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We develop a framework for derivingDyson-Schwinger equations (DSEs) and the Bethe-Salpeter equation
(BSE) in QCD at the large Nc limit. The starting point is a modified form (with auxiliary fields)
of the QCD generating functional. This framework provides a natural order-by-order truncation scheme
for DSEs and the BSE, and the kernels of the equations up to any order are explicitly given. Chiral symmetry
(at the chiral limit) is preserved in any-order truncation, so it exemplifies the symmetry preserving truncation
scheme. It provides a method to study DSEs and BSE beyond the rainbow-ladder truncation and is especially
useful to study contributions from non-Abelian dynamics (those arising fromgluon self-interactions).We also
derive the equation for the quark-ghost scattering kernel and discuss the Slavnov-Taylor identity connecting
the quark-gluon vertex, the quark propagator, and the quark-ghost scattering kernel.
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I. INTRODUCTION

The standard form of a QCD generating functional is the
basis for perturbative expansion, while alternate forms may
have advantages in nonperturbative studies. For example,
In Ref. [1], Cahill and Roberts introduced a bilocal action
to study meson properties and the bag model. The action
was obtained by taking an approximation that only the
gluon propagator was retained. So, it is not QCD but a
model that is usually called the global color model (GCM)
(for a review, see Ref. [2]). It is possible to generalize their
method to obtain a bilocal action that is equivalent to the
QCD action, and the GCM action may be served as the
leading order of this new bilocal action. In the present
paper, we shall employ a bilocal action that was first
introduced in Ref. [3] and was used to study chiral
perturbation theory therein. With this action, various
problems can be addressed. In this work, we generalize
the method used in Ref. [3] by introducing external sources
for single quark fields, gluon fields, and ghost fields to
study Dyson-Schwinger equations (DSEs) and the Bethe-
Salpeter equation (BSE). In this approach, the parameter
Nc in the action is extracted and shown explicitly, which is

especially beneficial for large Nc expansion. In the present
work, we concentrate on the large Nc limit, although
higher-order corrections can be taken into account in
principle. We shall derive DSEs and the BSE and discuss
their truncations. Since all equations are derived from the
same generating functional, consistency among these
equations is easily maintained when truncations are made.
In particular, chiral symmetry (at chiral limit) is preserved
automatically in truncated DSEs and the BSE up to any
order. This is a more elegant approach than truncating the
DSEs and the BSE separately and discussing their con-
sistency thereafter.
DSEs and the BSE are important tools in low-energy

QCD and hadron physics. Particularly, the meson spectrum
can be calculated with the BSE combined with the gap
equation, i.e., the DSE for the quark propagator. It is well
known that these equations must be truncated in practical
calculations. The simplest truncation for the gap equation
and the meson BSE is the rainbow-ladder (RL) truncation
[4–8]. In this truncation, the full quark-gluon vertex is
replaced with the bare vertex γμ (up to a color matrix), and
the BSE kernel takes the ladder approximation. Although
many achievements have been made based on the RL
truncation, recent research has indicated the necessity of
going beyond the RL truncation. For instance, the spectra
for light scalar and axial-vector mesons calculated under
the RL truncation are relatively poor compared to those for
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light pseudoscalar and vector mesons [9–11]. It is believed
that the reason for this is that in the pseudoscalar and
vector channels the higher-order corrections to the RL
truncation largely cancel, while in the scalar and axial-
vector channels, the corrections do not typically cancel
[12,13]. So, in recent years, a lot of effort has been made to
aim at going beyond the RL truncation in DSEs and the
BSE [14–20].
Chiral symmetry breaking plays an important role in the

low-energy QCD, so the truncated DSEs and BSE should
reflect this feature properly. It is realized that chiral
symmetry imposes an important connection between the
integration kernel of the gap equation and the BSE kernel.
This connection guarantees that the pion state as a solution
of the BSE for a quark-antiquark pair is automatically the
Goldstone particle when chiral symmetry is spontaneously
broken (in the chiral limit) [21,22]. In this respect, the
symmetry preserving truncation scheme is proposed and
requires the approximation made in the BSE kernel to be
consistent with the truncation made in the gap equation
such that chiral symmetry is preserved in the chiral limit
[22]. In this scheme, the well-known RL truncation is just
its lowest-order truncation.
To go beyond RL truncation, one can make use of the

DSE for the quark-gluon vertex (QGV). This equation
explicitly shows how the strong interaction makes correc-
tions to the bare quark-gluon vertex. At one-loop level,
keeping all the propagators dressed, the QGV has two
triangle Feynman diagrams contributions, which are usu-
ally served as the next-to-leading-order correction. One
may continue to consider higher-loop contributions and
improve the truncation gradually. This method of going
beyond the RL truncation has a benefit that the effects of
QCD dynamics in the quark condensate and physical
observables can be directly tested. Especially, the gluon
self-interactions, which are typical non-Abelian dynamics,
can be directly tested [15,23].
Another way of going beyond the RL truncation makes

use of the Slavnov-Taylor identity (STI) of the QGV. The
STI relates the QGV to the quark propagator and the quark-
ghost scattering kernel, and thus it can be used to model the
QGV with the other two Green’s functions [24–26].
Because this method escapes from the seemingly endless
truncations using the QGV DSE and the STI is automati-
cally fulfilled, it becomes one of the major focuses in the
studies beyond the RL truncation. However, due to the
appearance of the quark-ghost scattering kernel, the STI of
the QGV is more complicated than its counterpart in QED,
i.e., the Ward-Takahashi identity (WTI) for the fermion-
photon vertex. In QED, the fermion-photon vertex may be
modeled fully by the fermion propagators, such as the Ball-
Chiu (BC) vertex [27] and the Curtis-Pennington (CP)
vertex [28], and a closed form of DSEs arises accordingly;
while in QCD, the additional Green’s function makes the
modeling of the QGV more complicated and introduces
new inputs. So some authors use the BC vertex or CP

vertex in studying QCD DSEs and sacrifices the non-
Abelian feature of the STI. Another problem of this method
is that the STI or the WTI in QED only fixes the
longitudinal part of the vertex, leaving the transverse part
undetermined. In this direction, some efforts have been
made [29,30].
Since the study of DSEs and the BSE beyond the RL

truncation is one of the major directions in hadron physics,
we develop a framework for studying the quark DSE and
the meson BSE in an order-by-order truncation scheme. We
shall derive a bilocal form of the QCD generating func-
tional first, then make the large Nc expansion. After taking
the large Nc limit, the DSEs and BSE will be derived, and
the truncation scheme will be presented. It will be clear that
in this truncation scheme the leading order, i.e., RL
truncation, is just the Abelian approximation, which means
all the higher-order corrections are due to non-Abelian-type
dynamics of QCD. Thus, the large Nc limit extracts the
non-Abelian dynamics in the DSEs and is especially useful
for testing the effects of gluon self-interactions. On the
other hand, from direct analysis of the Feynman diagrams,
we know that at the large Nc limit, mesons are free particles
[31,32], and this will simplify the corresponding BSE.
Furthermore, if we reformulate QCD in loop space [33], the
DSE for Wilson loops becomes a closed equation, in
contrast to ordinary DSEs and BSE, which have an infinite
tower of coupled equation groups and then need truncation.
Although we still do not fully understand why DSEs in
loop space are closed, this feature must have some impacts
on ordinary DSEs and makes large Nc limit a special
approximation for ordinary DSEs.
In our approach, the higher-order corrections contribute

through higher-loop diagrams in the equations. This way of
going beyond the RL truncation was studied previously in a
number of works as mentioned before. Some of the works
concentrated on the next-leading-order corrections without
giving explicit forms for higher orders [15,16,23,34]; some
of them only considered Abelian-type diagrams, and the
non-Abelian contributions were absorbed into parameters
[14]. For the former case, because the QGV DSE may be
written in different forms [19], the truncated gap equations
arising from different forms will actually be different in
higher orders, which causes an ambiguity. So, a systematic
way to give a unique order-by-order improvement in the
truncated gap equation is called for. Our method presented
here provides such a scheme under the large Nc limit, in
which each order is just an integration of the connected
gluon Green’s functions in the corresponding order.
Moreover, considering large Nc expansion, 1=Nc correc-
tions and higher-order contributions can also be taken into
account systematically in principle. So, eventually, we could
have a systematic way to approach the fundamental theory,
i.e., QCD. For the latter case, it is already known that non-
Abelian corrections in the next leading order are dominant
compared to Abelian contributions [14,16,23,34]. And we
shall show that this is true up to any order. So, considering
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non-Abelian-type contributions in higher orders is of more
significance. Our truncation scheme does exactly this job. In
addition, as indicated in Ref. [13], the H-type diagrams in the
Bethe-Salpeter (BS) kernel are important because a ladder-
like BS kernel with numbers of crossed-box diagrams is
insufficient to preserve the Ward-Green-Takahashi identities
in general. The H-type diagrams can only originate from
non-Abelian diagrams.
Our framework treats the gauge sector and the fermion

sector separately, and its focus is the quark DSE, the
QGV DSE, and the meson BSE. We also derived the
equation for the quark-ghost scattering kernel, and then
all the Green’s functions included in the QGV STI were
expressed in the same framework. We hope this can be
useful to verify the STI or shed some light on the
modeling of the QGV using the STI.
The remaining part of this paper is organized as follows.

We start with developing the generating functional for
deriving the DSEs in Sec. II. The gap equation and the
QGV DSE at large Nc are then derived in Sec. III. The
meson BSE is derived from the same generating functional
in Sec. IV, and the symmetry preserving truncation scheme
is illustrated. Section V is devoted to the discussion on the
STI. A summary follows in Sec. VI.

