
Λ2
hb

��
ð2:34Þ

with an extra free parameter Λhb. Its role is to cut off the
region of small jtj and jujwhere the hand-bag approach does
not apply. As a consequence it also reduces the hand-bag
contribution to the cross section at low

ffiffiffi
s

p
in the whole

angular range.

III. NUCLEAR REACTION

Now we will present theoretical formulas for the nuclear
reaction

208Pbþ 208Pb → 208Pbþ 208Pbþ pþ p̄: ð3:1Þ
We focus on the processes for ultraperipheral collisions

(UPC) of heavy ions, see the diagram shown in Fig. 2. The
nuclear cross section is calculated in the equivalent photon
approximation (EPA) in the impact parameter space. This
approach allows us to take into account the transverse
distance between the colliding nuclei. The total (phase
space integrated) cross section is expressed through the
five-fold integral

σAA→AApp̄ð
ffiffiffiffiffiffiffi
sAA

p Þ

¼
Z

σγγ→pp̄ðWγγÞNðω1; b1ÞNðω2; b2ÞS2absðbÞ

×
Wγγ

2
dWγγdYpp̄db̄xdb̄y2πbdb: ð3:2Þ

Above, b ¼ jbj is the impact parameter, i.e., the distance
between colliding nuclei in the plane perpendicular to their
direction of motion. Wγγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω1ω2

p
is the invariant mass

of the γγ system and ωi, i ¼ 1, 2, is the energy of the
photon which is emitted from the first or second nucleus,
respectively. Ypp̄ ¼ 1

2
ðyp þ yp̄Þ is the rapidity of the pp̄

system. The quantities b̄x ¼ ðb1x þ b2xÞ=2, b̄y ¼ ðb1y þ
b2yÞ=2 are given in terms of bix, biy which are the
components of the b1 and b2 vectors which mark a point
(distance from first and second nucleus) where photons
collide and particles are produced. The diagram illustrating
these quantities in the impact parameter space can be found
in [20].

FIG. 2. Diagram representing proton-antiproton production in
ultrarelativistic ultraperipheral collisions (UPC) of heavy ions.

FIG. 3. The γγ → pp̄ cross section as a function of photon-
photon energy Wγγ ≡ ffiffiffi

s
p

. We present the results for the non-
resonant contribution (see Sec. II A) for Λp ¼ 1.1 GeV in (2.13).
The solid line represents the complete result with both Dirac- and
Pauli-type couplings included in the amplitude. Other combina-
tions of electromagnetic couplings in the γNN vertices are also
shown: only Dirac couplings, and only Pauli couplings at the two
vertices in Figs. 1(a) and 1(b). The Belle experimental data from
[5] are shown for comparison.

FIG. 4. The angular distributions for
ffiffiffi
s

p ¼ 2.0, 2.5, and
3.0 GeV for the nonresonant proton-exchange mechanism.
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In Ref. [20] the dependence of the photon flux Nðωi; biÞ
on the charge form factors of the colliding nuclei was
shown explicitly. In our calculations we use the so-called
realistic form factor which is the Fourier transform of the
charge distribution in the nucleus. A more detailed dis-
cussion of this issue is given in [20].
The presence of the absorption factor S2absðbÞ in (3.2)

assures that we consider only peripheral collisions, when
the nuclei do not undergo nuclear breakup. In the first
approximation this geometrical factor can be expressed as

S2absðbÞ ¼ θðjbj − ðRA þ RBÞÞ ¼ θðjb1 − b2j− ðRA þRBÞÞ;
ð3:3Þ

where the sum of the radii of the two nuclei occurs.
In our present study we calculate also distributions in

kinematical variables of each of the produced particles
(for details on how it is handled see [21]). Then one can
impose easily experimental cuts on (pseudo)rapidities and
transverse momenta.

IV. RESULTS FOR THE γγ → pp̄ REACTION

First we will show some features of the proton-exchange
mechanism and the s-channel tensor meson exchanges. We

will show the dependence of the cross section on the
photon-photon energy and the angular distributions of
individual helicity components. Then we will confront
the model results with the experimental data and adjust
the model parameters.

A. Proton exchange mechanism

In Fig. 3 we show that the proton exchange mechanism
alone cannot describe the energy-dependence of the cross
sections measured by Belle [5]. We show results for the
Dirac- or Pauli-type couplings separately and when both
couplings in the γNN vertices are taken into account.We can
see that the complete result indicates a large interference
effect of Dirac and Pauli terms in the amplitudes. Clearly, the
proton exchange contribution is not sufficient to describe the
Belle data.
In Fig. 4 we show the unpolarized differential cross

section dσ=d cos θ for three different γγ c.m. energies. As
one gets closer to

ffiffiffi
s

p ¼ 2mp, the threshold energy, the
angular distributions become flatter and flatter.
In Fig. 5 we present the helicity dependence of the

differential cross section. We label the results for different
helicity terms as ð2s32s4m1m2Þ for h2s3; 2s4jT jm1; m2i
as defined in (A36). One can see the dominance of the

FIG. 5. The helicity components of dσ=d cos θ as a function of cos θ for the proton exchange mechanism for
ffiffiffi
s

p ¼ 2.0 (the left panel)
and 2.5 GeV (the right panel). Contributions of different helicities ð2s32s4m1m2Þ of the photons and baryons are shown.

TABLE I. A list of resonances that may contribute to the γγ → pp̄ reaction. Here we listed also the subthreshold
f2ð1270Þ resonance. The meson masses, their total widths Γ, and branching fractions are taken from PDG [24].

Meson m (MeV) Γ (MeV) Γpp̄=Γ Γγγ=Γ

f2ð1270Þ 1275.5� 0.8 186:7þ2.2
−2.5 ð1.42� 0.24Þ × 10−5

f2ð1950Þ 1944� 12 472� 18 seen seen
ηcð1SÞ 2983� 0.5 31.8� 0.8 ð1.50� 0.16Þ × 10−3 ð1.59� 0.13Þ × 10−4

χc0ð1PÞ 3414.75� 0.31 10.5� 0.6 ð2.25� 0.09Þ × 10−4 ð2.23� 0.13Þ × 10−4

χc2ð1PÞ 3556.20� 0.09 1.93� 0.11 ð7.5� 0.4Þ × 10−5 ð2.74� 0.14Þ × 10−4

ηcð2SÞ 3639.2� 1.2 11:3þ3.2
−2.9 < 2 × 10−3 ð1.9� 1.3Þ × 10−4
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FIG. 6. The helicity components of the differential cross sections dσ=d cos θ for the γγ → f2ð1950Þ → pp̄ reaction forffiffiffi
s

p ¼ 2.1 GeV. Here, the coupling constants are fixed arbitrarily, for j ¼ 1, 2: af2γγg
ðjÞ
f2pp

¼ e2
4π 1 GeV−3 (the left panel) and bf2γγg

ðjÞ
f2pp

¼
e2
4π 1 GeV−1 (the right panel). The calculations have been done for Λf2;pow ¼ 1.15 GeV in (2.29).

