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We develop a framework for deriving Dyson-Schwinger equations (DSEs) and the Bethe-Salpeter equation
(BSE) in QCD at the large N, limit. The starting point is a modified form (with auxiliary fields)
of the QCD generating functional. This framework provides a natural order-by-order truncation scheme
for DSEs and the BSE, and the kernels of the equations up to any order are explicitly given. Chiral symmetry
(at the chiral limit) is preserved in any-order truncation, so it exemplifies the symmetry preserving truncation
scheme. It provides a method to study DSEs and BSE beyond the rainbow-ladder truncation and is especially
useful to study contributions from non-Abelian dynamics (those arising from gluon self-interactions). We also
derive the equation for the quark-ghost scattering kernel and discuss the Slavnov-Taylor identity connecting
the quark-gluon vertex, the quark propagator, and the quark-ghost scattering kernel.
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I. INTRODUCTION

The standard form of a QCD generating functional is the
basis for perturbative expansion, while alternate forms may
have advantages in nonperturbative studies. For example,
In Ref. [1], Cahill and Roberts introduced a bilocal action
to study meson properties and the bag model. The action
was obtained by taking an approximation that only the
gluon propagator was retained. So, it is not QCD but a
model that is usually called the global color model (GCM)
(for a review, see Ref. [2]). It is possible to generalize their
method to obtain a bilocal action that is equivalent to the
QCD action, and the GCM action may be served as the
leading order of this new bilocal action. In the present
paper, we shall employ a bilocal action that was first
introduced in Ref. [3] and was used to study chiral
perturbation theory therein. With this action, various
problems can be addressed. In this work, we generalize
the method used in Ref. [3] by introducing external sources
for single quark fields, gluon fields, and ghost fields to
study Dyson-Schwinger equations (DSEs) and the Bethe-
Salpeter equation (BSE). In this approach, the parameter
N, in the action is extracted and shown explicitly, which is
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especially beneficial for large N, expansion. In the present
work, we concentrate on the large N, limit, although
higher-order corrections can be taken into account in
principle. We shall derive DSEs and the BSE and discuss
their truncations. Since all equations are derived from the
same generating functional, consistency among these
equations is easily maintained when truncations are made.
In particular, chiral symmetry (at chiral limit) is preserved
automatically in truncated DSEs and the BSE up to any
order. This is a more elegant approach than truncating the
DSEs and the BSE separately and discussing their con-
sistency thereafter.

DSEs and the BSE are important tools in low-energy
QCD and hadron physics. Particularly, the meson spectrum
can be calculated with the BSE combined with the gap
equation, i.e., the DSE for the quark propagator. It is well
known that these equations must be truncated in practical
calculations. The simplest truncation for the gap equation
and the meson BSE is the rainbow-ladder (RL) truncation
[4-8]. In this truncation, the full quark-gluon vertex is
replaced with the bare vertex y* (up to a color matrix), and
the BSE kernel takes the ladder approximation. Although
many achievements have been made based on the RL
truncation, recent research has indicated the necessity of
going beyond the RL truncation. For instance, the spectra
for light scalar and axial-vector mesons calculated under
the RL truncation are relatively poor compared to those for
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light pseudoscalar and vector mesons [9—11]. It is believed
that the reason for this is that in the pseudoscalar and
vector channels the higher-order corrections to the RL
truncation largely cancel, while in the scalar and axial-
vector channels, the corrections do not typically cancel
[12,13]. So, in recent years, a lot of effort has been made to
aim at going beyond the RL truncation in DSEs and the
BSE [14-20].

Chiral symmetry breaking plays an important role in the
low-energy QCD, so the truncated DSEs and BSE should
reflect this feature properly. It is realized that chiral
symmetry imposes an important connection between the
integration kernel of the gap equation and the BSE kernel.
This connection guarantees that the pion state as a solution
of the BSE for a quark-antiquark pair is automatically the
Goldstone particle when chiral symmetry is spontaneously
broken (in the chiral limit) [21,22]. In this respect, the
symmetry preserving truncation scheme is proposed and
requires the approximation made in the BSE kernel to be
consistent with the truncation made in the gap equation
such that chiral symmetry is preserved in the chiral limit
[22]. In this scheme, the well-known RL truncation is just
its lowest-order truncation.

To go beyond RL truncation, one can make use of the
DSE for the quark-gluon vertex (QGV). This equation
explicitly shows how the strong interaction makes correc-
tions to the bare quark-gluon vertex. At one-loop level,
keeping all the propagators dressed, the QGV has two
triangle Feynman diagrams contributions, which are usu-
ally served as the next-to-leading-order correction. One
may continue to consider higher-loop contributions and
improve the truncation gradually. This method of going
beyond the RL truncation has a benefit that the effects of
QCD dynamics in the quark condensate and physical
observables can be directly tested. Especially, the gluon
self-interactions, which are typical non-Abelian dynamics,
can be directly tested [15,23].

Another way of going beyond the RL truncation makes
use of the Slavnov-Taylor identity (STI) of the QGV. The
STI relates the QGV to the quark propagator and the quark-
ghost scattering kernel, and thus it can be used to model the
QGV with the other two Green’s functions [24-26].
Because this method escapes from the seemingly endless
truncations using the QGV DSE and the STI is automati-
cally fulfilled, it becomes one of the major focuses in the
studies beyond the RL truncation. However, due to the
appearance of the quark-ghost scattering kernel, the STI of
the QGV is more complicated than its counterpart in QED,
i.e., the Ward-Takahashi identity (WTI) for the fermion-
photon vertex. In QED, the fermion-photon vertex may be
modeled fully by the fermion propagators, such as the Ball-
Chiu (BC) vertex [27] and the Curtis-Pennington (CP)
vertex [28], and a closed form of DSEs arises accordingly;
while in QCD, the additional Green’s function makes the
modeling of the QGV more complicated and introduces
new inputs. So some authors use the BC vertex or CP
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vertex in studying QCD DSEs and sacrifices the non-
Abelian feature of the STI. Another problem of this method
is that the STI or the WTI in QED only fixes the
longitudinal part of the vertex, leaving the transverse part
undetermined. In this direction, some efforts have been
made [29,30].

Since the study of DSEs and the BSE beyond the RL
truncation is one of the major directions in hadron physics,
we develop a framework for studying the quark DSE and
the meson BSE in an order-by-order truncation scheme. We
shall derive a bilocal form of the QCD generating func-
tional first, then make the large N, expansion. After taking
the large N, limit, the DSEs and BSE will be derived, and
the truncation scheme will be presented. It will be clear that
in this truncation scheme the leading order, i.e., RL
truncation, is just the Abelian approximation, which means
all the higher-order corrections are due to non-Abelian-type
dynamics of QCD. Thus, the large N, limit extracts the
non-Abelian dynamics in the DSEs and is especially useful
for testing the effects of gluon self-interactions. On the
other hand, from direct analysis of the Feynman diagrams,
we know that at the large N, limit, mesons are free particles
[31,32], and this will simplify the corresponding BSE.
Furthermore, if we reformulate QCD in loop space [33], the
DSE for Wilson loops becomes a closed equation, in
contrast to ordinary DSEs and BSE, which have an infinite
tower of coupled equation groups and then need truncation.
Although we still do not fully understand why DSEs in
loop space are closed, this feature must have some impacts
on ordinary DSEs and makes large N, limit a special
approximation for ordinary DSEs.

