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Quasiparton distribution functions have received a lot of attention in both the perturbative QCD and
lattice QCD communities in recent years because they not only carry good information on the parton
distribution functions but also could be evaluated by lattice QCD simulations. However, unlike the parton
distribution functions, the quasiparton distribution functions have perturbative ultraviolet power diver-
gences because they are not defined by twist-2 operators. In this paper, we identify all sources of ultraviolet
divergences for the quasiparton distribution functions in coordinate space and demonstrate that power
divergences as well as all logarithmic divergences can be renormalized multiplicatively to all orders in
QCD perturbation theory.
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I. INTRODUCTION

Parton distribution functions (PDFs), fi=hðx; μ2Þ, are
defined as the probability distributions to find a quark,
an antiquark, or a gluon (i ¼ q; q̄; g, respectively) in a fast
moving hadron h to carry the hadron’s momentum fraction
between x and xþ dx, probed at the factorization scale μ
[1]. They are fundamental and important nonperturbative
functions in QCD quantifying the relation between a
hadron and the quarks and gluons within it and playing
an essential role to connect colliding hadron(s) to short-
distance QCD dynamics in high energy scattering proc-
esses [2]. However, calculation of PDFs from the first
principle, both analytically or from lattice QCD (LQCD), is
a challenge, if not impossible, due to the fact that PDFs
contain the dynamics at long-distance scales and of non-
perturbative nature and are defined in terms of time-
dependent operators. Traditionally, PDFs have been
extracted from high energy scattering data by QCD global
analysis in the framework of QCD factorization [3–7].
Recently, Ji introduced a set of quasi-PDFs for a hadron

of momentum pz, say along the z-direction, and argued that
they are equal to corresponding PDFs when the hadron
momentum pz goes to infinity [8]. Without setting
pz → ∞, the quasi-PDFs could be factorized to PDFs to
all orders in QCD perturbation theory so long as quasi-
PDFs can be multiplicatively renormalized [9]. Like PDFs,
the quasi-PDFs are defined by hadronic matrix elements of

two-field correlators with a straight line gauge link between
the two fields to ensure the gauge invariance,

~fq=pð~x; ~μ2; pzÞ≡
Z

dξz
2π

ei~xpzξzhhðpÞjψ̄qðξzÞ
γz
2

×ΦðfÞ
nz ðfξz; 0gÞψqð0ÞjhðpÞi ð1Þ

for quasiquark distribution with ξ0 ¼ ξ⊥ ¼ 0, and

~fg=pð~x; ~μ2; pzÞ≡ 1

~xpz

Z
dξz
2π

ei~xpzξzhhðpÞjFν
zðξzÞ

×ΦðaÞ
nz ðfξz; 0gÞFzνð0ÞjhðpÞi ð2Þ

for quasigluon distribution with ν summing over

transverse directions. In Eqs. (1) and (2), Φðf;aÞ
nz ðfξz; 0gÞ ¼

exp½−ig R ξz
0 dηzA

ðf;aÞ
z ðηzÞ� are the gauge links with f and a

representing fundamental and adjoint representation,
respectively. Unlike PDFs, the two-field correlators of
the quasi-PDFs are defined to be off the light cone and
have an equal time separation, which makes it possible to
calculate the quasi-PDFs in LQCD [10–14]. However,
since the hadron momentum in LQCD calculation is
effectively bounded by the lattice spacing, the pz → ∞
limit is hard to achieve in LQCD calculation, and it is a
challenge to control the corrections due to the finite pz
[15,16]. Nevertheless, with the potential to calculate the
PDFs from the first principle in QCD by using LQCD and
the challenges in doing so, the concept of the quasi-PDFs
has generated a lot of interest and activities in both
the perturbative QCD (PQCD) and LQCD communities
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[17–33]. Besides the corrections due to the limited range of
pz, the key to deriving PDFs from the LQCD calculated
quasi-PDFs is twofold: (1) being able to renormalize all UV
divergences of quasi-PDFs nonperturbatively and (2) ensur-
ing that the renormalized quasi-PDFs and PDFs share the
same collinear (CO) divergences.
It was demonstrated in Ref. [9] by two of the present

authors that quasi-PDFs and corresponding PDFs share the
same leading logarithmic CO perturbative divergences to
all orders in QCD perturbation theory, if the quasi-PDFs
can be multiplicatively renormalized. With this fact, instead
of deriving the PDFs from quasi-PDFs by taking the hadron
momentum pz → ∞, two of the present authors proposed,
in Ref. [9], extracting PDFs by using the PQCD factori-
zation approach from LQCD calculated quasi-PDFs or
other LQCD calculable single-hadron matrix elements, so
long as these matrix elements could be factorized into the
desired PDFs with perturbatively calculable coefficients. In
this PQCD factorization approach, the hard scale is of
~xpz ∼ 1=ξz ∼ GeV, and the corrections are power sup-
pressed by the hard scale and characterized by the hadronic
matrix elements of high-twist operators, just like how
experimentally measurable and perturbative factorizable
hadronic cross sections are connected to PDFs via PQCD
factorization.
Therefore, understanding the renormalizability of the