(a)

(b) (c)

FIG. 7. Energy dependence of the total cross section for γγ → pp̄ for j cos θj < 0.6. The experimental data are from the CLEO [1],
VENUS [2], OPAL [3], L3 [4], and Belle [5] experiments. In the panel (a) we show the results for the tensor meson exchanges and the
proton-exchange contributions, and their coherent sum (see the red solid line). In the panels (b) and (c) we show the results including, in
addition, the hand-bag contribution. In the panels (a) and (b) we used the parameter set Awhile in the panel (c) we used the parameter set
B; see Table II.
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ð� � ��Þ and ð∓∓ ��Þ contributions over the
ð2s32s4� ∓Þ ones (see the red lines). In terms of the ψ j

(j ¼ 1;…; 6) from (A39) and Table V of Appendix A we
find dominance of the amplitudes ψ1 and ψ2. Furthermore
we see that the contributions of the amplitudes ψ3, ψ4, ψ5,
and ψ6 are suppressed in the forward and backward
directions, cos θ ¼ �1. This is clear from angular momen-
tum conservation. For ψ3, ψ4, and ψ5, the state of the two
photons has Jz ¼ �2. This cannot be reached by proton-
antiproton produced in the forward or backward direction
where we only get Jz ¼ 0 or �1. For ψ6 the two-photon
state has Jz ¼ 0 and the two-baryon state in forward and
backward direction has Jz ¼ þ1 and −1, respectively. We
have again a mismatch. The contributions of four helicity
states ðþ −þþÞ, ð−þ −−Þ, ð−þþþÞ, ðþ − −−Þ vanish
when only the Dirac-type coupling in the γNN vertices is
included. That is, the amplitude ψ6 vanishes in this case.

B. f 2 meson contributions

The Belle experimental angular distributions [5], at least
at low energies, cannot be described solely with the proton-
exchange mechanism discussed in Sec. II A. It seems that a
mechanism is missing. A resonant s-channel contribution is
a reasonable option for a second mechanism (see also [16]
for the γγ → ππ reactions).
In Table I we have listed resonances that decay into γγ

and pp̄ and which, therefore, may contribute to the reaction
(2.1). In principle, also subthreshold resonances, such as

f2ð1270Þ, may play some, even an important, role. It is
worth to mention that our knowledge about the f2ð1950Þ
resonance comes from the BES [22] and the CLEO [23]
analyses for ψð2SÞ → γpp̄ radiative decays. In [23] the
authors include also the f2ð2150Þ → pp̄ contribution in
order to describe the Mpp̄ and Mpγ invariant mass dis-
tributions. For ψð2SÞ → γpp̄ a stringent upper limit for the
threshold resonance Bðψð2SÞ→ γRthrÞ×BðRthr→pp̄Þ<
1.6×10−5 at 90% confidence level was found [23].
In our paper we consider only the f2 meson exchanges in

the s-channel. In general also the cc̄ mesons (e.g., ηcð1SÞ,
χc0ð1PÞ) may contribute to the reaction (2.1). The char-
monium states have rather small total widths (see Table I)
thus they will appear in the invariant mass distribution as
rather narrow peaks; see [25] for the γγ → γγ reaction.
Even interference effects with other mechanisms may be
important in this context. This goes, however, beyond the
scope of the present paper and will be studied elsewhere.
Now we will discuss the helicity structure of γγ → pp̄

from the contribution of the s-channel (below-threshold or
above-threshold) f2 resonances in our Lagrangian
approach; see Sec. II B.
In Fig. 6 we show the contributions of different helicities

for the two γγ → f2 couplings in (2.16), af2γγ (left panel),
and bf2γγ (right panel). There are five independent helicity
contributions since here the contributions of the amplitudes
ψ1 and ψ2 turn out to be the same; see (2.25), (A39), and
Table V of Appendix A. Only the distributions that are

TABLE II. Model parameters and their numerical values used. The second column indicates the equation numbers
where the parameter is defined.

parameter for
nonresonant pp̄ equation value (set A) value (set B)

κp (2.11) et subeqution 1.7928 1.7928
Λp (2.12), (2.13) 1.08 GeV 1.07 GeV

f2ð1270Þ
af2γγ (2.16); (3.40) of [13] e2

4π 1.45 GeV−3 e2
4π 1.45 GeV−3

bf2γγ (2.16); (3.40) of [13] e2
4π 2.49 GeV−1 e2

4π 2.49 GeV−1

M0 (2.19) et subeqution 1 GeV 1 GeV

gð1Þf2pp
(2.19), (2.21) 11.04 11.04

gð2Þf2pp
(2.20), (2.22) 0 0

Λf2;pow (2.29) 1.15 GeV 1 GeV

f2ð1950Þ
af2γγg

ð2Þ
f2pp

(2.16), (2.20), (2.22) e2
4π 13.05 GeV−3 e2

4π 12 GeV−3

bf2γγ (2.16) 0 0

gð1Þf2pp
(2.19), (2.21) 0 0

Λf2;pow (2.29) 1.15 GeV 1.15 GeV

hand-bag contribution
CA RAðsÞ ¼ CA=s 0.14 GeV2

~CA RAðsÞ ¼ ~CA=s2 2.5 GeV4

Λhb (2.34) 0.85 GeV 0.85 GeV
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIG. 8. Differential cross sections for the γγ → pp̄ reaction as a function of j cos θj for differentWγγ ranges. For the Belle data [5] both
statistical and systematic uncertainties are included. Calculations were done with Λf2;pow ¼ 1.15 GeV in (2.29), and Λp ¼ 1.08 GeV in
(2.13). The hand-bag model contribution is not included here. Here we used the parameter set A from Table II.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIG. 9. The same as in Fig. 8 but here the hand-bag contribution is included. The green dotted line shows the contribution of the hand-
bag mechanism. Here we used the parameter set A from Table II.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIG. 10. The same as in Fig. 9 but here we used the parameter set B from Table II.

MARIOLA KŁUSEK-GAWENDA et al. PHYSICAL REVIEW D 96, 094029 (2017)

094029-12



proportional to ðcos2 θ − 1=3Þ2, see (2.25) and (2.26), (this
corresponds to the solid line in the left panel) are favored by
the Belle experimental data; see Figs. 8 and 9 below. Here
the cutoff parameter of form factors (Λf2;pow) and the

products of coupling constants (af2γγg
ðjÞ
f2pp

and bf2γγg
ðjÞ
f2pp

)
are fixed arbitrarily.