II. GENERATING FUNCTIONAL
AT LARGE Nc LIMIT

Consider a QCD-type gauge theory with SUðNcÞ gauge
symmetry. Let Ai

μði ¼ 1; 2;…; N2
c − 1Þ be the gauge field

and ψaη
α be the fermion field, where αðα ¼ 1; 2;…; NcÞ

is the color index, η is Lorentz spinor index and
aða ¼ 1; 2;…; NfÞ is the flavor index. For convenience,
we simply call ψaη

α the “quark field” and Ai
μ the “gluon

field.” Let us introduce local external sources Iμ
i for gauge

field Ai
μ, Ī

aη
α for ψaη

α , Iaηα for ψ̄aη
α , and Jσρ for the composite

quark fields ψ̄σψρ, where σ and ρ are short notations for the
spinor and flavor indices. The external source J can be
decomposed into scalar, pseudoscalar, vector, axial-vector,
and tensor parts,

JðxÞ ¼ −sðxÞ þ ipðxÞγ5 þ =vðxÞ þ =aðxÞγ5 þ σμνt̄μνðxÞ;
ð1Þ

where sðxÞ, pðxÞ, vμðxÞ, and aμðxÞ are Hermitian matrices
and the quark masses have been absorbed into the defi-
nition of sðxÞ. The vector and axial-vector sources =vðxÞ,
=aðxÞ, and t̄μνðxÞ are taken to be traceless.
We start from constructing the generating functional

Z½J; I ; Ī; I� ¼
Z

DψDψ̄DAμ exp i
Z

d4xfLðψ ; ψ̄ ; AμÞ þ ψ̄Jψ þ Iμ
i A

i
μ þ Īψ þ ψ̄Ig

¼
Z

DψDψ̄ exp

�
i
Z

d4xfψ̄ði∂ þ JÞψ þ Īψ þ ψ̄Ig
�

×
Z

DAμΔFðAμÞ exp
�
i
Z

d4x

�
LGðAÞ −

1

2ξ
½FiðAμÞ�2 þ I 0μ

i A
i
μ

��
; ð2Þ

where LGðAÞ ¼ − 1
4
Ai
μνAiμν is the gluon kinetic energy term, I 0μ

i ≡ Iμ
i − gψ̄ λi

2
γμψ absorb the quark current (or gauge

interaction term) into the external source for the gauge field, − 1
2ξ ½FiðAμÞ�2 is the gauge-fixing term, and ΔFðAμÞ is the

Fadeev-Popov determinant. The traditional QCD generating functional will be arrived at by taking Nc ¼ 3 and the limit
JðxÞ → −M with M the quark mass matrix. We introduce the external source J for composite quark fields to keep the
generating functional’s potential for further use, and it will not harm the current study.
Let us first consider the integration over DAμ for a given configuration of ψ and ψ̄ ; i.e., the current I 0μ

i serves as an
effective external source in the integration over DAμ. The result of such an integration can be formally written as

Z
DAμΔFðAμÞ exp

�
i
Z

d4x

�
LGðAÞ −

1

2ξ
½FiðAμÞ�2 þ I 0μ

i A
i
μ

��
¼ exp i

X∞
n¼2

Z
d4x1 � � �d4xn

in

n!
Gi1���in

μ1���μnðx1;…; xnÞ

× I 0μ1
i1
ðx1Þ � � � I 0μn

in
ðxnÞ; ð3Þ

where Gi1���in
μ1���μn is the full connected n-gluon Green’s function without inner quark loops. Precisely, it is defined as

inGi1���in
μ1���μnðx1;…; xnÞ≡ inh0jT½Ai1

μ1ðx1Þ � � �Ain
μnðxnÞ�j0iconnected;pureYM

¼ δn

δIμ1
i1
ðx1Þ � � �δIμn

in
ðxnÞ

ð−iÞ ln
Z

DAμΔFðAμÞ exp
�
i
Z

d4x
�
LGðAÞ−

1

2ξ
½FiðAμÞ�2 þ Iμ

i A
i
μ

������
Iμ
i ðxÞ¼0

:

ð4Þ
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Note that if the gauge interaction is not non-Abelian but Abelian, then only the two-gluon Green’s function (here and later
on, we omit “without inner quark loops" for convenience) is nonzero due to the absence of self-interactions among the
gauge fields. Hence, we define “Abelian approximation” as only keeping the two-gluon Green’s functions in the result and
dropping three-point and higher-point gluon Green’s functions.
The source terms in Eq. (3) can be written explicitly as

Z
DAμΔFðAμÞ exp

�
i
Z

d4x

�
LGðAÞ −

1

2ξ
½FiðAμÞ�2 þ I 0μ

i A
i
μ

��

¼ exp i
X∞
n¼2

Z
d4x1 � � � d4xn

in

n!
Gi1���in

μ1���μnðx1;…; xnÞ

×

��
−gψ̄a1

α1ðx1Þ
�
λi1
2

�
α1β1

γμ1ψa1
β1
ðx1Þ

�
� � �

�
−gψ̄an

αnðxnÞ
�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

þ nIμ1
i1
ðx1Þ

�
−gψ̄a2

α2ðx2Þ
�
λi2
2

�
α2β2

γμ2ψa2
β2
ðx2Þ

�
� � �

�
−gψ̄an

αnðxnÞ
�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

þ nðn − 1ÞIμ1
i1
ðx1ÞIμ2

i2
ðx2Þ

�
−gψ̄a3

α3ðx3Þ
�
λi3
2

�
α3β3

γμ3ψa3
β3
ðx3Þ

�
� � �

�
−gψ̄an

αnðxnÞ
�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

þ � � � þ Iμ1
i1
ðx1Þ � � � Iμn

in
ðxnÞ

�
; ð5Þ

By Fierz reordering, we can diagonalize the color indices of the quark fields. For the source independent terms, we have

Z
d4x2 � � � d4xnGi1���in

μ1���μnðx1;…; xnÞ
�
−gψ̄a1

α1ðx1Þ
�
λi1
2

�
α1β1

γμ1ψa1
β1
ðx1Þ

�
� � �

�
−gψ̄an

αnðxnÞ
�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

¼
Z

d4x2 � � � d4xnd4x01 � � � d4x0nð−1Þng2n−2Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞψ̄ σ1

α1ðx1Þψρ1
α1ðx01Þ � � � ψ̄σn

αnðxnÞψρn
αnðx0nÞ; ð6Þ

where Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ is an extended Green’s function containing 2n space-time points. Using the relations listed

in Appendix A, one can check that the extended two-point Green’s function is

Ḡσ1σ2
ρ1ρ2 ðx1; x01; x2; x02Þ ¼ −

1

2
Gμ1μ2ðx1; x2Þ

�
ðγμ1Þσ1ρ2ðγμ2Þσ2ρ1δðx01 − x2Þδðx02 − x1Þ

þ 1

Nc
ðγμ1Þσ1ρ1ðγμ2Þσ2ρ2δðx01 − x1Þδðx02 − x2Þ

�
; ð7Þ

where σ, ρ’s are combined spinor and flavor indices.
Similarly, we introduce extended Green’s functions ~G for linear source-dependent terms, which satisfy

Z
d4x2 � � � d4xnGi1���in

μ1���μnðx1;…; xnÞIμ1
i1
ðx1Þ

�
−gψ̄a2

α2ðx2Þ
�
λi2
2

�
α2β2

γμ2ψa2
β2
ðx2Þ

�
� � �

�
−gψ̄an

αnðxnÞ
�
λin
2

�
αnβn

γμnψan
βn
ðxnÞ

�

¼
Z

d4x2 � � � d4xnd4x01 � � � d4x0nð−1Þn−1g2n−3Iμ1
i1
ðx1Þðλi1Þαβ ~Gσσ3���σn

μ1;ρρ3���ρnðx1; x10;…; xn; x0nÞ

× ψ̄σ
αðx10Þψρ

βðx02Þψ̄ σ3
α3ðx3Þψρ3

α3ðx03Þ � � � ψ̄σn
αnðxnÞψρn

αnðx0nÞ: ð8Þ
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Now, Eq. (2) can be written as

Z½J;I ; Ī; I� ¼
Z

DψDψ̄ exp i

�Z
d4xfψ̄ði∂ þ JÞψ þ Īψ þ ψ̄Ig þ

X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

×
�ð−iÞnðg2Þn−1

n!
Ḡσ1���σn

ρ1���ρn ðx1; x01;…; xn; x0nÞψ̄σ1
α1ðx1Þψρ1

α1ðx01Þ � � � ψ̄σn
αnðxnÞψρn

αnðx0nÞ

þ ið−iÞn−1g2n−3
ðn − 1Þ! Iμ

i ðx1ÞðλiÞαβ ~Gσσ3���σn
μ;ρρ3���ρnðx1; x01;…; xn; x0nÞψ̄σ

αðx01Þψρ
βðx02Þψ̄ σ3

α3ðx3Þψρ3
α3ðx03Þ � � � ψ̄σn

αnðxnÞψρn
αnðx0nÞ

þOðI2Þ
��

: ð9Þ

To integrate out the quark fields ψ and ψ̄ , we introduce a bilocal auxiliary field ΦðaηÞðbζÞðx; x0Þ by inserting into (9) the
following constant:

Z
DΦδðNcΦðaηÞðbζÞðx; x0Þ − ψ̄aη

α ðxÞψbζ
α ðx0ÞÞ: ð10Þ

We see from (6) that the bilocal auxiliary field ΦðaηÞðbζÞðx; x0Þ embodies the bilocal composite fields ψ̄aη
α ðxÞψbζ

α ðx0Þ, which
reflects the meson fields. Inserting (10) into (9), we get

Z½J; I ; Ī; I� ¼
Z

DψDψ̄DΦδðNcΦðaηÞðbζÞðx; x0Þ − ψ̄aη
α ðxÞψbζ

α ðx0ÞÞ exp i
�Z

d4xfψ̄ði∂ þ JÞψ þ Īψ þ ψ̄Ig

þ
X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

×

�
Nc

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ

þ ið−iÞn−1g2n−3Nn−2
c

ðn − 1Þ! Iμ
i ðx1ÞðλiÞαβ ~Gσσ3���σn

μ;ρρ3���ρnðx1; x01;…; xn; x0nÞψ̄σ
αðx01Þψρ

βðx02Þ

×Φσ3ρ3ðx3; x03Þ � � �Φσnρnðxn; x0nÞ þOðI2Þ
��

: ð11Þ

The δ function in (11) can be further expressed in the Fourier representation:

δðNcΦðx; x0Þ − ψ̄ðxÞψðx0ÞÞ ∼
Z

DΠei
R

d4xd4x0Πðx;x0Þ·ðNcΦðx;x0Þ−ψ̄ðxÞψðx0ÞÞ:

The generating functional then becomes

Z½J;I ; Ī; I� ¼
Z

DψDψ̄DΦDΠexp i

�Z
d4xfψ̄ði∂ þ J −ΠÞψ þ Īψ þ ψ̄I

�
þ
Z

d4xd4x0NcΦσρðx; x0ÞΠσρðx; x0Þ

þ
X∞
n¼2

Z
d4x1 � � �d4xnd4x01 � � �d4x0nNc

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ

þ
Z

d4x1d4x01d
4x02ψ̄

σ
αðx01Þ ~Iμ

αβðx1ÞΔσρ
Φ;μðx1; x01; x02Þψρ

βðx02Þ þOðI2Þ
�
; ð12Þ

where ~Iμ
αβðx1Þ≡ Iμ

i ðλiÞαβ and
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Δσρ
Φ;μðx1; x01; x02Þ≡

Z
d4x2 � � � d4xnd4x03 � � � d4x0n

ið−iÞn−1g2n−3Nn−2
c

ðn − 1Þ!
~Gσσ3���σn
μ;ρρ3���ρnðx1; x01;…; xn; x0nÞ

×Φσ3ρ3ðx3; x03Þ � � �Φσnρnðxn; x0nÞ: ð13Þ

Integrating out the ψ and ψ̄ fields leads us to

Z½J; I ; Ī; I� ¼
Z

DΦDΠ exp i

�
−iTr0 ln½i∂ þ J − Πþ ~IΔΦ� − Ī½i∂ þ J − Πþ ~IΔΦ�−1I

þ
Z

d4xd4x0NcΦσρðx; x0ÞΠσρðx; x0Þ þ Nc

X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

ð−iÞnðNcg2Þn−1
n!

× Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ þOðI2Þ

�
; ð14Þ

where Tr0 is the functional trace with respect to the space-time, color, spinor, and flavor indices. Expanding the first two
terms on the exponential with respect to ~I , we arrive at

Z½J;I ; Ī; I� ¼
Z

DΦDΠ exp i

�
−iNcTr ln½i∂ þ J − Π� − Ī½i∂ þ J − Π�−1I þ Ī½i∂ þ J − Π�−1 ~IΔΦ½i∂ þ J − Π�−1I

þ
Z

d4xd4x0NcΦσρðx; x0ÞΠσρðx; x0Þ þ Nc

X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

ð−iÞnðNcg2Þn−1
n!

× Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ þOðI2Þ

�
: ð15Þ

The difference between Tr and Tr’ is that Tr does not include a trace of the color index.
Taking the large Nc limit, we obtain

Z0½J; I ; Ī; I�≡ lim
Nc→∞

Z½J;I ; Ī; I�

¼ const × exp i

�
−iNcTr ln½i∂ þ J − Πc� − Ī½i∂ þ J − Πc�−1I

þ Ī½i∂ þ J − Πc�−1 ~IΔΦc
½i∂ þ J − Πc�−1I

þ
Z

d4xd4x0NcΦ
σρ
c ðx; x0ÞΠσρ

c ðx; x0Þ þ Nc

X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0n

ð−iÞnðNcg2Þn−1
n!

× Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1

c ðx1; x01Þ � � �Φσnρn
c ðxn; x0nÞ þOðI2Þ

�
; ð16Þ

whereOc is the expectation value ofO, i.e.,Oc ≡
R

DΦDΠOeiSR
DΦDΠeiS

, and iS is the exponent in Eq. (15). In this paper, whenever the

large Nc limit is taken, it is implied that only leading terms in 1=Nc expansion are retained in the n-gluon Green’s functions
Ḡ and ~G.

III. DERIVING THE GAP EQUATION AND THE QGV DSE

The exponential of the generating functional given in Eq. (16) is also the effective action for Πc and Φc; so, Πc and Φc
satisfy stationery equations, which give
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−iδ lnZ0½J; I ; Ī; I�
δΠσρ

c ðx; yÞ ¼ Nc½i½i∂ þ J − Πc�−1;ρ;σðy; xÞ þΦσρ
c ðx; yÞ� þ ½½i∂ þ J − Πc�−1IĪ½i∂ þ J − Πc�−1�σρðx; yÞ

− ½½i∂ þ J − Πc�−1 ~IΔΦc
½i∂ þ J − Πc�−1IĪ½i∂ þ J − Πc�−1�σρðx; yÞ

− ½½i∂ þ J − Πc�−1IĪ½i∂ þ J − Πc�−1 ~IΔΦc
½i∂ þ J − Πc�−1�σρðx; yÞ

¼ 0 ð17Þ

and

−iδ lnZ0½J; I ; Ī; I�
δΦσρ

c ðx; yÞ ¼ Nc

�
Πσρ

c ðx; yÞ þ
X∞
n¼2

Z
d4x2 � � � d4xnd4x02 � � � d4x0n

ð−iÞnðNcg2Þn−1
ðn − 1Þ! Ḡσσ2���σn

ρρ2���ρn ðx; y; x2; x02;…; xn; x0nÞ

×Φσ2ρ2
c ðx2; x02Þ � � �Φσnρn

c ðxn; x0nÞ
�
þ Ī½i∂ þ J − Πc�−1 ~I

δΔΦc

δΦσρ
c ðx; yÞ ½i∂ þ J − Πc�−1I

¼ 0; ð18Þ

up to OðI1Þ order. Switching off all external sources, the above equations are reduced to

Φσρ
c ðx; yÞ ¼ −i½i∂ −M − Πc�−1;ρ;σðy; xÞ; ð19Þ

Πσρ
c ðx; yÞ ¼ −

X∞
n¼2

Z
d4x2 � � �d4xnd4x02 � � �d4x0n

ð−iÞnðNcg2Þn−1
ðn − 1Þ! Ḡσσ2���σn

ρρ2���ρn ðx; y; x2; x02;…; xn; x0nÞ

×Φσ2ρ2
c ðx2; x02Þ � � �Φσnρn

c ðxn; x0nÞ: ð20Þ

The first equation says that iΦc is just the quark propagator and Πc is the quark self-energy (up to a color factor), which can
be checked by evaluating the functional derivative with respect to I and Ī:

h0jT½ψρ
βðyÞψ̄σ

αðxÞ�j0ic ¼ i
δ2 lnZ0½J; I ; Ī; I�
δĪρβðyÞδð−IσαðxÞÞ

����
J¼−M;I¼Ī¼I¼0

¼ δαβ½i∂ −M − Πc�−1;ρσðy; xÞ: ð21Þ

In deriving this equation, one should notice that, due to Eqs. (17) and (18), only those terms with external sources
explicitly would contribute, i.e.,

δ lnZ0

δð−IσαðxÞÞ
¼ δ lnZ0

δΦc

δΦc

δð−IσαðxÞÞ
þ δ lnZ0

δΠc

δΠc

δð−IσαðxÞÞ
þ ∂ lnZ0

∂ð−IσαðxÞÞ ¼
∂ lnZ0

∂ð−IσαðxÞÞ : ð22Þ

Substituting Eq. (19) into Eq. (20), we obtain

½−iΦ−1
c − i∂ þM�ρσðy; xÞ ¼

X∞
n¼2

Z
d4x2 � � � d4xnd4x02 � � � d4x0n

ð−iÞnðNcg2Þn−1
ðn − 1Þ! Ḡσσ2���σn

ρρ2���ρn ðx; y; x2; x02;…; xn; x0nÞ

×Φσ2ρ2
c ðx2; x02Þ � � �Φσnρn

c ðxn; x0nÞ: ð23Þ

Then, we recognize that this is just the Dyson-Schwinger equation for the quark propagator.
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Using the generating functional, we can also derive the quark-gluon three-point Green’s function:

h0jT½ψρ
βðyÞψ̄σ

αðxÞAi
μðzÞ�j0ic ¼

δ3 lnZ0½J; I ; Ī; I�
δĪρβðyÞδð−IσαðxÞÞδIμ

i ðzÞ
����
J¼−M;I¼Ī¼I¼0

¼ iðλiÞβα
Z

d4z41d
4z42½i∂ −M − Πc�−1;ρρ0 ðy; z1ÞΔρ0σ0

Φc;μ
ðz; z1; z2Þ½i∂ −M − Πc�−1;σ0σðz; xÞ: ð24Þ

The quark-gluon three-point Green’s function relates to the quark-gluon vertex Γi
μ;αβ as

h0jT½ψρ
βðyÞψ̄σ

αðxÞAi
μðzÞ�j0ic ¼ i

Z
d4x0d4y0d4z0Gij

μνðz; z0ÞΦρρ0
c ðy; y0ÞΓν;ρ0σ0

j;βα ðz0; y0; x0ÞΦσ0σ
c ðx0; xÞ: ð25Þ

Combining Eq. (25) with Eqs. (24) and (19), we obtain

−
Z

d4z0Gμνðz; z0ÞΓν;ρ0σ0
i;βα ðz0; y0; x0Þ ¼ ðλiÞβαΔρ0σ0

Φc;μ
ðz; y0; x0Þ

¼ ðλiÞβα
X∞
n¼2

Z
d4x2 � � � d4xnd4x03 � � � d4x0n

ið−iÞn−1g2n−3Nn−2
c

ðn − 1Þ!
× ~Gρ0σ3���σn

μ;σ0ρ3���ρnðz; y0; x2; x0; x3; x30 � � � ; xn; x0nÞΦ
σ3ρ3
c ðx3; x03Þ � � �Φσnρn

c ðxn; x0nÞ: ð26Þ

We have derived the expression of the QGV at the large Nc limit; now, the standard form of the gap equation can be
written as

½−iΦ−1
c − i∂ þM�ρσðx; zÞδαβ ¼ −g

�
λi
2

�
ββ0
γμσσ0

Z
d4y0d4z0Gμνðz; z0ÞΦρ0σ0

c ðy0; zÞΓν;ρ0ρ
i;β0αðz0; y0; xÞ: ð27Þ

Using the Eqs. (6) and (8), we find the relation between ~G and Ḡ:

δðx̄1 − x2ÞḠσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ

¼
Z

d4x̄2

�
−δðx01 − x̄2Þδðx02 − x1Þ ~Gσ2σ3���σn

μ1;ρ1ρ3���ρnðx1; x̄1; x2; x̄2;…; xn; x0nÞγμ1σ1ρ2

−
1

Nc
δðx01 − x1Þδðx̄2 − x02Þ ~Gσ2σ3���σn

μ1;ρ2ρ3���ρnðx1; x̄1; x2; x̄2;…; xn; x0nÞγμ1σ1ρ1
�
: ð28Þ

With this relation, one can check that Eqs. (23) and (27) are
indeed the same.
We have derived the gap equation and the DSE for the