In our approach, the higher-order corrections contribute
through higher-loop diagrams in the equations. This way of
going beyond the RL truncation was studied previously in a
number of works as mentioned before. Some of the works
concentrated on the next-leading-order corrections without
giving explicit forms for higher orders [15,16,23,34]; some
of them only considered Abelian-type diagrams, and the
non-Abelian contributions were absorbed into parameters
[14]. For the former case, because the QGV DSE may be
written in different forms [19], the truncated gap equations
arising from different forms will actually be different in
higher orders, which causes an ambiguity. So, a systematic
way to give a unique order-by-order improvement in the
truncated gap equation is called for. Our method presented
here provides such a scheme under the large N, limit, in
which each order is just an integration of the connected
gluon Green’s functions in the corresponding order.
Moreover, considering large N, expansion, 1/N, correc-
tions and higher-order contributions can also be taken into
account systematically in principle. So, eventually, we could
have a systematic way to approach the fundamental theory,
i.e., QCD. For the latter case, it is already known that non-
Abelian corrections in the next leading order are dominant
compared to Abelian contributions [14,16,23,34]. And we
shall show that this is true up to any order. So, considering
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non-Abelian-type contributions in higher orders is of more
significance. Our truncation scheme does exactly this job. In
addition, as indicated in Ref. [13], the H-type diagrams in the
Bethe-Salpeter (BS) kernel are important because a ladder-
like BS kernel with numbers of crossed-box diagrams is
insufficient to preserve the Ward-Green-Takahashi identities
in general. The H-type diagrams can only originate from
non-Abelian diagrams.

Our framework treats the gauge sector and the fermion
sector separately, and its focus is the quark DSE, the
QGV DSE, and the meson BSE. We also derived the
equation for the quark-ghost scattering kernel, and then
all the Green’s functions included in the QGV STI were
expressed in the same framework. We hope this can be
useful to verify the STI or shed some light on the
modeling of the QGV using the STL

The remaining part of this paper is organized as follows.
We start with developing the generating functional for
deriving the DSEs in Sec. II. The gap equation and the
QGV DSE at large N, are then derived in Sec. III. The
meson BSE is derived from the same generating functional
in Sec. IV, and the symmetry preserving truncation scheme
is illustrated. Section V is devoted to the discussion on the
STI. A summary follows in Sec. VL.

|
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II. GENERATING FUNCTIONAL
AT LARGE N, LIMIT

Consider a QCD-type gauge theory with SU(N,.) gauge
symmetry. Let A,(i = 1,2,...,NZ — 1) be the gauge field
and yg' be the fermion field, where a(a =1,2,...,N,)
is the color index, n is Lorentz spinor index and
ala=1,2,....N f) is the flavor index. For convenience,
we simply call yg" the “quark field” and A} the “gluon
field.” Let us introduce local external sources Z# for gauge
field A/, 15" for yg', 15" for g, and J,,, for the composite
quark fields w’y?”, where ¢ and p are short notations for the
spinor and flavor indices. The external source J can be
decomposed into scalar, pseudoscalar, vector, axial-vector,
and tensor parts,

J(x) = =s(x) +ip(x)ys + #(x) + d(x)ys + 0,7 (x),
(1)

where s(x), p(x), v,(x), and a,(x) are Hermitian matrices
and the quark masses have been absorbed into the defi-
nition of s(x). The vector and axial-vector sources §(x),
d(x), and 7 (x) are taken to be traceless.

We start from constructing the generating functional

2,701 = / DyDyDA, expi / ALy 5. A) + iy + T'AL+ Ty + )

:/Dy/Dy‘/exp{i/d4x{y7(iﬁ+f)ll/+jl//+‘/71}}

1

X / DA”AF(A”)exp{i / d*x {ﬁG(A) ——[F"(Aﬂ)]2+I;-”A;;} } (2)

28

where L;(A) = —%AI’;DA"”” is the gluon kinetic energy term, I:-” =7¢ - gl;_/%]/”l// absorb the quark current (or gauge
interaction term) into the external source for the gauge field, _zl,; [Fi(A,)]* is the gauge-fixing term, and Ar(A,) is the
Fadeev-Popov determinant. The traditional QCD generating functional will be arrived at by taking N. = 3 and the limit
J(x) - —M with M the quark mass matrix. We introduce the external source J for composite quark fields to keep the
generating functional’s potential for further use, and it will not harm the current study.

Let us first consider the integration over DA, for a given configuration of y and y; i.e., the current 7' # serves as an
effective external source in the integration over DA,. The result of such an integration can be formally written as

Tn

1 . = iy
/DAﬂAF(AH) exp{i/d“x {EG(A) ~ 2 [F/(A,))* + I;”A;,} } = expiz / d*x, ---d4x,,%G,)l...ﬁn (X715 ees Xy)
n=2 :
X I () - TE (x,), (3)

iy

where G,/ is the full connected n-gluon Green’s function without inner quark loops. Precisely, it is defined as
illGlllll"""lﬁn (xl yeees xn) =" <O|T[Alllll (xl) o 'Alllnn (xn>] |O>c0nnected.pureYM

:525‘; (XI)?‘”'(SZ% (xn)(—i) In / DAﬂAF(Aﬂ)exp{i / d*x {ﬁG(A)—zif[Fi(A,,)]z%—I’l.‘AL]}

I¥(x)=0 .

(4)
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Note that if the gauge interaction is not non-Abelian but Abelian, then only the two-gluon Green’s function (here and later
on, we omit “without inner quark loops" for convenience) is nonzero due to the absence of self-interactions among the
gauge fields. Hence, we define “Abelian approximation” as only keeping the two-gluon Green’s functions in the result and
dropping three-point and higher-point gluon Green’s functions.

The source terms in Eq. (3) can be written explicitly as

/ DA”AF(Aﬂ)eXp{i / d*x [LG(A) —Zlf[F"(Aﬂ)]erZ;”AL]}

. = i" ireed
= expz;/d“xl~~a’4anGﬂ‘]...,';n(x1, s Xp)
_a j'il a; _a, /11',1 a,
X mga () 50 g )| e () (5] 7w ()
apy af,
H —ay liz 1oy, 02 ~dy /Iin s G
+nZ () | =gWa (o) (57 ) rewp ()| =g ()| 5 ) Ty ()
aZﬂZ (l,.,ﬂ”
H 2 - a3 Aiy as - a, ’lin a,
+n(n = DI (0)T3 (o) | =gwa ()| 57 ) 7w ()| j=gle ()| ) 7 ()
a3ﬂ3 anﬁn

TR (xl)"'I’,fj‘(xn)], (5)

By Fierz reordering, we can diagonalize the color indices of the quark fields. For the source independent terms, we have

iyl _a /11'1 a —a Ai a
[t o oot () o] [t () i)
alﬂl anﬂn
= / dhxy - dixydt - di (= 1) TRGEI (e X X 0 (0l (X)) - W ()W (%), (6)

where G)! " (xy, x], ..., x,, x,) is an extended Green’s function containing 2n space-time points. Using the relations listed

in Appendix A, one can check that the extended two-point Green’s function is

. 1
Gﬂigzz (xl ) xll’ X2, x’z) = _EGﬂmz (xl s XZ) (yﬂl )mﬂz (yﬂz)azﬂlé(x/l - x2)6(x/2 - xl)

b ) ()0, = 003024 = m] , )

where o, p’s are combined spinor and flavor indices.
Similarly, we introduce extended Green’s functions G for linear source-dependent terms, which satisfy

Qi _a }“i a —a Ain a
[t Gl )2 ) o) (B) | o) (%) it
aZ/}Z {lnﬂn

H1:PP3" " Pn >

X e (et W ()W (3 Jwe (%) - - i (o Jwe, (x,). (8)

= [t 1 P 50 D G, (13 5 )
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Now, Eq. (2) can be written as