C. Comparison with the Belle data

Here we wish to demonstrate that it is possible to
describe the Belle data taking into account the t- and u-
channel proton exchanges, the s-channel tensor meson
exchanges, and the hand-bag mechanism discussed in
Sec. II. In the following we shall take in our calculation
a coherent sum of all the above amplitudes.
In Fig. 7 we show the energy dependence of the cross

section for the γγ → pp̄ reaction. In the panel (a) we
present results for the proton exchange and the f2ð1270Þ
and f2ð1950Þ s-channel exchanges together with the
experimental data of the CLEO [1], VENUS [2], OPAL

[3], L3 [4], and Belle [5] experiments. An agreement
between the Belle experimental data [5] and the earlier
measurements [1,2,4] with the exception of the OPAL
experiment [3] in the low mass region Wγγ ¼ Mpp̄ <
3 GeV can be observed (within the quoted uncertainties);
see also Fig. 11 below. For the f2ð1270Þ contribution the
coupling constants af2γγ and bf2γγ are relatively well known
and taken from [13]. We take into account only one

f2ð1270Þpp̄ coupling (gð1Þf2ð1270Þpp ¼ 11.04) and neglect

the term with gð2Þf2ð1270Þpp. For the f2ð1950Þ contribution

we take only the term with af2ð1950Þγγg
ð2Þ
f2ð1950Þpp̄ ¼

e2
4π 13.05 GeV−3. In the vertices for the meson exchange
contributions we assume the same type of the form factors
(2.29) and Λf2;pow ¼ 1.15 GeV; see Eqs. (2.27) and (2.30).
We take Λp ¼ 1.08 GeV for the proton-exchange contri-
bution; see (2.13). One can observe the dominance of the
f2ð1950Þ resonance term at low energies. We slightly
underestimate the Belle data from

ffiffiffi
s

p ¼ 2.4 to 2.9 GeV.

FIG. 11. Differential cross sections for the γγ → pp̄ reaction as a function of j cos θj for different Wγγ ranges. We compare our total
model results (including the hand-bag contribution) with the Belle data [5], the L3 data [4], and the OPAL data [3]; see the black solid
line, the red long-dashed line, and the blue short-dashed line, respectively. Here we used the parameter set A from Table II.
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The panels (b) and (c) show results including also the hand-
bag contribution. The hand-bag contribution is important at
Wγγ > 3 GeV. To illustrate uncertainties of our model we
take in the calculation two sets of parameters. For the
convenience of the reader we collect in Table II the
parameters of our model and their numerical values used
here and in the following.
In Figs. 8 and 9, we show our fits to the Belle angular

distributions2 Here we use the same parametrization as in
Fig. 7(a) (see set A of Table II). In Fig. 8 we present results
for the f2ð1270Þ, f2ð1950Þ and proton-exchange contri-
butions separately, as well as their coherent sum. At large
angles, cos θ ≈ 0, the inclusion of the f2ð1270Þ contribu-
tion lowers the cross section compared to the case when
only the f2ð1950Þ and proton-exchange are taken into
account. In Fig. 9 we show results including the hand-bag
contribution. The CA parameter obtained from the fit is
CA ¼ 0.14 GeV2. In Fig. 10 we use, as in Fig. 7(c), the
parameter set B of Table II. The ~CA parameter obtained
from the fit is ~CA ¼ 2.5 GeV4. In Ref. [10] ~CA was
estimated to be in the range 4.9 ÷ 8.0 GeV4 which is the
same order of magnitude as we find.
Experimentally the angular distributions were averaged

over rather large intervals of (sub)process energies. For a
better comparison with the experimental data we use the
formula, with z≡ cos θ,

	
dσ
dz

ðWγγÞ



ΔWγγ

¼ 1

ΔWγγ

Z
WγγþΔWγγ

2

Wγγ−
ΔWγγ

2

dσ
dz

ðWγγÞdWγγ; ð4:1Þ

instead of dσ
dz ðWγγ ¼ Wγγ;minþWγγ;max

2
Þ.

In Fig. 11 we compare the Belle data [5] and the earlier
OPAL and L3 data [3,4] with our model results. Due to the
large error bars of the OPAL and L3 data only the
comparison of the model results with the Belle data gives
significant information.
Heaving shown that the results of our approach, includ-

ing three mechanisms, describe the Belle experimental data
reasonably well we shall present our predictions for the
nuclear reaction (3.1) in the next section.

V. PREDICTIONS FOR THE NUCLEAR
ULTRAPERIPHERAL COLLISIONS

Having described the Belle angular distributions we go
to the predictions for the nuclear collisions. In this section
we show the integrated cross sections and several differ-
ential distributions for the nuclear process (3.1) calculated
as described in Sec. III including three mechanisms
discussed in Secs. II and IV. In the calculations below
we used the parameter set A from Table II.

In Fig. 12 we present the angular distribution dσ=dz
(z ¼ cos θ in the γγ c.m. system) at the PbPb collision
energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Here we show the nuclear
results when the hand-bag mechanism is included (solid
line) and excluded (dotted line). One can conclude that the
hand-bag contribution does not play an important role in
the pp̄ angular distribution. We wish to emphasize that the
enhancements at z ¼ �1 are the consequence of our model
presented in Sec. II. One can better visualize this behavior
with the help of the two dimensional distribution
d2σ=dzdWγγ . From Fig. 13 we clearly see that the result
for the nuclear reaction corresponds to that for elementary
γγ → pp̄ reaction discussed in the previous section. The
f2ð1950Þ contribution dominates at smaller Wγγ and at
z ≈ 0 and z ≈�1. This coincides with the result which was
presented in Fig. 6 (left panel, solid line). In contrast to the

FIG. 12. The distribution in z ¼ cos θ, integrating over
2mp < Wγγ < 4 GeV, for the PbPb → PbPbpp̄ reaction at
the PbPb collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.

FIG. 13. Distribution in (z;Wγγ) for the PbPb → PbPbpp̄
reaction (3.1) at the LHC energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.

2The cross section dσ=djzj, z ¼ cos θ, was calculated for the
Belle angular range of −0.6 < z < 0.6, but plotted for 0 < z <
0.6 after multiplication by a factor 2.
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resonant contribution, the proton-exchange one is concen-
trated mostly at larger invariant masses and around z ¼ �1.
In Fig. 14 we present the nuclear differential cross

sections for two ranges of z: the red lines are for
jzj < 0.6, as in the Belle measurement, the black lines
are for jzj ≤ 1 (full range). Panel (a) shows the distribution
in proton-antiproton invariant mass (Mpp̄ ≡Wγγ). TheMpp̄

distribution for the full z-range extends to much larger
invariant masses while for the Belle z-range it falls steeply
down. Similar as for the elementary cross section (Fig. 7),
the hand-bag mechanism contributes significantly at
Mpp̄ > 3 GeV. Simultaneously, the difference between
the results with (solid lines) and without (dotted lines)
hand-bag contribution appears more pronounced for the
case when the angular phase space is narrowed. In the
present calculations we integrate for 2mp ≤ Wγγ < 4 GeV.
The transverse momentum distributions of protons and
antiprotons shown in panel (b) are identical. Therefore we
label them by pt. For large pt the distributions fall steeply.
The limitation on the phase space (jzj < 0.6) has a
significant impact for smaller values of pt and has no