QGV in our framework; now, we can discuss truncations
for these equations. As a benefit, truncations can be made
either through the QGV DSE and the gap equation directly
or through the generating functional −i lnZ0. Truncating
the generating functional guarantees all the equations
derived from it are consistent with each other, and any
linearly represented symmetry conserved in the truncated
generating functional is also conserved by these equations.
The last term on the exponential of Eq. (16) is an infinite
summation of integrations. Recalling that each extended
2n-point Green’s function corresponds to the connected n-
gluon Green’s function (without quark loops), we find that
this summation is an expansion with respect to the number

of external legs of the connected gluon Green’s functions.
So, a natural way to approximate the generating functional
is to keep finite orders of this expansion. [Because of
Eq. (28), the ΔΦ term should be approximated accord-
ingly.] The lowest order is to keep only the two-gluon
Green’s function, i.e., the Abelian approximation. Making
use of Eqs. (26) and (28), one can find that

Γν;ρ0σ0
i;βα ðz0; y0; x0Þ¼large Nc; Abelian approximation

− g

�
λi
2

�
βα

γνρ0σ0δðz0 − y0Þδðz0 − x0Þ: ð29Þ

Therefore, Abelian approximation at the large Nc limit is
just the well-known rainbow approximation in which the
quark-gluon vertex takes its bare form. The next-to-leading
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order is to keep up to three-gluon Green’s functions in the
expansion, which already gives corrections to the bare
QGV. Continuing to add higher-point gluon Green’s
functions, then we have an order-by-order truncation
scheme. All the correction terms to the bare QGV are
due to non-Abelian-type interactions, so it is useful for
testing non-Abelian dynamics in a beyond-rainbow
approximation.
In this framework outlined before, the gauge sector and

the fermion sector are treated differently. Pure gluon
Green’s functions have already been introduced in the
generating functional. It is convenient to derive any-point
quark Green’s functions in our method, but we can only
derive the equations for one-gluon-plus-n-quark Green’s
functions, such as the quark-gluon three-point Green’s
function discussed before. The reason is that our current

form of the generating functional does not give the explicit
form for terms including two and higher gluon external
sources I . The positive side of this method is that one can
concentrate on the fermion sector and treat the gauge sector
as inputs, which can be extracted from studies on the
corresponding pure Yang-Mills theory.

IV. MESON BETHE-SALPETER EQUATION
AND CHIRAL SYMMETRY PRESERVING

TRUNCATIONS

We have shown the DSEs derivation and their trunca-
tions at the largeNc limit in our framework; now, we turn to
discuss the meson Bethe-Salpeter equation. To derive the
meson BSE, we derive the four-point quark Green’s
function first. Noticing Eq. (22), one can directly have

h0jT½ψρ1
β1
ðy1Þψ̄σ1

α1ðx1Þψρ2
β2
ðy2Þψ̄σ2

α2ðx2Þ�j0ic

¼ −i
δ4 lnZ0½J;I ; Ī; I�

δĪρ1β1ðy1ÞδI
σ1
α1ðx1ÞδĪρ2β2ðy2ÞδI

σ2
α2ðx2Þ

����
external sources vanishing ðe:s:v:Þ

¼
Z

d4x0d4y0
�
δα2β2 ½i∂ −M − Πc�−1;ρ2σ0 ðy2; x0Þ

δΠσ0ρ0
c ðx0; y0Þ

δĪρ1β1ðy1ÞδI
σ1
α1ðx1Þ

����
e:s:v:

½i∂ −M − Πc�−1;ρ0σ2ðy0; x2Þ

−δα2β1 ½i∂ −M − Πc�−1;ρ1σ0 ðy1; x0Þ
δΠσ0ρ0

c ðx0; y0Þ
δĪρ2β2ðy2ÞδI

σ1
α1ðx1Þ

����
e:s:v:

½i∂ −M − Πc�−1;ρ0σ2ðy0; x2Þ
�
; ð30Þ

where we have used the equations

δΠσρ
c ðx; yÞ
δIσ

0
α ðzÞ

����
e:s:v:

¼ δΠσρ
c ðx; yÞ
δĪσ

0
α ðzÞ

����
e:s:v:

¼ 0: ð31Þ

For convenience, we reduce the notation according to

σi ≡ ðσi; xiÞ; ρi ≡ ðρi; yiÞ ð32Þ

σ0i ≡ ðσ0i; ziÞ; ρ0i ≡ ðρ0i; z0iÞ ð33Þ

δΠσρ
c ðx; yÞ

δĪρ1β1ðy1ÞδI
σ1
α1ðx1Þ

����
e:s:v:

≡ δΠσρ
cρ1σ1;β1α1

ð34Þ

δΦσρ
c ðx; yÞ

δĪρ1β1ðy1ÞδI
σ1
α1ðx1Þ

����
e:s:v:

≡ δΦσρ
cρ1σ1;β1α1

: ð35Þ

With these simplified notations, Eq. (30) can be rewrit-
ten as

h0jT½ψρ1
β1
ψ̄σ1
α1ψ

ρ2
β2
ψ̄σ2
α2 �j0ic ¼ δα2β2 ½i∂ −M − Πc�−1;ρ2;σ0δΠσ0ρ0

cρ1σ1;β1α1
½i∂ −M − Πc�−1;ρ0;σ2

− δα2β1 ½i∂ −M − Πc�−1;ρ1;σ0δΠσ0ρ0
cρ2σ1;β2α1

½i∂ −M − Πc�−1;ρ0;σ2 : ð36Þ

The exact four-point quark Green’s function (without
taking the large Nc limit) satisfies an inhomogeneous
Bethe-Salpeter equation; however, the lhs of Eq. (36) is
not the corresponding Green’s function at the large Nc
limit because it has four free color indices. Only after
we extract the colorless part (for instance, timing
δα1β1δα2β2 then summing over all the color indices) do
we then obtain a meaningful Green’s function under the
large Nc limit. This colorless part of the Green’s

function should satisfy an inhomogeneous Bethe-
Salpeter equation. Since mesons only appear in color
singlet channels, this is sufficient to derive the homo-
geneous BSE for mesons.
We may proceed by timing δα1β1δα2β2 then summing over

all the color indices in Eq. (36); however, there is a simpler
way for our purpose once we notice the relationship
between the δΦσρ

ρ1σ1;β1α1
and the four-point quark Green’s

function. We have
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Φσρ
c ½I; Ī� ¼ −δαβ

Nc
h0jT½ψρ

βψ̄
σ
α�j0if

¼ −δαβ
Nc

R ½dϕ�ψρ
βψ̄

σ
αeiS½ϕ;I;Ī�R ½dϕ�eiS½ϕ;I;Ī� ; ð37Þ

where h� � �if denotes the full Green’s function, which is
different from the connected Green’s function; S½ϕ; I; Ī� is
the traditional QCD action with ϕ denoting all the basic
fields in the QCD Lagrangian (we have omitted the
irrelevant external sources). Then,

δΦσρ
c

δĪρ1β1δI
σ1
α1

����
Ī¼I¼0

¼ −δαβ
Nc

δ2

δĪρ1β1δI
σ1
α1

�R ½dϕ�ψρ
βψ̄

σ
αeiS½ϕ;I;Ī�R ½dϕ�eiS½ϕ;I;Ī�

�����
Ī¼I¼0

¼ −δαβ
Nc

�
1

Z½0�
Z

½dϕ�ψρ
βψ̄

σ
αiψ

ρ1
β1
ð−iψ̄σ1

α1ÞeiS½ϕ� −
R ½dϕ�ψρ

βψ̄
σ
αeiS½ϕ�

Z½0�

R ½dϕ�iψρ1
β1
ð−iψ̄σ1

α1ÞeiS½ϕ�
Z½0�

�

¼ −δαβ
Nc

fh0jT½ψρ
βψ̄

σ
αψ

ρ1
β1
ψ̄σ1
α1 �j0if − h0jT½ψρ

βψ̄
σ
α�j0ifh0jT½ψρ1

β1
ψ̄σ1
α1 �j0ifg: ð38Þ

Since it is closely related to the four-point quark Green’s function, it may satisfy an inhomogeneous Bethe-Salpter equation,
and we found this is indeed the case. Taking derivatives on Eq. (17) with respect to ĪI, we obtain

0 ¼ Nc½i½i∂ −M − Πc�−1;ρ;σ0δΠσρ
cρ1σ1;β1α1

½i∂ −M − Πc�−1;ρ0;σ þ δΦσρ
cρ1σ1;β1α1

�
þ δα1β1 ½i∂ −M − Πc�−1;ρ;σ1 ½i∂ −M − Πc�−1;ρ1;σ: ð39Þ

Similarly, from Eq. (18), we have

δΠσρ
cρ1σ1β1α1

¼ −
X∞
n¼2

ð−iÞnðNcg2Þn−1
ðn − 2Þ! Ḡ

σσ2σ
0
3
���σ0n

ρρ2ρ
0
3
���ρ0n δΦ

σ2ρ2
cρ1σ1β1α1

Φσ0
3
ρ0
3

c � � �Φσ0nρ0n
c : ð40Þ

Inserting Eq. (40) into Eq. (39), we immediately arrive at an inhomogeneous Bethe-Salpeter equation:

δΦσρ
cρ1σ1;β1α1

¼ i½i∂ −M − Πc�−1;ρ;σ0
X∞
n¼2

ð−iÞnðNcg2Þn−1
ðn − 2Þ! Ḡ

σ0σ2σ03���σ0n
ρ0ρ2ρ03���ρ0n δΦ

σ2ρ2
cρ1σ1β1α1

Φσ0
3
ρ0
3

c � � �Φσ0nρ0n
c ½i∂ −M − Πc�−1;ρ0;σ

−
δα1β1
Nc

½i∂ −M − Πc�−1;ρ;σ1 ½i∂ −M − Πc�−1;ρ1;σ: ð41Þ

Now, we can use the standard technique to extract the pole contribution from δΦσρ
cρ1σ1;β1α1

and obtain the homogenous
Bethe-Salpeter equation for mesons,

χρσP;s ¼ i½i∂ −M − Πc�−1;ρ;σ0
X∞
n¼2

ð−iÞnðNcg2Þn−1
ðn − 2Þ! Ḡ

σ0σ2σ03���σ0n
ρ0ρ2ρ03���ρ0nΦ

σ0
3
ρ0
3

c � � �Φσ0nρ0n
c ½i∂ −M − Πc�−1;ρ0;σχρ2σ2P;s

¼ −i½i∂ −M − Πc�−1;ρ;σ0Kσ0ρ0
σ2ρ2 ½i∂ −M − Πc�−1;ρ0;σχρ2σ2P;s ; ð42Þ

where the BS kernel Kσ0ρ0
σ2ρ2 is defined as

Kσ0ρ0
σ2ρ2 ≡ −

X∞
n¼2

ð−iÞnðNcg2Þn−1
ðn − 2Þ! Ḡ

σ0σ2σ03���σ0n
ρ0ρ2ρ03���ρ0nΦ

σ0
3
ρ0
3

c � � �Φσ0nρ0n
c ¼ δΠσ0ρ0

c

δΦσ2ρ2
c

: ð43Þ

From Eq. (43), we see that the BS kernel can be obtained
by breaking each of the quark propagators in the quark
self-energy. Once a truncation is made in the gap equation,
the BS kernel should be truncated accordingly. This
relation is also shown in studies under symmetry preserving

truncations [13,14], so our method exemplifies the chiral
symmetry preserving truncation scheme. The lowest order
in this truncation scheme is the RL truncation. To go
beyond the RL truncation, one can include the three-gluon
Green’s function contribution, which gives quark-gluon
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vertex corrections in the gap equation and in the BSE. When
the connected four-gluon Green’s functions contributions are
included, the gap equation still receives QGV corrections,
while the BSE receives corrections due to H-shape diagrams,
which may be important in scalar and axial-vector channels.
The diagrammatic expressions for the gap equation and the
BSE truncated up to the next-to-next-to-leading (NNL) order
are shown in Figs. 1 and 2, respectively.
As indicated in the Introduction, RL truncation gives

poor results in some channels, such as the scalar and axial-
vector channels. The truncation scheme presented here
allows us to make improvements in these channels. A few

works have studied the impacts of going beyond the RL
truncation by taking into account the three-gluon self-
interaction [15–17,23], which corresponds to the next-to-
leading-order corrections in our scheme. It was found that
at this order considerable corrections already appear in the
scalar and axial-vector channels, and improvements were
found in the axial-vector channel [15–17].
Our framework automatically provides symmetry pre-

serving truncations. The reason can be understood if we
write the meson BSE in another form. Actually, Eq. (42)
can also be written in terms of derivatives of the effective
action Γ½Φ̄; Π̄� as

�
Φ̄−1;ρ2σ0

δ2Γ
δΠ̄σ0ρ0δΦ̄σ1ρ1

Φ̄−1;ρ0σ2 þ i
δ2Γ

δΦ̄σ2ρ2δΦ̄σ1ρ1

�����
Φ̄¼Φc;Π̄¼Πc

χρ2σ2P;s ¼ 0; ð44Þ

where Γ½Φ̄; Π̄� is just −i
Nc
lnZ0je:s:v: with Φc and Πc replaced with arbitrary bilocal functions Φ̄ and Π̄, respectively, i.e.,

Γ½Φ̄; Π̄� ¼ −iTr ln½i∂ −M − Π̄� þ Φ̄σρΠ̄σρ þ
X∞
n¼2

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn Φ̄σ1ρ1 � � � Φ̄σnρn : ð45Þ

Equation (44) is just the analog of Eq. (3) in Ref. [21]. We
have seen that the BSE and the DSEs can all be derived
from the same generating functional, so symmetries re-
spected by the generating functional will be automatically
respected by the equations derived from it. Especially,
truncations can be made in the generating functional
−i lnZ0, then all the equations derived from this generating
functional will be consistent with each other and respect
symmetries retained in the truncated generating functional.
This is why we automatically have a chiral symmetry
preserving truncation scheme.

For the phenomenological studies focusing on meson
properties under RL truncation, the gluon propagator is
usually treated as an input, i.e., given as a model, by fitting
lattice results, etc.. It avoids complications in dealing with
too many coupled equations and thus is very useful for
practical use. In our approach, the gauge sector and fermion
sector of QCD are treated differently at the very beginning,
so it retains the merit just mentioned. In this respect, our
approach can be viewed as an extension from considering
only the gluon propagator’s effects to considering higher-
order gluon Green’s functions’ effects on the fermion

FIG. 1. The gap equation up to the NNL-order truncation. The black circles indicate the propagators are fully dressed. The gray circles
are connected Green’s functions. The dots are bare vertices.

FIG. 2. The meson BS kernel up to the NNL-order truncation. The gray rectangle is the BS kernel. The black circles indicate the
propagators are fully dressed. The gray circles are connected Green’s functions. The dots are bare vertices.
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sector. It results in truncations beyond the RL approxima-
tion on one hand and completes the gauge sector because of
the inclusion of the gluon self-interactions on the other.
All the higher-order terms in our truncation scheme

originate from non-Abelian-type dynamics, i.e., gluon self-
interactions and gluon-ghost interactions. Remember that
we have taken the large Nc limit, which means that non-
Abelian-type contributions are always dominant compared
to Abelian-type contributions up to any order (beyond RL
truncation).

V. SLAVNOV-TAYLOR IDENTITY FOR THE
QUARK-GLUON VERTEX

The Slavnov-Taylor identity for the QGV provides an
important constraint among the quark propagator, the QGV,
and the quark-ghost scattering kernel, which reflects the

Becchi-Rouet-Stora (BRS) symmetry of QCD. In principle,
a proper truncation should guarantee solutions of truncated
DSEs satisfy STIs. However, it is not easy to maintain this
requirement in practice. To see the explicit form of the STI
of the QGV in our formulism, we derive the quark-ghost
scattering kernel in this section. Now, we need to express
the Fadeev-Popov determinant in terms of ghost fields
ϕ̄iðxÞ and ϕiðxÞ; then, we have a ghost term in the QCD
Lagrangian:

Lghost ¼ −ð∂μϕ̄
iÞDμ

ijϕ
j: ð46Þ

Using the BRS symmetry of the theory, one can arrive at a
STI relating the quark-gluon three-point Green’s function
to the quark antiquark–ghost antighost four-point Green’s
function [35],

0 ¼ ω

�
i
2
gλkαγh0jT½ϕkðxÞψγðxÞψ̄βðyÞϕ̄iðzÞ�j0if −

i
2
gλkγβh0jT½ψαðxÞψ̄ γðyÞϕkðyÞϕ̄iðzÞ�j0if

þ 1

ξ
h0jT½ψαðxÞψ̄βðyÞ∂μA

μ
i ðzÞ�j0if

�
: ð47Þ

We shall see that this is just the STI for the QGV. Let us introduce the quark-ghost scattering kernelsHi
αβ and H̄

i
αβ according

to

Hk0
αγðp; q; rÞSγβð=rÞ ~Dk0iðq2Þ

≡ 1

2
λkαγ

Z
d4xd4ye−ip·xe−ir·yh0jT½ϕkðxÞψγðxÞψ̄βðyÞϕ̄ið0Þ�j0if ð48Þ

and

Sαγð−pÞH̄k0
γβð−r;−q;−pÞ ~Dk0iðq2Þ

≡ 1

2
λkγβ

Z
d4xd4ye−ip·xe−ir·yh0jT½ψαðxÞψ̄ γðyÞϕkðyÞϕ̄ið0Þ�j0if; ð49Þ

where q ¼ −p − r and ~Dijðq2Þ is the ghost propagator. With these definitions, Eq. (47) becomes (after taking Fourier
transformation)

gHk0
αγðp; q; rÞSγβð=rÞ ~Dk0iðq2Þ − gSαγð−pÞH̄k0

γβð−r;−q;−pÞ ~Dk0iðq2Þ

¼ 1

ξ
Sαγð−pÞ½−igΓj

ν;γαðq; p; rÞ�Sαβð=rÞGνμ
ji ðqÞqμ: ð50Þ

Since for the gluon propagator Gνμ
ji ðqÞ the nontransverse part equals that of a free gluon propagator, the equation can be

reduced. After extracting the color structure, we obtain

S−1ð−pÞHðp; q; rÞ − H̄ð−r;−q;−pÞS−1ð−=rÞ ¼ −
1

q2
qνΓνðq; p; rÞ ~D−1ðq2Þ; ð51Þ

which is just the usual form of the STI of the QGV. In QED, ghost fields decouple from other fields, i.e., H ¼ H̄ ¼ 1 and
~D−1ðq2Þ ¼ −q2, and then the corresponding Ward-Takahashi identity in QED follows:

S−1ð−pÞ − S−1ð−=rÞ ¼ qνΓνðq; p; rÞ: ð52Þ
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Without taking the large Nc limit, the Slavnov-Taylor
identities are of course satisfied. Since the BRS sym-
metry is independent of the SUðNcÞ group parameter Nc,
the Slavnov-Taylor identities should still hold at the large
Nc limit. So, in our formulism, the solutions of the gap
equation, the QGV DSE, and the quark-ghost scattering
kernel (untruncated equations) satisfy Eq. (51). To give
an explicit form of the quark-ghost scattering kernel, or
equivalently the quark antiquark–ghost antighost four-
point Green’s function, we need to introduce external

sources for ghost fields. The appearance of these external
sources will largely complicate the form of the generating
functional. We put these materials in Appendix B. After a
lengthy amount of work, we obtain the generating
functional with ghost external sources (up to η̄η order)
at the large Nc limit as shown in Eq. (B16).
Now, the quark antiquark–ghost antighost four-point