operators defining the quasi-PDFs is the most critically
important challenge for extracting PDFs from LQCD
calculated quasi-PDFs, reliably. Since the quasi-PDFs
are not defined by twist-2 operators, PDFs and quasi-
PDFs have different perturbative UV behavior. Instead of
the logarithmic perturbative UV divergence of PDFs, quasi-
PDFs have power UV divergences [9,34]. Although LQCD
calculations of quasi-PDFs are naturally regularized by the
lattice spacing a, the perturbative power divergence in 1=a
makes it difficult to take the continuous limit of lattice
results to extract the correct PDFs [35–39]. Under the UV
renormalization, it is also possible that the operators
defining the quasi-PDFs might mix with other operators;
for example, the quark PDFs can mix with the gluon PDF.
Therefore, it is very important to find out not only if the
operators defining quasi-PDFs are renormalizable but also
if the operator mixing under the renormalization, if there is
any, could be limited to a closed set of operators. In this
paper, we address the issues concerning the renormaliz-
ability of the operators defining quasi-PDFs.
The rest of this paper is organized as follows. In Sec. II, we

will show that quasi-PDFs defined in Eqs. (1) and (2) have
bad short-distance behavior, while coordinate-space quasi-
PDFs are better candidates for extracting PDFs. We also
define quasi-PDFs in coordinate space and explain why its
renormalization is difficult. We then study the one-loop
expansion of quasi-PDFs in coordinate space in Sec. III.
Using theUV power counting derived in Sec. IV, we identify

all perturbativeUVdivergent regions for the quasi-PDFs.We
find that, once subdivergences are subtracted off, all UV
divergences originate from the integration regions where
all loop momenta are large, which is significantly different
from the behavior of PDFs. Based these observations and
findings, we prove in Sec. V that quasi-PDFs in coordinate
space can be multiplicatively renormalized. Most impor-
tantly, we found that quasi-PDFs do not mix with other
quantities under the running of the renormalization scale,
which completes our proof of the renormalizability of
coordinate-space quasi-PDFs. Finally, we give our summary
in Sec. VI.

II. COORDINATE-SPACE QUASI-PDFS

The interest and excitement of studying quasi-PDFs is
based on the potential to extract PDFs and hadron structure
from the first principle calculation of LQCD. Consequently,
the value for studying quasi-PDFs depends on the reliabil-
ity and accuracy of the matching between quasi-PDFs and
PDFs, as proposed in Eq. (11) of Ref. [8],

~qðx; μ2; PzÞ ¼
Z

1

x

dy
y
Z

�
x
y
;
μ

Pz

�
qðy; μ2Þ; ð3Þ

with Zðx; μ=PzÞ ¼ δðx − 1Þ þ ðαs=2πÞZð1Þðx; μ=PzÞ þ
� � � → δðx − 1Þ as Pz → ∞ for quark distribution. This is
equivalent to requiring the reliability and accuracy of the
PQCD factorization of the quasi-PDFs,

~fi=pð~x; ~μ2; pzÞ ≈
X
j

Z
1

0

dx
x
Cij

�
~x
x
; ~μ2; μ2; pz

�

× fj=pðx; μ2Þ þO
�
1

~μ2

�
; ð4Þ

where i; j ¼ q; q̄; g, C’s are IR safe and perturbatively
calculated matching coefficients; ~μ is the renormalization
scale of quasi-PDFs; μð∼ ~μÞ is the factorization scale of
PDFs; and the power correction, Oð1= ~μ2Þ, is characterized
by the size of high-twist quark-gluon correlation functions,
like in all collinear PQCD factorization formalisms. We
found that if the perturbative UV divergences of quasi-
PDFs in the lhs of Eq. (4) are regularized by a momentum
cutoff, the factorized convolution in the rhs is well behaved.
However, the momentum cutoff regulator is hard to imple-
ment consistently at higher order calculations in perturba-
tive expansion. On the other hand, we noticed that if we
regularize the perturbative UV divergences of quasi-PDFs
by dimensional regularization (DR), the integration over
the momentum fraction x on the rhs of the Eq. (4) will be
divergent. This is because sea-quark and gluon PDFs,
fj=pðx;μ2Þ→x−α as x → 0, with 1 < α < 2, and the calcu-

lated matching coefficient, Cð1Þij ð~x=x; ~μ2; μ2; pzÞ, evaluated
in using DR, have a term proportional to 1=ð~x=xÞ as x → 0
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[9,34]. As a result, the lower end of the x-integration in
Eq. (4) leads to the divergence,

R
0 dx=xðx=~xÞx−α → ∞.

By applying the factorization formula in Eq. (4) to an
asymptotic parton state, j, and expanding the both sides of
the factorized equation to the first order in the power of αs,

we have Cð1Þij ðy; ~μ2; μ2; pzÞ ¼ ~fð1Þi=jðy; ~μ2; pzÞ − fð1Þi=jðy; μ2Þ.
As fð1Þi=jðy; μ2Þ vanishes as y → ∞, the asymptotic behavior

of Cð1Þij ð~x=x; ~μ2; μ2; pzÞ as x → 0 is fully determined by the

large ~x behavior of ~fð1Þi=jð~x; ~μ2; pzÞ.
As ~x → ∞, the large momentum behavior of quasi-

PDFs, defined in Eqs. (1) and (2), is closely related to the
asymptotic behavior of the hadronic matrix elements as
the separation of the two fields, ξz → 0. The divergence in
the x-convolution of the factorized formalism in Eq. (4),
found above, indicates that hadronic matrix elements could
be ill defined when ξz → 0, which is indeed the case as we
will demonstrate in the next section. As pointed out in
Ref. [9], the coordinate-space quasi-PDFs are better quan-
tities for the calculation in LQCD, for the discussion of
renormalization, and for the extraction of PDFs.
We define coordinate-space quasi-PDFs as

