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We present the first calculation of the shear viscosity for two-flavor plane wave (FF) color
superconducting quark matter. This is a member of the family of crystalline color superconducting
phases of dense quark matter that may be present in the cores of neutron stars. The paired quarks in the FF
phase feature gapless excitations on surfaces of crescent-shaped blocking regions in momentum space and
participate in transport. We calculate their contribution to the shear viscosity. We also note that the
transverse t1, t2, t3 gluons which are undamped in the 2SC lead to dynamic screening in the FF phase. The
exchange of these gluons is the most important mechanism of the scattering of the paired quarks. We find
that the shear viscosity of the paired quarks is roughly a factor of 100 smaller compared to the shear
viscosity of unpaired quark matter even though their spectrum is ungapped. Therefore in the two-flavor FF
phase, the unpaired quarks and the electrons give the shear viscosity of the two-flavor FF phase to a very
good approximation. Our results may have implications for the damping of r-modes in rapidly rotating,
cold neutron stars.
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I. INTRODUCTION

Characterizing the nature of the phases of matter in
neutron stars requires constraints on the equation of state as
well as observational constraints on its transport properties.
These observations help to eliminate models of dense
matter inconsistent with the data. (See Refs. [1–5] for
reviews.) Transport properties are sensitive to the spectrum
of excitations above the equilibrium state [which is
essentially the ground state because the temperatures (T)
of neutron stars are much smaller than the other relevant
energy scales]. These excitations can differ substantially for
phases with similar equations of state.
A well-studied transport property of dense matter is the

viscosity [the shear viscosity (η) and the bulk viscosity],
which is connected to the spin-down rates of fast rotating
neutron stars [6]. In the absence of viscous damping, the
fluid in rotating neutron stars is [7,8] unstable to r-modes
that lead to a rapid slow down of the neutron star rotation.
Viscosities prevent the growth of r-modes. At any given
temperature T, the neutron star frequency should be below
a maximum [6] determined by the shear and bulk viscos-
ities at that temperature. The shear viscosity dominates at
smaller T and the bulk viscosity at larger temperatures, and
the crossover point depends on the phase of dense matter.
The connection between the viscosity and the spin observ-
ables is simplest if r-modes do not saturate at very small
amplitudes [9,10] (determined by nonlinear physics).

Assuming there are no other damping mechanisms and
that r-modes do not saturate at unnaturally small ampli-
tudes, fluids in neutron stars [11,12] made up of only
neutrons, protons and electrons do not have sufficient
viscosity to damp r-modes in many rapidly rotating neutron
stars [6,13–15]. Large damping at the crust-core interface
[14,16,17] could stabilize r-modes in such stars, but would
require unnaturally large shear viscosity for hadronic
matter [18] and may not be sufficient even for extremely
favorable assumptions about this contribution [6].
Appearance of various condensates and strange particles
like hyperons could enhance the viscosity of the hadronic
phase. This is a very active field of research [19–27]. In this
context it is natural to ask if phases featuring deconfined
quark matter can provide adequate damping of r-modes.
Viscosities of unpaired quark matter have been exten-

sively analyzed in the literature [28,29]. They are domi-
nated by excitations of quarks near their Fermi surfaces and
are efficient at transport due to the large density of states of
low energy excitations. Models of neutron stars featuring a
core of unpaired quarks [6,15] are consistent with the
observations of their rotation frequencies. (Interactions
between quarks might play an important role [30] in this
agreement.)
However, quarks in the cores of neutron stars are likely

to be in a paired phase (see Refs. [31–33] for reviews).
Pairing affects the spectrum of quasiparticles and can
change the transport properties qualitatively. For example,
at asymptotically high density, quark matter exists in the
color flavor locked (CFL) phase [34]. All the fermionic
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excitations in this phase are gapped and transport is carried
out by Goldstone modes. The shear viscosity of the
Goldstone mode associated with Uð1ÞB breaking was
calculated in [35,36]. A star made only of CFL matter is
not consistent with the observed rotational frequencies
[35,37], but in a star featuring a core of CFL surrounded by
hadronic matter (hybrid neutron star) some mechanism
involving dynamics at the interface (analogous to the one
discussed in Ref. [38]) might be able to saturate r-mode
amplitudes at a level consistent with observations.
At intermediate densities, the nature of the pairing pattern

of quarkmatter is not known [33]. One exciting possibility is
that the quarks form a crystalline color superconductor [39].
(See Ref. [40] for a recent review.) These phases are well
motivated ground states for quark matter at intermediate
densities [41–43] although their analysis is challenging
because the condensate is position dependent [44]. (If the
fermion coupling is strong the 2SC phase [45,46] may be
favored over crystalline color superconductors [47].) Phases
with gap parameters having periodic modulation in space
were first proposed by Fulde, Ferrell (FF) [48], Larkin, and
Ovcinnikov (LO) [49] in condensed matter systems, and
phases with such pairing are commonly known as LOFF
phases. In the FF phase the gap parameter is characterized by
a condensate that can be written as a single plane wave.
Therefore it is a simpler special case of LOFF phases for
which the condensate can be written as a sum of multiple
plane waves.
The LOFF phases have unique properties. They are

superfluid but also have a large shear modulus [50] which
can sustain quadrupole deformations in rotating neutron
stars and lead to the generation of gravitational waves
[51–53]. In addition, unlike the CFL phase, LOFF phases
feature gapless fermionic excitations. Therefore, we expect
transport properties of these phases to resemble that of
unpaired quark matter.
Neutrino emission in the crystalline color superconduct-

ing phases for the simplest three-flavor condensate was
computed in Ref. [54]. Stars featuring these phases in the
core do indeed cool rapidly [54,55].
In this paper we present the first calculation of the shear

viscosity of the simplest member of the crystalline color
superconducting phases: the two-flavor FF [48] phase. The
shear viscosity depends on the spectrum of the low energy
modes as well as their strong interactions. Hence it is
different from the neutrino emissivity where the strong
interactions between quasiparticles do not play a role.
In the two-flavor FF phase (just like the isotropic 2SC

phase [45,46]), the “blue” (b) colored up (u) and the down
(d) quarks do not participate in pairing. Their transport
properties were analyzed in Ref. [56]. But because of the
presence of gapless modes (unlike the 2SC phase), the “red”
(r) and the “green” (g) coloredu andd quarks also contribute
to the viscosity.
We argue that ur − dg − ug − dr quarks scatter domi-

nantly via exchange of the transverse t1, t2, and t3 gluons

(for details see Sec. III D). These gluons are Landau
damped whereas in the 2SC phase the longitudinal and
the transverse t1, t2, and t3 gluons are neither screened nor
Landau damped [57–60]. The polarization tensors of the t1,
t2, and t3 gluons are anisotropic [61].
Therefore, both the quasiparticle dispersions and

their interactions are anisotropic, and the usual techniques
to simplify the collision integral in the Boltzmann
equation [29] are not applicable, making its evaluation
challenging. Furthermore, the Boltzmann analysis needs to
be modified to accommodate the fact that the excitations
are Bogoliubov quasiparticles. To address this we find it
convenient to separate the modes in the two Bogoliubov
branches [Eq. (25)] into modes [Eq. (26)] corresponding to
momenta (jpj) greater than the chemical potential (μ) (in
the absence of pairing these are associated with particle
states) and jpj < μ (in the absence of pairing these are
associated with hole states). This makes the formalism a
multispecies problem.
Quasiparticle modes near the gapless surface dominate

transport, but the shape of the surface of the gapless surface
in the FF phase is nontrivial. In addition, the momentum
transferred between the quasiparticles can be large and a
small momentum expansion cannot always be made.
Therefore we evaluate the collision integral [Eq. (11)]
numerically.
The main result of the computation is given in Eq. (60)

and in Fig. 6. The central conclusion is that the viscosity of
the ur − dg − ug − dr quarks is reduced compared to their
contribution in unpaired quark matter by a factor of roughly
100. The detailed analyses and the dependence of the shear
viscosity on T and the splitting between the Fermi surfaces
δμ are shown in Sec. IV B.
The reduction of the viscosity by a large factor depends

on the properties of the mediators between the quasipar-
ticles. For example, if we use the Debye screened longi-
tudinal gluons (this is appropriate for one-flavor FF pairing
and is also a good model for condensed matter systems like
the FF phase in cold atoms), then the viscosity of the paired
fermions remains unchanged from its value in the absence
of pairing. This is because, the geometric factors associated
with the reduced area of the Fermi surface cancel out. (See
Sec. IVA for details.) We give an intuitive argument to
clarify the difference between long-ranged and short-
ranged interactions. These results (Sec. IVA), though
not directly relevant for the two-flavor FF phase, provide
intuition for the three-flavor crystalline phases where both
the longitudinal and the transverse gluons are screened, and
may also be relevant for condensed matter systems where
the transverse gauge bosons do not play a role.
To understand some aspects of the numerical results

obtained for the FF phase (Sec. IV) we use our formalism to
calculate the viscosity in isotropically paired systems with
Fermi surface splitting in Appendix E. For these systems it
is possible to compare the numerical results with simple
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analytic expressions in certain limits. The results of
Appendix E are not novel, but clarify some physical
aspects of the problem. For example we study the role
played by the scattering of paired fermions with phonons in
suppressing their transport which has not been highlighted
before. While the role played by phonon-fermion scattering
is only of academic importance in the extreme limits Δ ≫
T and Δ ≪ T, it may be important in the intermediate
regime where Δ > T but not Δ ≫ T.
The plan of the paper is as follows. We quickly review

the basics of the FF phase in Sec. II and compare the low
energy excitations in this phase to unpaired quark matter
and the CFL phase. In Sec. III we set up the problem. The
basic formalism is the multicomponent Boltzmann trans-
port equation (Sec. III A) which we solve in the relaxation
time approximation. We describe the low energy modes in
Secs. III B and III C and their interactions in Sec. III D.
In Sec. IV we show results for the FF phase. We compute

the shear viscosity in the FF phase for a simple interaction
given in Eq. (47) in Sec. IVA. We give the results for the t1,
t2, t3 interaction in Sec. IV B.We summarize the results and
speculate about some implications for neutron star phe-
nomenology in Sec. V.
Description of the relevant FF phase space

(Appendix A), detailed steps to evaluate the collision
integral (Appendix B), a quick review of the effective
Lagrangian for the two-flavor pairing (Appendix C), clar-
ifications of the role played by the phonons (Appendix D),
results for the isotropic pairing (Appendix E) and the
details about the numerical implementation of the collision
integrals (Appendix F) are given in the appendix.

II. REVIEW

To set up the Boltzmann transport equation for the
crystalline phase we need to understand the excitation
spectra and the interactions between the quasiparticles.
This requires the understanding of the symmetry breaking
pattern of the crystalline phases which we review here.
Experts in the field can skip to the end of the section and
start from Sec. III A.
A benchmark quark matter phase to compare and

contrast the properties of paired quark matter is unpaired
quark matter. In the absence of pairing, the excitation
spectrum is simply

E ¼ jξj ¼ jjpj − μj ð1Þ

where ξ ¼ jpj − μ is the radial displacement of the momen-
tum vector from the Fermi surface. The excitations at the
Fermi surface (defined by ξ ¼ 0) are gapless and can be
excited thermally; therefore fermions near the Fermi sur-
face are very efficient at transporting momentum and
charge.
The interactions between the quarks are mediated

by gluons (eight gluons corresponding to the generators

t1;…t81) and the photon. In the absence of pairing, the
longitudinal components of these mediators are Debye
screened [28]. The transverse components of the media-
tors (magnetic components) are unscreened in the pres-
ence of static fluctuations of the current, and are only
dynamically screened (Landau damping). Consequently,
they have a longer range compared to the longitudinal
gauge bosons and dominate scattering in relativistic
systems [29] at low T. This can be understood as follows.
The screening mass for the longitudinal gauge bosons is
given by the mDebye ∼ Π1=2

l where Πl ∼ gμ is the longi-
tudinal polarization tensor (g is the coupling and μ is the
chemical potential). On the other hand Landau damping is
proportional to the energy exchange, and damping occurs
on a momentum scale mLandau ∼ ðωΠlÞ1=3 [63]. [For a
concrete estimate see Eq. (E8)]. The energy exchange ω is
of the order of T which is much smaller than μ for neutron
stars. Consequently, the transverse gluons, if unscreened,
have a longer range compared to the longitudinal gluons
and therefore their exchange is the dominant scattering
mechanism for the quarks. This argument will turn out to
be important in Sec. IV B, when we discuss which are the
most important scattering mechanisms in the FF phase.
Attractive color interactions between quarks induce

Cooper pairing between quarks. At asymptotically high
densities [corresponding to a quark number chemical
potential μ sufficiently larger than the strange quark mass
(ms)], the strange quark mass can be ignored, and the
Lagrangian is symmetric under SU(3) transformations
between the up (u or 1), down (d or 2) and (s or 3) quarks.
They can all be treated as massless and form Cooper pairs
in a pattern that locks the color and flavor symmetries (CFL
phase) [34]. The condensate is translationally invariant,
which corresponds to pairing between quarks of opposite
momenta.
Pairing qualitatively alters both the spectrum of quasi-

particles as well as their interactions. The fermionic
excitations are nine Bogoliubov quasiparticles [34] (for
each handedness) which are all gapped. The scale of the
gap is set by Δ0CFL which is expected to be of the order of a
few 10s of MeV while the temperatures of the neutron stars
of interest are at most a few keV. Therefore the quarks do
not participate in transport.
Since the fermions are all gapped in this phase, the low

energy theory consists of the Goldstone modes (“phonons”)
associated with the broken global symmetries [34,64–70].
The phonons have macroscopically large mean free paths
(of the order of the size of the neutron star or typical vortex
separations [36]). Flow on smaller length scales compared
to the mean free path then becomes dissipationless, and
r-modes cannot be efficiently damped in the CFL phase for
temperatures below 1010 K, in contradiction with the data

1We use the standard notation for the Gell-Mann matrices [62]
as the generators of the color SU(3).
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[37]. The above discussion suggests that if a quark matter
core damps the r-modes, then it features gapless fermionic
excitations unlike the CFL phase.
At neutron star densities the strange quark mass cannot

be neglected. The strange quark mass stresses the cross-
species pairing [39,71] of the CFL phases. To understand
the origin of this stress, note that in the absence of
pairing, the Fermi surfaces of the quarks in neutral three-
flavor quark matter in weak equilibrium Refs. [39,71] are
given by [72]

pd
F ¼ pu

F þm2
s

4μ
; ps

F ¼ pu
F −

m2
s

4μ
ð2Þ

implying, in particular, that the splitting between the
u − d and the d − s Fermi surfaces is