Green’s function can be derived directly by calculating
−iδ4 lnZ0

δη̄jδð−ηiÞδĪβδð−IαÞ. Eventually, we obtain

h0jT½ϕjð~yÞϕ̄ið~xÞψρ
βðyÞψ̄σ

αðxÞ�j0ic

¼
Z

d4x0d4y0
�
−ði∂ −M − ΠcÞ−1ρρ0 ðy; y0Þ

δ2Πρ0σ0
c ðy0; x0Þ

δη̄jð~yÞδð−ηið~xÞÞ ði∂ −M − ΠcÞ−1σ0σðx0; xÞ
�
δαβ

þ
Z

d4x0d4y0½ði∂ −M − ΠcÞ−1ρρ0 ðy; y0ÞðΔbρ0σ0
Φc

ð~x; ~y; y0; x0Þ½λiλj�βα
þ Δcρ0σ0

Φc
ð~x; ~y; y0; x0Þ½λjλi�βαÞði∂ −M − ΠcÞ−1σ0σðx0; xÞ�: ð53Þ

The full Green’s function is

h0jT½ϕjð~yÞϕ̄ið~xÞψρ
βðyÞψ̄σ

αðxÞ�j0if
¼ ih0jT½ϕjð~yÞϕ̄ið~xÞψρ

βðyÞψ̄σ
αðxÞ�j0ic − h0jT½ψρ

βðyÞψ̄σ
αðxÞ�j0ich0jT½ϕjð~yÞϕ̄ið~xÞ�j0ic

¼
Z

d4x0d4y0
�
−ði∂ −M − ΠcÞ−1ρρ0 ðy; y0Þ

iδ2Πρ0σ0
c ðy0; x0Þ

δη̄jð~yÞδð−ηið~xÞÞ ði∂ −M − ΠcÞ−1σ0σðx0; xÞ
�
δαβ

þ
Z

d4x0d4y0½ði∂ −M − ΠcÞ−1ρρ0 ðy; y0ÞðiΔbρ0σ0
Φc

ð~x; ~y; y0; x0Þ½λiλj�βα
þ iΔcρ0σ0

Φc
ð~x; ~y; y0; x0Þ½λjλi�βαÞði∂ −M − ΠcÞ−1σ0σðx0; xÞ�

− δαβδijði∂ −M − ΠcÞ−1ρσ ðy; xÞ ~Dð~x; ~yÞ: ð54Þ

Taking Eqs. (24) and (54) into Eq. (47), we obtain

λiαβ

�
ig
2

�Z
d4x0d4y0ði∂ −M − ΠcÞ−1ρρ0 ðx; y0Þ

�
−

iδ2Πρ0σ0
c ðy0; x0Þ

δη̄jðxÞδð−ηiðzÞÞ þ
iδ2Πρ0σ0

c ðy0; x0Þ
δη̄jðyÞδð−ηiðzÞÞ

þ 2NcðiΔcρ0σ0
Φc

ðz; x; y0; x0Þ − iΔbρ0σ0
Φc

ðz; y; y0; x0ÞÞ

þ ði∂ −M − ΠcÞρ0σ0 ðy0; x0Þð ~Dðz; xÞ − ~Dðz; yÞÞ
�
ði∂ −M − ΠcÞ−1σ0σðx0; yÞ

¼ λiαβ

Z
d4x0d4y0ði∂ −M − ΠcÞ−1ρρ0 ðx; y0Þ

�
−
1

ξ

∂
∂zμ Δ

μρ0σ0
Φc

ðz; y0; x0Þ
�
ði∂ −M − ΠcÞ−1σ0σðx0; yÞ: ð55Þ

This is the STI for the QGV in our formalism.

The undetermined function δ2Πρ0σ0
c ðy0;x0Þ

δη̄jðxÞδð−ηiðzÞÞ satisfies coupled integral equations, which, in a compact form, reads

δ2Πc

δη̄jδð−ηiÞ ¼ i
δij
2Nc

Tr

�
ði∂ −M − ΠcÞ−1

�
δΔb

Φc

δΦc
þ δΔc

Φc

δΦc

��

−
δij
Nc

δΔa
Φc

δΦc
−

δΔd
Φc

NcδΦc
hψ̄λiψihψ̄λjψi þ

X∞
n¼2

ð−iÞnðNcg2Þn−1
ðn − 2Þ! Ḡn−1

δ2Φc

δη̄jδð−ηiÞΦc � � �Φc; ð56Þ
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δ2Φc

δη̄jδð−ηiÞ ¼ −iði∂ −M −ΠcÞ−1
δ2Πc

δη̄jδð−ηiÞ ði∂ −M −ΠcÞ−1

þ i
δij
2Nc

Tr½ði∂ −M −ΠcÞ−1ðΔb
Φc

þΔc
Φc
Þ�:

ð57Þ
Δa

Φc
;Δb

Φc
;Δc

Φc
, and Δd

Φc
on the lhs of Eq. (55) are

integrations of two-ghost+n-gluon Green’s functions, while
Δμ

Φc
on the rhs of Eq. (55) is an integration of n-gluon

Green’s functions. These Green’s functions are not inde-
pendent. Actually, they satisfy their own DSEs and STIs
derived from the pure Yang-Mills part of the theory.
We have given the expression of the quark antiquark–

ghost antighost four-point Green’s function [Eq. (54)],
with which the quark-ghost scattering kernel is defined,
and the STI for the quark-gluon vertex in coordination
space [Eq. (55)] in our formulism. As discussed before,
the solutions of untruncated DSEs at the large Nc limit
should satisfy Eq. (55). A more interesting case arises
when a truncation is made in the DSEs. The simplest
truncation is the Abelian approximation (rainbow
approximation). In this case, the ghost fields can decou-
ple from other fields, so the QGV STI reduces to the
WTI, and one can check that the gauge-fermion vertex
WTI is not satisfied under the rainbow approximation. In
principle, the STI for the QGV at higher-order truncations
can be tested using Eq. (55). Unfortunately, we cannot do
it due to the complicated forms of relevant Green’s
functions. However, we hope the discussion in this
section can reveal some hints in the studies of the
QGV’s STI.

VI. SUMMARY

We introduced an alternate form for the QCD
generating functional, which is a generalization of the
one used in a previous study. This form has the power
to address various nonperturbative problems in QCD.
Specifically, we employed it to study Dyson-Schwinger
equations and Bethe-Salpeter equation and their trunca-
tions. The large Nc expansion was taken. and we
concentrated on the large Nc limit. Under the large
Nc limit, a systematic order-by-order truncation scheme
with all higher-order terms explicitly given was pro-
posed. One benefit of this framework is that one can
make truncations in the generating functional from
which all the equations are derived. So, any linearly
presented symmetry preserved in the truncated generat-
ing functional can automatically transmit to the DSEs

and the BSE. To be specific, truncations can be made by
keeping finite terms in the expansion of the generating
functional with respect to the number of external legs of
connected gluon Green’s functions. With any such
truncation, the chiral symmetry is conserved (in the
chiral limit). So, the truncated DSEs and BSE preserve
chiral symmetry, and the truncation scheme proposed
here is actually a symmetry preserving truncation
scheme. Another benefit is that our truncation scheme
avoids ambiguities appearing in the methods making
direct use of the QGV DSE.
Since the explicit forms of the DSEs and the BSE are

established at the large Nc limit, the integration kernels
suffer from corrections of 1=Nc order. The positive side
of taking the large Nc limit is that all terms in the
integration kernels making corrections to the RL trun-
cation are non-Abelian type, i.e., they have no counter-
parts in QED, which means that non-Abelian-type
contributions are always dominant compared to
Abelian-type contributions up to any order (beyond
RL truncation), and it is especially useful for testing
non-Abelian dynamics. In this framework, the H-shape
diagram in the BSE kernel, which is considered impor-
tant in the scalar and axial-vector channels, will appear
when connected four-gluon Green’s functions are
present. Meanwhile, the four-gluon self-interaction
appears at the same order, so truncation made up to
this order (i.e., keep the gluon propagator term, the
three-gluon self-interaction term, and the connected
four-gluon Green’s functions term in the kernels) is
of great interest.
To study the QGV STI, we derived the quark-ghost

scattering kernel. Ghost fields are explicitly shown in
the generating functional, and the external sources are
introduced. Although we cannot verify the STI directly
due to the complicated form of the quark-ghost scatter-
ing kernel, we hope those discussions could shed some
light on further studies and on the modeling of the QGV
using the STI.
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APPENDIX A: FIERZ REORDERING

In this Appendix, we give a detailed discussion on the
Fierz reordering. To obtain Eq. (7), we note that
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Gi1i2
μ1μ2ðx1; x2Þ

�
−gψ̄a1

α1ðx1Þ
�
λi1
2

�
α1β1

γμ1ψa1
β1
ðx1Þ

��
−gψ̄a2

α2ðx2Þ
�
λi2
2

�
α2β2

γμ2ψa2
β2
ðx2Þ

�

¼ Gμ1μ2ðx1; x2Þ½−gψ̄a1
α1ðx1Þγμ1ψa1

β1
ðx1Þ�½−gψ̄a2

α2ðx2Þγμ2ψa2
β2
ðx2Þ�

1

2

�
δα1β2δα2β1 −

1

Nc
δα1β1δα2β2

�

¼
Z

d4x01d
4x02g

2Gμ1μ2ðx1; x2Þ
�
−
1

2
ðγμ1Þσ1ρ2ðγμ2Þσ2ρ1δðx01 − x2Þδðx02 − x1Þ

−
1

2Nc
ðγμ1Þσ1ρ1ðγμ2Þσ2ρ2δðx01 − x1Þδðx02 − x2Þ

�
ψ̄σ1
α1ðx1Þψρ1

α1ðx01Þψ̄σ2
α2ðx2Þψρ2

α2ðx02Þ: ðA1Þ

In obtaining the above result, we have used the relations

Gi1i2
μ1μ2ðx1; x2Þ ¼ δi1i2Gμ1μ2ðx1; x2Þ; ðA2Þ

�
λi
2

�
α1β1

�
λi
2

�
α2β2

¼ 1

2

�
δα1β2δα2β1 −

1

Nc
δα1β1δα2β2

�
: ðA3Þ

Hence, the extended two-point Green’s function is

Ḡσ1σ2
ρ1ρ2 ðx1; x01; x2; x02Þ ¼ −

1

2
Gμ1μ2ðx1; x2Þ

�
ðγμ1Þσ1ρ2ðγμ2Þσ2ρ1δðx01 − x2Þδðx02 − x1Þ

þ 1

Nc
ðγμ1Þσ1ρ1ðγμ2Þσ2ρ2δðx01 − x1Þδðx02 − x2Þ

�
: ðA4Þ

For the three-point functions, we need the SUðNcÞ relations

fijk ¼ −2i
��

λi
2
;
λj
2

�
λk
2

�
¼ i

4
ðλjÞαβðλiÞβγðλkÞγα −

i
4
ðλiÞαβðλjÞβγðλkÞγα

dijk ¼ −2i
��

λi
2
;
λj
2

�
λk
2

�
¼ 1

4
ðλjÞαβðλiÞβγðλkÞγα þ

1

4
ðλiÞαβðλjÞβγðλkÞγα; ðA5Þ

then

fijkðλjÞα2β2ðλkÞα3β3 ¼ i½δα3β2ðλiÞα2β3 − δα2β3ðλiÞα3β2 � ðA6Þ

dijkðλjÞα2β2ðλkÞα3β3 ¼ δα3β2ðλiÞα2β3 þ δα2β3ðλiÞα3β2 −
2

Nc
δα3β3ðλiÞα2β2 −

2

Nc
δα2β2ðλiÞα3β3 ðA7Þ

and

fijkðλiÞα1β1ðλjÞα2β2ðλkÞα3β3 ¼ 2iðδα3β2δα2β1δα1β3 − δα3β1δα1β2δα2β3Þ ðA8Þ

dijkðλiÞα1β1ðλjÞα2β2ðλkÞα3β3 ¼ 2ðδα3β2δα2β1δα1β3 þ δα3β1δα1β2δα2β3Þ

−
2

Nc
δα1β1δα2β3δα3β2 −

2

Nc
δα1β3δα2β2δα3β1 −

2

Nc
δα1β2δα2β1δα3β3 þ

4

N2
c
δα1β1δα2β2δα3β3 : ðA9Þ

The three-point Green’s function can be written as

Gi1i2i3
μ1μ2μ3ðx1; x2; x3Þ ¼ gfi1i2i3G

ð0Þ
μ1μ2μ3ðx1; x2; x3Þ þ gdi1i2i3G

ð1Þ
μ1μ2μ3ðx1; x2; x3Þ: ðA10Þ

Combining them together, we get
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Ḡσ1σ2σ3
ρ1ρ2ρ3 ðx1; x01; x2; x02; x3; x03Þ