~Fq=pðξz; ~μ2;pzÞ

¼ eipzξz

pz
hhðpÞjψ̄qðξzÞ

γz
2
ΦðfÞ

nz ðfξz;0gÞψqð0ÞjhðpÞi; ð5Þ

and

~Fg=pðξz; ~μ2; pzÞ

¼ eipzξz

p2
z

hhðpÞjFz
νðξzÞΦðaÞ

nz ðfξz; 0gÞFzνð0ÞjhðpÞi; ð6Þ

where ~μ is a renormalization scale and Φðf;aÞ
nz ðfξz; 0gÞ are

gauge links, defined in Sec. I. We also define nμz ¼
ð0; 0⊥; 1Þ with gμν ¼ diagð1;−1;−1;−1Þ, and v · nz ¼
−vz for any vector vμ, and we have n2z ¼ −1.
We will demonstrate in the next section that coordinate-

space quasi-PDFs are well defined for finite ξz, while they
are divergent when ξz → 0. If one wants to have well-
defined momentum-space quasi-PDFs, one has to properly
and consistently subtract off the divergence at ξz → 0.
From the definitions of quasi-PDFs, we have

~Fi=pð−ξz; ~μ2; pzÞ ¼ ~F�
i=pðξz; ~μ2; pzÞ: ð7Þ

To take advantage of this relation and simplify the
discussion, we assume ξz > 0 in the following calculation.
For the final result, we will then express it in the form that is
correct for the arbitrary value of ξz.

Before going into the details of proving the renormaliz-
ability of quasi-PDFs, we first briefly explain the complex-
ity of quasi-PDFs’ renormalization:
(1) Lorentz symmetry is broken. Because of the explic-

itly z-direction dependence of quasi-PDFs, to iden-
tify all possible UV divergences, we need to study
both four-dimensional loop momentum integration
and three-dimensional loop momentum integration
(with the z-direction fixed).1 for each individual
loop. This amounts to 2n different cases for an
n-loop Feynman diagram, which is hard to handle.

(2) Renormalizaiton of composite operators is needed.
As an example, let us choose an Az ¼ 0 axial gauge,
and the quasiquark PDFs become

~Fq=pðξz; ~μ2;pzÞ¼
eipzξz

pz
hhðpÞjψ̄qðξzÞ

γz
2
ψqð0ÞjhðpÞi:

ð8Þ

For the renormalization of the quasiquark PDFs, we
need to renormalize the individual quark field,
ψ̄qðξzÞ and ψqð0Þ in Eq. (8), as well as the bilocal
composite operator as a whole if it generates UV
divergence. The renormalization of the fields can be
naturally taken care of by using the renormalized
QCD Lagrangian in Az ¼ 0 gauge. It is the renorm-
alization of the bilocal composite operators that is
not covered by the renormalization of QCD. This is
effectively the same procedure for proving the
renormalizability of PDFs; for example, for quark
PDFs in Aþ ¼ 0 gauge, one has to verify the
multiplicative renormalization of the bilocal
composite operators defining the quark PDFs to
prove their renormalizability. It is the renormaliza-
tion of the bilocal composite operators that mixes
quark PDFs with gluon PDF [40]. That is, the
renormalizability of the QCD Lagrangian itself is
not enough to guarantee the renormalizability of
quasi-PDFs, which are defined by composite
operators.

In our explicit calculation and discussion in the rest of
this paper, we choose the Feynman gauge since the
renormalization of the QCD Lagrangian in the Feynman
gauge is well known. Since the renormalization of indi-
vidual quark and gluon fields is well defined, we will focus
on the renormalization of the composite operators defining
the quasi-PDFs. We will mainly discuss coordinate-space
quasi-PDFs, and thus whenever we mention quasi-PDFs,
we mean the coordinate-space quasi-PDFs. We will first
concentrate on quasiquark PDFs and then generalize our
study to quasigluon PDFs at the end.

1Note that these are the only two cases that we need to study.
Other cases of loop momentum integration cannot generate new
UV divergences.
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III. QUASIQUARK PDFS AT ONE-LOOP ORDER

In this section, we study the quasiquark PDFs at one loop
and their renormalization. Feynman diagrams for quasi-
quark PDFs of an asymptotic quark of momentum p at one-
loop order in the Feynman gauge are shown in Fig. 1.
Diagram (a) in Fig. 1 gives

M1a ¼
eipzξz

pz

1

Nc
Trc½TbTb�

Z
ξz−2a

a
dr1

Z
ξz−a

r1þa
dr2

×
Z

d4l
ð2πÞ4 e

−ipzξzeilzðr2−r1Þ
�
−igμν
l2

�

× ð−igsnμzÞð−igsnνzÞTr
�
1

2
p
1

2
γz

�

¼ αsCF

4iπ3

Z
ξz−2a

a
dr1

Z
ξz−a

r1þa
dr2

Z
d4l

eilzðr2−r1Þ

l2
; ð9Þ

where we introduced a cutoff a between fields along the
gauge link to regularize potential linear UV divergence.2

The upper limit of r1-integration in Eq. (9) is ξz − 2a
because it needs a separation a from the upper limit of r2-
integration. We will show that this cutoff is enough to
regularize all UV divergence in this diagram, and thus we
do not introduce DR here. For the following calculation, we
introduce a vector, l̄μ, which is the same as lμ except that it
does not have the z-direction component: lμ ¼ l̄μ þ lzn

μ
z

and l2 ¼ l̄2 − l2z . We will refer the integration of l̄μ as three-
dimensional (3D) integration and the integration of lμ as
four-dimensional (4D) integration. With d4l ¼ d3l̄dlz, let
us consider the following phase space integration:

Z
d3 l̄
l2

¼
Z

d3l̄
l̄2 − l2z

¼
Z

d3 l̄
�
1

l̄2
þ l2z
ðl̄2 − l2zÞl̄2

�
: ð10Þ

The first term in Eq. (10) is linear divergent, but its
coefficient is proportional to

R
dlzeilzðr2−r1Þ¼2πδðr2−r1Þ,

which vanishes because r2 and r1 cannot be at the same
point. Thus, effectively, the 3D integration above is finite.
On the other hand, it is easy to see that, if keeping l̄μ finite,
the integration of lz is also finite even if a → 0. Therefore,
Eq. (9) can be UV divergent only in the region where all
components of lμ go to infinity. As a result, the spacing a
can regularize all UV divergences, which gives

M1a¼div −
αsCF

π

jξzj
a

þ αsCF

π
ln
jξzj
a

; ð11Þ

where we have included the situation when ξz < 0.
FromFig. 1, we have the contribution from diagram (b) as

M1b ¼ g2sCF

Z
ξz−a

a
dr

Z
d4l
ð2πÞ4

eilzr

l2ðp − lÞ2

×
1

pz
Tr

�
1

2
p
1

2
γzðp − lÞγz

�
; ð12Þ

where we again use the spacing a as a regulator. For the 3D
integration, it has potential logarithmic divergence from the
term proportional to l,

Z
lμd3 l̄

l2ðp − lÞ2 : ð13Þ

However, the above integration is finite because, to extract
the potential logarithmic divergence, we can set the external
physical scale p → 0 in the above integration and thus it
becomes an odd function in l̄μ, which vanishes under
integration. This explains why the spacing a can regularize
the UV divergence of Eq. (12). The UV divergence of
diagram (b) is

M1b¼div −
αsCF

2π
ln
jξzj
a

; ð14Þ

where we again included the situation when ξz < 0.
Similarly, we have from diagram (c) in Fig. 1

M1c ¼
ig2sμ2ϵr
2pz

ð1 − ϵÞCF

Z
ddl
ð2πÞd

Tr½pγzpðp − lÞ�
p2l2ðp − lÞ2

¼ ig2sμ2ϵr CFð1 − ϵÞ
Z

ddl
ð2πÞd

1

l2ðp − lÞ2 ; ð15Þ

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams for quasiquark PDFs of an asymp-
totic quark of momentum p at one-loop order.

2Although the explicit result of UV divergence depends on UV
regulators, our conclusions, like power counting rules and
renormalization structure, are independent of them.
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where the space-time dimension is defined as d ¼ 4 − 2ϵ. It
is clear that the integral in Eq. (15) vanishes in DR when
p2 ¼ 0, due to the apparent cancelation between the UV
and IR poles in 1=ϵ. The UV divergence from this diagram
is logarithmic only if all components of lμ go to infinity and
is given in DR by

M1c¼div −
αsCF

4π

1

ϵ
: ð16Þ

It is well known that, at this order and higher orders, UV
divergence of massless quark self-energy diagrams can be
removed by the renormalization of quark field.
Diagram (d) in Fig. 1 gives

M1d ¼ −ig2sCFeipzξz

Z
d4k
ð2πÞ4 e

−ikzξz
1

k4ðp − kÞ2

×
1

4pz
Tr½pγμkγzkγμ�; ð17Þ

where k ¼ p − l. Because of the oscillation factor e−ikzξz,
contribution from the region where kz goes to infinity is
highly suppressed. Thus, it is UV finite at finite ξz,
although it is divergent as ξz → 0,

M1d¼div −
αsCF

2π
lnðjξzpzjÞ: ð18Þ

In summary, the total one-loop contribution to the UV
divergence of quasiquark PDFs of a quark of momentum p
at an arbitrary ξz is

Mð1Þ¼divM1a þ 2 ×M1b þ 2 ×
1

2
M1c þM1d

¼ αsCF

π

�
−
jξzj
a

−
1

4ϵ
−
1

2
lnðjξzpzjÞ

�
; ð19Þ

where the lnðjξzpzjÞ term is not UV divergent but divergent
as ξz → 0

3 We find that, at this order, UV divergences only
come from the region where all loop momenta go to
infinity, and thus UV divergences are localized in coor-
dinate space. We will show in the next section that this

behavior remains true up to all orders in QCD perturbation
theory.
Feynman diagrams for quasiquark PDFs of an asymp-

totic gluon of momentum p at one-loop order in the
Feynman gauge are shown in Fig. 2, plus the complex
conjugate diagram of (b). A general argument in the next
section will show that UV divergences of all diagrams of
quasi-PDFs can only come from the 4D integration, and
thus localized in coordinate space. If we keep ξz finite, all
one-loop diagrams in Fig. 2 cannot be local, just like the
diagram (d) in Fig. 1, and therefore all these one-loop
diagrams in Fig. 2 must be UV finite. But they can be
divergent as ξz → 0. To demonstrate this feature, let us take
diagram (a) in Fig. 2 as an example. Figure 2(a) gives

M2a ∝
Z

ξz

0

dr1

Z
ξz

r1

dr2

Z
d4le−ilzξz

lz
l2

¼ ξ2z
2

Z
dlze−ilzξz lz

Z
d3 l̄

�
1

l̄2
þ l2z
ðl̄2 − l2zÞl̄2

�
; ð20Þ

which seems to be linearly UV divergent for the 3D
integration. However, similar to the case of diagram (a)
in Fig. 1, the linear divergent term is proportional to δ0ðξzÞ,
which vanishes for finite ξz. The second term is finite under
the integration of l̄, which gives

ξ2z
2

Z
dlze−ilzξz lz

Z
d3l̄

l2z
ðl̄2 − l2zÞl̄2

∝
ξ2z
2

Z
dlze−ilzξz

l3z
jlzj

¼ 2i
ξz
; ð21Þ

where the proportional relation can be simply obtained by
dimensional counting. We therefore find that Fig. 2(a) is
UV finite but behaves as 1=ξz when ξz → 0. Similarly, we
found that Figs. 2(b) and 2(c) are also UV finite, which
indicates that at one loop, the quasiquark PDFs get no
mixing from a gluon under the UV renormalization.
Before continue, we want to note that the UV behavior

found above is significantly different from that of
PDFs. UV divergences of PDFs come from the region of
loop momentum ðlþ; l−; l⃗⊥Þ ∼ ð1; λ2; λÞ when λ → ∞.