influence for pt > 1.4 GeV. In the panel (c) we show
distributions in rapidity of the proton or antiproton (which
are identical). Here we see only a difference in the
normalization, and not in the shape for the two different
ranges of z. Finally, in the panel (d) we show the
distribution in rapidity distance between proton and anti-
proton ydiff ¼ yp − yp̄. The larger the range of phase space
the broader is the distribution in ydiff . There are three
maxima when no extra cuts are imposed. The broad peak at
ydiff ≈ 0 corresponds to the region jzj < 0.6. It seems that
observation of the broader ydiff distribution, in particular
identification of the outer maxima, could be a good test of
our model. As we see from Fig. 12 the cross section
decreases quickly with Wγγ ¼ Mpp̄ for jzj < 0.6, but stays
large for jzj → 1. Thus, extending the integration to
Wγγ > 4 GeV should not change the distributions of
Fig. 14(b)–(d) for jzj < 0.6 but could have a sizeable
influence on those for jzj ≤ 1.
In Fig. 15 we show the two-dimensional distributions in

(yp; yp̄) again for two ranges of z (left panel relates to the
Belle angle limitation and right panel is for full phase

(a) (b)

(c) (d)

FIG. 14. The differential nuclear cross sections for the PbPb → PbPbpp̄ reaction (3.1) at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Results for the full
range of z (the black lines) and for jzj < 0.6 (the red lines) are presented. In panels (b)—(d) we integrate for 2mp ≤ Wγγ < 4 GeV. No
other cuts have been imposed here.
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space). The cross section is concentrated along the diago-
nal yp ≃ yp̄.
The ALICE Collaboration can measure pp̄ in Pb-Pb

collisions for jyj < 0.9; see [26] where the J=ψ → pp̄
decay was observed.3 We predict 46 events for jyj < 0.9
and pt > 1 GeV for our γγ → pp̄ contribution, including
three mechanisms, for ALICE integrated luminosity Lint ¼
95 μb−1 [26]. On the other hand the coherent J=ψ photo-
production [27] in the pp̄ channel gives 583 events
assuming approximately isotropic decay of J=ψ → pp̄.
This strongly suggests dominance of the coherent photo-
production mechanism of J=ψ over the γγ contribution.
With such a transverse momentum cut as for the ALICE

preliminary result a lot of the γγ → pp̄ contribution is lost
(with respect to the full phase space) but considerably less
of coherent J=ψ → pp̄ contribution, where the maxi-
mum of the pp̄ emission occurs at pt ¼ mJ=ψ

2
≈ 1.5 GeV

(sharp Jacobian peak associated with the fact that trans-
verse momentum of the coherent J=ψ is very small).
Generally, the range covered by the ATLAS and CMS
detectors for pp̄ pairs in UPC is somewhat larger,
jyj < 2.5. The LHCb Collaboration can measure pp̄
production in nuclear collisions for 2 < η < 4.5
and pt > 0.2 GeV.4

In Fig. 16 we present distributions in Wγγ ≡Mpp̄ (the
left panel) and ydiff ¼ yp − yp̄ (the right panel) imposing

FIG. 15. The two-dimensional distributions in proton and antiproton rapidities for the reaction (3.1) at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV for two
different z-ranges of outgoing nucleons. The results include the hand-bag contribution. The results are integrated for 2mp < Wγγ <
4 GeV.

FIG. 16. The differential nuclear cross sections as a function of pp̄ invariant mass (the left panel) and ydiff ¼ yp − yp̄ (the right panel)
for the PbPb → PbPbpp̄ reaction (3.1). The results for different experimental cuts are presented.

3We thank E. L. Kryshen for some information on the recent
ALICE measurement.

4We thank R. McNulty and T. Shears for some information on
the recent LHCb measurement.
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cuts on rapidities and transverse momenta of outgoing
baryons. From the left panel, we can observe that the
dependence on invariant mass of the pp̄ pair is sensitive to
the (pseudo)rapidity cut imposed. Note that due to the cut on
pt > 0.5 GeV theWγγ distribution begins with a larger value
of 2.1GeV (compare alsowith Fig. 14(a)). The distribution in
the difference of proton and antiproton rapidities is interest-
ing. Again (comparing with Fig. 14(d), jzj < 1.0) the ydiff-
distributions show three maxima. The experimental cuts
imposed on pt do not remove the external maxima predicted
by our model. Such characteristic features can be checked by
future experiments.
For completeness, we give the cross sections for the

PbPb → PbPbpp̄ reaction for the γγ contribution for vari-
ous experimental cuts on proton and antiproton (pseudo)
rapidities and transversemomenta at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.We
find the cross section of 100 μb taking into account the
ALICE cuts (jyj < 0.9, pt > 0.2 GeV), 160 μb for the
ATLAS cuts (jyj < 2.5, pt > 0.5 GeV), 500 μb for
the CMS cuts (jyj < 2.5, pt > 0.2 GeV), and 104 μb for
the LHCb cuts (2 < η < 4.5, pt > 0.2 GeV).

VI. CONCLUSIONS

We have discussed in detail the production of proton-
antiproton pairs in photon-photon collisions. Previous
theoretical papers on the subject tried to pick up only
one simple mechanism out of many in principle possible
ones. In our work we have tried to incorporate the known
mechanisms, such as proton exchange, s-channel resonance
exchange, and the hand-bag contribution.
In our calculation of the nonresonant proton exchange

we have included both Dirac- and Pauli-type couplings of
the photon to the nucleon and form factors for the
exchanged off-shell protons. We have found that the
Pauli-type coupling is very important, enhances the cross
section considerably, and cannot therefore be neglected.
We have shown that the Belle data [5] for low photon-

photon energies can be nicely described by including in
addition to the proton exchange the s-channel exchange of
the f2ð1950Þ resonance, which was observed to decay into
the γγ and pp̄ channels [24]. We include in the calculation
also the s-channel f2ð1270Þ meson exchange contribution.
These two tensor mesons were also needed to describe the
Belle data for the γγ → πþπ− and γγ → π0π0 processes
[16,28]. Our simple model has a few parameters; see
Table II. Adjusting the parameters of the vertex form
factors for the proton exchange, of the tensor meson s-
channel exchanges, and of the form factor (2.34) in the
hand-bag contribution we have managed to describe both
total cross section and differential angular distributions of
the Belle Collaboration with significantly better agreement
with the data than in all previous trials.
Having described the Belle data we have used the γγ →

pp̄ cross section to calculate the integrated cross section
and differential distributions for production of pp̄ pairs in

ultraperipheral, ultrarelativistic, collisions (UPC) of heavy
ions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. We have presented distributions
in rapidity and transverse momentum of protons and
antiprotons, invariant mass of the pp̄ system as well as
in the difference of rapidities for protons and antiprotons.
We have presented results for the full angular range of
z ¼ cos θ as well as for the Belle range jzj < 0.6. The
integrated cross section for the full phase space is by a
factor 5 larger than the one corresponding to the Belle
angular coverage. The larger the range of phase space the
broader is the distribution in ydiff , the rapidity difference
between proton and antiproton.
We have also made predictions for Pb − Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV and experimental cuts for the ALICE,
ATLAS, CMS, and LHCb experiments. Corresponding
total cross sections and differential distributions have been
presented. The UPC of heavy ions may provide new
information compared to the presently available data from
eþe− collisions, in particular, if the structures of the ydiff
distributions shown in Figs. 14 and 16 can be observed.
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APPENDIX A: HELICITY STATES FOR
PROTONS AND ANTIPROTONS AND