¼ i
4
Gð0Þ

μ1μ2μ3ðx1; x2; x3Þ½γμ1σ1ρ2γμ2σ2ρ3γμ3σ3ρ1δðx01 − x3Þδðx02 − x1Þδðx03 − x2Þ − γμ1σ1ρ3γ
μ2
σ2ρ1γ

μ3
σ3ρ2δðx01 − x2Þδðx02 − x3Þδðx03 − x1Þ�

þ 1

4
Gð1Þ

μ1μ2μ3ðx1; x2; x3Þ
�
γμ1σ1ρ3γ

μ2
σ2ρ1γ

μ3
σ3ρ2δðx01 − x2Þδðx02 − x3Þδðx03 − x1Þ þ γμ1σ1ρ2γ

μ2
σ2ρ3γ

μ3
σ3ρ1δðx01 − x3Þδðx02 − x1Þδðx03 − x2Þ

þ 2

Nc
γμ1σ1ρ1γ

μ2
σ2ρ3γ

μ3
σ3ρ2δðx01 − x1Þδðx02 − x3Þδðx03 − x2Þ þ

2

Nc
γμ1σ1ρ3γ

μ2
σ2ρ2γ

μ3
σ3ρ1δðx01 − x3Þδðx02 − x2Þδðx03 − x1Þ

þ 2

Nc
γμ1σ1ρ2γ

μ2
σ2ρ1γ

μ3
σ3ρ3δðx01 − x2Þδðx02 − x1Þδðx03 − x3Þ þ

4

N2
c
γμ1σ1ρ1γ

μ2
σ2ρ2γ

μ3
σ3ρ3δðx01 − x1Þδðx02 − x2Þδðx03 − x3Þ

�
: ðA11Þ

In general, Ḡσ1…σn
ρ1…ρn ðx1; x01;…; xn; x0nÞ, has following

properties:
(i) The basic term is γμ1σ1ρi1 δðx1 − x0i1Þ � � � γ

μn
σnρin δðxn −

x0inÞ with some nonlocal coefficient that depends
on indices μ1, …; μn and space-time coordinates
x1, …; xn.

(ii) Different terms correspond to different arrangements
of number 1;…; n to i1, …; in.

(iii) There is no γμiiδðxi − x0iÞ factor.

For the extended Green’s functions ~Gμ’s, the two-point
and three-point Green’s functions are, respectively,

~Gσ
μ1;ρðx1; x01; x2; x02Þ

¼ 1

2
γμ2σρGμ1μ2ðx1; x2Þδðx01 − x2Þδðx02 − x2Þ ðA12Þ

and

~Gσσ3
μ1;ρρ3ðx1; x01; x2; x02; x3; x03Þ

¼ 1

4

�
iGð0Þ

μ1μ2μ3ðx1; x2; x3Þð−γμ2σρ3γμ3σ3ρδðx01 − x2Þδðx02 − x3Þδðx03 − x2Þ þ γμ2σ3ργ
μ3
σρ3δðx01 − x3Þδðx02 − x2Þδðx03 − x3Þ�Þ

þ Gð1Þ
μ1μ2μ3ðx1; x2; x3Þð−γμ2σρ3γμ3σ3ρδðx01 − x2Þδðx02 − x3Þδðx03 − x2Þ − γμ2σ3ργ

μ3
σρ3δðx01 − x3Þδðx02 − x2Þδðx03 − x3Þ

−
4

Nc
γμ2σργ

μ3
σ3ρ3δðx01 − x2Þδðx02 − x2Þδðx03 − x3ÞÞ

�
: ðA13Þ

APPENDIX B: THE GENERATING FUNCTIONAL WITH GHOST EXTERNAL SOURCES

We rewrite the original generating functional with ghost fields written explicitly and introducing external sources for them:

Z½J; I ; Ī; I; η̄i; ηi�

¼
Z

DψDψ̄ exp
�
i
Z

d4xfψ̄ði∂ þ JÞψ þ Īψ þ ψ̄Ig
�

×
Z

DAμDϕDϕ̄ exp

�
i
Z

d4x

�
LGðAÞ −

1

2ξ
½FiðAμÞ�2 − ð∂μϕ̄

iÞDμ
ijϕ

j þ I 0μ
i A

i
μ þ η̄iϕi þ ϕ̄iηi

��
: ðB1Þ

Formally integrating out the gauge fields and ghost fields, we obtain

Z
DAμDϕDϕ̄ exp

�
i
Z

d4x

�
LGðAÞ −

1

2ξ
½FiðAμÞ�2 − ð∂μϕ̄

iÞDμ
ijϕ

j þ I 0μ
i A

i
μ þ η̄iϕi þ ϕ̄iηi

��

¼ exp i
X∞
n¼2

Z
d4x1 � � � d4xn

in

n!
Gi1���in

μ1���μnðx1;…; xnÞ½ηi; η̄j�I 0μ1
i1
ðx1Þ � � � I 0μn

in
ðxnÞ; ðB2Þ

where Gi1���in
μ1���μnðx1;…; xnÞ½ηi; η̄j� is connected n-point gluon Green’s function depending on ηi, η̄j. Then, the color structure of

these Green’s functions involves ηi, η̄j. For example, the two-point Green’s functionGij
μν is no longer proportional to δij; it also

includes terms proportional to ηiη̄j.
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Note that the derivation of the STI for the quark-gluon vertex only needs a bilinear term of ghost sources; therefore, we do
not need to give the general expression of (B2), and instead we only keep those terms with ghost sources at most bilinear. In
this simplified case, the color structure of Gi1���in

μ1���μnðx1;…; xnÞ½ηi; η̄j� can be explicitly figured out:

Z
DAμDϕDϕ̄exp

�
i
Z

d4x
�
LGðAÞ−

1

2ξ
½FiðAμÞ�2 − ð∂μϕ̄

iÞDμ
ijϕ

jþ I 0μ
i A

i
μ þ η̄iϕiþ ϕ̄iηi

��

¼
Z

DAμΔFðAμÞexp
�
i
Z

d4x

�
LGðAÞ−

1

2ξ
½FiðAμÞ�2þ I 0μ

i A
i
μ

�
− η̄ð∂μDμÞ−1η

�

¼
Z

DAμΔFðAμÞexp
�
i
Z

d4x

�
LGðAÞ−

1

2ξ
½FiðAμÞ�2þ I 0μ

i A
i
μ

��

×
�
1−

R
d4xd4yη̄iðxÞηjðyÞR DAμΔFðAμÞð∂μDμÞ−1;ijðx;yÞexp½iR d4xðLGðAÞ− 1

2ξ ½FiðAμÞ�2þ I 0μ
i A

i
μÞ�R

DAμΔFðAμÞexp½i
R
d4xðLGðAÞ− 1

2ξ ½FiðAμÞ�2þ I 0μ
i A

i
μÞ�

þOððηη̄Þ2Þ
�

¼
Z

DAμΔFðAμÞexp
�
i
Z

d4x
�
LGðAÞ−

1

2ξ
½FiðAμÞ�2þ I 0μ

i A
i
μ

��

×exp
�
−

R
d4xd4yη̄iðxÞηjðyÞR DAμΔFðAμÞð∂μDμÞ−1;ijðx;yÞexp½iR d4xðLGðAÞ− 1

2ξ ½FiðAμÞ�2 þ I 0μ
i A

i
μÞ�R

DAμΔFðAμÞexp½i
R
d4xðLGðAÞ− 1

2ξ ½FiðAμÞ�2 þ I 0μ
i A

i
μÞ�

þOððηη̄Þ2Þ
�
:

ðB3Þ

We define

−

R
d4xd4yη̄iðxÞηjðyÞ R DAμΔFðAμÞð∂μDμÞ−1;ijðx; yÞ exp½i R d4xðLGðAÞ − 1

2ξ ½FiðAμÞ�2 þ I 0μ
i A

i
μÞ�R

DAμΔFðAμÞ exp½i
R
d4xðLGðAÞ − 1

2ξ ½FiðAμÞ�2 þ I 0μ
i A

i
μÞ�

¼ i
X∞
n¼0

Z
d4xd4yd4x1 � � � d4xn

in

n!
GðnÞi;j;i1���in
μ1���μn ðx; y; x1;…; xnÞη̄iðxÞηjðyÞI 0μ1

i1
ðx1Þ � � � I 0μn

in
ðxnÞ; ðB4Þ

where GðnÞ is just the connected ghost-antighost+n-gluon Green’s function. Since I 0μ
i ≡ Iμ

i − gψ̄ λi
2
γμψ , we can expand the n

I 0’s at each term and obtain terms of I0 order, I1 order, � � �, In order. For our purpose, we only need to give explicit
expressions of the I0-order terms, which read

i
X∞
n¼0

Z
d4xd4yd4x1 � � � d4xn

in

n!
GðnÞi;j;i1���in
μ1���μn ðx; y; x1;…; xnÞη̄iðxÞηjðyÞ

�
−gψ̄

λi1
2
γμ1ψðx1Þ

�
� � �

�
−gψ̄

λin
2
γμnψðxnÞ

�
: ðB5Þ

To do Fierz rearrangement, we need to show color factors explicitly. In general, terms including Gð2Þ have two free color
indices of the adjoint representation i, j and four free color indices of the fundamental representation α, β, δ, γ, so the most
general forms of color factors include