(a) (b) (c)

FIG. 2. Feynman diagram for quasiquark PDFs of an asymp-
totic gluon of momentum p at one-loop order.

3If we take ξz → 0, what we calculated is a one-loop correction
to a local vector current. The finite ξz in Eq. (19) effectively
regularizes the UV divergence of the one-loop vertex diagram,
Fig. 1(d), while UV divergence of the self-energy diagram
in Fig. 1(c) is regularized by the dimensional regularization.
From Fig. 1(d), we obtained the lnðjξzpzjÞ term after we took
ϵ → 0 with ξz fixed. If we need to take ξz → 0 to mimic the local
current, we should keep ϵ finite to regularize the one-loop UV
divergence, which changes lnðjξzpzjÞ to − 1

2ϵ. As a result, we find
from Eq. (19) that UV divergences of the vector current vanish at
one-loop level if we take ξz → 0 with fixed ϵ and a, which is
consistent with the expectation of current conservation.
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Thus, with the momentum component lþ ∼Oð1Þ, the
UV divergence for the normal PDFs is nonlocal in the −
direction in coordinate space. It is this fact that the
renormalization of PDFs is a convolution, mixed with all
twist-2 PDFs with operators along the − direction, while
the renormalizaiton of quasi-PDFs is a multiplicative factor
as we will show.
We further note that, even if UV divergences [1=a, lnðaÞ,

or 1=ϵ] are renormalized, the lnðjξzjÞ dependence [see
Eq. (18) as an example] and 1=ξz dependence [see Eq. (21)
as an example] of one-loop diagrams signal the divergence
of quasi-PDFs as ξz → 0, which causes the difficulty in
getting a well-defined momentum-space quasi-PDFs if one
simply Fourier transforms the coordinate-space quasi-
PDFs, as mentioned in the last section. This behavior will
certainly remain true to higher orders in QCD perturbation
theory.

IV. POWER COUNTING

A. Superficial UV divergences

In order to identify all UV divergences from any
Feynman diagram contributing to the quasi-PDFs, we start
with a set of general diagrams constructed from the lower-
order Feynman diagrams by adding one more gluon to
them. We will then examine how this additional gluon
could change the UV divergence of the original diagrams.
Specifically, we introduce and study the change of diver-
gence index Δω3 and Δω4 corresponding to the 3D
integration and 4D integration of the corresponding loop,
respectively. A sufficient condition for quasi-PDFs to be
renormalizable is that Δω3 ≤ 0 and Δω4 ≤ 0 are satisfied
for all cases, but it is not necessary as we will argue. We
divide our discussions into five distinctive cases:
(1) Case I: Only one end of the gluon is attached to parton

lines of a loop, like Fig. 3(a). In this case, we have one
more propagator and one more QCD vertex in the
loop, which results in Δω3 ¼ −1 and Δω4 ¼ −1.
Thus, a linear divergence can be changed to a
logarithmic divergence, and a logarithmic divergent
diagram is changed to be finite.

(2) Case II: Only one end of the gluon is attached to
the gauge link of a loop, like Fig. 3(b). In this case,
we have one more z-direction integration in coor-
dinate space, which does not change the degree of
divergence of 3D integration but reduces the degree
of divergence of 4D integration by 1, such that
Δω3 ¼ 0 and Δω4 ¼ −1.

(3) Case III: Both ends of the gluon are attached to
parton lines of a loop, like Fig. 3(c). In this case, we
have three more propagators, two more QCD ver-
texes, and four more momentum integrations for the
loop, which results in Δω3 ¼ −1 and Δω4 ¼ 0.

(4) Case IV: One end of the gluon is attached to parton
lines of a loop, and the other end of the gluon is

attached to the gauge link of the loop, like Fig. 3(d).
In this case, we have two more propagators, one
more QCD vertex, one more z-direction integration
in coordinate space, and four more momentum
integrations for the loop, which results in Δω3¼ 0
and Δω4 ¼ 0.

(5) Case V: Both ends of the gluon are attached to the
gauge link of a loop, like Figs. 3(e) and 3(f). In this
case, we have one more propagator, two more
z-direction integrations in coordinate space, and
four more momentum integrations for the loop. This
results in Δω3 ¼ 1 and Δω4 ¼ 0.

Two comments for the above power counting rules are in
order: 1) We only concentrated on overall divergences but
not on subdivergences, because subdivergences can be
taken care by forest subtraction in the step of renormaliza-
tion. 2) The change of divergence indices discussed here is
only for superficial divergence. It means that, even if the
power counting indicates that a diagram is divergent, it may
not be really divergent due to other considerations. But, on
the other hand, if the power counting indicates that a
diagram is finite, it must be UV finite.
Case V is dangerous for renormalization, because

Δω3 > 0 means that the number of potentially UV diver-
gent topologies is not finite, and thus a finite number of
renormalization constants may not be enough to remove all
UV divergences. However, as we pointed out, the above
power counting rules are only for superficial divergence.
We will show in the next subsection that all Feynman
diagrams of quasi-PDFs do not have overall UV divergence
if only the 3D integration is considered for any of its loop
momenta. As a result, only Δω4 is relevant for identifying
real UV divergent topologies.