2δμ ¼ m2
s

4μ
: ð3Þ

On the other hand pairing between fermions of opposite
momenta is strongest if the pairing species have equal Fermi
momenta. This argument suggests that when δμ ∼ Δ0CFL,
the symmetric pairing pattern of theCFLphase is likely to be
disrupted.
The LOFF phase was proposed as the plausible ground

state for stressed quark matter [39,73]. (For a review of
other ways quark matter can respond to the stress on pairing
see Ref. [33]). The motivation for this proposal is that a
condensate of the form

hψ iðrÞψ jðrÞi ¼ Θe2ib·r ð4Þ
allows pairing along rings on split Fermi surfaces for
b ¼ jbj > δμ [39]2 (b; δμ and Δ are all taken to be much
smaller than μ). b defines the wave vector for the periodic
variation of the condensate.
In the Nambu-Jona-Lasinio (NJL) model, it is well

known that the phase with the condensate given in
Eq. (4) is preferred over unpaired matter as well as the
space independent condensate for δμ ∈ ½0.707Δ0; 0.754Δ0�
[39] where Δ0 is the two-flavor gap for δμ ¼ 0.
At the upper end of this range the transition from the FF

phase to the normal phase takes place. The FF phase is
favored over the unpaired phase for δμ < 0.754Δ0. As we
increase δμ there is a second order phase transition from the
FF to the normal phase. i.e. Θ → 0 smoothly when δμ →
0.754Δ0 from the left. The most favored momentum b near
δμ ¼ 0.754Δ0 is

b ¼ ζδμ; ð5Þ

with ζ ≈ 1.2 [48,49,72,74,75]. (This number is conven-
tionally called η in the literature but in this manuscript we
give it a different symbol to avoid confusion with the
viscosity η.) For plots of Δ versus δμ in FF-like phases
please see Ref. [74,75].
At the lower end of the range the homogeneous paired

phase with pairing parameter Δ0 is favored over the FF
phase for δμ < 0.707Δ0. (For single gluon exchange the
window of favorability is larger [76].)
Intuitively one expects [74] that condensates featuring

multiple plane waves (LOFF condensates)

hψ iðrÞψ jðrÞi ¼ Θ
X
m

e2ibm·r ð6Þ

can pair quarks along multiple rings and give a stronger free
energy benefit as long as the pairing rings do not overlap.
The set of plane waves fbmg defines a crystal structure. A
detailed calculation [74] till the sixth order in the pairing
parameter in the Ginzburg-Landau approximation confirms
this and shows that the window of favorability of LOFF
phases can be larger. A more recent sophisticated numerical
analysis reveals [44] that the Ginzburg-Landau calculation
might overestimate the favorability of the LOFF phases.
Nevertheless, it is of interest to study a range of parameters
(δμ) where LOFF phases could be the ground state of quark
matter.
Motivated by this discussion, in Sec. IV we calculate the

shear viscosity of the two-flavor FF phase in the range
δμ ∈ ½0.575; 0.75�Δ0. The upper limit of the range is
motivated by the fact that at 0.754Δ0 the gap parameter
in the FF phase goes smoothly to 0 and the shear viscosity
of the FF phase tends to well-known results for unpaired
quark matter. The lower limit of δμ ¼ 0.575Δ0 is taken to
be smaller than 0.707Δ0 where homogeneous pairing wins
over the FF pairing, with an eye towards the possibility that
the FF calculation might capture aspects of more compli-
cated LOFF-like phases. Therefore, this range covers a
wide range of δμ where the LOFF phases could be the
ground state of quark matter.
For the three-flavor problem, the form of the LOFF

condensate [41,75,77] is

hψcfsðrÞψc0f0s0 ðrÞi ¼
X
I

X
fbmgI

ΘIe2ibm·rϵIcc0ϵIff0ϵss0 : ð7Þ

s, s0 are the Weyl spinor indices; f are flavor indices that
run from 1 to 3. c, c0 are color labels that run over 1
(colloquially red or r), 2 (green or g), and 3 (blue or b). The
left-handed quarks (L) and the right-handed quarks (R) pair
among themselves and can be treated independently.
Within the Ginzburg-Landau approximation [41], con-

densates of the form Eq. (7) for two crystalline phases have
a lower free energy than unpaired quark matter as well as
homogeneous pairing phases over a wide range of the

2The real number b refers to jbj, which is different from the
blue colored quark. b as an index in the set fa; b; c; dg refers to
the branch of the dispersion as we discuss below. We apologize
for the degeneracy in notation but the contexts are quite different
and hence unlikely to cause confusion.
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parameters μ, Δ andms that are expected to exist in neutron
star cores [42].
Therefore it is natural to evaluate its transport properties

and test whether they are consistent with existing and future
observations. As mentioned above, neutrino emissivity for
a three-flavor LOFF phase with the simplest three-flavor
crystal structure was computed in Ref. [54].
In this paper we take the first step in the calculation of the

shear viscosity in crystalline color superconductors. To
simplify the calculations we ignore the s quarks completely
and consider phases with a single plane wave condensate,

hψcfsðrÞψc0f0s0 ðrÞi ¼ Θ3e2ib·rϵ3cc0ϵ3ff0ϵss0 ; ð8Þ

which corresponds to taking Θ1 ¼ Θ2 ¼ 0 in Eq. (7), as
well as limiting the set of momentum vectors fbmg to just
one vector b.
Equation (8) models FF pairing between ur, dg quarks

and the ug, dr quarks. The Fermi surfaces of the u and d
quarks are split by 2δμ ¼ μd − μu which can be thought of
as the measure of the strange quark mass δμ ∼m2

s=ð4μÞ if
strange quarks are present (similar to the 2SCþ s phase),
or the electron chemical potential δμ ∼ μe=2 [78] (similar to
the 2SC phase) if electrons ensure neutrality.
The excitation spectrum of the paired quarks governed

by the pairing parameterΔ is related to the condensateΘ by
the relation Δ ¼ λΘ where λ is proportional to the strength
of the NJL interaction [34].
With condensation in only a single plane wave the

dispersions of the paired fermions [39] in the FF state
have a compact analytic form [Eq. (24)]. We see that even
with these approximations, the calculation of the viscosity
contributions of the ur − ug − dr − dg quarks is nontrivial
because of pairing. Geometrically, Eq. (8) represents pairing
between two Fermi surfaces with radii μ� δμ and centers
displaced by 2b (Fig. 7). For b > δμ, the two Fermi surfaces
intersect. For Θ3 → 0 (true near the second order phase
transition between the inhomogeneous and unpaired phase),
the pairing parameter is small and pairing cannot occurwhen
either the u or the d momentum state is unoccupied [39].
(See Sec. A for a quick reminder.) The boundary of these
“pairing regions” features gapless fermionic excitations.
This suggests that the contributions of the paired ur − dg −
ug − dr quarks are not very different from their contribu-
tions in unpaired quark matter.
However, the shapes of the gapless Fermi surfaces in

LOFF pairing are quite complicated, and their areas drop
rapidly as Θ3 increases as we decrease δμ from 0.754Δ0.
Therefore, till now it was not clear how their contributions
behave in the neutron star core. We answer this question in
this paper. In addition, for a phase with condensate Eq. (8),
the ub and the db quarks are unpaired. We assume here that
neutrality is ensured by electrons, and the electrons are
gapless and contribute to transport also. Their contributions
to shear viscosity were analyzed for the 2SC phase in

Refs. [56] and we show comparisons of the ur − ug − dr −
dg contribution to their results for the shear viscosity of the
electrons and the (dominant) db quarks in Fig. 6. Finally,
since the condensate depends on position, there are mass-
less phonons associated with the breaking of spatial
symmetries. We analyze their contribution in Appendix D.
We note as an aside that Eq. (8) has the same color, flavor

and spin structure as the homogeneous and isotropic 2SC
phase [45,46]. For weak and intermediate coupling
strengths [79,80], the 2SC phase has a smaller free energy
compared to the CFL phase and unpaired quark matter,
only for temperatures larger than a few MeV [79–82]. For
large couplings [79,80] however, 2SC phase is favored over
the CFL and the unpaired phase over a range of chemical
potentials expected to be present in some region in the cores
of neutron stars (350 to 400 MeV). In the 2SC phase the
ur − dg − ug − dr quarks are paired and gapped (the
gapless 2SC phase is unstable [78,83]). The low energy
dynamics are therefore dominated by the unpaired ub and
db quarks. Transport in this phase has been analyzed in
detail in Ref. [56]. The bulk viscosity for the 2SC phase
was computed in Ref. [84]. The transport properties of b
quarks are similar to that in unpaired quark matter and
hence we expect that viscosities should be large enough to
damp r-mode instabilities if a large volume of 2SCmatter is
present in the cores of neutron stars. Therefore, the
occurrence of this phase may provide a plausible mecha-
nism for the damping of r-modes. For intermediate and
weak coupling the crystalline phases are well motivated
candidate phases at neutron star densities.
In addition to the spectrum of excitations, the collision

integral requires knowledge about the interactions between
the quasiparticles in the FF phase. The condensate of the
form Eq. (8) leaves a SU(2) subgroup of color associated
with r − g quarks unbroken. Therefore, the t1, t2, t3 gluons
do not pick up a Meissner mass [57,58]. As we see, because
of this, the t1, t2, t3 gluons play a special role in the two-
flavor FF phase that we consider. The color transformations
corresponding to the t4…t7 generators are broken and the
associated transverse gauge fields do develop a Meissner
mass. The longitudinal components of the t4…t7 gauge
fields are Debye screened [58,60]. Similarly, the t8 gluons
feature Meissner and Debye screening [58,60]. Finally, as
in the case of the CFL phase, the transverse components of
a linear combination of t8 and Q gauge bosons ( ~Q photon)
have vanishing Meissner mass.
This discussion motivates our analysis of viscosity in the

FF phases. In the following section we develop the
formalism to calculate the shear viscosity coefficient in
this crystalline phase.

III. FORMALISM

This section develops the theoretical aspects of the
calculation of transport coefficients in the LOFF phase.
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We start our discussion with the Boltzmann equation in an
anisotropic system.

A. Boltzmann transport equation

In a system of multiple species, the relaxation times τi for
the species i can be found by solving a matrix equation,

LðnÞ
i ¼

X
j

½RðnÞ
ij �τðnÞj : ð9Þ

The above equation is the Boltzmann equation for a
multispecies problem, where Li is the left-hand side
(lhs) and ½Rij� is the right-hand side (rhs) of the equation.
Li can also be related to the phase space of quasiparticles
that participate in transport, and ½Rij� as the collision
integral. We have labeled the collisional integral with an
additional index (n) associated with the tensor structure of
the transport property we are considering.
To be concrete, consider a situation where transport is

dominated by fermionic particles and their interaction with
each other provides the most important scattering mecha-
nism. As was shown in Ref. [56] for multiple quark species
(the single species Boltzmann transport equation for quarks
has been studied since Ref. [85]) the lhs and rhs of the
Boltzmann transport equation for each species i can be
written as

LðnÞ
i ¼ 1

γðnÞ

Z
d3pi

ð2πÞ3
dfi0
dϵ

ðϕab
i ψab

i Þ ð10Þ

and

X
j

½RðnÞ
ij �τðnÞj ¼−

X
j2j3j4

ν2
TγðnÞ

Z
d3pi

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3

× jMj2ðij2→j3j4Þ

×ð2πÞ4δ
�X

pμ

�
½fif2ð1−f3Þð1−f4Þ�

×3ϕi:½τðnÞi ψ ðnÞ
i þτðnÞj2

ψ ðnÞ
j2

−τðnÞj3
ψ ðnÞ
j3

−τðnÞj4
ψ ðnÞ
j4
�:

ð11Þ

In the above equations f is the Fermi-Dirac distribution
function and ν2 is the degeneracy factor for species j2. In
the cases we consider the degeneracy is associated with
spin and the degeneracy factor is 2. Mðij2 → j3j4Þ refers
to the transition matrix element for the scattering of the
initial states featuring particles of species i, and j2 (which
have momenta pi, p2 respectively) to the final species j3, j4
(which have momenta p3, p4 respectively). For a fixed
species i, the sum over j2, j3, and j4 in Eq. (11) runs over
all the species in the multispecies formalism. The main new
feature compared to the multispecies Boltzmann transport
derived in Ref. [56] arises in our problem because of

pairing, which gives rise to a doubling of degrees of
freedom as described below in Eq. (26).
In Eq. (11) we have assumed that all the species

participating in scattering are fermionic. If gluon/phonon
radiation or absorption is important then their contributions
have to be added in the collision integral in Eq. (11) with
appropriate changes from fermionic to bosonic distribution
functions [see Eq. (D3) for example].
In this system fermion scattering is dominant. In Sec. D 1

we show that processes involving quark scattering with
phonons are subdominant in gapless phases. Absorption
and emission of screened gauge bosons is exponentially
suppressed by the factor exp ð−mscreen=TÞ where mscreen is
the screening mass. Finally for massless gauge bosons
these processes are forbidden because they do not satisfy
energy and momentum conservation simultaneously. While
number changing processes 2 ⇒ 3 like fi þ f2 ⇒ f3 þ
f4 þ b can contribute, they occur at higher order in the
coupling constants and hence are typically ignored.
The form of the flows ϕ and ψ in Eq. (11), relevant for

the calculation of the shear viscosity, is given by

ϕab
i ¼ pavb;

ψab
i ¼ ΠðnÞabαβϕab

i ; ð12Þ
where

va ¼ dE
dpa : ð13Þ

ΠðnÞabαβ are the operators that project the shear viscosity
tensor into a number of subspaces, (n), invariant under the
rotational symmetries of the system. The γn, defined by

γðnÞ ¼ ΠðnÞabαβδaαδbβ; ð14Þ

are the dimensions of these subspaces.
For example, in an isotropic system, the shear viscosity

tensor should be invariant under all rotations, and the only
projection operator is the traceless symmetric tensor

Πabαβ ¼
�
1

2
δaαδbβ þ 1

2
δaβδbα −

1

3
δabδαβ

�
; ð15Þ

with γ ¼ 5.
We consider a system where the condensate chooses a

particular direction and such systems have five independent
forms. In particular, we focus on n ¼ 0 for which

Πð0Þ ¼
�
3

2

��
babb −

1

3
δab

��
bαbβ −

1

3
δαβ

�
γð0Þ ¼ 1: ð16Þ

The contribution to the viscosity tensor for each species i is
given by
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ηabαβi ¼
X
ðnÞ

ηðnÞi ΠðnÞabαβ; ð17Þ

where

ηðnÞi ¼
�
−
3

2
γðnÞνi

�
½LðnÞ

i �τðnÞi ; ð18Þ

where νi is the degeneracy factor for the ith species.
To evaluate both Eqs. (10) and (11) we need to identify

the relevant species, the interactions between them as well
as the phase space in which the relevant scatterings occur.
We explain these in the next sections. A detailed discussion
of the collision kernel required to perform numerical
analysis has been presented in Appendix B.

B. Quark species

We consider phases with a condensate of the form

hψcfsðrÞψc0f0s0 ðrÞi ¼ Θ3ðrÞϵ3cc0ϵ3ff0ϵss0 : ð19Þ

We ignore the contribution of the s quarks which, if present
(2SCþ s phase [78]), are unpaired. Only ur − dg and ug −
dr quark pairs participate in pairing. The ub and db (b
color) quarks as well as the electrons are unpaired.
Transport affected by the ub and the db quarks, as well

as by the electrons in the homogeneous and isotropic 2SC
phase, has been studied in detail in Ref. [56]. Since they are
unpaired, techniques from condensed matter theory for
calculating transport in Fermi liquids can be used to
simplify the calculation, although there are new features
associated with the fact that the quarks are relativistic [63]
and due to the nontrivial color and flavor structure of the
interaction [56].
Herewe focus on the effect of crystalline pairing on quark

transport. In the full three-flavor theory withΘ1;Θ2 ≠ 0, the
ub and db species as well as the strange quarks participate in
crystalline pairing [Eq. (7)]. Therefore we need to develop
techniques to calculate fermionic transport properties in the
presence of a crystalline order parameter. In this paper, we
limit ourselves to the calculation of transport in the two-
color two-flavor subsystem of ur − dg − ug − dr quarks.
Even in this two-color, two-flavor subspace, the theory of
transport is quite rich and we learn valuable lessons that will
help in future attempts to extend the calculations to the three-
flavor problem.

C. Spectrum of excitations

The most important input required to evaluate the
transport coefficients in the FF phase is the anisotropic
quasiparticle dispersion relation. To obtain the dispersion
relations for the ur − dg − ug − dr quarks we diagonalize
the mean field Lagrangian. Details of the mean field
Lagrangian can be found in Appendix C.

The energy eigenvalues for quasiparticles in the ur − dg
sector are the eigenvalues of the following matrix,

� ðE − jpþ bjÞ þ μu −Δ
−Δ� ðEþ jp − bjÞ − μd

�
: ð20Þ

The corresponding matrix for the ug − dr sector is identical
and the ug − dr sector can be handled in an identical
fashion.
The eigenvalues and the eigenvectors are given by

E1 ¼ ðjpþ bj − jp − bj þ 2δμÞ=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

u1 ¼
�Φ11

Φ12

�
¼

0
B@ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

ϵ

q
−e−iϕ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffi
1þ ξ

ϵ

q
1
CA ð21Þ

and

E2 ¼ ðjpþ bj − jp − bj þ 2δμÞ=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

u2 ¼
�Φ21

Φ22

�
¼

0
B@ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffi
1þ ξ

ϵ

q
e−iϕ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

ϵ

q
1
CA ð22Þ

where, ξ ¼ ðjpþ bj þ jp − bj − 2μÞ=2, ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
and ϕ is the phase of Δ:μ ¼ ðμu þ μdÞ=2 is the mean of
the chemical potentials and μd − μu ¼ 2δμ.
The Bogoliubov coefficients can be arranged in an

orthonormal matrix form,

½Φ� ¼
�Φ11 Φ21

Φ12 Φ22

�
¼ ðu1u2Þ: ð23Þ

In the limit μ ≫ δμ; b;Δ, and μ ≫ T, the energy
eigenvalues can be approximated with the help of the
Fermi liquid approximation, i.e. only scatterings near the
Fermi surface are relevant. With these approximations
the energy eigenvalues become

E1ðpÞ ¼ δμþ b · vF −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

E2ðpÞ ¼ δμþ b · vF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
; ð24Þ

or in polar coordinates with b̂ ¼ ẑ,

E1ðξ; θÞ ¼ δμþ b cos θ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

E2ðξ; θÞ ¼ δμþ b cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
; ð25Þ

where ξ ¼ p − μ and vF ¼ ðdξ=dpÞp̂ ¼ p̂ is the Fermi
velocity.
In the absence of pairing, the two species that we

consider are the ur and dg quarks. In the presence of
pairing, the ur particles (ξ > 0) and the dg holes (ξ < 0),
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the ur holes and the dg particles mix with each other [86]
[Eqs. (21) and (22)].
Therefore we take the four species as

a → E1; ξ < 0;

b → E1; ξ > 0;

c → E2; ξ < 0;

d → E2; ξ > 0: ð26Þ
For an illustrative set of parameter values they are shown in
Fig. 1. For ξ ≪ −Δ, the species a corresponds to ur particles
and the species c for dg holes. Similarly, for ξ ≫ 0 the
species b corresponds to ur holes and the species d to dg
particles. For ξ ∼ Δ, the mixing is substantial and the
interpretation is not simple. In terms of the decomposition
given in Eq. (C5), a corresponds to the modes γ for ξ < 0, b
to γ for ξ > 0, c to themodes χ for ξ < 0, andd to χ for ξ > 0.
The matrix equation, Eq. (9), is now a 4 × 4 matrix

equation which gives the four relaxation times τi and the
viscosities can be found by using Eq. (18).