HELICITY AMPLITUDES

The general theory of helicity amplitudes for collisions
of particles with spin was developed in [29]. To make our
article self-contained and to fix the phases of our states we
discuss in the following the construction of helicity states
for protons and antiprotons as we found convenient for our
purposes. These states are then used to determine the
independent helicity amplitudes for the reaction γγ →
pp̄ (2.1).
We consider protons and antiprotons in a fixed reference

frame; see Fig. 17. Let p be the 3-momentum of the proton
and

p̂ ¼ p
jpj ¼

 sin θ cosϕ

sin θ sinϕ

cos θ

!
;

0 ≤ θ ≤ π; ≤ ϕ < 2π: ðA1Þ

We use throughout our paper a boldface notation for 3-
vectors, p, ez, etc.
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For p̂ · ez ≠ −1 (θ ≠ π) we define the spinors of definite
helicity of type a as

uðh;aÞs ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þmp

q � χðaÞs ðp̂Þ
2s jpj

p0þmp
χðaÞs ðp̂Þ

�
;

s ∈ fþ1=2;−1=2g; ðA2Þ

where

χðaÞs ðp̂Þ ¼ 1þ 2sðσ · p̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ p̂ · ezÞ

p χð1Þs ;

χð1Þ1=2 ¼
�
1

0

�
; χð1Þ−1=2 ¼

�
0

1

�
: ðA3Þ

This gives

χðaÞ1=2ðp̂Þ ¼
1ffiffiffi
2

p

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂z

p
p̂xþip̂yffiffiffiffiffiffiffiffi

1þp̂z

p

1
CA ¼

�
cos θ

2

sin θ
2
eiϕ

�
;

χðaÞ−1=2ðp̂Þ ¼
1ffiffiffi
2

p

0
B@ − p̂x−ip̂yffiffiffiffiffiffiffiffi

1þp̂z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂z

p
1
CA ¼

�− sin θ
2
e−iϕ

cos θ
2

�
; ðA4Þ

ūðh;aÞr ðpÞuðh;aÞs ðpÞ ¼ 2mpδrs: ðA5Þ

Let us denote the usual spinors with spin in �z direction
as

urðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þmp

q  
χð1Þr

σ·p
p0þmp

χð1Þr

!
;

r ∈ fþ1=2;−1=2g; ðA6Þ

see for instance [30].

We get then

ðūrðpÞuðh;aÞs ðpÞÞ ¼ 2mpðBðaÞ
rs ðp̂ÞÞ;

BðaÞðp̂Þ ¼ ðBðaÞ
rs ðp̂ÞÞ

¼ 1ffiffiffi
2

p

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂z

p
− p̂x−ip̂yffiffiffiffiffiffiffiffi

1þp̂z

p
p̂xþip̂yffiffiffiffiffiffiffiffi

1þp̂z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p̂z

p
1
CA

¼
�

cos θ
2

− sin θ
2
e−iϕ

sin θ
2
eiϕ cos θ

2

�
: ðA7Þ

Furthermore we define the creation operators for a proton in
the helicity state s of type a by

a†h;aðp; sÞ ¼ a†rðpÞBðaÞ
rs ðp̂Þ; ðA8Þ

where a†rðpÞ are the usual creation operators corresponding
to the spinors (A6). We have then

uðh;aÞs ðpÞūðh;aÞs ðpÞ ¼ pþmp;

a†h;aðp; sÞūðh;aÞs ðpÞ ¼ a†rðpÞūrðpÞ: ðA9Þ

For p̂ · ez ≠ 1 (θ ≠ 0) we can define helicity spinors of
type b as follows

uðh;bÞs ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þmp

q  
χðbÞs ðp̂Þ

2s jpj
p0þmp

χðbÞs ðp̂Þ

!
;

χðbÞs ðp̂Þ ¼ 1þ 2sðσ · p̂Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − p̂ · ezÞ

p χð1Þ−s ;

s ∈ fþ1=2;−1=2g: ðA10Þ

This gives

χðbÞ1=2ðp̂Þ ¼
1ffiffiffi
2

p
 p̂x−ip̂yffiffiffiffiffiffiffiffi

1−p̂z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p̂z

p
!

¼
�
cos θ

2
e−iϕ

sin θ
2

�
;

χðbÞ−1=2ðp̂Þ ¼
1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − p̂z

p
− p̂xþip̂yffiffiffiffiffiffiffiffi

1−p̂z

p

!
¼
�

sin θ
2

− cos θ
2
eiϕ

�
: ðA11Þ

Comparing with (A4) we find for 0 < θ < π

χðbÞ1=2ðp̂Þ ¼ e−iϕχðaÞ1=2ðp̂Þ;
χðbÞ−1=2ðp̂Þ ¼ −eiϕχðaÞ−1=2ðp̂Þ: ðA12Þ

FIG. 17. Coordinate system and momentum vector p.
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With urðpÞ from (A6) we find

ðūrðpÞuðh;bÞs ðpÞÞ ¼ 2mpðBðbÞ
rs ðp̂ÞÞ;

BðbÞðp̂Þ ¼ ðBðbÞ
rs ðp̂ÞÞ

¼ 1ffiffiffi
2

p

0
B@

p̂x−ip̂yffiffiffiffiffiffiffiffi
1−p̂z

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p̂z

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p̂z

p
− p̂xþip̂yffiffiffiffiffiffiffiffi

1−p̂z

p

1
CA

¼
�
cos θ

2
e−iϕ sin θ

2

sin θ
2

− cos θ
2
eiϕ

�
: ðA13Þ

Defining creation operators analogous to (A8)

a†h;bðp; sÞ ¼ a†rðpÞBðbÞ
rs ðp̂Þ; ðA14Þ

we get

uðh;bÞs ðpÞūðh;bÞs ðpÞ ¼ pþmp;

a†h;bðp; sÞūðh;bÞs ðpÞ ¼ a†rðpÞūrðpÞ: ðA15Þ
Now we go to antiprotons. For this we use the charge-

conjugation matrix

SðCÞ ¼ iγ2γ0 ¼ −iγ2γ0 ¼
�

0 −ε
−ε 0

�
;