Z[J,Z,1,1 :/Dy/Dlpexpi{/d4x{y/(lﬁ+J)w—l—Il//—I-l//I}+Z/d4xl d*x,d*xy - - - d*x),

. {(—i)”(g%"-‘

T G G ) (e ) () - (e ()

i(_i)n—192n—3 s o -
+WZ?(X1)(/%)(I/;G”%3 e (X1 X s X0, X)W (X)W ()03 (3 )W (X5) - - - e (% )W (x,)

+ 0(12)] } 9)

To integrate out the quark fields y and , we introduce a bilocal auxiliary field ®(@)(%¢)(x, x) by inserting into (9) the
following constant:

/ DBS(N O (x, ') — 2 (x)y (). (10)

We see from (6) that the bilocal auxiliary field ®(@)(%%)(x, x') embodies the bilocal composite fields @&’ (x)y5 (x'), which
reflects the meson fields. Inserting (10) into (9), we get

Z[J,Z,1,1] = /DwDy'/Dd)(S(NCCD(“”)(bQ(x,x’) — & (x)whE (&) exp l{/ d*x{yp(id + J)w + Iy +wl}
+ Z / dxp - dix,dtx - di,
=

n
(=1)"(Neg?)"
X [Ncn—!CGZI‘ (s X e X, X )T (X, X)) - - @, X))

l'(_l')n—ngn—:%Nn—Z
< 6030, — 5
+ (l’l — ])| Il’l(xl)(/l ) Gﬂlfl)z n/’ (xl’x/l’ "'7xn’x;1)l//a(x/l )Wg’(xé)

X D3 (x3,x5) - PP (x,, %)) + O(IZ)] } (11)
The ¢ function in (11) can be further expressed in the Fourier representation:
BN, ) = pla(x) ~ [ DIt [ 00500,
The generating functional then becomes
Z[J,Z,1,1) = /Dl;/DlZ/DCDDHexpi{/ d*x{p(id+J -y + Iy + 1/71} + / d*xd*x'N . @° (x, x" )17 (x, x')
/d4x1 d*x,d*x) -d4x;NCMGz}ffg: (1, X] s oo X X0 ) DO (X, X)) - - PP ()

/d“xld“ 1y (x) ’éﬂ(m)A%’f,,(h,x/l’x'z)wZ(X’z)+0(12)}, (12)

where fﬁﬁ(xl) = 7% (4;),5 and
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i(_i)n—1g2n—3Nr§ 2
o G ()

X©63ﬂ3(x3’xg)...(D”npn(xn’x;l). (13)

op ;o\ 4 4 4 4
Ad),y(xhxlaxQ):/d X2'~-d _xnd xs...d X,

Integrating out the y and y fields leads us to

Z[J.T.1.1) = / DODI exp i{—iTr’ [id +J - +ZAg) —1[id +J =TI+ TAg)™

—)"(N 2\n—1
/d4Xd4 /N (I)Gp(x x)HUP(x X +N ::/d4xl Xr1d4 'd4x/nM
n:

X GRG0, X o s ) D71 (31, 2] - <I>“~ﬂn<xn,x'z>+0“2>} "

where Tr’ is the functional trace with respect to the space-time, color, spinor, and flavor indices. Expanding the first two
terms on the exponential with respect to Z, we arrive at

Z[J,I.1.1 = /DchHexpi{—iNcTrln[ia+J—H] (i +J =" T+ 1[id + J ="' TA[id + J — 1]

n!

—i)"(N 2\n—1
+/d4xd4x’NC<I>"”(x,x’)H"P(x,x’)—I—NCZ/d“xl dhy /M

X Ggll ;;'(xlﬂxl’ ,,_,xn,x;)q)"lpl(xl,xll) S Ol (xn’x;l) + O(IZ>} (15)

The difference between Tr and Tr’ is that Tr does not include a trace of the color index.
Taking the large N. limit, we obtain

Z'[J.17.1.1) = lim Z[J.Z.1.1]

N,—
= const X exp i{—iNCTrln[iﬁ +J=1] = 1[id+J-1.]7"1
+1[id +J =1L TAg, [id + J —T1]""

0 —)"(N 2\n—1
+ / d*xd*x'N @7 (x, X )Y (x,x') + N, Z / d*x; - dix,dx - diX, —( 0"(Neg')
n=2
X Gollpm (X, X) s ooy Xy X )OO (xy, X)) -+ - D (x,, X)) + O(Iz)}, (16)

_ [ pepnoes

| poDres ®
large N, limit is taken, it is implied that only leading terms in 1/N_ expansion are retained in the n-gluon Green’s functions
G and G.

where O, is the expectation value of O, i.e., O, = and iS is the exponent in Eq. (15). In this paper, whenever the

III. DERIVING THE GAP EQUATION AND THE QGV DSE

The exponential of the generating functional given in Eq. (16) is also the effective action for I1. and ®,; so, I1, and @,
satisfy stationery equations, which give
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OMZVLL] _ i+ g = T (y,x) + 0 (x.y)] + [0+ J TP T8+ J = T (e, )

ST (x, y)
—[[i0+J =T TA [id + J =T~ I[id + J = T1.]7')7 (x, y)
—[[id+J =T T[id + T = T~ TAg [id + J — T1.] 717 (x, y)
=0 (17)
and
—zéan’[J I I I] a (_i)n(Ncgz)n 60y0,
5®o'p(x’y> |: P x y +Z/d4XQ"'d4x"d4x/2'"d4x;1WGPP22 p:(x y xz,xZ, .,X,,,X’,,)
O O, Jre 5A
xq)czpz(xz,x/z)---q)c”p"(xn,x/,,)] +1[18+J—HC]_II5¢T()[15+J 11 ] I
=0, (18)

up to O(Z") order. Switching off all external sources, the above equations are reduced to

O (x,y) = —i[id = M = TI]""*(y. x), (19)

op (_l)n(N gZ)n 66,0,
e ( /d4x2 ’2...d4x;Tcl)|Gpp§ (X, Y, X, Xy e X X))
n=2 '

X B (13, 55) -~ DL (1, ). (20)

The first equation says that i®,. is just the quark propagator and I1.. is the quark self-energy (up to a color factor), which can
be checked by evaluating the functional derivative with respect to / and I:

o (V5 (x _ i52_1nZ’[J,I,7, 1]
(OIT [y (y)wrg(x)]10), P AT )

= 5uplid = M = TLJ197 (., x). (21)

In deriving this equation, one should notice that, due to Eqgs. (17) and (18), only those terms with external sources
explicitly would contribute, i.e.,

6InZ'  6InZ' 5@, +5an’ oIl n Olnz' O0lnZ (22)
8(=I3(x)) 0. 8(-I5(x)) Ol 8(-I5(x))  O(=I5(x)) O(=I5(x))
Substituting Eq. (19) into Eq. (20), we obtain
—i)"(N 2\n
(i@ —id + M) (y, x) /d4x2 d*x,d*x, 'd4xf1(l)((clg)')GZZf (X, ¥y Xy Xh s ey Xy X))
n—1)!
X CID‘ZZP2 (X9, X5) - @I (x,, X),). (23)

Then, we recognize that this is just the Dyson-Schwinger equation for the quark propagator.
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Using the generating functional, we can also derive the quark-gluon three-point Green’s function:

SInz'[J,T,1,1]
~ ST(y)5(~15(x))5T! (2)

(OIT [ (y)wa(x)A, (2)]]0), =

J=—M;I=I=I=0

= i) pa / BB~ M~ T (v, 20) A7 (2021, 2)[if = M —TL] 77 (z,x). (24)

The quark-gluon three-point Green’s function relates to the quark-gluon vertex FLW as

(OIT [y (y)we(x)A; (2)][0),

Combining Eq. (25) with Egs. (24) and (19), we obtain

v.p' o 6
- / PG (2, T (23 %) = ()T (2,7 )

= ui)ﬂaz / -

p' 030, / / /
x G %o (2, %0, %" x5, 03" -+ -,

HG' P3Py

—i / A dy d* 7 Gl (2.2 ) (v )T (Y )7 (! x). (25)

i(_i)ti—IQZn—3NEL—2
(n—1)!