D. Interactions

The interactions between the quarks are mediated by the
gluons and the photon. The gluon-quark vertex is

Sg ¼ ðgÞ
Z

d4xψ̄γμtmψAm
μ ð27Þ

where g is the strong coupling constant, and the photon-
quark vertex is

Se ¼ ð−eÞ
Z

d4xψ̄γμQψAμ ð28Þ

where tm are the Gell-Mann matrices and Q ¼
diagf2=3;−1=3g in flavor space.
Both the longitudinal and the transverse modes of

t4 � � � t7 in the FF phase are screened [87–89]. Therefore
as discussed in Sec. II after Eq. (1) their contribution to
scattering is subdominant compared to the Landau damped
transverse mediators while calculating the transport proper-
ties. Hence we do not consider them further.
The fate of the t8 and the photon Q is more interesting.

As in the 2SC phase, the linear combination of t8 and Q
gives rise to the relevant gauge bosons like X and ~Q. The
condensate turns out to be neutral under the linear combi-
nation associated with the ~Q charge which is unscreened.
The ~Q photon is weakly coupled to the quarks and is less
important than the unscreened gluons [31]. The orthogonal
linear combination,

AX
μ ¼ cosφA8

μ þ sinφAQ
μ ; ð29Þ

with

cosφ ¼
ffiffiffi
3

p
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 3g2
p ; ð30Þ

on the other hand is strongly coupled but still its contri-
bution can be neglected as we argue later in this section.
The transverse t1, t2, t3 gluons are not screened as in the

2SC phase [88,90]. It was shown in Ref. [61] that they are
Landau damped. Therefore the most important mediator of
interactions for the ur − dg − ug − dr quarks is the t1, t2,
and t3 gluons as discussed in Sec. II.
The basic structure of the gluon propagator for the

transverse t1, t2, t3 gluons can be written from analogy
with the transverse gluons in unpaired quark matter. The
propagator for the transverse gluons in the absence of
pairing has the structure

iDab
ij ¼ i

ω2 − q2 − ΠtðqÞ
½δij − q̂iq̂j�δab ð31Þ

where ðω;qÞ ¼ pμ
3 − pμ

i ¼ pμ
2 − pμ

4 is the four momentum
carried by the gauge field, q2 ¼ q · q, q ¼ jqj, and where
[29,56] Πt is the transverse polarization tensor3

Πtðω; qÞ ≈
�
−iπω
4q

�
2Nf

�
g
2

�
2 μ2

π2
: ð32Þ

In the unpaired phase (or any isotropic phase) the trans-
verse projection operator is ½δij − q̂iq̂j� [see Eq. (31)]. This
projects vectors in the subspace perpendicular to q. In the

FIG. 1. The four [Eq. (26)] branches [solid red (a; ξ < 0),
dashed green (b; ξ > 0), solid blue (c; ξ < 0), and dashed cyan
(d; ξ > 0)] for illustrative parameter values μ ¼ 500 MeV,
Δ ¼ 5 MeV, δμ ¼ 5.5 MeV, b ¼ 5.2 MeV, and cos θ ¼ −0.1
[Eq. (25)]. The gap between the lower and upper branches
is 2Δ, and for Δ ≪ T only excitations near E ¼ 0 participate
in transport.

3The projection operator, also called Π in the previous section,
always appears with indices ΠðnÞ and can be easily distinguished
from the polarization tensor.
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absence ofb,Πij is invariant under rotations about theq axis.
But this is not true when b is present. Since there is a special
direction b̂, Πij can be projected further into components
parallel and perpendicular to b̂which are also perpendicular
toq [88]. The component parallel to b̂ and perpendicular toq
is called the “longitudinal transverse” whereas the compo-
nent perpendicular to both b̂ and q is the “transverse
transverse” component. In the zero momentum limit the
“longitudinal transverse gluon” has vanishing polarization
tensor, whereas the “transverse transverse gluon” has a finite
Meissner mass. The longitudinal transverse part of AX

μ is
long ranged as well as strongly coupled; its contribution is
smaller compared to the t1, t2, t3 gluons [below Eq. (38)].
To express the transverse polarization tensor in a

compact form we choose an orthogonal basis as follows:

ŷ0 ¼ b̂ × q̂

jb̂ × q̂j
x̂0 ¼ ŷ0 × q̂: ð33Þ

Therefore, allowing the polarization tensor to depend on
the direction we write the general form of the propagator
for the exchange of the transverse t1, t2, t3 gluons in the FF
phase,

iDab
μν ¼ i

ω2 − q2 − Πi0j0
t ðω;qÞ

½Pi0j0
μν �δab: ð34Þ

Equation (34) is the generalization of Eq. (31) to systems
with one preferred direction.
The projection operator,

Pi0j0
μν ¼ δi

0
μδ

j0
ν ; ð35Þ

projects into the subspace spanned by the unit vectors
e0i; e

0
j [Eq. (33)].

The polarization functions Πi0j0
t ðω;qÞ have a form,

Πi0j0
t ðω;qÞ ¼

�
−iπω
4q

��
2Nfð

g
2
Þ2 μ

2

π2

�

× hi
0j0
t

�
Δ
δμ

;
b
δμ

; cos θbq

�
; ð36Þ

where ht are dimensionless. For unpaired quark mat-

ter hi
0j0
t ¼ δi

0j0.
Numerical results for the Landau damping coefficient for

b=δμ ¼ ζ were found in Ref. [61] and are well described by
the expressions

hx
0x0
t

�
Δ
δμ

;
b
δμ

; cos θbq

�
≈ 1 −

�
Δ
b

�
1=4 1

1.65
ð1 − cos θ4bqÞ1=2

hy
0y0
t

�
Δ
δμ

;
b
δμ

; cos θbq

�
≈ 1 −

�
Δ
b

�
1

1.75
ð1 − cos θ2bqÞ1=2

hx
0y0
t

�
Δ
δμ

;
b
δμ

; cos θbq

�
≈ 0: ð37Þ

We note that h < 1, which is expected because the gapless
surface of the ur − dg − ug − dr quarks in the FF phase has
a smaller surface area compared to the unpaired phase. (For
details see [39,72,74,75].)
The square of the scattering matrix element averaged

over initial color and spin and summed over the final color
and spin is given by4

jMj2ðij2 → j3j4Þ ¼ 3

�
g
2

�
4

ju†
j3
uij2ju†

j4
uj2 j2

1

4

1

2pi2p22p32p4

tr½=p3γ
μ=piγ

ν�tr½=p4γ
σ=p2γ

λ�DμσDνλ

¼ 3

�
g
2

�
4

δij3δj2j4

1

4

1

2pi2p22p32p4

tr½=p3γ
μ=piγ

ν�tr½=p4γ
σ=p2γ

λ�DμσDνλ; ð38Þ

where i; j2; j3, and j4 run over 1,2 where 1 corresponds to γ
and 2 to χ. Note that the orthogonality of [Φ] [Eq. (23)]
ensures that i ¼ j3 and j2 ¼ j4, and the nature of the
Bogoliubov particles does not change at the vertex. This
can be traced to the residual SU(2) symmetry in the two-
flavor FF phase. The factor 1=ð2pi2p22p32p4Þ appears in
jMj2 due to the convention of the phase space integrals in
Eq. (11): the spinors us are normalized to be dimensionless.

The explicit form of the jMj2 with the transverse
interaction is given by

jMj2ðij2→ j3j4Þ

¼3

�
g
2

�
4
�
Lxx
t

1

jq2−w2þΠxx
t j2þLyy

t
1

jq2−w2þΠyy
t j2þ2

×ℜe

�
Lxy
t

1

q2−w2þΠxx
t

1

q2−w2þðΠyy
t Þ�
��

; ð39Þ

where

4The only subtle step is noting

tr½=p3γ
0γμγ0=piγ

0γνγ0� ¼ tr½=p3γ
μ=piγ

ν�
if μ, ν are both spatial or both 0.
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Lxx
t ¼ ðcosðϕ1Þ cosðϕ2ÞÞ2;

Lyy
t ¼ ðsinðϕ1Þ sinðϕ2ÞÞ2;

Lxy
t ¼ 1

4
ðsinð2ϕ1Þ sinð2ϕ2ÞÞ;

Lyx
t ¼ Lxy

t : ð40Þ

There are additional mediators of quark-quark inter-
actions in the two-flavor FF phase. Phonons [91] associated
with the periodicity of the condensate [50,92] are deriva-
tively coupled to the fermion fields.
A rough estimate of the contribution to quark-quark

scattering from phonon scattering can be obtained as
follows. The interaction between quark species i and j,
and phonon φa, can generically be written as

Lφψ ¼
X3
ν¼0

cν
fijφ

∂νφ
aψ̄ jγ

νψ i; ð41Þ

where dimensionless couplings cν associated with the
spatial derivatives of φa (c0 corresponding to ν ¼ 0) and
the temporal derivatives of φa (cν ¼ c0 for ν ¼ 1, 2, 3) are
different in the finite density system. cν is naturally of the
order of vF ∼ 1 in quark matter.
Therefore, the scattering matrix in the absence of pairing

can be written as

iM ∼
X
νρ

�
cρqρcνqν

f2
φij

�
i

ω2 − v2φq2
½ū3γνui�½ū4γρu2� ð42Þ

where qρ ¼ ðω;qÞρ is the four momentum carried by the
phonon.
Using Eq. [62],

ωūðpþ qÞγ0uðpÞ − qi · ūðpþ qÞγiuðpÞ ¼ 0; ð43Þ
and taking ω ≪ q

iM ∼
�ðc0 þ c0Þ2ω2

f2
φij

�
−i
v2φq2

½ū3γ0ui�½ū4γ0u2�

∼ −i
�ðc0 þ c0Þ2

f2
φij

�
½ū3γ0ui�½ū4γ0u2�; ð44Þ

where we have used ω ¼ cφjqj.
This should be compared with the matrix element for the

exchange of a Debye screened gauge field,

iM ∼ ðigÞ2 i
q2 þm2

D
½ū3γ0ui�½ū4γ0u2�

∼ −ig2 1

m2
D
½ū3γ0ui�½ū4γ0u2�: ð45Þ

Noting that both mD and fφ can be related to thermo-
dynamic susceptibilities [64],

m2
D ∼ g2f2φ; ð46Þ

we see that Eq. (44) is of the same order as Eq. (45) up to a
factor of ðcþ c0Þ2 which is of the order of 1 in relativistic
systems.5 Therefore, the contributions to the quark-quark
scatterings fromphononexchange are of the sameorder as the
contribution from Debye screened gauge boson exchange.
Since we have argued before that the Landau damped gauge
bosons dominate over the Debye screened ones at low T and
dropped the Debye screened gluon exchange contribution,
we also drop the phonon mediated scatterings.

1. Simple model interaction

The form of the matrix element in Eq. (39) is quite
complicated because of the anisotropy of Πt in the FF
phase. Therefore, to get some intuition we study the effect
of the isotropic gapless pairing on the shear viscosity in
Appendix E 1 for a simpler interaction of the form

g
2
ψ̄Aμγ

μψ : ð47Þ

We also compute the shear viscosity in the FF phase for the
same simple interaction [Eq. (47)] in Sec. IVA.
In the unpaired phase the longitudinal components of Aμ

are Debye screened and we focus only on the longitudinal
gluons so that we can zoom in to the effect of the change in
the fermionic dispersion relations due to pairing. The relevant
propagator for the gauge boson in the unpaired phase is

i
ω2 − q2 − ΠlðqÞ

ð48Þ

whereΠl is the longitudinal polarization tensor. In the limit of
small q,

ΠlðqÞ ≈ Πlð0Þ ¼ m2
D ¼ 2Nf

�
g
2

�
2 μ2

π2
; ð49Þ

up to corrections of the order ðδμ=μÞ2.
The square of the matrix element averaged over initial

spins and summed over the final spins [56] (after making
some simplifying assumptions) is given by

jMj2ðij2 → j3j4Þ ¼
�
ig
2

�
4

×

�
1

q2 þ Πlð0Þ
�
2
�
1 −

q2

4pip3

��
1 −

q2

4p2p4

�
:

ð50Þ
The shear viscosity of unpaired quarks with this simple

interaction is well studied [29,56]. The effect of pairing on

5In nonrelativistic systems [93], the magnetic gauge bosons do
not contribute due to the small speeds and the exchange of
phonons and the longitudinal gauge bosons compete. For vφ ≪ 1,
the phonon exchange is the dominant scattering mechanism. We
thank Sanjay Reddy for his comment on this point.
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the shear viscosity for this interaction has not been studied,
however, and we show how the contribution from the
exchange of the longitudinal Aμ is affected by pairing in
Appendix E 2.
In the paired phase the scattering matrix element for

Bogoliubov quasiparticles [following the steps used for
obtaining Eq. (38) for the longitudinal interaction of the
form Eq. (47)] is given by

jMj2ðij2 → j3j4Þ

¼
�
ig
2

�
4

j½Φ�
j31
Φj31 −Φ�

j12
Φi2�½Φ�

j41
Φj41 −Φ�

j22
Φj22�j2

×

�
1

q2 þ Πlð0Þ
�
2
�
1 −

q2

4pip3

��
1 −

q2

4p2p4

�
ð51Þ

where i’s run over 1,2 corresponding to the two eigenstates
given in Eq. (25). Φ’s are the coherence factors [Eqs. (21)
and (22)]. In the paired phase there are vertex corrections
[94] for the longitudinal mode but since are only looking
for qualitative insight for the simple interaction in this
section, we do not consider these here.
We also use Eq. (47) in Sec. IVA to calculate the shear

viscosity in the FF phase. This allows us to directly
compare the results with unpaired quark matter and under-
stand how the anisotropic dispersion relations change the
shear viscosity, without the complication associated with
the change in the gluon propagator [Eq. (36)].
All these help us to check our formalism for a simpler

interaction and develop the intuition to understand our final
result shown inSec. IVB for the realisticmagnetic interaction.
Finally, we remark that a comparison between Eqs. (38)

and (51) can also be used to complete the argument that we
made earlier about why the exchange of the transverse AX

μ is
less important than the exchange of t1, t2, t3 even though
they have zero Meissner mass. In matrix elements the
exchange of the AX

μ comes with a coherence factor
[Eq. (51)] where two terms of similar size cancel. This is
because Φj31;Φj31;Φ

�
i2, and Φi2 in Eq. (51) are all roughly

1=
ffiffiffi
2

p
for ξ ≈ 0 and in Eq. (51) their products appear with

a− sign. On the other hand the coherence factors in Eq. (38)
add for the t1, t2, t3 gluons. Therefore we expect the
numerical contribution from AX

μ to be smaller than the
contribution from t1, t2, t3 gluons. (There is an additional
reduction by a factor of ∼1=2 because the Transverse
transverse gluon is massive.) Therefore we neglect the
scatterings mediated by AX

μ . This numerical suppression is
not parametric and in a future, more complete calculation,
these scatterings should be included. We note that AX

μ

induces coupling between the b quarks and the paired
quarks and complicates the Boltzmann equation [Eq. (9)]
significantly.
We summarize the quark and the gluon spectra of both

the 2SC and the FF phase in Table I.