B. Finiteness of the 3D integration

To demonstrate that the 3D integration of Feynman
diagrams contributing to the quasi-PDFs cannot generate

(a) (b) (c)

(d) (e) (f)

FIG. 3. Some loop diagrams, with an additional gluon (denoted
as dotted curves) attachments, that could contribute to the quasi-
PDFs at higher loop orders.
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a real UV divergence, we consider the “gauge-link-
irreducible” (GLI) diagrams. Similar to the concept of
one-particle-irreducible (1PI) diagrams, a GLI diagram is
a diagram that is still connected even if all gauge links are
cut (or removed). For example, diagrams (a), (b), and (c)
in Fig. 1 are not the GLI diagrams, while diagram (d) is.
Similarly, the diagrams (a), (c), and (d) in Fig. 3 are the
GLI diagrams, while the diagrams (b), (e), and (f) are not.
For studying the renormalization of quasi-PDFs, since the
renormalizaiton of the QCD Lagrangian is well known,
we only need to study the UV properties of the general
GLI diagrams as shown in Fig. 4, where the dashed lines
connecting to the gauge link can be either a gluon or quark
(if it is at the end point of the gauge link).
In Fig. 4, we assume that the momentum that flows

into the blob is q; l1;…; ln are n-loop momenta, and l0 ¼
q − l1 − � � � − ln is determined by the momentum conser-
vation. Note that this assignment of momentum is always
possible for a GLI diagram. Then, the general diagram in
Fig. 4 can be expressed as

eiqzr0
Yn
j¼1

Z
rmax−a

rj−1þa
drj

Z
d4lj
ð2πÞ4 e

iljzðrj−r0ÞMðq; l1;…; lnÞ;

ð22Þ

where Mðq; l1;…; lnÞ denotes the blob combined
with propagators of the nþ 1 lines connecting to the gauge
link. Since the GLI diagrams can be constructed from one-
loop diagrams in Fig. 1 or 2 combined with insertions in
cases I, III, and IV in the last subsection, their overall
superficial UV divergence index ω ≤ 1, no matter if we
apply the 3D integration or 4D integration to each loop
momentum.
Now, let us study the case in which only the 3D

integration is performed for lj, while carrying out either
3D or 4D integration for other loop momenta. The
Mðq; l1;…; lnÞ has two kinds of dependence on lj. One
is the polynomial dependence in the numerator, for which
we can simply decompose lj to l̄j and ljz. The other is in the
propagator like 1=ðlj þ kÞ2 where k can be vanishing or
depending on other loop momenta. We can decompose the
propagator as

1

ðlj þ kÞ2 ¼
1

Δ − 2kzljz − l2jz

¼ 1

Δ
þ 2kzljz

Δ2
þ ðΔþ 4k2z þ 2kzljzÞl2jz

ðΔ − 2kzljz − l2jzÞΔ2
; ð23Þ

where Δ ¼ ðl̄j þ k̄Þ2 − k2z independent of ljz. Based on
dimensional counting, each additional ljz in the numerator
will suppress the divergence index ω of the 3D integration
by one unit. Thus, the last term in Eq. (23) can be safely
ignored as we are considering UV divergence from the 3D
integration of lj. Since the other terms factorize out the ljz
dependence from Mðq; l1;…; lnÞ, potential UV divergen-
ces of these terms are proportional to

Z
dljzeiljzðrj−r0Þlmz ∝ δðmÞðrj − r0Þ; ð24Þ

with m being a non-negative integer. As rj cannot equal r0
as defined in Eq. (22), δðmÞðrj − r0Þ in Eq. (24) vanishes
before we take the a → 0 limit. Therefore, UV divergences
of Fig. 4, obtained by integrating out l̄j and other loop
momenta but fixing ljz, eventually vanish after the inte-
gration of ljz.
In summary, the overall UV divergences of GLI dia-

grams only come from the region where all loop momenta
are large. Furthermore, the third term in Eq. (23) is
responsible for real UV divergences from the 4D integra-
tion of the GLI diagrams.
Now, let us study a diagram made of two GLI subdia-

grams as shown in Fig. 5. This non-GLI diagram can be
generated either from the diagram in Fig. 6 or by the
insertion of cases II and V in the last subsection. Based on

FIG. 4. A general GLI diagram, where l0 ¼ q − l1 − � � � − ln. FIG. 5. A diagram made of two GLI subdiagrams.

FIG. 6. A two-loop diagram that might give a UV divergent
contribution to the quasiquark PDF based on the power counting
rules and building blocks in Figs. 1 and 2.