Xy X )P (3, X5) -

d4/

®I7 (1, x,).  (26)

We have derived the expression of the QGV at the large N, limit; now, the standard form of the gap equation can be

written as

Ai

007 =8+ MY (2o = =9(5) g [ VG O (AR ). 27)
sy

Using the Egs. (6) and (8), we find the relation between G and G:

5(x _xz)Gm “Pu (xl’xl’ cos Xy X7y)

= /d4)_62{—5()€’1 —X2)8(xy — x1)
Ly

c

X4 = 30)8(5 = ¥) G

With this relation, one can check that Eqs. (23) and (27) are
indeed the same.

We have derived the gap equation and the DSE for the
QGYV in our framework; now, we can discuss truncations
for these equations. As a benefit, truncations can be made
either through the QGV DSE and the gap equation directly
or through the generating functional —iln Z’. Truncating
the generating functional guarantees all the equations
derived from it are consistent with each other, and any
linearly represented symmetry conserved in the truncated
generating functional is also conserved by these equations.
The last term on the exponential of Eq. (16) is an infinite
summation of integrations. Recalling that each extended
2n-point Green’s function corresponds to the connected n-
gluon Green’s function (without quark loops), we find that
this summation is an expansion with respect to the number

6,03C - <
Gty (¥ X1 X0, B

AW
s Xns xn)yﬁlﬂz

2 ey (X1, X1 X0, Koy ooy X Xy )y’é‘lpl}. (28)

|
of external legs of the connected gluon Green’s functions.
So, a natural way to approximate the generating functional
is to keep finite orders of this expansion. [Because of
Eq. (28), the Ag term should be approximated accord-
ingly.] The lowest order is to keep only the two-gluon
Green’s function, i.e., the Abelian approximation. Making
use of Egs. (26) and (28), one can find that

large N.; Abelian approximation

o (25 )

Ai

Therefore, Abelian approximation at the large N, limit is
just the well-known rainbow approximation in which the
quark-gluon vertex takes its bare form. The next-to-leading

)6(z' = x'). (29)

094023-8



DERIVATION OF THE GAP AND BETHE-SALPETER ...

order is to keep up to three-gluon Green’s functions in the
expansion, which already gives corrections to the bare
QGV. Continuing to add higher-point gluon Green’s
functions, then we have an order-by-order truncation
scheme. All the correction terms to the bare QGV are
due to non-Abelian-type interactions, so it is useful for
testing non-Abelian dynamics in a beyond-rainbow
approximation.

In this framework outlined before, the gauge sector and
the fermion sector are treated differently. Pure gluon
Green’s functions have already been introduced in the
generating functional. It is convenient to derive any-point
quark Green’s functions in our method, but we can only
derive the equations for one-gluon-plus-n-quark Green’s
functions, such as the quark-gluon three-point Green’s
function discussed before. The reason is that our current
|

(OIT [y, () wa; (X1 (v2) (x2)]10),
. §4an/[J,I,7,I}

—l =5 o1 77 o
815! (y1)8Iay (x1)SI7 (v2)813 (x2)

-/ d“x’d4y’{5a2ﬁ2 18— M~ 1717 (3, %)

_5(12/3] [la -M - HC]_I’mOJ(yI’ 'xl)

where we have used the equations

S (x, S (x,
M :ﬂ —0. (31)
015 (2) lesv.  015(2) lesw.

For convenience, we reduce the notation according to

o; = (0;,x;), pi = (piyi) (32)

o= (opz).  pi=(pinzi) (33)

Oy wa w2 wzl0)e = 84, [id — M —TL] "> 6117
— By, i — M =TI 51177

The exact four-point quark Green’s function (without
taking the large N, limit) satisfies an inhomogeneous
Bethe-Salpeter equation; however, the lhs of Eq. (36) is
not the corresponding Green’s function at the large N,
limit because it has four free color indices. Only after
we extract the colorless part (for instance, timing
O, Oarp, then summing over all the color indices) do
we then obtain a meaningful Green’s function under the
large N, limit. This colorless part of the Green’s

RUESY
ST (v2)01a, (x1)
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form of the generating functional does not give the explicit
form for terms including two and higher gluon external
sources Z. The positive side of this method is that one can
concentrate on the fermion sector and treat the gauge sector
as inputs, which can be extracted from studies on the
corresponding pure Yang-Mills theory.

IV. MESON BETHE-SALPETER EQUATION
AND CHIRAL SYMMETRY PRESERVING
TRUNCATIONS

We have shown the DSEs derivation and their trunca-
tions at the large N,. limit in our framework; now, we turn to
discuss the meson Bethe-Salpeter equation. To derive the
meson BSE, we derive the four-point quark Green’s
function first. Noticing Eq. (22), one can directly have

external sources vanishing (e.s.v.)

STz ()

| [id = M =TTy x
375 (030 o T

€.8.V.

[id — M —T1.]7¥% (¥, x,) } (30)
[
S (x, -
57/)1 (5);5?)) = 5HC£161 P (34)
B (yl) a ('xl) e.s.v.
6D (x, y)
_ : =507 35
TG (g, i )

With these simplified notations, Eq. (30) can be rewrit-
ten as

[id — M —T11,] 77

cpioypray
cpro1.focty {la -M - HC}—L,D 2. (36)
[
function should satisfy an inhomogeneous Bethe-

Salpeter equation. Since mesons only appear in color
singlet channels, this is sufficient to derive the homo-
geneous BSE for mesons.

We may proceed by timing &, 5, 54,4, then summing over
all the color indices in Eq. (36); however, there is a simpler
way for our purpose once we notice the relationship
between the 5@;{’ o1y, and the four-point quark Green’s
function. We have
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where (---), denotes the full Green’s function, which is

- )
@ [1,7] = —2L(0|T[y"57)|0 _
[ ] N, (0l [sz ” >f different from the connected Green’s function; S [(/), 1, I] 18

5,5 [lddlwpse oiSlL1] the traditional QCD action with ¢ denoting all the basic
af B z T (37) fields in the QCD Lagrangian (we have omitted the
N, f [dp)e! . irrelevant external sources). Then,

50 by & [f [d¢]wzu73e“l¢”ﬂ]
813 81cy|i——g N 81} 8Ig, [[dp]eSte-1] 10

_ JldglywaeS Y [1dgliyp (-, )eism}
(0]

-0, 1 p iS[ep
- ﬂ{z—] / [y, (— i e’ Z[0] z

N, 1z[0
= o lyhanal0), — OFTlyaello) 01T 7 )10), ). (38)

Since it is closely related to the four-point quark Green’s function, it may satisfy an inhomogeneous Bethe-Salpter equation,
and we found this is indeed the case. Taking derivatives on Eq. (17) with respect to /I, we obtain

0 = N.[i[i = M — 11,7127 5117

cpio1.pray

[id — M —T1,)~17'e +5(DL/)161 ]
+ 8y, [10 = M = TL |77 (i — M —TL |70 (39)
Similarly, from Eq. (18), we have

Z Go‘6763 O'néq)dzpz (I)o'zp‘& . q)lg;u”:z‘ (40)

Cpl”lﬁla] - PP2P3 P cpro1fra
n=2

Inserting Eq. (40) into Eq. (39), we immediately arrive at an inhomogeneous Bethe-Salpeter equation:

- _. n 2)” : =0/ 6,00, 5 ol W 1.,
8O o = ilid— M —TI 7177 Z Gt ST 5 @O - O (i — M~ L] 77
n=2
5(11/f1 . —1p.0o[; —l.p.0
RN - - e - - e .
(i = M —TL]" 0 i — M —T1,)" 71 41)

c

Now, we can use the standard technique to extract the pole contribution from 5®%
Bethe-Salpeter equation for mesons,

epyor oy ADd obtain the homogenous

=) nN s o oy ) .
by = ilid = M —T11] “’”Z ( g g QP DI — M —T1,]"

pp2p3 pn
~ilid = M ~ 11|70 ‘*p [,a M =T (42)
where the BS kernel K2/, is defined as
© : 2\n— ap'
oy _ (_l)n(Ncg ) ‘55253 PNy . olle
fon = n§=:2 (n=2)! Vratt, P G e (43)

[
From Eq. (43), we see that the BS kernel can be obtained truncations [13,14], so our method exemplifies the chiral
by breaking each of the quark propagators in the quark  symmetry preserving truncation scheme. The lowest order
self-energy. Once a truncation is made in the gap equation,  in this truncation scheme is the RL truncation. To go
the BS kernel should be truncated accordingly. This  beyond the RL truncation, one can include the three-gluon
relation is also shown in studies under symmetry preserving  Green’s function contribution, which gives quark-gluon
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FIG. 1.
are connected Green’s functions. The dots are bare vertices.

The gap equation up to the NNL-order truncation. The black circles indicate the propagators are fully dressed. The gray circles

LY &%
A el

FIG. 2. The meson BS kernel up to the NNL-order truncation. The gray rectangle is the BS kernel. The black circles indicate the
propagators are fully dressed. The gray circles are connected Green’s functions. The dots are bare vertices.

vertex corrections in the gap equation and in the BSE. When
the connected four-gluon Green’s functions contributions are
included, the gap equation still receives QGV corrections,
while the BSE receives corrections due to H-shape diagrams,
which may be important in scalar and axial-vector channels.
The diagrammatic expressions for the gap equation and the
BSE truncated up to the next-to-next-to-leading (NNL) order
are shown in Figs. 1 and 2, respectively.

As indicated in the Introduction, RL truncation gives
poor results in some channels, such as the scalar and axial-
vector channels. The truncation scheme presented here
allows us to make improvements in these channels. A few

|

2
o1 oI
STIeP 5P

where I'[®, I1] is just -In Z’

d-1ro

|e.s.v.

I, 1] = ~iTrIn[id — M — 1) + &rfie + 5 (=)
n=2

Equation (44) is just the analog of Eq. (3) in Ref. [21]. We
have seen that the BSE and the DSEs can all be derived
from the same generating functional, so symmetries re-
spected by the generating functional will be automatically
respected by the equations derived from it. Especially,
truncations can be made in the generating functional
—ilnZ', then all the equations derived from this generating
functional will be consistent with each other and respect
symmetries retained in the truncated generating functional.
This is why we automatically have a chiral symmetry
preserving truncation scheme.

works have studied the impacts of going beyond the RL
truncation by taking into account the three-gluon self-
interaction [15-17,23], which corresponds to the next-to-
leading-order corrections in our scheme. It was found that
at this order considerable corrections already appear in the
scalar and axial-vector channels, and improvements were
found in the axial-vector channel [15-17].

Our framework automatically provides symmetry pre-
serving truncations. The reason can be understood if we
write the meson BSE in another form. Actually, Eq. (42)
can also be written in terms of derivatives of the effective
action I'[®, 1] as

5T
H Py =0, (44)
O=0_ =11,

! S5D2P2 D111

with ®, and I, replaced with arbitrary bilocal functions ® and II, respectively, i.e.,

N (N 2n—l_mﬁ_ _
NG G .. o, (45)
n:

|

For the phenomenological studies focusing on meson
properties under RL truncation, the gluon propagator is
usually treated as an input, i.e., given as a model, by fitting
lattice results, etc.. It avoids complications in dealing with
too many coupled equations and thus is very useful for
practical use. In our approach, the gauge sector and fermion
sector of QCD are treated differently at the very beginning,
so it retains the merit just mentioned. In this respect, our
approach can be viewed as an extension from considering
only the gluon propagator’s effects to considering higher-
order gluon Green’s functions’ effects on the fermion
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sector. It results in truncations beyond the RL approxima-
tion on one hand and completes the gauge sector because of
the inclusion of the gluon self-interactions on the other.

All the higher-order terms in our truncation scheme
originate from non-Abelian-type dynamics, i.e., gluon self-
interactions and gluon-ghost interactions. Remember that
we have taken the large N, limit, which means that non-
Abelian-type contributions are always dominant compared
to Abelian-type contributions up to any order (beyond RL
truncation).

V. SLAVNOV-TAYLOR IDENTITY FOR THE
QUARK-GLUON VERTEX

The Slavnov-Taylor identity for the QGV provides an
important constraint among the quark propagator, the QGV,
and the quark-ghost scattering kernel, which reflects the

|

PHYSICAL REVIEW D 96, 094023 (2017)

Becchi-Rouet-Stora (BRS) symmetry of QCD. In principle,
a proper truncation should guarantee solutions of truncated
DSEs satisfy STIs. However, it is not easy to maintain this
requirement in practice. To see the explicit form of the STI
of the QGV in our formulism, we derive the quark-ghost
scattering kernel in this section. Now, we need to express
the Fadeev-Popov determinant in terms of ghost fields
¢:(x) and ¢,(x); then, we have a ghost term in the QCD
Lagrangian:

Eghost = _(8ﬂ¢1)D’:]¢] (46)
Using the BRS symmetry of the theory, one can arrive at a
STI relating the quark-gluon three-point Green’s function
to the quark antiquark—ghost antighost four-point Green’s
function [35],

0 = {328 01T 3, OB )10 = 5 8y 1T )0, ) )]0

LTy (5 0)0,41 )10 }

(47)

We shall see that this is just the STI for the QGV. Let us introduce the quark-ghost scattering kernels H éﬁ and H éﬂ according

to
HE,(p. q.7)S,5(P)Dyi(q?)
E% / d*xd*ye 7<= (0T [y (x)r, (x)i75(3) i (0)]]0), (48)
and
Suy (=P HYy (=1, ~q. ~p)Dyi(4?
E%g,} / d*xdye 77 (0| T [y (x)7, ()i ()1 (0)]]0) . (49)

where ¢ = —p — r and D;;(¢?
transformation)

gHY,(p.q.7)S,5()Dyi(q?)

¢

- gSay<_F)H;]f;3<_

= LS (=P midTh ralq. p. IS (NG (0)a,. (50)

) is the ghost propagator. With these definitions, Eq. (47) becomes (after taking Fourier

r,—q, _p)bk’i(qz)

Since for the gluon propagator G';ﬁ‘ (g) the nontransverse part equals that of a free gluon propagator, the equation can be

reduced. After extracting the color structure, we obtain

S (=p)H(p.q.r) - H(-r.—q.-

§7H(=p) = CI'T (g.p.1)D™' (), (51)

which is just the usual form of the STI of the QGV. In QED, ghost fields decouple from other fields, i.e., H = H = 1 and

D™(g?)

= —g?, and then the corresponding Ward-Takahashi identity in QED follows:

S =p) =S (=F) = ¢'T(q. p. 7). (52)

094023-12



DERIVATION OF THE GAP AND BETHE-SALPETER ...