IV. RESULTS FOR ANISOTROPIC PAIRING

As discussed in the previous sections, pairing influences
transport properties of fermions in two important ways.
First, it modifies the dispersion relations of the fermions.
Second, it changes the mediator interactions. We discuss
how salient features of transport properties in the FF phase
emerge because of intricate interplay of these factors.
To get some understanding of how themodification of the

dispersion relations due to pairing affects transport, we solve
the Boltzmann equations for simple model interactions of
quark mediated by the Debye screened longitudinal gluons
in the next section. In the section after that we show the
analysis for the two-flavor FF phase with the realistic
interaction: exchange of the transverse t1, t2, and t3 gauge
bosons. That section contains the main results of the paper.
To evaluate the integrals in the lhs (Li) and the rhs (Rij)

appearing in the Boltzmann equation [Eqs. (10) and (11)]
with the dispersions [Eq. (25)] for any given T and δμ, we
need Δ and b as a function of δμ. For a given b and δμ, Δ
can be found by solving the gap equation for the FF phase
[75]. b is fixed by Eq. (5).
We take the solution of the gap equation,Δ, as a function

of δμ, from the topmost curve (green online) in Fig. 3 in
Ref. [75]. The calculations in Ref. [75] were performed
for a three-flavor FF phase which is very similar to the

TABLE I. Quark and gluon spectra in the 2SC and in the FF phases.

2SC FF

Quark spectrum I ub − bd, electrons unpaired ub − bd, electrons unpaired
Quark spectrum II ur − dg − dr − ug gapped ur − dg − dr − ug gapless
t1, t2, t3 (longitudinal) Not Debye screened Debye screened
t1, t2, t3 (transverse) Neither Meissner screened nor

Landau damped
Landau damped

t4, t5, t6, t7 Debye and Meissner screened Debye and Meissner screened
t8, Q (longitudinal) Debye screened Debye screened
t8, Q → X (transverse) Meissner screened One component Meissner screened

One component Landau damped
t8, Q → ~Q (transverse) Landau damped Landau damped
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two-flavor FF phase, and we use these results here. (See
Fig. 2 and the discussion below in Ref. [75].)
As mentioned earlier in Sec. II, to explore the parameter

space in δμ where FF or LOFF like phases might be the
ground state, we vary δμ=Δ0 ∈ ð0.575; 0.75Þ.

A. Debye screened gluon exchange

We first perform the analysis of the shear viscosity of the
FF phase for a simple model of quark interaction, Eq. (47)
for the two species ψ1, ψ2 where ψ ¼ ðψ1;ψ2ÞT in Eq. (47).
The form of the matrix element is given in Eq. (51).
First we specify the relevant variables. We note that we

can set the overall scale in terms of the chemical potential μ.
Then the quantities, Li=μ4, Rij=μ5, τμ, and η=μ3, are
dimensionless and can be written as functions of the
variables ðTμ ; δμμ ; bμ ; ΔμÞ. The quantities b=μ andΔ=μ are fixed
by using the solution of the gap equation in a FF phase as
discussed above. Therefore, one needs to only explore how
the viscosity changes as we change T=μ and δμ=μ. In Figs. 2
and 3 we fix the value of T=μ ¼ 3.34 × 10−4, and explore
how the viscosity varies with the dimensionless ratio δμ=Δ0

in the range δμ=Δ0 ∈ ð0.575; 0.75Þ.
For a fixed μ, there are two dimensionless ratios that are

needed to specify the transport properties of the FF phase as
a function of δμ and they are T=μ and Δ0=μ. We show the
results for T=μ ¼ 3.34 × 10−4 and Δ0=μ ¼ 1.67 × 10−2 in
Figs. 2 and 3. To get a concrete feel for numbers, one can
take μ ¼ 600 MeV, Δ0 ¼ 10 MeV and T ¼ 0.2 MeV.
In the top panel of Fig. 2 we plot the results for Li as a

function of δμ. To calculate Li we have used Eq. (10) and
the anisotropic dispersion relation in Eq. (25). The results
for a and b species are shown by the upper solid curve
interpolating the filled circles (red online). The error in the
numerical evaluation of Li is negligible. For comparison,
Eq. (52) is shown by the upper dot dashed line (yellow
online) in the top panel of Fig. 2.

In the lower panel of Fig. 2 we plot the results for Rij as a
function of δμ evaluated using Eq. (11) with Eqs. (B7),
(B11) and (B12). For comparison, Eq. (54) is shown by the
upper dot dashed line (yellow online) on the top right panel
of Fig. 2.
Unpaired quark matter, discussed in Appendix E 1 for

the same interaction, provides a benchmark to compare the
quantities Li=μ4, Rij=μ5, τiμ, and ηi=μ3. We show the
numerically obtained results for Li [Eq. (E1)] and Rij

[Eq. (E3)] in Fig. 2, and ηi [ηi ¼ −3ν1ðLun
1 Þ2=4sun1 where

ν1 ¼ 2 and sun1 is given in Eqs. (E3)] for unpaired quark
matter in Fig. 3. They are denoted by dashed curves (black
online).
The curves for Li and Rii in Fig. 2 for the FF phase and

for unpaired matter individually change if T=μ is changed.
In particular, the dependence ofLi (Rii) on T=μ for unpaired
quarks is given in Eq. (E2) [Eq. (E5)]. Similarly, in Fig. 3, η
for the FF phase and for unpaired quarks will change on
changing T=μ. The dependence of η for unpaired quarks on
T=μ is given in Eq. (E6).
However the ratio of the transport properties in the FF

phase to unpaired quarks for a fixed δμ=μ does not change
as we change T=μ. Hence it is useful to summarize the
dependence of η for the FF phase on both T=μ and δμ=μ by
quoting the ratio of Li, Rij, and η in the FF phase to the
result for unpaired quarks, as is shown in Eqs. (52), (54),
and (57) respectively. This feature is shown in more explicit
detail in Sec. IV B where the dependence of the viscosity
on both δμ=μ and T=μ is separately plotted for the
interactions mediated by transverse gluon exchange.
The key point in understanding the results for the FF phase

is that the branches a and b are gapless for cos θ ∈ ½−δμþΔ
b ; 1�

throughout the range δμ=Δ0 ∈ ð0.575; 0.75Þ while the
branches c and d are gapped. A simpler phase with the
same feature is the isotropic gapless phase. Therefore
the reader might find it useful to understand the results for

FIG. 2. Plots of Li (upper panel) and the diagonal entries of Rij (lower panel) for T=μ ¼ 3.34 × 10−4 and Δ0=μ ¼ 1.67 × 10−2 fixed
for the interaction given in Eq. (51). The upper dot dashed curves (yellow online) in the panels for La and Lb (Raa, Rbb) correspond to
Eq. (52) [Eq. (54)]. The lower dot dashed curves in the panels for Lc and Ld (Rcc, Rdd) correspond to Eq. (53) [Eq. (55)].
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the isotropic gapless phasedescribed in detail inAppendix 2 b
and summarized in Eqs. (E24) and (E25) and Fig. 10.
The phase space for the gapless dispersion branches a

and b receives correction in contrast to the isotropic gapless
phase [Eq. (E22)] due to the fact that the gapless surface is
the boundary of a crescent with arc length 1þ δμ−Δ

b instead
of 2. Therefore, we expect that Li has a geometric reduction
in comparison to the unpaired quark matter as follows

La ¼ Lb ¼ Lun × f1

�
δμ

b
;
Δ
b

�
≈ Lun ×

1

2

�
1þ δμ

b
−
Δ
b

�
ð52Þ

where f1 is a dimensionless function smaller than 1
corresponding to the limited range of angles for which
the modes are gapless.
The branches c and d are gapped for δμ=Δ0 < 0.735 and

hence Lc and Ld are exponentially suppressed. A rough
estimate is Lc ¼ Ld ∼ e−Δ=T . The lower dot dashed curve
(yellow online) corresponds to

Lc;d ∼ Lune−Δ=T ð53Þ

and captures the behavior of the numerical result [lower
solid curve (blue online) in the top panel of Fig. 2] up to a
scale factor. The proportionality factor depends upon T.
Since the contribution of species c, d to transport is
suppressed exponentially, we do not explore this further.
Similarly, Rij is expected to be suppressed by the square

of the phase space factor,

Raa ¼ Rbb ≈
1

2
Run
11 ×

�
1

2

�
1þ δμ

b
−
Δ
b

��
2

: ð54Þ

Rcc and Rdd are exponentially suppressed and their
numerical evaluation is noisy (see Appendix F for details).
A rough estimate that we found roughly matches the
numerical results for these components is

Rcc ¼ Rdd ≈ Run
11 × e−Δ=T: ð55Þ

τ and η can be obtained using Eqs. (9) and (18) and the
results for η are shown in Fig. 3. From Eqs. (52) and (54)
we expect

τa ¼ τb ≈ 2τun1 ; ð56Þ

and

ηa ¼ ηb ≈ ηun1 ð57Þ
[the form of ηun1 is given in Eq. (E6)]. On the other hand,

ηc ¼ ηd ∼ ηun1 e−Δ=T: ð58Þ

Consequently,

ηðb ≠ 0Þ ¼
X
i

ηi ≈ ηa þ ηb ≈ 2ηun1 : ð59Þ

The 16 components of Rij are evaluated separately using
Monte Carlo integration [Eq. (B7)]. To improve the sta-
tistics, we have averaged Raa and Rbb (which should be
equal), and Rab and Rba (which should be equal) while
making Fig. 2 and adding the errors in quadrature. Similarly,
we have combined the data for the c and d branches in Fig. 5.
The central values of Rij are given by filled circles and the
error bars (from the Monte Carlo integration for Rij) are
shown by the dashes of the same color and propagated to
errors in η (Fig. 3). The numerical results roughly match
analytic expectations [Eqs. (54) and (55)].
The numerical results for η are shown in Fig. 3 and agree

well with Eq. (59). The upper branch (circles with error
bars) corresponds to ηa;b and the lower to ηc;d. Note that
some points in the lower branch do not show an upper error
bar. These correspond to parameters where the result for
ηc;d with the upper estimate of Rcc;dd is negative and
therefore these values of η do not show up on the log plot.
This is a consequence of the fact that the numerical errors in
the small components Rcc;dd can be comparable or larger
than the values of Rij itself, though this is not important
here because c, d contribute only minimally to the shear
viscosity. This issue is exacerbated in Sec. IV B where even
the larger components of Rij are difficult to compute
accurately for all parameter values.
Equation (59) is a remarkable result and is a consequence

of the intricate interplay between τ and η. The reduced
phase space due to pairing increases τa and τb
(τ ∝ L:H:S=R:H:S), whereas, in the product η ∝ L:H:Sτ,
the two effects cancel out and η remains the same.
The key results that we obtained in this section are

mentioned below. For the interaction given in Eq. (51),
(1) La and Lb are only geometrically suppressed by the

smaller gapless surface [Eq. (52)].

FIG. 3. Plot of ηi from Li and Rij shown in Fig. 2. The dot
dashed line (yellow online) corresponds to ηun1 .
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(2) Lc and Ld are exponentially suppressed compared to
La, Lb.

(3) For Debye screened mediators, Raa and Rbb are only
geometrically suppressed [Eq. (54)].

(4) Rcc and Rdd are exponentially suppressed.
(5) η ≈ ηun.

B. t1, t2, t3 gluon exchange

Now we use the interaction mediated by the Landau
damped t1, t2, t3 to calculate η in the two-flavor FF phase.
In this section we show the results for the ur − dg sector
with Bogoliubov quasiparticles given by Eqs. (21) and
(22). The ug − dr sector gives an identical contribution.
In Eq. (10), Li depends only on the spectrum of

quasiparticles and not the interaction; hence, they are not
modified and can be read off from Eq. (52).
The difference from the previous section appears in the

collision integral ½Rij� (compare Figs. 2 and 4), where the

square of the matrix element jMj2 is given by Eq. (39)
(Fig. 4) instead of Eq. (51) (Fig. 2). The values of T=μ and
Δ0=μ are chosen to be the same as in the previous section
(caption of Fig. 2).
The first difference to note between the lower panel of

Figs. 2 and 4 is the difference in the overall scale [29,56].
The reference horizontal line for the unpaired quarks in
Fig. 4 is roughly a factor ð 3

21=6
Þð gμ

π2TÞ1=3 larger than the
corresponding line in Fig. 2 as explained in Eq. (E8) in
Appendix E 1 a.
The nontrivial result for Raa and Rbb in the FF phase is

that they are enhanced over the unpaired isotropic result,
unlike what was observed in Fig. 2 for Eq. (51). The
intuitive explanation for this is as follows.
There are two competing phenomena which determine

the nature of the collision integral. As seen in Sec. IVA, the
geometric suppression due to the smaller gapless surface
[Eq. (54)] leads to a reduction in Raa and Rbb.
For q ≪ μ the collision kernel receives enhancement

from the Jacobian for the transformation from the energy δ
functions to themomentum δ functions. Inmore detail, from
Eq. (B7) it is seen that after solving the two delta functions
simultaneously Jacobian (Jq) arises in the denominator,

which is proportional to Jq ∝ vpi;p2
∝ ξpi;2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2pi;2

þ Δ2
q

.

For jδμþ b cos θj ≈ Δ, the dispersion is gapless for ξ ≈ 0
[Eq. (A5)], which implies vp1;2

→ 0 and the Jacobian for the
δ functions diverges. [The detailed form of the Jacobian is
described near Eq. (B13) in Appendix B.] Higher order
terms in the Taylor expansion of ξp prevent Rij from
diverging, but this shows up as an increase in Rij. A similar
phenomenon for the isotropic gapless CFL phase was seen
earlier in Ref. [95]. Hence, the reduced phase space tries to
lower the value of the rhs whereas the denominator tries to
compensate the effect. Effectively one obtains enhanced Rij

compared to unpaired quark matter.

There are two reasons why this effect is not seen in Fig. 3
where the interaction is mediated by the Debye screened
gluons. First, the relative − sign between the coherence
factors in Eq. (51) compared with the þ sign in Eq. (38)
implies that the matrix element given in Eq. (51) tends to 0
if ξ → 0 while Eq. (38) does not. Second, one can see from
the structure of the propagator, if q ∼ gμ then only the
screening effect becomes important. On the other hand for
the transverse sector, since ω ∼ T ≪ gμ and q ∼ gμ the
collision integral is dominated by small q compared to μ.
Hence, one can conclude that the enhancement effect is
more pronounced where the exchanged gauge boson is
Landau damped.6

We make one technical comment about the numerical
evaluation of Rij in Fig. 4. Because of the more sharply
peaked nature of the integrand due to the two reasons
mentioned above, the Monte Carlo integration for Rij

[Eq. (B7)] converges more slowly. Even with a factor of
5 larger number of sampling points compared to Fig. 2 (see
Appendix F for details on the numerical implementation),
the value corresponding to the lower error bar for the upper
branch −Raa;bb is negative and does not show up in the log
plot for multiple values of δμ. In the results for η it shows up
as missing upper error bars. The relative errors are larger for
lower T.
The results for η for four different values of the temper-

atures are shown in Fig. 5. In all four cases it shows a
reduction in η by a factor of roughly 100 compared to
unpaired quark matter, associated with the enhancement in
the collision integral.

FIG. 4. Plots of the diagonal entries of Rij for T=μ ¼ 3.34 ×
10−4 and Δ0=μ ¼ 1.67 × 10−2 fixed for the matrix element given
in Eq. (38). The dashed horizontal line (black online) corresponds
to Rtun [Eq. (E8)].

6There is an additional source of enhancement when the gauge
boson polarization is given by Eq. (32) or Eq. (36) rather than
Eq. (49). Since h < 1, jMj2 is larger in the anisotropic paired
phase than the isotropic unpaired phase. However, since h is not
≪ 1 for all cos θ, this is not the dominant effect.
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Figure 6 shows viscosity as a function of T=μ for the
ur − dg quarks in the FF phase for a fixed δμ=μ ¼ 10−2.
The result for the FF phase is denoted by the solid

points with errors denoted by error bars. The error bars are

large enough that we do not attempt a fit but a rough
description of the central points of the data in this T range is
given by

η ∼ 10−2ηtun1 : ð60Þ
Since η is relatively flat with respect to δμ for all the T’s
in a wide range of T ≪ Δ (Fig. 4), we propose Eq. (60)
as a fair parametrization of the shear viscosity in the FF
phase for T ≪ Δ throughout the two-flavor FF window.
Equation (60) is a concise summary of our main result.
For comparison we have shown the electron contribution

[shown as a dark dot-dashed curve (blue online)] and the bd
contribution [shown as a dark dashed curve (blue online)]
in Fig. (60). These were calculated using the approximate
analytic expressions given in Eqs. (78)–(80) in Ref. [56].
Note that these are even larger than the results for unpaired
quark matter [shown as a light dot-dashed curve (yellow
online)] because for the bd quarks the exchanged gluons t8

and tX are screened rather than Landau damped, while the
e’s couple weakly. Therefore these two modes dominate the
viscosity in the two-flavor FF phase.