δijδαβδδγ; δαβ½λiλj�δγ; δαβ½λjλi�δγ; λiαβλ
j
δγ: ðB6Þ

For higher-order GðnÞ’s ðn > 2Þ, the forms of color factors would be different from them by multiplying δα1β1 � � �. For
example, Gð3Þ should have δijδαβδδγδα1β1 , δαβ½λiλj�δγδα1β1 , δαβ½λjλi�δγδα1β1 , and λiαβλ

j
δγδα1β1 . So, G

ðnÞ decomposes into

GðnÞ ¼ GðnaÞ½δijδαβδδγδα1β1 � � �� þ GðnbÞ½δαβ½λiλj�δγδα1β1 � � �� þ GðncÞ½δαβ½λjλi�δγδα1β1 � � �� þ GðndÞ½λiαβλjδγδα1β1 � � ��: ðB7Þ
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So, we can write

i
X∞
n¼0

Z
d4xd4yd4x1 � � � d4xn

in

n!
GðnÞi;j;i1���in
μ1���μn ðx; y; x1;…; xnÞη̄iðxÞηjðyÞ ×

�
−gψ̄

λi1
2
γμ1ψðx1Þ

�
� � �

�
−gψ̄

λin
2
γμnψðxnÞ

�

¼ i

�Z
d4xd4yΔa

Φðx; yÞη̄iðxÞηiðyÞ þ
Z

d4xd4yd4z1d4z01Δ
bσρ
Φ ðx; y; z1; z01Þψ̄σðz1Þ ~̄ηðxÞ~ηðyÞψρðz01Þ

−
Z

d4xd4yd4z1d4z01Δ
cσρ
Φ ðx; y; z1; z01Þψ̄σðz1Þ~ηðyÞ ~̄ηðxÞψρðz01Þ

þ
Z

d4xd4yd4z1d4z01d
4z2d4z02Δ

dσρ;σ0ρ0
Φ ðx; y; z1; z01; z2; z02Þ

1

N2
c
ψ̄σðz1Þ ~̄ηðxÞψρðz01Þψ̄σ0 ðz2Þ~ηðyÞψρ0 ðz02Þ

�
; ðB8Þ

where ~ηαβ ¼ ηiλiαβ, ~̄ηαβ ¼ η̄iλiαβ, and

Δa
Φðx; yÞ ¼

X∞
n¼0

Z
d4x1d4x01 � � � d4xnd4x0n

ð−1ÞninNn
c

n!
GðnaÞσ1���σn
ρ1���ρn ðx; y; x1; x01 � � � ; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ;

ðB9Þ

Δbσρ
Φ ðx; y; z1; z01Þ ¼

X∞
n¼0

Z
d4x1d4x01 � � � d4xnd4x0n

ð−1Þninþ1Nn
c

ðnþ 1Þ! Gððnþ1ÞbÞσσ1���σn
ρρ1���ρn ðx; y; z1; z01; x1; x01 � � � ; xn; x0nÞ

×Φσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ; ðB10Þ

Δcσρ
Φ ðx; y; z1; z01Þ ¼

X∞
n¼0

Z
d4x1d4x01 � � � d4xnd4x0n

ð−1Þninþ1Nn
c

ðnþ 1Þ! Gððnþ1ÞcÞσσ1���σn
ρρ1���ρn ðx; y; z1; z01; x1; x01 � � � ; xn; x0nÞ

×Φσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ; ðB11Þ

and

Δdσρ;σ0ρ0
Φ ðx; y; z1; z01; z2; z02Þ ¼

X∞
n¼0

Z
d4x1d4x01 � � � d4xnd4x0n

ð−1Þninþ2Nnþ2
c

ðnþ 2Þ!
× Gððnþ2ÞcÞσσ0σ1���σn

ρρ0ρ1���ρn ðx; y; z1; z01; z2; z02; x1; x01 � � � ; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ: ðB12Þ

Now, the generating functional can be written as

Z½J;I ; Ī; I; η̄i; ηi� ¼
Z

DψDψ̄DΦDΠ exp i
�Z

d4xfψ̄ði∂ þ J − ΠÞψ þ Īψ þ ψ̄Ig þ
Z

d4xd4x0NcΦσρðx; x0ÞΠσρðx; x0Þ

þ
X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0nNc

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞ

×Φσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ

þ
Z

d4x1d4x01d
4x02ψ̄

σ
αðx01Þ ~Iμ

αβðx1ÞΔσρ
Φ;μðx1; x01; x02Þψρ

βðx02Þ þOðI2Þ
�

× exp i

�Z
d4xd4yΔa

Φðx; yÞη̄iðxÞηiðyÞ þ
Z

d4xd4yd4z1d4z01Δ
bσρ
Φ ðx; y; z1; z01Þψ̄σðz1Þ ~̄ηðxÞ~ηðyÞψρðz01Þ

−
Z

d4xd4yd4z1d4z01Δ
cσρ
Φ ðx; y; z1; z01Þψ̄σðz1Þ~ηðyÞ ~̄ηðxÞψρðz01Þ

þ
Z

d4xd4yd4z1d4z01d
4z2d4z02Δ

dσρ;σ0ρ0
Φ ðx; y; z1; z01; z2; z02Þψ̄σðz1Þ ~̄ηðxÞψρðz01Þψ̄σ0 ðz2Þ~ηðyÞψρ0 ðz02Þ

�
:

ðB13Þ
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Introducing

Z
DΦη̄DΦηδðNcΦ

σρ
η̄ ðx; x0; yÞ − ψ̄σðxÞ ~̄ηðyÞψρðx0ÞÞδðNcΦ

σρ
η ðx; x0; yÞ − ψ̄ σðxÞ~ηðyÞψρðx0ÞÞ; ðB14Þ

where

δðNcΦ
σρ
η̄ ðx; x0; yÞ − ψ̄σðxÞ ~̄ηðyÞψρðx0ÞÞ ∼

Z
DΠη̄e

i
R

d4xd4x0d4yðNcΦ
σρ
η̄ ðx;x0;yÞ−ψ̄σðxÞ ~̄ηðyÞψρðx0ÞÞ·Πσρ

η̄ ðx;x0;yÞ;

and following the procedure similar to that in Sec. II, we obtain

Z½J;I ; Ī; I; η̄i; ηi�

¼
Z

DψDψ̄DΦDΠDΦη̄DΦηDΠη̄DΠη

× exp i

�Z
d4xd4yfψ̄ ½ði∂ þ J − ΠÞδðx − yÞ þ ~IΔΦ þ Δb

Φ ~̄η ~η−Δc
Φ ~η ~̄ηþ ~̄ηΠη̄ þ Πη ~η�ψ

þ
Z

d4xfĪψ þ ψ̄Ig þ
Z

d4xd4x0NcΦσρðx; x0ÞΠσρðx; x0Þ þ
Z

d4xd4yΔa
Φðx; yÞη̄iðxÞηiðyÞ

þ Nc

Z
d4xd4x0d4y½Φσρ

η̄ ðx; x0; yÞΠσρ
η̄ ðx; x0; yÞ þΦσρ

η ðx; x0; yÞΠσρ
η ðx; x0; yÞ�

þ
X∞
n¼2

Z
d4x1 � � � d4xnd4x01 � � � d4x0nNc

ð−iÞnðNcg2Þn−1
n!

Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1ðx1; x01Þ � � �Φσnρnðxn; x0nÞ

þ
Z

d4xd4yd4z1d4z01d
4z2d4z02Δ

dσρ;σ0ρ0
Φ ðx; y; z1; z01; z2; z02ÞΦσρ

η̄ ðz1; z01; yÞΦσ0ρ0
η ðz2; z02; xÞ

�
: ðB15Þ

Integrating out ψ and ψ̄ , keeping up to ηη̄-order terms, we obtain

Z0½J; I ; Ī; I; η̄i; ηi�≡ lim
Nc→∞

Z½J; I ; Ī; I; η̄i; ηi�

¼ exp i

�
−iNcTr ln½ði∂ þ J − ΠcÞ� − iTr0½ði∂ þ J − ΠcÞ−1ðΔb

Φc
~̄η ~η−Δc

Φc
~η ~̄ηÞ�

þ iTr0½ði∂ þ J − ΠcÞ−1 ~̄ηΠη̄cði∂ þ J − ΠcÞ−1 ~ηΠηc�
− Ī½ði∂ þ J − ΠcÞ−1�I þ Ī½ði∂ þ J − ΠcÞ−1ð ~IΔΦc

þ Δb
Φc
~̄η ~η−Δc

Φc
~η ~̄ηÞði∂ þ J − ΠcÞ−1�I

− Ī½ði∂ þ J − ΠcÞ−1 ~̄ηΠη̄cði∂ þ J − ΠcÞ−1Πηc ~ηði∂ þ J − ΠcÞ−1�I
− Ī½ði∂ þ J − ΠcÞ−1Πηc ~ηði∂ þ J − ΠcÞ−1 ~̄ηΠη̄cði∂ þ J − ΠcÞ−1�I

þ
Z

d4xd4yΔa
Φc
ðx; yÞη̄iðxÞηiðyÞ þ Nc

Z
d4xd4x0Φσρ

c ðx; x0ÞΠσρ
c ðx; x0Þ

þ Nc

Z
d4xd4x0d4y½Φσρ

η̄cðx; x0; yÞΠσρ
η̄cðx; x0; yÞ þ Πσρ

ηcðx; x0; yÞΦσρ
ηcðx; x0; yÞ�

þ Nc

X∞
n¼2

Z
d4x1d4x01 � � � d4xnd4x0n

ð−iÞnðNcg2Þn−1
n!

× Ḡσ1���σn
ρ1���ρn ðx1; x01;…; xn; x0nÞΦσ1ρ1

c ðx1; x01Þ � � �Φσnρn
c ðxn; x0nÞ

þ
Z

d4xd4yd4z1d4z01d
4z2d4z02Δ

dσρ;σ0ρ0
Φc

ðx; y; z1; z01; z2; z02ÞΦσρ
η̄cðz1; z01; yÞΦσ0ρ0

ηc ðz2; z02; xÞ
�
; ðB16Þ

where Φηc;Φη̄c;Πηc, and Πη̄c are the expectation values of fields Φη;Φη̄;Πη, and Πη̄, respectively.
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