Without taking the large N. limit, the Slavnov-Taylor
identities are of course satisfied. Since the BRS sym-
metry is independent of the SU(N,.) group parameter N,
the Slavnov-Taylor identities should still hold at the large
N, limit. So, in our formulism, the solutions of the gap
equation, the QGV DSE, and the quark-ghost scattering
kernel (untruncated equations) satisfy Eq. (51). To give
an explicit form of the quark-ghost scattering kernel, or
equivalently the quark antiquark—ghost antighost four-
point Green’s function, we need to introduce external

|

(OIT[¢;(3) i () (y)75(x)]|0)..

Py id (v, x')

PHYSICAL REVIEW D 96, 094023 (2017)

sources for ghost fields. The appearance of these external
sources will largely complicate the form of the generating
functional. We put these materials in Appendix B. After a
lengthy amount of work, we obtain the generating
functional with ghost external sources (up to #n order)
at the large N, limit as shown in Eq. (B16).

Now, the quark antiquark—ghost antighost four-point
Green’s function can be derived directly by calculating

—is*InZ'

P e Eventually, we obtain

_ A ddy | =(id — M —T1.) Y (y. y/ - 2 (1§ - M ~TL)5 (¥, x) |8,
= [ty |- b =T ) S L =) g
+ / Aty (i = M = T1) L (v, 3 ) (A7 (.53 ) 2],
o+ AG (R 557 2 W) (18 = M =TI 74 (¢, ) (53)

The full Green’s function is

(OIT[¢h; (3) i (X)wrp ()5 ()]]0) 4
= i{0IT[¢h; (V)i (X)w(y)p5(x)][0), —

&;
/d4 ’d“’[ (i = M ~TL)>4 (v.Y)

<0|T[WZ(Y)
o’ ( ) (—n'(x))
* / ddy[(id = M —T1)7 L (y,))(iAg * (%, 5y

5(0)]10).(0IT[¢;(3)h; (%)]]0).
(i =M —T1.)7L (X, x) | 8,

X/) [Ai)“j}ﬁa

+iAG (%, 553K A 3o (i = M = TT) 7L (¢, %)

- aﬂéij(la -M - HC)pa (y,x)D(x, )’>-

Taking Egs. (24) and (54) into Eq. (47), we obtain

. (g I AT - !

+ 2Nc(iA§,p:"’(z,x; v, x)

. 1
— i 4t A G T (v |
_ﬂaﬂ/d Xdty'(id-M Hc)pp/(x,y){

This is the STI for the QGV in our formalism.
I ()

The undetermined functlon ST ()

511, 8ij

_ 97 o _ S
573(—1) ‘2N6T{(’a M-IL) (6<1>

5, 6A%  SAY

(54)
i (', x) i (', x)
& (x)8(—n'(z)) o' (v)6(—n'(2))
— A (2. 31y X))
+ (i = M ~11.) .y (/. x')(D(z. %) = D(z’y))}(lﬁ M —T1.)7,(x'.y)
N ey ) (8~ M T, (59)
EOH P
satisfies coupled integral equations, which, in a compact form, reads
SAL N 5AG,
oD,
n n—1 _ 52(1)
Ay (il Gyl ———D, - D, 56
<W l// Z n 1577]1(5(—77[) c c ( )
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5o, 811,
o/ 8(—n') i/ 8(—n')

5
+ izzi; Tr[(id — M —T1,)7' (Ag, + A ).

c

—i(id— M —TI,)"! (id—M—-T11,)"!

(57)

A?DC’A%[’A%J and A&’,E on the lhs of Eq. (55) are
integrations of two-ghost+n-gluon Green’s functions, while
A’&,(_ on the rhs of Eq. (55) is an integration of n-gluon
Green’s functions. These Green’s functions are not inde-
pendent. Actually, they satisfy their own DSEs and STIs
derived from the pure Yang-Mills part of the theory.

We have given the expression of the quark antiquark—
ghost antighost four-point Green’s function [Eq. (54)],
with which the quark-ghost scattering kernel is defined,
and the STI for the quark-gluon vertex in coordination
space [Eq. (55)] in our formulism. As discussed before,
the solutions of untruncated DSEs at the large N, limit
should satisfy Eq. (55). A more interesting case arises
when a truncation is made in the DSEs. The simplest
truncation is the Abelian approximation (rainbow
approximation). In this case, the ghost fields can decou-
ple from other fields, so the QGV STI reduces to the
WTI, and one can check that the gauge-fermion vertex
WTI is not satisfied under the rainbow approximation. In
principle, the STI for the QGV at higher-order truncations
can be tested using Eq. (55). Unfortunately, we cannot do
it due to the complicated forms of relevant Green’s
functions. However, we hope the discussion in this
section can reveal some hints in the studies of the
QGV’s STL

VI. SUMMARY

We introduced an alternate form for the QCD
generating functional, which is a generalization of the
one used in a previous study. This form has the power
to address various nonperturbative problems in QCD.
Specifically, we employed it to study Dyson-Schwinger
equations and Bethe-Salpeter equation and their trunca-
tions. The large N, expansion was taken. and we
concentrated on the large N, limit. Under the large
N, limit, a systematic order-by-order truncation scheme
with all higher-order terms explicitly given was pro-
posed. One benefit of this framework is that one can
make truncations in the generating functional from
which all the equations are derived. So, any linearly
presented symmetry preserved in the truncated generat-
ing functional can automatically transmit to the DSEs

PHYSICAL REVIEW D 96, 094023 (2017)

and the BSE. To be specific, truncations can be made by
keeping finite terms in the expansion of the generating
functional with respect to the number of external legs of
connected gluon Green’s functions. With any such
truncation, the chiral symmetry is conserved (in the
chiral limit). So, the truncated DSEs and BSE preserve
chiral symmetry, and the truncation scheme proposed
here is actually a symmetry preserving truncation
scheme. Another benefit is that our truncation scheme
avoids ambiguities appearing in the methods making
direct use of the QGV DSE.

Since the explicit forms of the DSEs and the BSE are
established at the large N, limit, the integration kernels
suffer from corrections of 1/N, order. The positive side
of taking the large N, limit is that all terms in the
integration kernels making corrections to the RL trun-
cation are non-Abelian type, i.e., they have no counter-
parts in QED, which means that non-Abelian-type
contributions are always dominant compared to
Abelian-type contributions up to any order (beyond
RL truncation), and it is especially useful for testing
non-Abelian dynamics. In this framework, the H-shape
diagram in the BSE kernel, which is considered impor-
tant in the scalar and axial-vector channels, will appear
when connected four-gluon Green’s functions are
present. Meanwhile, the four-gluon self-interaction
appears at the same order, so truncation made up to
this order (i.e., keep the gluon propagator term, the
three-gluon self-interaction term, and the connected
four-gluon Green’s functions term in the kernels) is
of great interest.