V. CONCLUSIONS

We present the first calculation of the shear viscosity of
the two-flavor FF phase of quark matter.

FIG. 5. Plots of ηi with b ≠ 0 [for matrix element Eq. (38)] for four different values of T=μ with Δ0=μ ¼ 1.67 × 10−2 fixed. The dot-
dashed curve (yellow online) shows ηtun1 .

FIG. 6. ηi for species a and b for anisotropic pairing with
Δ=Δ0 ¼ 0.35, δμ=Δ0 ¼ 0.6, and b ¼ 1.2δμ as a function of T.
The viscosity for the FF phase is shown by solid red points
obtained from the four panels of Fig. 5. The electron contribution
[shown as a dark dot-dashed curve (blue online)] and the bd
contribution [shown as a dark dashed curve (blue online)] are
calculated using expressions given in Ref. [56] by M. G. Alford,
H. Nishimura, and A. Sedrakian (ANS).
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We identify the low energy quasiparticles that play an
important role in transporting momentum and energy at low
T. Due to the large density of states near the Fermi surface,
the u and d quarks, and the electrons dominate transport
properties if they are gapless. The blue u and d quarks, and
the electrons do not participate in pairing and their viscosity
is the same as in the 2SC phase, calculated in Ref. [56].
The ur − dg − ug − dr quarks pair and form Bogoliubov

quasiparticles. The main difference between the two-flavor
FF and the 2SC phase is that the spectra of Bogoliubov
quasiparticles feature gapless modes near the boundaries of
the crescent-shaped blocking regions. The technical advance
made in the paper is the calculation of their viscosity.
The other low energy modes, the phonons associated

with the compressions and rarefactions of the isophase
surfaces of the order parameter [50], are Landau damped
and do not contribute significantly to the energy-momen-
tum transport at low temperatures.
By comparing the strength and the ranges of the particles

that mediate quark interactions (see Sec. III D for details)
we conclude that the dominant mechanism of scattering of
the ur − dg − ug − dr Bogoliubov quasiparticles in the
two-flavor FF phase is the exchange of the transverse t1, t2

and t3 gluons which are Landau damped. Note, in par-
ticular, that the longitudinal t1, t2 and t3 gluons are Debye
screened and therefore their contribution to quark-quark
scattering can be ignored compared to the transverse t1, t2

and t3 gluons. The Landau damping is anisotropic. Details
about the gluon polarization tensor are given in Ref. [61].
We also show that the scattering of the Bogoliubov
quasiparticles via exchange of the Goldstone modes, and
due to their absorption and emission, is subdominant for
T ≪ μ and can be ignored.
We give a novel formalism to describe the scattering of

Bogoliubov quasiparticles. We separate the two branches of
the quasiparticle dispersions into ξ > 0 and ξ < 0 modes.
This doubles the dimension of the collision integral matrix,
with fourmodes a, b, c and d. The utility of this formalism is
that it interpolates between two pairing regimes. When T is
comparable toΔ (near the superconducting phase transition)
the collision integral includes processes involving aþ c →
aþ c (“interband” processes). When T ≪ Δ the collision
integral only features aþ a → aþ a, bþ b → bþ b, and
aþ b → aþ b (“intraband” processes). Pair breaking proc-
esses are frozen. For isotropic gapless pairing in this regime
(b ¼ 0, δμ > Δ) a simpler formalism involving only the E1

branch would be sufficient. The subtlety in the FF phases is
that both the E1 and the E2 branches can become gapless
depending on the values of b, δμ, Δ and the angle θ of the
momentum with the b̂ direction. Our formalism allows for
all these possibilities.
Our main result is given in Figs. 5 and 6. The key result is

that the viscosity of the ur − dg − ug − dr quarks for a
wide range of δμ in the LOFF window is reduced by a
factor of roughly 10−2 compared to the viscosity of

unpaired quarks interacting via the Landau damped trans-
verse gluons. This is summarized in a compact paramet-
rization of the viscosity in Eq. (60).
This is a surprising result. In the 2SC phase the ur −

dg − ug − dr quarks are fully gapped and are frozen. In the
FF phase the geometric area of the gapless surface is
reduced by pairing. But at the same time the phase space for
collisions is also reduced by the square of the geometric
factor. Hence this simple argument suggests that the shear
viscosity should be comparable to that for the unpaired
quarks. Indeed this is precisely what happens if the
interaction between the quarks is assumed to be mediated
by the Debye screened longitudinal gluons corresponding
to the broken generators, as shown in Fig. 3. For long-range
interactions (dominated by smaller momentum exchanges),
however, there is an additional effect due to the increase of
the density of states satisfying the energy conservation
equation due to small velocities over a part of the Fermi
surface. The collision integral is enhanced and the shear
viscosity is reduced [Eq. (60)]. This effect is particularly
pronounced for t1, t2, t3 gluons because the coherence
factors in the matrix element do not cancel [Eq. (38)].
Comparing the shear viscosity of the gapless quarks in

the FF phase with the contributions of the unpaired ub and
db quarks and the electrons for the 2SC phase in Ref. [56]
which remain comparable in the anisotropic phase also, one
can argue that the unpaired quarks and the electrons give
the shear viscosity of the two-flavor FF phase to a very
good approximation.
In this paper we have only given results for the projection

operator Πð0Þ. It will be interesting to repeat the calculation
for the other projection operators Πð1Þ and Πð2Þ (Πð3Þ and
Πð4Þ are Hall projections and the associated viscosities are
expected to be 0 in a system without magnetic fields). The
difference between the three projection operators like Π0,
Π1 and Π2 is related to the anisotropic viscosity tensor and
might have interesting implications. Although, the con-
densation in multiple directions will tend to isotropic the
shear viscosity.
Looking ahead, one can think of several advances that

can improve our calculation, for example, considering more
complicated pairing patterns and including the strange
quarks. In the following discussion we attempt to present
a plausible picture of how the shear viscosity of these more
realistic phases might behave based on the intuition gained
from our calculation, and make some speculations about
the physical implications for neutron star phenomenology.
For example, one can consider more realistic two-flavor

LOFF structures [74] involving multiple plane waves. The
details of these more complex condensates [91] featuring
gapless fermionic excitations, remain complicated. The two
main features, (a) gapless quasiparticle excitations over a
Fermi surface with a complicated shape and (b) the Landau
damping of transverse t1, t2, and t3 gluons are expected to
be present also in these more complicated phases.
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Consequently the shear viscosity of the ur − dg − ug − dr
quarks can be ignored as in the FF phase.
Depending on the strange quark mass and the coupling

strength between quarks, quark matter in neutron stars may
also feature strange quarks. In the2SCþ s phase, the electron
number is suppressed and numerous unpaired strange quarks
contribute to transport. One expects their contributions
to be comparable to that of the ub and db quarks in the
2SC phase. The same is also expected for the two FFþ s
phase.7 In all these casesour calculation suggests thatwhether
unpaired s quarks are present or not it is impossible to
distinguish two-flavor LOFF pairing from 2SC pairing by
comparing the shear viscosity of the two phases. The paired
quarks are suppressed, though not exponentially.
Qualitative differences, however, are expected to arise if

the strange quarks are also paired. That is, the three-flavor
FF [75] or three-flavor LOFF phases [41]. In these phases
the electrons are few in number and can be ignored as a first
approximation. The fermionic excitations are gapless on
nontrivial surfaces [75], as in the two-flavor case. It would
be compelling to formulate the theory in the three-flavor FF
phase. The result could have implications on the observed
distribution of the neutron stars in the temperature vs
rotational frequency (Ω) plot [6].
Currently, the temperatures of several fast spinning

neutron stars are not well known (they are simply upper
bounds), and no neutron stars are known which lie close to
the shear viscosity stability edge (cooler than 107 K). A
discovery of such a star could, in principle, distinguish
between the three-flavor paired and unpaired quark matter
as the source of damping of r-modes, if one can simulta-
neously pin down the damping by other mechanisms (for
example, phase boundaries or Eckman layers).
Making this speculation more quantitative requires a

better estimate of the LOFF window in the three-flavor
quark matter, making models of hybrid neutron stars with
quark matter and LOFF cores with equations of states
compatible with recent constraints on masses and radii of
neutron stars, and a calculation of the shear viscosity in
three-flavor LOFF phases as a function of the T and μ.
Presently, stronger constraints on the viscosities of dense

matter come from hotter, fast rotating neutron stars. The
bulk viscosity provides the damping mechanism in this
regime and only selected phases of dense matter are
consistent with the observations unless r-modes saturate
at small amplitudes [6]. Since the bulk viscosity in quark
matter does not involve the scattering between two quarks it
is not sensitive to the nature of screening of the gluons but it
is sensitive to the presence of the gapless quark modes.
Therefore it may be interesting to calculate the bulk
viscosity in these phases to find out how the geometric

reduction in the gapless surface affects the bulk viscosity in
LOFF phases.
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APPENDIX A: PAIRING AND BLOCKING
REGIONS

Evaluation of the shear viscosity requires figuring out the
relevant FF phase space in which multispecies scatterings
occur. It is necessary to have an idea of the FF phase space
since this explains which fermionic modes are gapless and
are relevant for transport. Here we describe the salient
aspects of the FF phase space. For details please see [39,72].
At T ¼ 0 (and almost so for T ≪ Δ; δμ), all energy

eigenstates with E < 0 are filled and the E > 0 eigenstates
are empty. This defines the pairing and the blocking regions.
In Fig. 7 the dotted circle depicts the ξ ¼ 0 curve, i.e., along
the circle p ¼ μ. The upper crescent-shaped region corre-
sponds to the blocking region for d quarks and the lower
shaded region is the blocking region for u quarks. These
regions are where only one species of quarks is present and
therefore are not conducive to pairing. In the presence of
finite interactions, i.e. nonzero value of the gap parameter,
the upper and lower blocking regions are separated by a small

FIG. 7. Pairing and blocking regions of the LOFF phase space.

7Some details will be modified. The t1, t2 and t3 will get
additional Landau damping contributions from the s quarks. The
qualitative answers, however, are not expected to change.
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window. The complementary region is the pairing region.
The pairing as well as the blocking regions are restricted
by certain values of ξ and θ which we describe below.
In the pairing region E1 < 0 and E2 > 0 [Eq. (25)] and

the quasiparticle excitation energies (the magnitude of the
dispersion relations) are given by

E−ðξ; θÞ ¼ E1 ¼ −δμ − b cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

Eþðξ; θÞ ¼ E2 ¼ δμþ b cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
: ðA1Þ

The interplay of limits of cos θ and ξ determines the
boundaries of pairing and blocking regions. From Fig. 7 it
is evident that the regime that falls in between cos θ ∈
½−1; cos θ1� and ξ bounded by ξ1 and ξ2 i.e.ξ ∈ ½−∞; ξ1� ∪
½ξ2;∞� is the lower pairing region. The region which is
bounded by the limits cos θ ∈ ½cos θ2; 1� and ξ ∈ ½−∞; ξ1� ∪
½ξ2;∞� is the upper pairing region. The regime lying in
between these two crescent-shaped zones has the bounds
cos θ ∈ ½cos θ1; cos θ2� and ξ ∈ ½−∞;∞�. The values of θ1
and θ2 can be obtained by solving the dispersion relations as
mentioned in Eq. (A1) with the condition ξ ¼ 0. This is
required since at the edges dispersion relations are gapless
which depict bothE1;2 ¼ 0 and ξ ¼ 0. The limits of ξ can be
obtained by putting the conditions E1;2 ¼ 0. These con-
ditions can be expressed in a concise way as follows.

(i) The lower pairing region,

cos θ ∈
�
−1;max

�
−δμ − Δ

b
;−1

��
;

ξ ∈
�
−∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþ b cos θÞ2 − Δ2

q �
∪
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδμþ b cos θÞ2 − Δ2

q
;∞
�
: ðA2Þ

(ii) The regime of small window,

cos θ ∈
�
−δμ − Δ

b
−δμþ Δ

b

�
;

ξ ∈ ð−∞;þ∞Þ: ðA3Þ

(iii) The upper pairing region,

cos θ ∈
�
min

�
−δμþ Δ

b
; 1

�
; 1

�
;

ξ ∈
�
−∞;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþ b cos θÞ2 − Δ2

q �
∪
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðδμþ b cos θÞ2 − Δ2

q
;∞
�
: ðA4Þ

The system is cylindrically symmetric and the polar
angle ϕ ∈ ½0; 2π�. From Eq. (A3) it is clear that the angular
width between the two crescent-shaped regions is 2Δ=b.
The complementary region in momentum space is the
blocking region consisting of two disconnected crescent-
shaped regions near the Fermi sphere. The boundaries of

the blocking regions are the place where the dispersions in
Eq. (25) are gapless.
In the d (larger) blocking region, E1 > 0, E2 > 0. Then,

E−ðξ; θÞ ¼ −E1 ¼ δμþ b cos θ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

Eþðξ; θÞ ¼ E2 ¼ δμþ b cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
: ðA5Þ

Hence,

cosθ∈
�
min

�
−δμþΔ

b
;1

�
;1

�
;

ξ∈
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþbcosθÞ2−Δ2

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþbcosθÞ2−Δ2

q �
:

ðA6Þ
At the edge of the d blocking region, E− is gapless. The
blocking region shrinks once Δ starts to increase. Now, in
the extreme limit the d blocking region vanishes at
cos θ ¼ 1. This is possible only if Δ=δμ ∼ 2.19. In our
calculations, Δ=δμ is always less than 1 and hence the d
blocking region never closes.
The u (smaller) blocking region is defined when E1 < 0,

E2 < 0. Then,

E−ðξ; θÞ ¼ −δμ − b cos θ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
;

Eþðξ; θÞ ¼ −δμ − b cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ Δ2

p
: ðA7Þ

This provides

cosθ∈
�
−1;max

�
−δμ−Δ

b
;−1
��

;

ξ∈
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþbcosθÞ2−Δ2

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδμþbcosθÞ2−Δ2

q �
:

ðA8Þ
At the edge of the u blocking region, Eþ is gapless.
The situation is opposite compared to the d blocking

region. The u blocking region closes and the associated
gapless surface disappears. This happens when Δ=δμ >
0.19 (δμ=Δ0 < 0.735), which is well within the allowed
regime of Δ and δμ (Fig. 3 in Ref. [75]).
Now, angle dependent Fermi surface splitting

δμeffðcos θÞ ¼ δμþ b cos θ gives us a number of possibil-
ities. The shape of the gapless surface as well as the nature
of the gapless modes changes with the angle, δμ and Δ
(which is a function of δμ) [Eq. (25)] [39,72].

(i) For δμþ b cos θ > Δ, species a and b are gapless.
(ii) for Δ>δμþbcosθ>−Δ all four modes are gapped.
(iii) for δμþ b cos θ < −Δ modes c and d are gapless.
(iv) jδμeffðcos θÞj ≫ Δ (in which case the dispersion

near the gapless modes is linear and the mode
velocity v ≈ 1).