ε ¼
�

0 1

−1 0

�
; ðA16Þ

see for instance chapter 4 of [30]. We have

SðCÞ ¼ S̄ðCÞ ¼ −S−1ðCÞ ¼ −SðCÞ† ¼ −SðCÞT;
S−1ðCÞγμSðCÞ ¼ −γμT: ðA17Þ

We define the antiproton spinors as

v̄rðpÞ¼uTr ðpÞSðCÞ

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þmp

q �
−χð1ÞTr ε

σ ·p
p0þmp

;χð1ÞTr ε

�
; ðA18Þ

v̄ðh;aÞs ðpÞ¼ uTðh;aÞs ðpÞSðCÞ

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þmp

q �
χðaÞTs ðp̂Þε2s jpj

p0þmp
;χðaÞTs ðp̂Þε

�
;

ðA19Þ

v̄ðh;bÞs ðpÞ¼uTðh;bÞs ðpÞSðCÞ

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0þmp

q �
χðbÞTs ðp̂Þε2s jpj

p0þmp
;χðbÞTs ðp̂Þε

�
;

ðA20Þ

see (A6), (A2), and (A10).

The creation operators for antiprotons are in the standard
basis

b†rðpÞ ¼ UðCÞa†rðpÞU−1ðCÞ; ðA21Þ

where UðCÞ is the charge-conjugation operator.
Analogously we define the creation operators for antipro-
tons of definite helicity

b†h;aðp;sÞ¼UðCÞa†h;aðp;sÞU−1ðCÞ¼b†rðpÞBðaÞ
rs ðp̂Þ; ðA22Þ

b†h;bðp;sÞ¼UðCÞa†h;bðp;sÞU−1ðCÞ¼b†rðpÞBðbÞ
rs ðp̂Þ; ðA23Þ

where we used (A8) and (A14).
With this we get

vðh;aÞs ðpÞv̄ðh;aÞs ðpÞ ¼ p −mp;

vðh;bÞs ðpÞv̄ðh;bÞs ðpÞ ¼ p −mp; ðA24Þ

vðh;aÞs ðpÞb†h;aðp; sÞ ¼ vrðpÞb†rðpÞ;
vðh;bÞs ðpÞb†h;bðp; sÞ ¼ vrðpÞb†rðpÞ: ðA25Þ

Now we come to the reaction (2.1). We consider (2.1) in
the c.m. system with the x-z plane giving the reaction plane;
see Fig. 18. The usual kinematic variables are given by
(2.5). Let ex, ey, ez be the Cartesian unit vectors in the
reference system of Fig. 18. Then k01 ¼ k02 ¼ p0

3 ¼ p0
4 ¼

1
2

ffiffiffi
s

p
and the momenta of the particles are

k1 ¼ −k2 ¼ jk1jez;
p3 ¼ −p4 ¼ jp3jðsin θex þ cos θezÞ;

jk1j ¼
1

2

ffiffiffi
s

p
;

jp3j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q
: ðA26Þ

As polarization vectors for the incoming photons of definite
helicity we choose

FIG. 18. The reaction γγ → pp̄ in the c.m. system.
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ϵ1ð�Þ ¼∓ 1ffiffiffi
2

p ðex � ieyÞ;

ϵ2ð�Þ ¼∓ 1ffiffiffi
2

p ð−ex � ieyÞ: ðA27Þ

The corresponding photon creation operators are

a†ðkj; mÞ ¼ ϵjðmÞa†ðkjÞ;
j ¼ 1; 2; m ¼ �1: ðA28Þ

For the proton we choose the helicity basis a, for the
antiproton the basis b. From (A8) and (A23) we have for
the corresponding creation operators

a†h;aðp3; sÞ ¼ a†rðp3ÞBðaÞ
rs ðp̂3Þ; ðA29Þ

b†h;bðp4; sÞ ¼ b†rðp4ÞBðbÞ
rs ðp̂4Þ: ðA30Þ

Note that in calculatingBðaÞ
rs ðp̂3Þ from (A7) we have to make

the replacements θ → θ, ϕ → 0. Calculating BðbÞ
rs ðp̂4Þ from

(A13)we have tomake the replacements θ → π − θ,ϕ → π.
The symmetries of the reaction (2.1) are the following.

The parity (P) transformation followed by a rotation by π
around the positive y-axis:

U2ðπÞUðPÞ: ðA31Þ

The charge-conjugation (C) transformation followed by a
rotation by π around the positive y-axis:

U2ðπÞUðCÞ: ðA32Þ

From the transformation laws of the standard creation
operators (see, e.g., [30]) and from the relations [see (A7),
(A13)]

εTBðaÞðp̂3Þε ¼ BðaÞðp̂3Þ;
εTBðbÞðp̂4Þε ¼ −BðbÞðp̂4Þ; ðA33Þ

εBðaÞðp̂3Þ ¼ −BðbÞðp̂4Þσ3;
εBðbÞðp̂4Þ ¼ BðaÞðp̂3Þσ3; ðA34Þ

we get the transformation laws for the helicity creation
operators shown in Table III.
We define now the helicity states for the reaction (2.1)

using (A28), (A29), and (A30) as

jγðk1; m1Þ; γðk2; m2Þi ¼ a†ðk1; m1Þa†ðk2; m2Þj0i;
m1; m2 ∈ fþ1;−1g;

jpðp3; s3Þ; p̄ðp4; s4Þi ¼ a†h;aðp3; s3Þb†h;bðp4; s4Þj0i;
s3; s4 ∈ fþ1=2;−1=2g: ðA35Þ

The transformation laws of these states are shown in
Table IV.
Finally we come to the helicity amplitudes for the

reaction (2.1)

hpðp3; s3Þ; p̄ðp4; s4ÞjT jγðk1; m1Þ; γðk2; m2Þi
≡ h2s3; 2s4jT jm1; m2i;

2s3; 2s4; m1; m2 ∈ fþ1;−1g; ðA36Þ

where we use the convenient short-hand notation of (2.8).
There are 16 helicity amplitudes. The symmetry
U2ðπÞUðPÞ (A31) gives the relation, using Table IV,

h2s3; 2s4jT jm1; m2i ¼ h2r3; 2r4jT j −m1;−m2iεr3s3εr4s4 :
ðA37Þ

From the symmetry of U2ðπÞUðCÞ (A32) we get

TABLE III. Transformation properties of creation operators for protons, antiprotons, and photons under the
transformations (A31) and (A32).