To study the QGV STI, we derived the quark-ghost
scattering kernel. Ghost fields are explicitly shown in
the generating functional, and the external sources are
introduced. Although we cannot verify the STI directly
due to the complicated form of the quark-ghost scatter-
ing kernel, we hope those discussions could shed some
light on further studies and on the modeling of the QGV
using the STL
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APPENDIX A: FIERZ REORDERING

In this Appendix, we give a detailed discussion on the
Fierz reordering. To obtain Eq. (7), we note that
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iis —a j’il iy, 4 _a, ﬂ’iz tiny, 42
Giyier (X1, %2) | =Wy (x1) 5 g (x1) | | —gWai (x2) 5 7w (xa)
a1 afs

— a —a a 1 1
= Gy, (X1, %2) [=gWa; (1) ! (x1)][=gWa; (x2) 72yl (x2)] 2 <5111ﬁ25a2/}1 _V5a1ﬂ15(12ﬁ2>

1
= / d4x/1d4x/292G,u1/42 (xl’ xl) |:_ 5 (7”1 )alpz (7/142)0_2/)15()6’1 - x2)5(x/2 - xl)

TN, ()1, (72) 5, 0(x7 = x1)8(x5 = Xz)} Way (X)W (X)W (x2)y/; () (A1)

In obtaining the above result, we have used the relations

G;itlliﬁz (x1,X2) = 612G, (X1, %), (A2)

AN 1 !
<2> <2> = 5 <5a1ﬁ25a2ﬁ1 - N 6a1ﬁ15a2ﬁ2> : (A3)
aif af c

Hence, the extended two-point Green’s function is
1
2

P () 00, = )50 =) (A4)

c

Goipr (x1, X, X3, x5) = =Gy (X1, X2) [(V”‘)alp2(7”2)52p15(x/1 —X)8(x5 — x1)

For the three-point functions, we need the SU(N,.) relations

A A A ] ]
fijk = =2 ( |:El ’ El:| Ek> = i(/lj)a/)’(ﬁgﬂy(ﬂk)ya - i (li)(lﬂ(j‘j)ﬁy(ﬂk)ya

yarwnw! 1 1
e = =21 ({2 2VE) = 200 00 00+ By B (a5
then
Fiik@)arp, M) aspy, = 10aspy (Ai)arpy, = Oanpy (i) g, ) (A6)
2 2
dijk (j’j)az/}z (ﬂk)asﬁ3 = 6a3ﬂ2 (ii>azﬂ3 + 50’2ﬂ3 (/11')0!3/32 - N_ 5a3ﬁ3 (/11')062/32 - F 502ﬁ2 (’11')(13ﬂ3 (A7)
and
fijk (/11')!11/31 (/1/)0!2./"2 (Ak)a3/}3 = 2i(503ﬂ250’2ﬂ150153 - 50’3ﬂ150!15250!2ﬂ3) (AS)

dijk (ﬂi)al/jl (lj)azﬁz (A'k)a3ﬁ3 = 2(5(13ﬁ26(12/}] 5(11[33 + 6(13ﬂ] 5(1]/}26a2ﬁ3)
2 2 2 4
- N_ 50!1ﬁ1 502,53 50!3,52 - N_ 50’1ﬂ3 50’2,52 5a3ﬁ1 - N_ 50’1ﬂ2 5azﬂ1 5azﬂ3 + m 50'1,51 50’2ﬂ2 5053,53 . (A9)
c c c C
The three-point Green’s function can be written as

i1ip0 0 1
Gﬂlllizils (X], X2, X3) = gfi|i2i3Gl(41342ﬂ3 (xl’x2’x3) + gdilizigGl(hLzﬂz (xl’x2’x3)' (AIO)

Combining them together, we get
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010,03
GP1P2P3 (xl ’ xl’ X2, x27 X3, x3)

i (0
= Z G/(41242M3 (xl » X2, )C3) [761/)27/;5/13 7/:7;/11 5()6

1

yﬁlﬂl}'ﬁvmyﬁsﬂz ( X])é(xz - X3)5(

4 2
+ N_yﬁiﬂz}/ﬁiﬂl}/ﬁgmé(x,l = x2)8(xy = x1)8(x5 — x3) + m?ﬁim?ﬁémyﬁipﬁ(’cﬁ —x1)0(x; — X
c c

In general, G5 (x;,x),...,

properties:
(i) The basic term is Voip, 6(x1 —.x.;) Yoip, 6(x, —
x; ) with some nonlocal coefficient that depends

]
on indices py, ...,u, and space-time coordinates
X1y eees Xpe

(ii) Different terms correspond to different arrangements
of number 1,...,n to iy, ..., i,.

(iii) There is no y%6(x; — x}) factor.

X,,Xx,), has following

1= x3)0(x5 — x1)8(x5 — x,)

2
3 x2) + _yléimyléiﬂzyﬁ;mﬁ(x/l
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- }”é}pﬂ’éi/n?’gpzfs(xﬁ — X5)6(x5 — x3)6(x5 — xy)]

1 2
+ Gl(ﬂilzlﬁ (xl » X2 X3) 7/’!;:/73 yﬁ;ﬂl yﬁiﬂzg(x/l - x2>5(xl2 - x3)5(xl3 - xl) + }/Iéimyléﬁmyléiﬂl 5()(/1 - x3)5(x’2 — X )5()6/3 - x2>

— x3)6(x5 — x,)0(x5 — xy)

)8(x3 = x3) | (A11)

GO
Gﬂl PP3 (

1.
= Gy (31, X2 33) (72,722, 8() — 32) ()

4
1 )
o Gy (31, X2 x3) (=15, 742,0(%,

X2)8(x — x2)5(x

/ / /
Xy, Xy, X0, Xy, x3, X5)

§—x3)) .

4
- N_c 76/1703113 o(x) —

—x3)8(x;

= X2)8(xy = x3)8(x3 — ) —

For the extended Green’s functions Gﬂ’s, the two-point
and three-point Green’s functions are, respectively,

~C ! !
Gm‘,p(xhxl’xz’xz)

1
= EyﬁﬁGMz (x1,%2)8(x] = x2)8(x5 —x5)  (A12)
and
= X3) + VopYopsO(X) — X3)8(xy — x2)8(xs — x3)])
VorpYopsd (x} = x3)0(x — x2)8(x5 — x3)
(A13)

APPENDIX B: THE GENERATING FUNCTIONAL WITH GHOST EXTERNAL SOURCES

We rewrite the original generating functional with ghost fields written explicitly and introducing external sources for them:

Z[J’I,T’I’f]i,l/li]

—/Dt//Du"lexp{i/d4x{l/7(i5+J)l//+71//+ll71}}

X/DAﬂDqﬁDngexp{i/d“x{LG( )—2%

Fi(A)? W")Dtgqsf+z;”A;+ﬁf¢f+¢fnf]}. (B1)

Formally integrating out the gauge fields and ghost fields, we obtain

_ | o
/ DAﬂDd»chexp{i / d“x[c(;( ) = [FIA)P — (0,8))DVsgp +I,-”A;+nl¢’+¢’n’”

2

n

—expiZ/d“xl
n=
iy

where G, (xq, ...,

l i
1 ln
Gﬂl (X1

) T () - T2 () (B2)

x,)[n', 7#’] is connected n-point gluon Green’s function depending on 7', i7/. Then, the color structure of

these Green’s functions involves ;7 i/ For example, the two-point Green’s function G,}y is no longer proportional to §”/; it also

includes terms proportional to 77}/.
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Note that the derivation of the STI for the quark-gluon vertex only needs a bilinear term of ghost sources; therefore, we do
not need to give the general expression of (B2), and instead we only keep those terms with ghost sources at most bilinear. In
this simplified case, the color structure of Gi\"% (x;. ..., x,)[r'.7/] can be explicitly figured out:

_ 1 - o
/ DA, DD} exp{i / dx [£G<A> 32 PAE — @)Dl + T A+ + M] }

—/DAMAF(Aﬂ)exp{i/d“x[EG(A)—%S[Fi(A,,)]z-l-I;”AL} —1‘1(3,40")‘111}

= / DA,Ar(A,)exp [i / d“x(EG(A)—%[F"(Aﬂ)]%rzﬁmi)}

[d*xd*yii' () (v) [ DA, AF(A,)(0,D*) 7 (x, y) expli [ d*x(Lg(A) =5 [F(A,)] + 1A} _
<{1- [ DA (Ay) expli [ (Lo A) — L IF (A, + T7AL) ol
_ / DA AR(A,)exp [i / d“x(EG(A) —%[Ff(Aﬂ)]uI;ﬂA;;)}
“ox { [d*xd*yii' () (y) [ DA, AR(A,)(0,D") 1 (x,y) expli [ d*x(La(A) =5 [F'(A,)]* +T}A, )]+0(( _)2)}
P T DAAR(A,) expli [ dx(L(A) -2 [F /(AP + IV AL) Ty
(B3)
We define
S &xdyn ()n’(v) [ DAAR(A,)(9,D")H (x, y) expli [ d'x(Lg(A) — 3 [F'(4,)] +IVAD)
fDA”AF(A exp[i Jd*x(Lg(A) = 3 [F/(A))? + T}AL)
:ii/d4x‘i4yd4x1' : gm P e,y 61 ) (O ()T () -+ T (), (B4)

where G is just the connected ghost-antighost+n-gluon Green’s function. Since 7 ;" =7 - gy‘/%y”z;/, we can expand the n
T"s at each term and obtain terms of Z° order, Z' order, - - -, Z" order. For our purpose, we only need to give explicit
expressions of the Z°-order terms, which read

= " )iy i ;i ; _ A, _Ai
S [ vt G i W0 0) (g ) ) o (<o v ). (B9
—0 :

To do Fierz rearrangement, we need to show color factors explicitly. In general, terms including G have two free color
indices of the adjoint representation 7, j and four free color indices of the fundamental representation a, 3, 8, ¥, so the most
general forms of color factors include

0j0apOsy» Supl A A] P SaplA A1) P iaﬂﬂ{sy (B6)
For higher-order G")’s (n > 2), the forms of color factors would be different from them by multiplying 6,4, - - -. For
example, G should have &;; 10ap0s,0a,p,> OaplA ¥ ]5,00,p,> BuplA A']5,84,p,» and Aaﬂléyéal 5, SO, G decomposes into

gl = gna) [5ij5aﬂ55y5a1/31 s Glnb) [5aﬂ[,1i/1/]5y5alﬁl ] glne) [5aﬂ[,1j,1i]5y5alﬂl ]+ Gnd) [’Iixﬂ%yéalﬂl = (B7)
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So, we can write

i" n)i,jsiy--i, —; i _/lil _/11',,
/d4xd4yd4 edix, L ey )T (0 () X <—gw7y"'w(xl)>~~<—gv/7y”"w(xn))
n=0
=i{ / dxdy A (e )T (I () + / P yd s, d 2 A (x, s 21, 2B ()R (2))
- / d*xdbydtz d* 2 AGY (x, vy 20, 200 (20)i ()i (x)w? (2;)

opiop 1 g ~ _ 5 - )
+ / d*xd*yd*z d* 2 d 2 d 2 A ”(x,y;zl,Z’],Zz,Z’z)Ww (z)a(x)w? (2w (22)i1(y)w* (Z/z)}’ (B8)

where 7,5 = 1' 2 g o = 7' A5, and

=1)"i"N, 0|0,
AG(x,y) /d4x,d4 o dtx,dtx ’L pllw T,y Xy, X e X, X)) DO (X, X)) - @O (X, X)),
(B9)
b ( 1)n1n+1Nn 1)b)oo, 0,
Ay (x.yi21,2)) = /d4x1d4 cdix,di Tl)'c /(J(/th)n) Ty 2 2 X X )
X®6lf)l(x1’xl)...¢O_n/)n(xn’x:l)’ (BIO)
" ( l)nin+1Ni1 1)e)oo, o,
Ay’ (x,yi21.2)) = /d4x1d4 cdix,di Tl)'c /(’S)rit/’)n) U iz X X X )
n=0 :
Xq) lﬂl(xlvxll)...(Do_n/)n(xn7x;1)’ (Bll)
and
© n+2 arn+2
A(Dgpo-p (.x, y’ Zla ley Zz, ZZ ; / d4XId4 . d4xnd4)€;l Tz)‘c
Xg ((n+2)c (mo—lma"(x,y;Z],le,Z2sZ/27xl’x/1 ...,xmxﬁl)q)ﬂ'lﬂl (xl’x/l)"'q)gnp"(xnvx;z)' (Blz)

po'py

Now, the generating functional can be written as
Z[J,Z,1,1,ii, 0] = /Dy/Dli/DCDDHexp z{/ d*x{p(id +J - My + Ty +wl} + /d“xd“x’NC(I)”/’(x, X% (x, x')
—i)"(N 2\n
/d4x1 d*x,d*x) ~d4x;,NC%GZ} (e, X e X, X))

X @71 (xy,x)) - - DU (x,, X))

+ [t ()T ()8, o ) + 0<12>}

xexp"{/ a0 ) + [ dxdydizid a7 iz, )p TR )
- / Prdyd 7, d 2 AL (x, v 21, 20 ()R ()

dopic'p’ _ & ~ ) _ o - )
+ / d*xdtydiz d* 2 di o d L AGTT (X, yi 21, 2 20, D)W (20) (0w (2w (22)7(y)w? (Z’z)}-

(B13)
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Introducing

/ DOZDP,5(N DY (x, %3 y) = 5 (x)i1(y)” (X)) 6(N @ (x, %' y) = ()77 (v)” (x')). (B14)

where

El

(N O (x,2;y) — 7 ()i () (' /DH i [ dixd' X d (N D (e’ )= ()i () () T (xx'5y)
and following the procedure similar to that in Sec. II, we obtain
Z[J,I,i,],ﬁi,r]i]
= / Dy Dy DODIIDD, DO, DIT, DI,
X expi{/ d*xd*y{p[(id + J —T)8(x —y) + TAg + AL 71 —AG Sn i +illy + Iy
b [ sty ity + [ dsateN v ) + [ ddyag ()i 5n)
+N, / d*xd*x d*y[®F (x, ¥, y)II (x, x5 y) + @ (x, &, y)I (x, x's y)]

S 4 4 o 4 (—i)”(Ncg )n_l GO / / / /
+ Z d'xy - d'x,d’xy - - d x,lNCTG,,,.”,,,’;(x,,xl, ooy Xy X ) DO (xy, X)) - D (X, X))

+ / dxdtyd'z d* ) d 2y d A""W<x,y;zl,za,zQ,zg>¢2p<zl,za;y>@z’p’<z2,z;;x>}. (B15)

Integrating out y and ¥, keeping up to #ij-order terms, we obtain

Z'J,Z,1, 1,77, 1] ENlim ZJ,Z,1, 1,3, 7]

+ T [(id + J — T1,.) "'l (id + J — T1,) '], ]

—T[(id + T =)+ T[(i0 + T —T1L.) " (TAg, + Al i —AG 717)(id + T —11,) 71
—I[(id + J = 1)~ "l (id + J — 1,) "', 7(id + J — 10,.) 1)1

—1[(id + J =)', 7(id + J — 1) ~'7I,, (id 4+ J —T1,.) 1)1

[ attyg, (e 0) 4 N [t o )
+ N, /d4xd4 "dy[ @ (x, X', Y)Y (x, x5 y) 4+ T2 (x, x5 y) D2 (x. X', y)]

—"(N 2\n—1
+NCZ/d‘*x1d“x’, cod e S WNeg )"
n=2

n!
X Gpllgm (31, Xy ey Xy X0 ) DO (2, X)) - - - DT (x,, X))
+ / d*xd*yd*z,d*z) d4z2d4z'2Agj”;”//’l (X, 321, 2}, 22, 25) @50 (21, 2 ;y)QZ/c”/ (22, 755 %) }, (B16)

where @, @;.,IL,., and IT;. are the expectation values of fields ®@,, @, I1,, and II;, respectively.
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