RENORMALIZABILITY OF QUASIPARTON DISTRIBUTION … PHYSICAL REVIEW D 96, 094019 (2017)

094019-7



the power counting rules, this diagram has overall super-
ficial UV divergence index ω ≤ 2. When extracting overall
UV divergences, we can follow the above discussion for
each GLI subdiagram and find that the overall UV
divergence of the combined diagram vanishes if we fix
the z-component of any loop momentum. This conclusion
can be easily generalized to any diagram made of more GLI
subdiagrams.
We thus conclude that overall UV divergences of any

diagram that contributes to quasi-PDFs can only come from
the region where all loop momenta are large. An immediate
consequence of this finding is that to identify UV divergent
topologies, we only need to consider the value of Δω4

when we are evaluating the five case insertions discussed in
the last subsection. Since we found that Δω4 ≤ 0 for all
cases, there should be only a finite number of topologies
of UV divergent Feynman diagrams that could contribute
to the quasi-PDFs, which we will present in the next
subsection.
Let us conclude this subsection by explaining the key

difference in UV behavior between quasi-PDFs and PDFs,
which have UV divergence from the 3D integration. As
pointed out at the end of Sec. III, UV divergences of PDFs
are obtained from a different 3D integration of loop
momentum, say l− and l⃗⊥. We can certainly do a similar
decomposition of propagators as that in Eq. (23),

1

ðlþ kÞ2 ¼
1

Δ̂þ 2lþðl− þ k−Þ

¼ 1

Δ̂
−
2ðl− þ k−Þlþ

Δ̂2
þ 4ðl− þ k−Þ2l2þ
ðΔ̂þ 2lþðl− þ k−ÞÞΔ̂2

;

ð25Þ

where Δ̂ ¼ 2kþðl− þ k−Þ − ðl⃗⊥ þ k⃗⊥Þ2, which is indepen-
dent of lþ. We can also argue that, because lþ is factorized
out, the first two terms do not contribute after the integration
of lþ. However, the last term in Eq. (25) can still generate the
UV divergence from the 3D integration. This is because the
UV divergence for PDFs comes from the region where any
loop momentum l behaves as ðlþ; l−; l⃗⊥Þ ∼ ð1; λ2; λÞ as
λ → ∞, and thus l−lþ ∼ l2⊥ ∼ λ2. The boost invariance
ensures that each lþ in the numerator will be either
accompanied by a−momentumcomponent in the numerator
or aþmomentum component in the denominator, and
neither of these cases suppresses the UV divergence index
of the loop momentum integration.

C. Divergent diagrams for quasiquark PDFs

Based on the above strategy and power counting rules,
we can find out all UV divergent Feynman diagrams begin
with a complete set of building blocks. To identify all UV
divergent Feynman diagrams for quasiquark PDFs, we
need one more diagram in Fig. 6 to form the set of building

blocks in addition to the one-loop diagrams in Figs. 1 and 2,
because the superficial UV divergence of this two-loop
diagram does not agree with that obtained from Fig. 1(b) by
inserting one more gluon like in case IV. Because we only
need to consider 4D integrations, nonvanishing ξz in Fig. 6
ensures that this diagram is UV finite.
Using the above building blocks, we can generate all

possible higher-order Feynman diagrams. Among them,
there are only three types of topologies that could give a
UV divergent contribution to the quasiquark PDFs as
shown in Fig. 7, in addition to those from the renorma-
lizaiton of the QCD Lagrangian. From the above discus-
sion, we know that all of these three topologies can be UV
divergent only in the region where all loop momenta go to
infinity, and thus UV divergent contributions are localized
in coordinate space. An immediate consequence is that to
make the diagrams in Fig. 7 divergent, r2 − r1 must go to 0.
This finding also explains the result of the two-loop
calculation in Ref. [41], where one finds that UV diver-
gence of quasiquark PDFs under DR is proportional to
δð1 − zÞ in momentum space.
In addition to these three UV divergent topologies in

Fig. 7, we also show some topologies that are UV finite in
Fig. 8. Especially, the last diagram in Fig. 8 indicates that
quasiquarkPDFs donotmixwith quasigluonPDFs under the
renormalization to all orders in QCD perturbation theory.

V. RENORMALIZATION

In this section, we present our general arguments for the
renormalization of the three topologies of diagrams that
could give a UV divergent contribution to the quasiquark
PDFs, as identified in the last section.

(a)

(b)

(c)

FIG. 7. Three topologies of diagrams that could give UV
divergent contributions to the quasiquark PDFs.

FIG. 8. Sample topologies of diagrams that give UV finite
contributions to the quasiquark PDFs.
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Let us first consider the power UV divergence from the
general diagram in Fig. 7(a), which could be expressed in
terms of the sum of diagrams made of 1PI diagrams, as
shown in Fig. 9. Since the UV divergence is local in
coordinate space, we assign the “ith” blob in Fig. 9 a
specific point ri. We express the linear UV power diver-
gence of the first blob in Fig. 9 as c

R
r
0 dr1, where

perturbative coefficient c ¼ cð1Þ þ cð2Þ þ � � � where cð1Þ ¼
− αsCF

π
1
a is the first-order expansion in αs, as derived

in Eq. (11).
With the geometric sum of the 1PI diagrams, as shown in

Fig. 9, we can derive all linear UV power divergent
contributions to the general diagram in Fig. 7(a) by
summing over contributions of 1PI diagrams located
between 0 and rðr > 0Þ to all orders as

1þ c
Z

r

0

dr1 þ c2
Z

r

0

dr1

Z
r

r1

dr2 þ � � �

¼ Pec
R

r

0
dr0 ¼ ecr; ð26Þ

with P indicating the path ordering. Therefore, one could
introduce an overall factor e−cjξzj to remove all linear power
UV divergences of the quasiquark PDFs. This overall factor
could be thought of as the mass renormalization of a test
particle moving along the gauge link. Renormalizing power
divergence in this way was first proposed in Ref. [42].
Besides power UV divergence, there are also logarithmic