A† U2ðπÞUðPÞA†U−1ðPÞU−1
2 ðπÞ U2ðπÞUðCÞA†U−1ðCÞU−1

2 ðπÞ
a†sðp3Þ −a†rðp3Þεrs −b†rðp4Þεrs
b†sðp4Þ b†rðp4Þεrs −a†rðp3Þεrs
a†h;aðp3; sÞ −a†h;aðp3; rÞεrs b†h;bðp4; rÞðσ3Þrs
b†h;bðp4; sÞ −b†h;bðp4; rÞεrs −a†h;aðp3; rÞðσ3Þrs
a†ðk1; mÞ −a†ðk1;−mÞ −a†ðk2; mÞ
a†ðk2; mÞ −a†ðk2;−mÞ −a†ðk1; mÞ

TABLE IV. Transformation laws of the states (A35) under the transformations (A31) and (A32).

ji U2ðπÞUðPÞji U2ðπÞUðCÞji
jpðp3; s3Þ; p̄ðp4; s4Þi jpðp3; r3Þ; p̄ðp4; r4Þiεr3s3εr4s4 jpðp3; r3Þ; p̄ðp4; r4Þiðσ3Þr3s4ðσ3Þr4s3
jγðk1; m1Þ; γðk2; m2Þi jγðk1;−m1Þ; γðk2;−m2Þi jγðk1; m2Þ; γðk2; m1Þi
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h2s3; 2s4jT jm1; m2i ¼ h2r3; 2r4jT jm2; m1iðσ3Þr3s4ðσ3Þr4s3 :
ðA38Þ

The relations (A37) and (A38) are written explicitly for
the helicity amplitudes in Table V. From this we find that
there are only 6 independent helicity amplitudes for (2.1)
which we choose as follows:

ψ1ðs; tÞ ¼ hþ þ jT j þ þi;
ψ2ðs; tÞ ¼ hþ þ jT j − −i;
ψ3ðs; tÞ ¼ hþ − jT j þ −i;
ψ4ðs; tÞ ¼ hþ − jT j −þi;
ψ5ðs; tÞ ¼ hþ þ jT j þ −i;
ψ6ðs; tÞ ¼ hþ − jT j þ þi: ðA39Þ

With this we have obtained a complete overview of the
general constraints of the helicity amplitudes of γγ → pp̄
following from rotational, parity, and charge-conjugation
invariance of strong and electromagnetic interactions.
Finally we note that the same analysis applies to any

reaction

γ þ γ → Bþ B̄; ðA40Þ
where B stands for a spin 1=2 baryon. We only have to
replace in all our formulas mp by mB. Interesting examples
may be B ¼ Λ;Σþ, Λþ

c .
5 The polarization of these baryons

can be obtained from their decay distributions.

APPENDIX B: THE lS COUPLING SCHEME
AND HELICITY AMPLITUDES FOR THE

REACTION γγ → f 2 → pp̄

In this Appendix we discuss the relation of lS couplings
to the helicity amplitudes for the reaction γγ → f2 → pp̄.
Here l stands for the orbital angular momentum and S for
the total spin of the pp̄ system.
Let us see in howmany ways one can construct a pp̄ state

with JPC ¼ 2þþ. The partial-wave analysis (which is
perfectly relativistic) says that we can combine the spins
of p and p̄ to give the total spin S ¼ 0, 1. Now we must
combine this with the orbital angular momentum l to the
total angular momentum J ¼ 2. This gives the four pos-
sibilities listed in Table VI. In general we have the parity of
pp̄ state P ¼ ð−1Þlþ1 (p and p̄ have opposite intrinsic
parity) and charge-conjugation C ¼ ð−1ÞlþS. There are,
thus, two possible ðl; SÞ couplings for f2ð2þþÞ → pp̄:
(1,1) and (3,1).
We shall now analyze the lS content of the f2pp̄

couplings (2.19) and (2.20).
Let urðpÞ, vrðpÞ be the usual Dirac spinors with spin in

�z direction for r ¼ �1=2; see (A6) and (A18). For these
we find in the c.m. system of reaction (2.1) the matrix

elements of the vertex functions Γðf2pp̄ÞðjÞ
κλ (j ¼ 1, 2) [see

(2.21), (2.22)] with Pð2Þκλ;κ0λ0 the spin 2 projector [the term
in square brackets in (2.24)] as follows. For j ¼ 1 we get

Pð2Þκλ;κ0λ0 ðp3 þ p4Þūr3ðp3ÞΓðf2pp̄ÞðjÞ
κ0λ0 ðp3; p4Þvr4ðp4Þ ¼ 0

unless κ ¼ k; λ ¼ l; k; l ∈ f1; 2; 3g; ðB1Þ

Pð2Þkl;κ0λ0 ðp3þp4Þūr3ðp3ÞΓðf2pp̄Þð1Þ
κ0λ0 ðp3;p4Þvr4ðp4Þ

¼−
4gð1Þf2pp

M0

Fðf2pp̄Þð1Þ½ðp3þp4Þ2�

× χ†r3

�
−p0

3

�
1

2
pk
3σ

lþ 1

2
pl
3σ

k−
1

3
δklðp3 · σÞ

�

þ
�
1

2
pk
3p

l
3þ

1

2
pl
3p

k
3−

1

3
δkljp3j2

�
1

p0
3þmp

ðp3 · σÞ
�
εχ�r4 :

ðB2Þ

Here and in the following we set χr ≡ χð1Þr ; see (A6) and
(A18). For j ¼ 2 we get

TABLE V. Helicity amplitudes for γγ → pp̄ (2.1) and their
symmetry relations.

U2ðπÞUðPÞ U2ðπÞUðCÞ
hþ þ jT j þ þi h− − jT j − −i hþ þ jT j þ þi ψ1

hþ − jT j þ þi −h−þ jT j − −i −h−þ jT j þ þi ψ6

h−þ jT j þ þi −hþ − jT j − −i −hþ − jT j þ þi −ψ6

h− − jT j þ þi hþ þ jT j − −i h− − jT j þ þi ψ2

hþ þ jT j þ −i h− − jT j −þi hþ þ jT j −þi ψ5

hþ − jT j þ −i −h−þ jT j −þi −h−þ jT j −þi ψ3

h−þ jT j þ −i −hþ − jT j −þi −hþ − jT j −þi −ψ4

h− − jT j þ −i hþ þ jT j −þi h− − jT j −þi ψ5

hþ þ jT j −þi h− − jT j þ −i hþ þ jT j þ −i ψ5

hþ − jT j −þi −h−þ jT j þ −i −h−þ jT j þ −i ψ4

h−þ jT j −þi −hþ − jT j þ −i −hþ − jT j þ −i −ψ3

h− − jT j −þi hþ þ jT j þ −i h− − jT j þ −i ψ5

hþ þ jT j − −i h− − jT j þ þi hþ þ jT j − −i ψ2

hþ − jT j − −i −h−þ jT j þ þi −h−þ jT j − −i ψ6

h−þ jT j − −i −hþ − jT j þ þi −hþ − jT j − −i −ψ6

h− − jT j − −i hþ þ jT j þ þi h− − jT j − −i ψ1

TABLE VI. The l and S values leading to pp̄ states with J ¼ 2.