(v) jδμeffðcos θÞj ≈ Δ (in which case the dispersion near
the gapless modes is quadratic and the mode
velocity v ≈ 0).
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APPENDIX B: DETAILS OF COLLISION
INTEGRAL

The intermediate steps to evaluate the collision integral
are presented here.
The momentum integrals in both Eqs. (10) and (11)

provide dominant contributions when quasiparticles scatter
near the Fermi surface. Hence, in the limit μ ≫ δμ; b;Δ,
and μ ≫ T,

d3p
ð2πÞ3 ¼

p2dpdΩ
ð2πÞ3 ≈ μ2dξ

dΩ
ð2πÞ3 : ðB1Þ

For both isotropic and anisotropic systems d3p4 inte-
gration in the rhs of Eq. (11) is performed using the
momentum δ function, which changes variables from p3 to
q ¼ p3 − pi ¼ p2 − p4. One can use the spherical sym-
metry to simplify the integrals further as described in
Refs. [29,56] for the isotropic system to obtain

RðnÞ
ij ¼ −

1

γðnÞ
1

T
ν2

μ2i μ
2
j

ð2πÞ7
Z

dξpi
dξp2

dϕp2
dqð4πÞ

Z
dωjMj2ðij2 → j3j4Þ½fif2ð1 − f3Þð1 − f4Þ�

× 3ϕi:½τðnÞi ψ ðnÞ
i þ τðnÞj2

ψ ðnÞ
j2

− τðnÞj3
ψ ðnÞ
j3

− τðnÞj4
ψ ðnÞ
j4
�jEp3

−Epi
¼ω¼Ep2

−Ep4
: ðB2Þ

For arbitrary Δ; δμ; b the general evaluation of the collision integral Rij is more difficult. When b ≠ 0, spherical
symmetry cannot be used to simplify Eq. (11). Instead of using a polar decomposition, it is simpler to write q in Cartesian
coordinates,

RðnÞ
ij ¼ −

1

γð0Þ
1

T
ν2

ð2πÞ
ð2πÞ9 μ

2
i μ

2
j

Z
dξpi

d cos θpi
dϕpi

dξp2
d cos θp2

dϕp2

Z
dqxdqydqzdωjMj2ðij2 → j3j4Þ

× δðEp3
− Epi

− ωÞδðEp4
− Ep2

þ ωÞ½fif2ð1 − f3Þð1 − f4Þ�3ϕi:½τðnÞi ψ ðnÞ
i þ τðnÞj2

ψ ðnÞ
j2

− τðnÞj3
ψ ðnÞ
j3

− τðnÞj4
ψ ðnÞ
j4
�: ðB3Þ

To evaluate the above collision kernel we consider the
direction z as the direction of the unit vector parallel to b,
pi in the x-z plane,

pi ¼ piðsin θpi
; 0; cos θpi

Þ: ðB4Þ

This results in the integration not depending on this plane
and the angular integration over ϕpi

giving a factor 2π:p2 is
defined by the spherical coordinates,

p2 ¼ p2ðsin θp2
cosϕp2

; sin θp2
sinϕp2

; cos θp2
Þ: ðB5Þ

We use the energy δ functions

δðEp3
− Epi

− ωÞδðEp4
− Ep2

þ ωÞ ðB6Þ

to eliminate qx and qy in terms of qz and the other variables.
This is a difficult task for an anisotropic system, since in
this type of system with the angle dependent dispersion
relations and choices of the coordinate axes mentioned
above the arguments in the δ functions involve a large
number of angles. After elimination of qx and qy we are left
with the following seven-dimensional integral:

Rð0Þ
ij τj ¼ −

1

γð0Þ
1

T
ν2

ð2πÞ2
ð2πÞ9 μ

2
i μ

2
j

Z
dξpi

d cos θpi
dξp2

d cos θp2
dϕp2

dqz

Z
dωjMj2ðij2 → j3j4Þ

1

Jq
½f1f2ð1 − f3Þð1 − f4Þ�

× 3ϕi:½τð0Þi ψ ð0Þ
i þ τð0Þj2

ψ ð0Þ
j2

− τð0Þj3
ψ ð0Þ
j3

− τð0Þj4
ψ ð0Þ
j4
�jEp3

−Epi
¼ω¼Ep2

−Ep4
: ðB7Þ

Jq is the Jacobian of the variable change from E to qx

and qy.
The explicit form of Jq is given below,

Jq ¼ det

0
B@

dEp3
dδξpi

dEp3
dδξp2

dEp4
dδξpi

dEp4
dδξp2

1
CA
0
B@

dδξpi
dqx

dδξpi
dqy

dδξp2
dqx

dδξp2
dqy

1
CA; ðB8Þ

where

δξpi
¼ ξp3

− ξpi
;

δξp2
¼ ξp4

− ξp2
; ðB9Þ

and

dδξpi

dqx
¼ px

i þ qx

jpi þ qj ¼
px
i þ qx

pi þ δξpi

: ðB10Þ

Finally, to evaluate the integral in Eq. (11), we need the
flow part which can be expressed as follows:
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ϕi · ½ψ ð0Þ
i − ψ ð0Þ

j3
� ¼ 3

4
½piðcos θpi

ðvpi
cos θpi

−
1

pi
Eθpi

sin θpi
Þ − 1=3vpi

Þ�
h
Eθpi

ððcos θpi
− cos θp3

Þðsin θpi
− sin θp3

ÞÞ

− ððpi − p3Þðvpi
− vp3

Þðcos2θpi
− cos2θp3

ÞÞ þ 1

3
ððpi − p3Þðvpi

− vp3
ÞÞ
i
: ðB11Þ

Similarly,

ϕi · ½ψ ð0Þ
j2

− ψ ð0Þ
j4
� ¼ 3

2
½piðcos θpi

ðvpi
cos θpi

−
1

pi
Eθpi

sin θpi
Þ − 1=3vpi

Þ�
h
Eθp2

ððcos θp2
− cos θp4

Þðsin θp2
− sin θp4

ÞÞ

− ððp2 − p4Þðvp2
− vp4

Þðcos2θp2
− cos2θp4

ÞÞ þ 1

3
ððp2 − p4Þðvp2

− vp4
ÞÞ
i
; ðB12Þ

where Eθpi
¼ dEpi

=d cos θpi
.

We evaluate Eq. (B7) numerically with the help of Eqs. (B8), (B11), and (B12). However, to get some insight into when
the Jacobian is large, it is useful to expand in the region where q is small.
The explicit form of Jq is given below,

Jq ¼ det

�
vpi

þ wpi
δξpi

0

0 vp2
þ wp2

δξp2

�0B@
dδξpi
dqx

dδξpi
dqy

dδξp2
dqx

dδξp2
dqy

1
CA

¼ ðvpi
þ wpi

δξpi
Þðvp2

þ wp2
δξp2

Þ det
0
@ dδξpi

dqx
dδξpi
dqy

dδξp2
dqx

dδξp2
dqy

1
A: ðB13Þ

For small q=p, q=k we obtain

Jq ≈
ðpy

i q
x þ py

2ðpx
i þ qxÞ − px

i q
y − px

2ðpy
i þ qyÞÞ

p2piðpi þ δξpi
Þðp2 þ δξp2

Þ × ðvp2
þ wp2

δξp2
Þððvpi

þ wpi
δξpi

Þ

¼ ðpip2 sin θpi
sin θp2

cosϕp2
þ py

i q
x þ py

2q
x − px

i q
y − px

2q
yÞ

p2piðpi þ δξpi
Þðp2 þ δξp2

Þ × ðvp2
þ wp2

δξp2
Þððvpi

þ wpi
δξpi

Þ: ðB14Þ

In particular, we note that if vpi
and vp2

is small and δξpi

and δξp2
are small, then the Jacobian is small and the

integral receives a large contribution.

APPENDIX C: EFFECTIVE LAGRANGIAN FOR
TWO-FLAVOR PAIRING

The mean field Lagrangian for ur, ug, dr, and dg [31]
quarks is given by

L ¼ −2
Δ�Δ
λ

þ 1

2
Ψ†

4L

�
iσ̄μ∂μ þ μu −Δe2ib·r

−Δ�e−2ib·r iσμ∂μ − μd

�
Ψ4L

þ ðL → RÞ; ðC1Þ
where

Ψ4LðxÞ ¼
�

uLðxÞ
−½ϵC�cc0dCLðxÞ

�
ðC2Þ

where ½ϵC�cc0 ¼ ϵcc0 is the antisymmetric matrix in a two-
dimensional subspace of color, dCLðxÞ ¼ ðiσ2Þd⋆LðxÞ, and
σ’s are the Pauli spin matrices.
For the ur, dg quarks, it can be written as

L ¼ −
Δ�Δ
λ

þ 1

2
Ψ†

L

�
iσ̄μ∂μ þ μu −Δe2ib·r

−Δ�e−2ib·r iσμ∂μ − μd

�
ΨL

þ ðL → RÞ; ðC3Þ

where Δ ¼ λΘ3 [31] and the two-dimensional Nambu-
Gorkov spinors Ψ are defined as

ΨLðxÞ ¼
� urLðxÞ
−dCgLðxÞ

�
;

Ψ†
LðxÞ ¼ ðu†rLðxÞ;−dC†gLðxÞÞ; ðC4Þ
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where x ¼ ðt; rÞ. The mean field Lagrangian for the ug −
dr sector has the same form as Eq. (C3). Since the
contribution of the ug − dr quarks is the same as that of
the ur − dg sector, we just focus on the ur − dg quarks.
In momentum space, for h ¼ −1=2, p · σ ¼ −p ¼ −jpj

(this is the correct helicity for the L handed quarks). These
are the large components in the Fourier decomposition of
the Dirac spinor [75]. We have obtained the dispersion
relations and the Bogoliubov coefficients in the main text in
Sec. III C. The mode decomposition of Ψ in terms of the
Bogoliubov coefficients is

ΨLðxÞ¼
Z

d4p
ð2πÞ4e

−ipμxμ
�
ð2πÞδðp0−E1Þ

�
Φ11eib·rξ−ðpÞ
Φ12e−ib·rξ−ðpÞ

�
γL

þð2πÞδðp0−E2Þ
�

Φ21eib·rξ−ðpÞ
Φ22e−ib·rξ−ðpÞ

�
χL

�
; ðC5Þ

where ξ− is the two component spinor satisfying

p · σξ−ðpÞ ¼ −pξ−ðpÞ: ðC6Þ

The interaction can be written in terms of the Nambu-
Gorkov spinors8 as follows:

Sg¼ g
Z

d4xψ̄γμtmψAm
μ

¼ g
Z

d4xψ̄Lσ̄
μtmψLAm

μ þg
Z

d4xψ̄Rσ
μtmψRAm

μ : ðC7Þ

Going to the momentum basis and using Eq. (C5) we
obtain

LAL ¼
Z

d4pi

ð2πÞ4
d4p3

ð2πÞ4 gððΦ
�
11Φ�

12Þγ†Lð2πÞδðp0
3 − E1Þ þ ðΦ�

21Φ�
22Þχ†Lð2πÞδðp0

3 − E2ÞÞ

×

 
1ξ†−ðp3Þσ̄μξ−ðpiÞtm 0

0 −1ξ†−ðp3ÞCσ̄TμC†ξ−ðpiÞϵ†cðtmÞTϵc

!

×

��Φ11

Φ12

�
γLð2πÞδðp0

i − E1Þ þ
�Φ21

Φ22

�
χLð2πÞδðp0

i − E2Þ
�
Aa
μðp3 − piÞ; ðC8Þ

where ϵc is the antisymmetric symbol in color space.
Now we can use the conjugation relation for t1, t2, t3 generators,

−1ϵ†cðtmÞTϵc ¼ tm; ðC9Þ

and the tm gets decoupled from the Nambu-Gorkov structure. [This step does not work for the other SU(3) generators and
works because the SU(2) subgroup generated by t1…t3 is unbroken in two-flavor FF. See Eq. (51) for an analysis of a
broken generator.] We also use the conjugation relation for σ̄μ,

Cσ̄TμC† ¼ σμ; ðC10Þ

to simplify the spin structure. This gives

LAL ¼
Z

d4pi

ð2πÞ4
d4p3

ð2πÞ4 gððΦ
�
11Φ�

12Þγ†Lð2πÞδðp0
3 − E1Þ þ ðΦ�

21Φ�
22Þχ†Lð2πÞδðp0

3 − E2ÞÞ

×

�
1ξ†−ðp3Þσ̄μξ−ðpiÞ 0

0 1ξ†−ðp3Þσμξ−ðpiÞ

���Φ11

Φ12

�
γLð2πÞδðp0

i − E1Þ þ
�Φ21

Φ22

�
χLð2πÞδðp0

i − E2Þ
�

× tmAm
μ ðp3 − piÞ: ðC11Þ

8Since we are considering the transverse gluons there are no vertex corrections.
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Similarly, for R we obtain

LAR ¼
Z

d4pi

ð2πÞ4
d4p3

ð2πÞ4 gððΦ
�
11Φ�

12Þγ†Rð2πÞδðp0
3 −E1Þ þ ðΦ�

21Φ�
22Þχ†Rð2πÞδðp0

3 −E2ÞÞ

×

 
1ξ†þðpÞσμξþðpÞ 0

0 1ξ†þðpÞσ̄μξþðpÞ

!��Φ11

Φ12

�
γRð2πÞδðp0

i −E1Þ þ
�Φ21

Φ22

�
χRð2πÞδðp0

i −E2Þ
�
tmAm

μ ðp3 −piÞ:

ðC12Þ

A nice way to separate the spinor and the Nambu-Gorkov structure is to recombine the L (C11) and R (C11) components

LALR ¼
Z

d4pi

ð2πÞ4
d4p3

ð2πÞ4 gðūsðp3ÞγμusðpiÞÞððΦ�
11Φ�

12Þγ†sð2πÞδðp0
3 − E1Þ þ ðΦ�

21Φ�
22Þχ†sð2πÞδðp0

3 − E2ÞÞ

×

��Φ11

Φ12

�
γsð2πÞδðp0

i − E1Þ þ
�Φ21

Φ22

�
χsð2πÞδðp0

i − E2Þ
�
tmAm

μ ðp3 − piÞ: ðC13Þ

The final ingredient we need is the simplification of the color structure in the interaction. For this we use the relation
(m ¼ 1, 2, 3)

tmijt
m
kl ¼

�
−1
4

δijδkl þ
1

2
δilδkj

�
: ðC14Þ

Summing over the final colors (j, l) and averaging over the initial colors (i, k) gives (the sum over colors runs over only two
colors r and g)

1

4
tmijt

m
klt

n�
ij t

n�
kl ¼

1

4
tmijt

m
klt

n
jit

n
lk ¼

3

16
: ðC15Þ

APPENDIX D: CONTRIBUTION OF PHONONS

Phonons, the Goldstone modes associated with the broken symmetries, are also low energy modes. Here we make a quick
estimate of their contribution to transport and to the collision integral. They are not relevant in the FF phase but play an
important role in the gapped phases.

1. Quark-phonon scattering

For quark-phonon scattering, the scattering rate (Γ) is given by

½ΓiðpiÞ� ¼ −
X
j3

Z
d3l
ð2πÞ3

d3p3

ð2πÞ3 ð2πÞ
4½f̂ib̂2ð1 − f̂3Þδð4Þðpi þ l − p3ÞjMj2ðil → j3Þ

þ f̂ið1þ b̂2Þð1 − f̂3Þδð4Þðpi − l − p3ÞjMj2ði → j3lÞ − f̂3b̂2ð1 − f̂iÞδð4Þðpi − l − p3ÞjMj2ðil → j3Þ
− f̂3ð1þ b̂2Þð1 − f̂iÞδð4Þðpi þ l − p3ÞjMj2ðil → j3Þ�; ðD1Þ

where f̂ and b̂ are nonequilibrium distribution functions, and lμ ¼ ðω; lÞ is the four momentum of the phonon
satisfying ω2 − v2φl2 ¼ 0.