UV divergences from Fig. 7(a). It is well known [43] that
these divergences can be removed by a “wave function”
renormalization of the test particle, Z−1

wq.
The general diagrams in Fig. 7(b) have only the loga-

rithmic UV divergences, effectively from the loop correc-
tions to the gluon coupling to the gauge link. It was proven in
Ref. [43] that these logarithmic UV divergences can be
absorbed by the coupling constant renormalization of QCD.
Therefore, we do not need to worry about them if we use the
renormalized QCD Lagrangian.
Finally, let us examine UV divergence from the general

diagrams shown in Fig. 7(c). Unlike the general diagrams
in Figs. 7(a) and 7(b), the loop momentum of diagrams in
Fig. 7(c) goes through an active quark (or gluon for the case
of quasigluon PDF). Since the UV divergence from the
diagrams in Fig. 7(c) effectively comes from high-order
loop corrections to the quark-gauge-link vertex, which is
not a fundamental coupling in the QCD Lagrangian, using
the renormalized QCD Lagrangian to do the calculation
does not help remove this kind of UV divergences. That is,
the renormalziation of the operators defining quasi-PDFs is

required to remove this kind of UV divergences, if we want
to have renormalizable quasi-PDFs.
The key question is then if the operators defining quasi-

PDFs will mix with other operators under renormalization.
If it does, there could be a danger that the operators
defining quasi-PDFs may not form a closed set under
the renormalization.
The quark-gauge-link vertex at the lowest order is a

simple gamma matrix γz for the quasiquark PDFs (this is
the same for the Az ¼ 0 case). As we demonstrated in the
last section, UV divergence comes only from the region
where all loop momenta are very large, and thus we can set
p ¼ 0 if we are only interested in leading UV divergence,
which is logarithmic as demonstrated in Sec. IV. In
addition, the logarithmic UV divergence, lnðaÞ as a → 0,
is local in coordinate space and does not have direct
dependence on ξz. That is, we find that the UV divergent
term of Fig. 7(c) only depends on the vector nμz , and,
consequently, it is proportional to γz with a constant
coefficient, which is proportional to the quark-gauge-link
vertex at the lowest order. Therefore, a constant counter-
term is sufficient to remove this kind of UV divergences.
Using the bookkeeping forests subtraction method, it is
straightforward to remove the high-order divergences and
to show that the net effect is to introduce a constant
multiplicative renormalizaton factor Z−1

vq for the quark-
gauge-link vertex.
In summary, by using the renormalized QCD Lagrangian

in Feynman gauge, we find that all remaining perturbative
UV divergences of the quasiquark PDFs can be removed by
introducing a multiplicative renormalization factor, with the
multiplicative renormalization factor calculated order by
order in QCD perturbation theory. We expect that similar
arguments should also apply for quasigluon PDFs. We thus
can define the renormalized coordinate-space quasi-PDFs as

~FR
i=pðξz; ~μ2; pzÞ ¼ e−CijξzjZ−1

wi Z
−1
vi

~Fb
i=pðξz; ~μ2; pzÞ; ð27Þ

whereCi,Zwi, andZvi are renormalization constants depend-
ing on parton flavor i but independent of ξz and are per-
turbatively calculable order by order in powers of αs. We
conclude that the coordinate-space quasi-PDFs are renorma-
lizable and they do not mix with each other or with any other
operators under the renormalization group equation.

VI. SUMMARY

We demonstrated that the behavior of UV divergences of
quasi-PDFs is very different from that of PDFs. While the
renormalization of quasi-PDFs is a simple multiplicative
factor, the renormalization of PDFs is of a convolution
form, due to the fact that the UV divergences of PDFs are
not completely local, and, consequently, PDFs of different
flavors mix with each other under the renormalization.
We show that the locality in space-time of the perturba-

tive UV divergences of the coordinate-space quasi-PDFs

FIG. 9. Contributions to the general diagrams in Fig. 7(a) with
all loop diagrams reorganized in terms of 1PI diagrams.
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makes it possible to have the coordinate-space quasi-PDFs
multiplicatively renormalizable, as shown in Eq. (27), to all
orders in QCD perturbation theory. With the all-order
arguments for factorizing all leading power CO divergences
of quasi-PDFs into PDFs, given in Ref. [9], we conclude
that the renormalized quasi-PDFs could be good candidates
for extracting PDFs from LQCD calculations.
For the LQCD calculation of quasi-PDFs, however, the

introduction of the overall factor, e−Cijξzj, with perturba-
tively calculated Ci, is not sufficient to remove all power
divergences, since we cannot calculate the Cj to all orders.
That is, we need to renormalize the power UV divergence
of quasi-PDFs, nonperturbatively. As shown in Ref. [35],
for example, we could introduce an overall nonperturbative
factor to remove this kind of power divergences to all
orders, the details of which we will not get into here. In
principle, the choice to renormalize the power divergences
of quasi-PDFs nonperturbatively is not unique. But, so long
as the renormalization is multiplicative, the renormalization
procedure does not alter the CO properties of quasi-PDFs
(so that the quasi-PDFs could be factorized into PDFs), the
difference in renormalization procedures/choices corre-
sponds to different renormalization schemes, which should
lead to different matching coefficients between quasi-PDFs
and PDFs.
In addition, we show that the coordinate-space quasi-

PDFs are well behaved for all values of ξz, except when
ξz ¼ 0. That is, if we want to Fourier transform the
coordinate-space quasi-PDFs to derive momentum-space

quasi-PDFs, we will have to define a consistent subtraction
scheme to remove all divergent terms as ξz → 0, before
the Fourier transformation. Without this subtraction, the
momentum-space quasi-PDFs are ill defined at the large ~x
region.
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Note added.—Two independent studies of the renormali-
zation of quasi-PDFs appeared recently [44,45], in which
the same conclusion was reached, although approaches
were very different from ours.
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