l S JPC

2 0 2−þ
1 1 2þþ
2 1 2−−

3 1 2þþ

5The Λ baryon has a magnetic moment μΛ ¼ −0.613�
0.004μN [24]. Thus, the reaction γγ → ΛΛ̄ can proceed through
the analogue of the diagrams of Fig. 1(a) and 1(b).
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Pð2Þκλ;κ0λ0 ðp3 þ p4Þūr3ðp3ÞΓðf2pp̄Þð2Þ
κ0λ0 ðp3; p4Þvr4ðp4Þ ¼ 0 for κ ¼ 0; λ arbitrary and κ arbitrary; λ ¼ 0; ðB3Þ

Pð2Þkl;κ0λ0 ðp3 þ p4Þūr3ðp3ÞΓðf2pp̄Þð2Þ
κ0λ0 ðp3; p4Þvr4ðp4Þ ¼ −

8gð2Þf2pp

M2
0

Fðf2pp̄Þð2Þ½ðp3 þ p4Þ2�
�
pk
3p

l
3 −

1

3
δkljp3j2

�
p3 · χ

†
r3σεχ

�
r4 :

ðB4Þ

The l-S amplitudes are as follows. For l ¼ 1, S ¼ 1 we have

Akl
ð1;1Þ ¼ χ†r3

�
1

2
pk
3σ

l þ 1

2
pl
3σ

k −
1

3
δklðp3 · σÞ

�
εχ�r4 : ðB5Þ

The traceless symmetric (l ¼ 3) tensor is

Tklm
3 ¼ pk

3p
l
3p

m
3 −

1

5
jp3j2ðδklpm

3 þ δkmpl
3 þ δlmpk

3Þ: ðB6Þ

This gives, for instance, with θ as defined in Fig. 18 and P3 the Legendre polynomial

Tklm
3 ekzelzemz ¼ jp3j2

2

5

�
5

2
cos3 θ −

3

2
cos θ

�
¼ jp3j2

2

5
P3ðcos θÞ: ðB7Þ

The l ¼ 3, S ¼ 1 the amplitude is

Tklm
3 χ†r3σ

mεχ�r4 ¼ Akl
ð3;1Þ ¼

�
pk
3p

l
3 −

1

3
δkljp3j2

�
χ†r3ðp3 · σÞεχ�r4 −

2

5
jp3j2χ†r3

�
1

2
pk
3σ

l þ 1

2
pl
3σ

k −
1

3
δklðp3 · σÞ

�
εχ�r4 : ðB8Þ

From (B2), (B4), (B5), and (B8) we get the l − S decomposition of our couplings j ¼ 1 and 2 as follows:

Pð2Þkl;κ0λ0 ðp3 þ p4Þūr3ðp3ÞΓðf2pp̄Þð1Þ
κ0λ0 ðp3; p4Þvr4ðp4Þ ¼ −

4gð1Þf2pp

M0

Fðf2pp̄Þð1Þ½ðp3 þ p4Þ2�

×

�
−
�
3

5
p0
3 þ

2

5
mp

�
Akl

ð1;1Þ þ
1

p0
3 þmp

Akl
ð3;1Þ

�
; ðB9Þ

Pð2Þkl;κ0λ0 ðp3 þ p4Þūr3ðp3ÞΓðf2pp̄Þð2Þ
κ0λ0 ðp3; p4Þvr4ðp4Þ ¼ −

8gð2Þf2pp

M2
0

Fðf2pp̄Þð2Þ½ðp3 þ p4Þ2� ×
�
2

5
ððp0

3Þ2 −m2
pÞAkl

ð1;1Þ þAkl
ð3;1Þ

�
:

ðB10Þ
Note that—for χr3 and χr4 not depending on θ—Akl

ð1;1Þ clearly has only l ¼ 1 andAkl
ð3;1Þ clearly has only l ¼ 3; see (B5) and

(B8), respectively.
But now we can go to the helicity amplitudes. All we have to do is to replace the two-component spinors

as follows

χr3 → χðaÞs3 ðp̂3Þ from ðA4Þwith the replacements θ → θ; ϕ → 0;

χr4 → χðbÞs4 ð−p̂3Þfrom ðA11Þwith the replacements θ → π − θ; ϕ → π: ðB11Þ
Note that these spinors depend on θ.
We get

ðχðaÞ†s3 εχðbÞ�s4 Þ ¼
�
1 0

0 −1

�
¼ ðσ3s3s4Þ; ðχðaÞ†s3 σ1εχðbÞ�s4 Þ ¼

�
sin θ − cos θ

cos θ sin θ

�
; ðχðaÞ†s3 σ2εχðbÞ�s4 Þ ¼

�
0 i

i 0

�
;

ðχðaÞ†s3 σ3εχðbÞ�s4 Þ ¼
�

cos θ sin θ

− sin θ cos θ

�
; ðχðaÞ†s3 p̂3 · σεχ

ðbÞ�
s4 Þ ¼ δs3s4 ; p̂3 ¼ p3=jp3j: ðB12Þ
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Inserting these expressions in (B2) and (B4) we see that
the p3 dependence, that is, the θ dependence of
the amplitudes will in general be changed. Take, for
instance, (B4) which is a combination of l ¼ 3 plus
l ¼ 1; see (B5) and (B8). With the replacements (B11)
we get from (B12)�

pk
3p

l
3 −

1

3
δkljp3j2

�
χðaÞ†s3 p3 · σεχ

ðbÞ�
s4

¼
�
pk
3p

l
3 −

1

3
δkljp3j2

�
jp3jδs3s4 : ðB13Þ

From l ¼ 3 plus l ¼ 1 we go, effectively, to l ¼ 2.
The replacements (B11) lead from (B2) and (B4),

using the expression for the diagram for γγ → f2 → pp̄
[see Fig. 1(c)], to the helicity amplitudes (2.25) and
(2.26).

APPENDIX C: PHASE CONVENTIONS

For the hand-bag contribution, Sec. II C, we must take
into account different phase conventions used in [10] relative
to ours, as explained in Appendix A. In [10] the orientation
of the particle momenta corresponds to a rotation by π

2
− θ

relative to the momenta in Fig. 18. Considering this we find
that their spinors for proton and antiproton correspond to our

uðh;aÞs3 ðp3Þ and −2s4vðh;bÞs4 ðp4Þ, respectively. The phase con-
ventions for the photons are not stated explicitly in [10].
From a comparison6 of the calculations (22) and (23) of [10]
with the corresponding ones with our conventions we
conclude that the jγðk1;�Þ; γðk2;∓Þi states of [10] have
an extra minus sign compared to ours. Taking everything
together we obtain (2.33) for the amplitudes.
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