To the lowest order in gradient of the fluid velocity ua, f̂i − fi ¼ δfi ¼ − dfi

dϵ Φ
i, where

Φi ¼
X
ðnÞ

ΦðnÞ
i ¼

X
ðnÞ

3τðnÞi ψ ðnÞiab 1
2
ð∂aub þ ∂buaÞ: ðD2Þ

Substituting Eq. (D2) in the Boltzmann equation one can obtain the analogue of Eq. (11),
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X
j

½RðnÞ
ij �τj ¼ −

1

γðnÞ
1

T
ν2

Z
d3pi

ð2πÞ3
d3l
ð2πÞ3

d3p3

ð2πÞ3 ð2πÞ
43ϕi · ½fib2ð1 − f3Þδð4Þðpi þ l − p3Þðτiψ ðnÞ

i ÞjMj2ðil → j3Þ

þ fið1þ b2Þð1 − f3Þδð4Þðpi − l − p3Þðτiψ ðnÞ
i ÞjMj2ði → j3lÞ

− f3b2ð1 − fiÞδð4Þðpi − l − p3Þðτ3ψ ðnÞ
3 ÞjMj2ði → j3lÞ

− f3ð1þ b2Þð1 − fiÞδð4Þðpi þ l − p3Þðτ3ψ ðnÞ
3 ÞjMj2ðil → j3Þ�; ðD3Þ

where b is the Bose distribution.
The scattering matrix element associated with the vertex

in Eq. (41) is given by

jMj2 ∼ j i

fijφ

1ffiffiffiffiffiffi
2ω

p ffiffiffiffiffiffiffi
2pi

p ffiffiffiffiffiffiffiffi
2p3

p j24c2½2pi · lp3 · l − pi · p3l2�j

∼
l2

ðfijφ Þ2ω
∼

ω

ðfijφ Þ2
ðD4Þ

where we have taken c0 ∼ c0 to simplify the argument.
Simplifying the momentum integrals for the fermions

(d3pi and d3p3) as in Eq. (B1), noting that ξi, ξ3 and ω are
all of the order of T, and that ϕ and ψ are of the order of μ,
we can see without evaluating the integrals that

½Rðq−phÞij� ∼ c2
μ3T4

ðfijφ Þ2
∼ μT4; ðD5Þ

where we have used a rough estimate for fφ: fφ ∼ μ.
When unpaired quarks participate in transport and T is

much less than the chemical potential μ, the contribution
from Eq. (D5) is subleading compared to the collision term
associated with quark-quark scattering in Eq. (E5). This is
simple to understand because the density of states for
gapless fermions near the Fermi surface is proportional to
μ2 while the density of states of phonons is proportional to
T2. We see in Sec. E 2 a that this is not true for paired
systems with no gapless fermions.

2. Momentum transport via phonons

If phonons are present in the low energy theory then they
can also transport energy andmomentum.While this is not the
main topic of the paper, we make a quick estimate to see how
this contribution compares with the fermionic contribution.
The kinetic theory estimate for the shear viscosity of the

phonon gas is

η ∼ hnihpivφτφ: ðD6Þ

The density of phonons at temperature T is given by
hni ∼ T3

v3φ
and hpi ∼ T

vφ
. Consequently,

η ∼
1

v3φ
T4τφ: ðD7Þ

τφ is very sensitive to the nature of the excitations present
in the low energy theory. For example, if all the fermionic
modes are gapped, then the phonons only scatter with each
other. Since the phonons are coupled derivatively, the
relaxation time in these cases is very long due to the small
density of phonons at low temperatures, and hence the
viscosity is very large. It is well known that in the absence
of gapless fermions these phonons dominate the viscosity at
low T (Refs. [96,97]).
For example, if the dominant scattering rate is

2 → 2 scattering then the shear viscosity is given
by [98,99]

η ∼
1

v3φ

f8φ
T5

: ðD8Þ

In both the unpaired phase and in the FF phase,
phonons can scatter off gapless fermionic excitations
which have a large density of states near the Fermi
surface. This effect is simply the Landau damping of the

phonons. The scattering rate of the phonons is Γ ∼ 1=τ ∼
μ2

f2φ
T [100]. A quick estimate gives

η ∼
1

v3φ

f2φ
μ2

T3; ðD9Þ

which is much smaller than Eq. (E6) for T ≪ μ.

APPENDIX E: RESULTS FOR A SIMPLE
INTERACTION FOR ISOTROPIC PAIRING

1. Unpaired fermions

In this section we review well-known results for the
shear viscosity of the unpaired phase and then show new
results on how the shear viscosity is modified due to
(1) gapped pairing in Appendix E 2 a, (2) gapless pairing
in Appendix E 2 b, and (3) FF pairing in Sec. IV.
In this section we focus on the scattering via the

longitudinal Aμ, with an interaction of the form in
Eq. (47). We approximate the polarization tensor of the
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longitudinal mode of Aμ by the Debye screened mass
[Eq. (49) with Nf ¼ 1]. The matrix element for the
scattering of quarks by the longitudinal Aμ is given
by Eq. (50).
We note that Eq. (50) is nothing but the Möller

scattering of identical particles. In this scenario M has
two parts i → j2; j3 → j4 and i → j4; j2 → j3. Hence,
after squaring there appear three term squares of these
two contributions as well as their interference term.
However, in the limit of small momentum transfer the
interference term gives small contribution and hence can
be excluded [56,101]. The other two terms give equal
contributions.
The dispersions are given by Eq. (25) with b ¼ 0,Δ ¼ 0.

Dropping the absolute sign in ξ, E ¼ δμ� ξ and we do not
need to distinguish between the ξ > 0 and ξ < 0 modes.
For convenience here we can put δμ ¼ 0 and the two
species can be treated as identical. (The corrections to the
results are suppressed by δμ=μ.)
In this case the lhs of Eq. (10) is simply given by the

integral,

Lun
1 ¼ 1

γðnÞ
2πμ2

ð2πÞ3
1

T

Z
∞

−∞
dξ

1

ðeξ=T þ 1Þ
1

ðe−ξ=T þ 1Þ

×
Z

d cos θμ2
3

2

�
cos2θ −

1

3

�
2

: ðE1Þ

Using γð0Þ ¼ 1, we obtain

½Lun
i � ¼

 
− 4

15
μ4

ð2πÞ2

− 4
15

μ4

ð2πÞ2

!
: ðE2Þ

(We use the superscript “un” to denote the values of Li, Rij,
τ and η for one unpaired species with the dispersion
relation E ¼ ξ.)
The rhs of Eq. (11) can be obtained following

Refs. [29,56]. The interaction mentioned in Eq. (47) does
not change flavor, and hence the species index j3 is the
same as i, and j2 is the same as j4. There are two relevant
integrals which give

sun1 ¼ −
1

γðnÞ
1

T
ν2

Z
d3pi

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3 jMj2ðij2 → j3j4Þð2πÞ4δ
�X

pμ

�
½fif2ð1 − f3Þð1 − f4Þ�3ϕi:½ψ ðnÞ

i − ψ ðnÞ
3 �

≈ −ν2
g4

16 · 5
π3

ð2πÞ5
μ4T2ffiffiffiffiffiffiffiffiffiffiffi
Πlð0Þ

p
sun2 ¼ −

1

γðnÞ
1

T
ν2

Z
d3pi

ð2πÞ3
d3p2

ð2πÞ3
d3p3

ð2πÞ3
d3p4

ð2πÞ3 jMj2ðij2 → j3j4Þð2πÞ4δ
�X

pμ

�
½fif2ð1 − f3Þð1 − f4Þ�3ϕi:½ψ ðnÞ

2 − ψ ðnÞ
4 �

≈ 0: ðE3Þ

The analytic approximations for the collision integrals
are obtained by assuming the integral is dominated by
momentum exchanges q ≪ μ. (Only an interference
between the transverse and the longitudinal gauge field
exchange contributes to s2.) From the form of the gluon
propagator [Eq. (48)] one can argue that the typical
momentum exchange is

q ∼mD ¼
ffiffiffiffiffiffi
Nf

p
gμ

π
: ðE4Þ

For strong coupling (we draw the plots for αs ¼ 1)
mD ≪ μ is not satisfied. In the numerical calculation we do
not approximate q ≪ μ. We find that the expressions given
in Eq. (E3) considering q ≪ μ are accurate within 30% to
the numerical estimate for the interaction mentioned in
Eq. (51), and more importantly it has the correct scaling
behavior with μ and T.

The matrix Rij is related to sun by

½Run
ij � ¼

0
@ ð2sun1 þ sun2 Þ sun2

sun2 ð2sun1 þ sun2 Þ

1
A

≈ −
g3T2μ3ν2
640π

ffiffiffi
2

p
�
1 0

0 1

�
: ðE5Þ

Equations (E2) and (E5) can be used to compute the
viscosity for unpaired quarks with which we can compare
the results of the paired system. In the approximation q ≪
μ one obtains

τun1 ¼ τun2 ¼ Lun
1

2sun1
≈
256

ffiffiffiffiffiffiffiffiffiffiffi
Πlð0Þ

p
3ν2g4T2

¼ 128
ffiffiffi
2

p
μ

3g3πT2ν2
;

ηun1 ¼ ηun2 ¼ −
3

2
ν2Lun

1 τun

≈
128

ffiffiffiffiffiffiffiffiffiffiffi
Πlð0Þ

p
μ4

15g4π2T2
≈

64
ffiffiffi
2

p
μ5

15g3π3T2
: ðE6Þ
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The total viscosity of the system is

ηun ¼ ηun1 þ ηun2 ¼ 2ηun1 : ðE7Þ

Typically the system described above features additional
low energy modes. For example, to ensure the neutrality of
the system a background of oppositely charged particles is
necessary, and fluctuations in their density are gapless. (A
real world example is the electron gas in a lattice of ions.)
Quarks can scatter off these phonons. In Sec. D 1 we made
a quick estimate of how these processes affect quark
transport and found that Rq-ph

ij ∼ μT4, which is parametri-
cally smaller than Eq. (E5). Therefore they can be ignored
for unpaired quark matter. However, these scattering
processes turn out to be important in the next section.
Finally, it is easy to see that the viscosity contribution

of unpaired quarks [Eq. (E6)] is much larger than the
contribution of phonons in the presence of unpaired quarks
[Eq. (D9)].

a. Results for transverse gluon exchange
for unpaired quarks

For completeness we review results for the shear
viscosity when the dominant quark-quark interaction is
the exchange of the Landau damped transverse gluons. In
principle, both the longitudinal and the traverse gluon
exchanges are present and can interfere, but for most
parameters one dominates over the other and they can
be treated separately.
The lhs of the Boltzmann equation [Eq. (10)] is inde-

pendent of interactions and hence Li is given by Eq. (E2)
regardless of whether the longitudinal or the transverse
gluons dominate.
For isotropic Landau damping [Eqs. (31) and (32) for

three Landau damped gluons t1, t2, and t3 with Nf ¼ 2], a
rough estimate [29,56] for Rij is given by

Rtun
11

Run
11

≈
3

21=6

�
gμ
π2T

�
1=3

; ðE8Þ

where Run
11 is calculated with the longitudinal interaction

given in Eq. (E5) and Rtun
11 is for the transverse interaction.

Just like Eq. (E3), we find that the analytic estimate in
Eq. (E8) for Rij is accurate within 30% for the interaction
given by Eqs. (31) and (32), in the range of parameters we
have explored. It also captures the correct scaling behavior
with μ and T.
Equation (E8) is the explicit manifestation of the result

mentioned in Sec. II. If present, the Landau damped
transverse gluon exchange dominates over the longitudinal
gluon exchange in unpaired quark matter at low T: the ratio
in Eq. (E8) is much larger than 1 for T ≪ μ.
With the collision integral Rij in hand, we can calculate τ

and η. We obtain

τtun1

τun1
≈
21=6

3

�
gμ
π2T

�
−1=3

; ðE9Þ

and

ηtun1

ηun1
≈
21=6

3

�
gμ
π2T

�
−1=3

: ðE10Þ

Equations (E8)–(E10) are compared with results for the
FF phase in Sec. IV B. In both cases the dominant gluon
exchange is the Landau damped transverse gluon exchange.
But in the FF phase the dispersion of the quarks is given by
Eq. (25) and this has an important impact.

2. Paired fermions

We now consider the effect of the isotropic pairing
(b ¼ 0) on transport to get some intuition into the aniso-
tropic problem. In the isotropic systems we can simplify the
integrals Rij [Eq. (11)] using rotational symmetry. In
Sec. E 2 a we take δμ ¼ 0 and see how pairing affects
the fermionic contribution to the viscosity. In Sec. E 2 b we
take δμ ≠ 0 and see how the gapless modes that arise when
Δ < δμ contribute to transport. In the FF phase, the
fermions at the boundary of the blocking regions are
gapless and we expect to see that they share some features
of the system considered in Sec. E 2 b.

a. Bardeen-Cooper-Schrieffer pairing

For δμ ¼ 0 the transport properties depend on the three
dimensionful quantities μ, T, and Δ. The overall scale is set
in terms of the chemical potential μ. The quantities Li=μ4,
Rij=μ5, τμ and η=μ3 are dimensionless and can be written as
functions of the variables ðTμ ; ΔμÞ. The analysis is further
simplified by the observation that we can write the
quantities of interest as a result of unpaired quark matter
multiplied by a function only of Δ=T [e.g. see Eq. (E11)].
The effect of pairing is shown in Fig. 8 where we present

how the transport properties change from their values in
unpaired quark matter as we increase Δ=T. Below, we
describe the behavior in various limiting cases as we
change Δ=T. For isotropic systems the phase space integral
[Eq. (B2)] can be evaluated numerically with a high
accuracy and the errors in the solid curves of Fig. 8 are
comparable to their thickness.
Δ ≪ T: When the pairing parameter Δ → 0 (see Fig. 8),

we get back a system of unpaired fermions and one should
obtain the result in Sec. E 1 in the language of the
Bogoliubov quasiparticles [Eq. (26)].
Li is given by half the values given in Eq. (E2) [the factor

of 1=2 arises because we restrict the integrals in ξ to ξ > 0
or < 0 corresponding to Eq. (26)],

½Li�ðΔ ¼ 0Þ ¼ 1

2
Lun
1 ð1; 1; 1; 1Þ: ðE11Þ
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For the collision integral, we numerically find that to a high accuracy the matrix Rij has the form

RijðΔ ¼ 0Þ ¼ 2sun1

0
BBBBBBBBB@

1
2
þ f2

�
T
μ ;

1
g

�
0 0 1

2
− f2

�
T
μ ;

1
g

�
0 1

2
þ f2

�
T
μ ;

1
g

�
1
2
− f2

�
T
μ ;

1
g

�
0

0 1
2
− f2

�
T
μ ;

1
g

�
1
2
þ f2

�
T
μ ;

1
g

�
0

1
2
− f2

�
T
μ ;

1
g

�
0 0 1

2
þ f2

�
T
μ ;

1
g

�

1
CCCCCCCCCA

ðE12Þ

[with sun2 ¼ 0 and sun1 given in Eq. (E3)].
The structure of the matrix in Eq. (E12) is easy to

understand. The diagonal entries correspond to the scatter-
ing of species i with i. For Δ ¼ 0 the branch a is connected
to d and b to c, and these scattering contributions are finite
and they add up to 2sun1 . In a wide range of T ≪ μ, f2ðTμ ; 1gÞ
is relatively insensitive to T=μ and increases with increas-
ing 1

g (weak coupling). This is because f2ðTμ ; 1gÞ is related to

the scatterings between a and d (or b and c) species and the
interactions are more pronounced at small angles
(q ∼ gμ ≪ μ). This indeed signifies that smaller g provides
the dominant effect. The contribution to the collisional
integral from scattering of particles in the branch a with b
or c is 0 from rotational symmetry [just like sun2 ¼ 0
in Eq. (E3)].
From Eqs. (E11) and (E12) one can easily obtain

relaxation time τiðΔ ¼ 0Þ ¼ τun1 and hence the shear

FIG. 8. Plots of Li, the diagonal entries of Rij, ηi and τi (anticlockwise from top left) for paired quark matter for jMj2 given in
Eq. (51). The results for all four species a, b, c, d are identical and shown by the solid curve (red online). The overall scale is set
by μ:T=μ ¼ 3.34 × 10−4 is held fixed and δμ ¼ 0. The dot dashed curves (yellow online) show an exponential fall off,
∝ expð−Δ=TÞ, for Li [Eq. (E14)], an exponential fall off ∝ expð−2Δ=TÞ, for Rii [Eq. (E15)], and an exponential increase,
∝ expðΔ=TÞ, for τi. The horizontal dashed curves (black online) for Li [Rij, τ, η] correspond to Lun=2 [Eq. (E2)], Run

11 [Eq. (E5)],
τun1 and ηun1 =2 [Eq. (E6)].
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viscosity is ηi ¼ 1
2
ηun1 for all four species. The total viscosity

is given by

ηðΔ ¼ 0Þ ¼
X
i

ηiðΔ ¼ 0Þ ¼ 4ηiðΔ ¼ 0Þ ¼ 2ηun1 : ðE13Þ

The dashed horizontal line (black online) on the top left
panel of Fig. 8 corresponds to Li ¼ 1

2
Lun
1 [Eqs. (E2) and

(E11)]. The dashed horizontal lines (black online) on the top
right panel of Fig. 8 correspond toRun

11 ¼ 2sun1 [Eqs. (E5) and
(E12)]. For the parameters of Fig. 8 the numerical result
[shown in the top right panel of Fig. 8 by the dashed
horizontal line (black online)] for Run

11=μ
5 ¼ −1.23 × 10−9.

The analytic expression [Eq. (E3)] gives Run
11=μ

5 ¼
−9.8 × 10−10. The dashed horizontal line (black online)
on the bottom left and on the bottom right panel of Fig. 8
corresponds to τi and ηi [Eq. (E6)] for unpaired quarks,
respectively.
Δ ≫ T: As Δ increases, the participation of fermions in

transport starts to get thermally suppressed. Since the Li’s
involve single particle excitations, it is easy to see that

LiðΔÞ ≈ LiðΔ ¼ 0Þe−Δ=T: ðE14Þ

This is shown by the dot dashed curve (yellow online)
in Fig. 8.
Similarly, since the Rij’s involve two particle excitations,

we expect that

RijðΔÞ ∼ RijðΔ ¼ 0Þe−2Δ=T: ðE15Þ

This is shown by the dot dashed curve (yellow online) in
Fig. 8. We see in Fig. 8 that this exponential drop in Rij

turns out to be true for Δ=T larger than 4 and the
suppression in Rij for Δ=T ≲ 4 while present is a little
weaker as we discuss below.
Δ≲ 4T: While Eq. (E14) gives a good description of Li

for all Δ=T, the behavior of Rij in the intermediate regime
is a little more complicated. For Δ≲ 4T,

jRijðΔÞj > jRijðΔ ¼ 0Þje−2Δ=T: ðE16Þ

This is because pairing opens up processes that are
forbidden in unpaired quark matter. For example, a process
i ¼ a, j2 ¼ c, j3 ¼ c, j4 ¼ d is 0 in unpaired quark matter
because gluons cannot change the flavor of the quark. But
in the presence of pairing, finite Bogoliubov coefficients
[Eqs. (21) and (22)] allow such processes. At large enough
Δ, these processes turn off but in the intermediate regime
they display a nonmonotonic behavior. This bump in Rij is
reflected in τ and shows up as a minimum in η at Δ=T ≈ 3.
We note that the transition from theΔ≲ 4T regime to the

Δ ≫ T behavior seems abrupt, almost like a kink inRij. We
think it is simply because of the sharp exponential turn off

of these processes near Δ ≈ 4T and is not associated with
any transitions.
Focusing on Δ ≫ T, Eq. (E15) is a reflection of the fact

that few thermally excited quarks scatter with each other.
The large relaxation time compensates for the small
number of momentum carrying fermions and for Δ=T ≳
4 the viscosity converges back to the value for unpaired
quark matter as can be seen in the bottom right panel of
Fig. 8 (η) where we see that after reaching a minimum near
Δ=T ≈ 3, η rises again and flattens near the value for
unpaired quark matter.
This result is puzzling since we expect the paired

fermions to be frozen at temperatures smaller than the
pairing gap. We expect only the low energy phonons to
participate in transport at low energies [98].
We argued in the previous section (Sec. E 1) that in

the absence of pairing for T ≪ μ, the contribution to the
quark collision integral Rij from quark-phonon scattering
[Eq. (D5)] is subdominant to the contribution from quark-
quark scattering [Eq. (E5)]. Pairing, however, affects
these two contributions differently. Since quark-phonon
scattering involves only one gapped mode, we expect
the Rijðq−phÞðΔÞ∼Rijðq−phÞð0Þe−Δ=T rather than ∼e−2Δ=T

[Eq. (E15)] and hence dominates scattering. Then τi
does not grow exponentially and ηi is exponentially
suppressed.
More systematically, for Δ ≫ T,

Li ≈
−2
15

μ4

ð2πÞ2 e
−Δ=T; i ¼ a; b; c; d ðE17Þ

and [Eqs. (E15) and (D5)]

RiiðΔÞ ≈
�
−
1

2

g3T2μ3ν2
640π

ffiffiffi
2

p e−2Δ=T − cμT4e−Δ=T
�

≈ −cμT4e−Δ=T i ¼ a; b; c; d ðE18Þ
where we have taken Πlð0Þ ¼ ðgμ=ð2πÞÞ2 and c is a
number Oð1Þ. Hence,

τi ≈
2c

15ð2πÞ2
μ3

T4
i ¼ a; b; c; d: ðE19Þ

Therefore, the fermionic contribution to the shear vis-
cosity is given by

ηi ¼ −3τiLi ≈
4

75ð2πÞ4
μ7

T4
e−Δ=T i ¼ a; b; c; d; ðE20Þ

which is subdominant to the phonon contribution
[Eq. (D8)], since we are assuming no other gapless
fermions are present.
The argument from Eqs. (E17)–(E20) for the domi-

nance of phonons to describe the transport properties in a
paired system relies on the existence of a gapless
Goldstone mode in the low energy theory. (A similar
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argument holds if there are additional unpaired or gapless
fermions that couple to the paired fermions.) In most of
the paired systems we know such a mode is present.
If the symmetry broken by the fermion condensate is
global or has a global component,9 then the pairing itself
gives rise to a Goldstone mode which can scatter off
fermions. If the symmetry broken by the condensate is
local rather than global, then pairing does not give rise to
a phonon mode. For example in ordinary Bardeen-
Cooper-Schrieffer superconductors the local Uð1Þ → Z2

gives a mass to the transverse photons (the Meissner
effect). However even in this case there is a Goldstone
mode associated with the breaking of translational sym-
metry by the underlying lattice.10

Therefore the common statement that the paired fer-
mions do not contribute to transport at low temperatures is
generically true, but subtle. Things are cleaner if there are
fermionic modes that are gapless, in which case they
dominate transport when μ ≫ T. This is the situation we
explore in the next section.
In drawing Fig. 8 we have taken αs ¼ 1. Obtaining

results for arbitrary g is simple. The square of the matrix

element, jMj2, scales as g4 and
ffiffiffiffiffi
Πl

p
scales as g.

Consequently τi and ηi scale as 1=g3.

b. Isotropic gapless pairing

In this section we analyze the isotropic gapless paired
phase which includes δμ in the dispersion relation i.e. the
dimensionful scales obey b → 0, Δ > δμ. As discussed in
Sec. II, this phase is unstable, but the analyses give us
insight into the anisotropic calculation.
For δμ nonzero, Li=μ4, Rij=μ5, τμ, and η=μ3 are

functions of the variables ðTμ ; Δμ ; δμμ Þ. The analysis is further
simplified by assuming that we can write the quantities of
interest as the result for unpaired quark matter [Eqs. (E2),
(E5), and (E6)] multiplied by a function only of ðΔ=T,
δμ=TÞ [e.g. see Eqs. (E21) and (E22)]. This approximate
ansatz gives insight into the behavior of the transport
properties in the regime δμ > Δ as shown below.
Exploring the full dependence of Li and Rij on

ðΔ=T; δμ=TÞ is not be very useful for us here. The key
feature we want to understand here is how the properties of
gapped (Δ > δμ) and gapless (Δ < δμ) phases differ. To
this end, we fix Δ=T, and vary δμ to go from the gapped to
the gapless regime.
Based on the discussion in the previous section

(Sec. E 2 a), we expect that for Δ > δμ both the lhs and
the rhs of the Boltzmann equation will be exponentially
suppressed from the unpaired value and behave like a
system of gapped fermions. Increasing the value of δμ alters
the situation. For Δ < δμ from Eq. (24) it can be seen that
the branches a and b in Eq. (26) becomes gapless while the
branches c and d remain gapped.
The region to the left of δμ=T ¼ 2.5 (vertical dashed line

in Fig. 9) corresponds to Δ > δμ where all fermionic
excitations are gapped and all components of Rij are
exponentially suppressed. For the regime δμ=T > 2.5,
Δ < δμ, branches a and b feature gapless fermionic
excitations. The asymptotic value (δμ ≫ Δ) converges
to ηa ¼ ηb ¼ 2ηun1 .

FIG. 9. Plots of Li (left) and the diagonal entries of Rij (right) with jMj2 given in Eq. (51). The dashed horizontal lines correspond to
the values for unpaired matter. T=μ ¼ 3.34 × 10−4 and Δ=T ¼ 2.5 are held fixed. The dot dashed curves (yellow online) for Li are the
simple forms given in Eq. (E22) for δμ > Δ, and Eq. (E21) for δμ < Δ. The results [upper solid curves (red online)] for a are the same as
b as both become gapless for δμ > Δ. The results [lower solid curves (blue online)] for c are the same as d as both remain gapped for
δμ > Δ. The dashed vertical line (cyan online) corresponds to Δ=T and separates the gapped (left) and the gapless (right) regimes.

9For quark pairing the condensate breaks baryon number
conservation. For cold atoms fermion number conservation is
a global symmetry. In both these cases the dispersion of the
resultant mode is vF=

ffiffiffi
3

p
and hence absorption of phonons by

fermions is kinematically allowed.
10The sound speed of the lattice phonons is much smaller than

the Fermi speed of the fermions and fermion phonon scattering is
kinematically allowed. However hypothetically one can consider
a situation when this is not the case. Then the statement that
gapped contributions do not contribute to transport will not hold.
Since this is not germane to our paper we do not explore this
further here.
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More specifically, for Δ − δμ ≫ T

La;bðΔ; δμÞ ≈
1

2
Lun
1 e−

ðΔ−δμÞ
T ¼ LaðΔ ¼ 0; δμ ¼ 0Þe−ðΔ−δμÞ

T ;

Lc;dðΔ; δμÞ ≈
1

2
Lun
1 e−

ðΔþδμÞ
T ¼ LaðΔ ¼ 0; δμ ¼ 0Þe−ðΔþδμÞ

T :

ðE21Þ

The splitting between gapless and gapped species
increases as we increase δμ. For δμ − Δ ≫ T, near the

gapless surfaces ξ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
, both a and b branches

resemble unpaired fermions. Therefore,

La;bðΔ; δμÞδμ≫Δ → Lun
1 ¼ 2LaðΔ ¼ 0; δμ ¼ 0Þ

Lc;dðΔ; δμÞ ≈
1

2
Lun
1 e−

ðΔþδμÞ
T : ðE22Þ

Similarly, for Δ − δμ ≫ T we expect Rii for each i to be
suppressed compared to Run

ii . For example, for δμ ¼ 0, we
see that for Δ=T ¼ 2.5, RiiðΔ ¼ 2.5T; δμ ¼ 0Þ ≈ Run

ii =15.
The suppression factor of 15 is consistent with the same
factors in Fig. 8.
As δμ is increased, the gapless branches a, b split from c

and d, and eventually for δμ − Δ ≫ T

Raa;bbðΔ; δμÞjδμ≫Δ → Run
11

Rcc;ddðΔ; δμÞ ∼ Run
11 expð−2ðΔþ δμÞ=TÞ: ðE23Þ

The off-diagonal terms of Rij are also exponentially
suppressed.
This pattern is repeated for τ and η. For ðδμ − ΔÞ ≫ T

τa;b (ηa;b) tend towards τun1 (ηun1 ) while τc;d (ηc;d) are
exponentially suppressed. The results for η are shown in
Fig. 10 and show that ηa ¼ ηb ¼ ηun1 .
All these are just a complicated way to obtain the well-

understood result Ref. [102] that transport in gapless

TABLE II. Summary of unpaired, paired, isotropic gapless and FF phases.

Unpaired Paired Isotropic gapless Anisotropic (Debye) Anisotropic (Landau)

Dispersions E¼jpj E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þΔ2

p
E¼δμ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þΔ2

p
ðδμ>ΔÞ E¼δμþbcosθ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þΔ2

p Like Debye

lhs Li∝μ4 Li∼Lun×e−Δ=T La;b∼Lun;ðδμ−Δ≫TÞ La;b∼Lun×1
2
ð1þδμ

b −
Δ
bÞ

Lc;d∝Lune−
ðΔþδμÞ

T Lc;d∼Lune−
Δ
T Like Debye

rhs R11∝T2μ3 Rij∼Run
11e

−2Δ=T ;
ðΔ≫TÞ

Raa;bb∼Run
11;ðδμ−Δ≫TÞ Raa;bb∼1

2
Run
11

×1
4
ð1þδμ

b −
Δ
bÞ2

Raa;bb∼102Rtun
11

Rcc;dd∼Run
11

×expð−2ðΔþδμÞ=TÞ
Rcc;dd∼Run

11exp
−Δ=T

η η∝μ5=g3T2 η∼ηun1 e−Δ=T ;
ðΔ=T<4Þ

η∼2ηun1 ;ðδμ−Δ≫TÞ η∼2ηun1 η∼10−2ηtun1

η∼2ηun1 ;ðΔ=T≳4Þ
Parameters T

μ¼3.34×10−4 T
μ¼3.34×10−4;

Δ
T¼2.5

T
μ¼3.34×10−4;

Δ0

μ ¼1.67×10−2

b¼ζδμ Like Debye
Energy scales μ≫T Δ≫T a, b gapless, c, d

gapped, (δμ>Δ)
a, b gapless,
(δμeffðθÞ>Δ)

a, b, c, d
unpaired

a, b, c, d
gapped

a, b, c, d
gapped, (Δ>δμ)

a, b, c, d gapped,
(jδμeffðθÞj<Δ)

c, d gapless,
(−Δ>δμeffðθÞ)

Like Debye

FIG. 10. Plot of ηa ¼ ηb [the upper solid curve (red online)] and
ηc ¼ ηd [the lower solid curve (blue online)] from the results of
Fig. 9. The dot-dashed curve (yellow online) shows ηun1 .
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superfluids is dominated by fermionic modes near the
gapless surfaces and the result for the total viscosity in the
limit δμ − Δ ≫ T is the same as for an unpaired system,

ηðδμ ≫ ΔÞ ¼
X
i

ηi ≈ ηa þ ηb ≈ 2ηun1 : ðE24Þ

The contribution from the gapped branches can be
ignored,

ηc ¼ ηd ≈ 0: ðE25Þ
This somewhat complicated analysis leads to a simple

and intuitive result summarized in Eq. (E24): One could
restrict to modes near the gapless spheres like mode a near
ξ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
and mode b near ξ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
and

neglect modes c and d. Near the gapless ξ, the dispersion of
the modes can be approximated as linear, which means that
standard Fermi liquid techniques would lead to Eq. (E24)
for gapless fermions if δμ ≫ Δ.
This intuitive understanding helps us understand the

results of the more complicated calculation for the FF phase
where the pairing pattern is anisotropic in Sec. IV.
To summarize all the discussions on different types of

phases here we insert a table. The table presents character-
istic features of different phases in a concise manner. To
summarize all the discussions on different types of phases
here we insert a table (Table II)

APPENDIX F: NUMERICAL DETAILS

In this section we present some useful details of
numerical integration.
The evaluation of the lhs of the Boltzmann equation

[Eq. (10)] is straightforward. For Δ ¼ 0; δμ ¼ 0; b ¼ 0 the
integral can be performed analytically for T ≪ μ [29,56]
and gives Lun [Eq. (E2)]. For generic Δ; δμ; b one
can use Azimuthal symmetry to write the integral as a

two-dimensional integral which can be evaluated easily
numerically.
The general evaluation of the collision integral Rij is

more difficult. For b ¼ 0, spherical symmetry can be used
to simplify the integral [29,56]. The five-dimensional
integration can be done easily using Monte Carlo tech-
niques and we find converged answers with 105–106 points.
The results for Rij shown in Figs. 8 and 10 are obtained
using 106 points. The error bars are the estimated errors
obtained in the Monte Carlo integration. More points
are required for the Landau damped exchange bosons

since the jMj2 and hence the integrand is more sharply
peaked at q → 0.
For the anisotropic system (b ≠ 0) one has to perform

seven-dimensional integration instead of 5. Because of the
higher dimensions the convergence of the Monte Carlo
evaluation of Eq. (B7) is much slower compared to
Eq. (B2). In making Fig. 3 where the mediator is Debye
screened, we used 7 × 107 points and obtained reasonably
converged results. The evaluation of Rij for Figs. 4 and 5
was more computationally involved because the disper-
sions as well as the interactions are anisotropic and the
interactions are mediated by Landau damped gluons. Thus
the integrand is sharply peaked at small q. To evaluate Rij

for Fig. 4 we used 2.2 × 108 to 3.7 × 108 Monte Carlo
points which took over two weeks on a modern cluster with
100 nodes. For Fig. 5, we uniformly took 2.2 × 108 points
for all the four T=μ values.
The most challenging part of the computation is simul-

taneous solution for the energy conservation constraint
Ep3

− Epi
¼ ω ¼ Ep2

− Ep4
and it required writing a

robust solver in language C. The convergence of Rij is
poor, as seen by the large error bars in Rij and η. Substantial
improvements would require significantly higher comput-
ing resources and/or a better algorithm which we leave for
the future.
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