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We investigate the mass range of the quark-antiquark fluctuations of the photon that are active in
producing the total photoabsorption cross section in the color dipole picture, emphasizing the notions of
color transparency and saturation. We consider the implications of measurements at future extensions of the
available electron-proton-scattering energy.
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I. INTRODUCTION

Deep inelastic scattering (DIS) of electrons on protons at
low values of the Bjorken variable x≡ xbj ≅ Q2=W2 ≲ 0.1
(where Q2 refers to the photon virtuality and W to the
photon-proton center-of-mass energy) is a two-step proc-
ess: transition, or fluctuation in modern jargon, of the
photon into on-shell quark-antiquark ðqq̄Þ states, γ� → qq̄,
of mass Mqq̄, and subsequent scattering of these states on
the proton. In terms of the photon-proton (virtual) forward
Compton scattering amplitude, the qq̄ states interact with
the proton via (color) gauge-invariant two-gluon exchange:
the color dipole picture (CDP).1 A model-independent
analysis2 [1] shows that the photoabsorption cross section,
σγ�pðW2; Q2Þ, depends on the low-x scaling variable
ηðW2; Q2Þ ¼ ðQ2 þm2

0Þ=Λ2
satðW2Þ [3] via σγ�pðW2; Q2Þ ¼

σγ�pðηðW2; Q2ÞÞ ∼ 1=ηðW2; Q2Þ for ηðW2; Q2Þ≳ 1 (“color
transparency”), while σγ�pðW2; Q2Þ ¼ σγ�pðηðW2; Q2ÞÞ ∼
lnð1=ηðW2; Q2ÞÞ (“saturation”) for ηðW2; Q2Þ≲ 1

3 The
“saturation scale” Λ2

satðW2Þ increases with a small power
ofW2, andm0 is a constant mass, in the case of light quarks
somewhat below the ρ0-meson mass. Any specific param-
eter-dependent ansatz [1–3] for the qq̄-dipole-proton cross

section has to interpolate between the 1=ηðW2; Q2Þ and the
lnð1=ηðW2; Q2ÞÞ dependence.
The validity of the CDP rests on the condition that in the

γ� → qq̄ transition the proton-rest-frame energy imbalance
ΔE between the photon of virtuality q2 ≡ −Q2 ≤ 0 and the
qq̄ state of invariant mass squared M2

qq̄ > 0 be small for
sufficiently large W2 ≫ M2

p, Q2,

ΔE≃Q2 þM2
qq̄

W2
Mp ≪ Mp; ð1:1Þ

or

Q2 þM2
qq̄

W2
≪ 1: ð1:2Þ

Compare Appendix A. The condition (1.2)
(i) restricts the kinematical range of the CDP to

x ≅ Q2=W2 ≪ 1, and it
(ii) contains the dynamical restriction of M2

qq̄=W
2 ≪ 1

from generalized vector dominance (GVD). The
transition of the photon, γ� → qq̄, to a finite range
of masses,Mqq̄, saturates the γ�-proton cross section
for given photon virtuality Q2 and energy W with
x ≅ Q2=W2 ≲ 0.1.

It is the purpose of this paper to present a detailed
investigation of the mass range of γ� → qq̄ fluctuations
responsible for, or actively producing, the photoabsorption
cross section at different values of the kinematic variables
W2,Q2 and ηðW2; Q2Þ. We emphasize the different regions
of ηðW2; Q2Þ related to color transparency and saturation.
We comment on the impact of a future extension of the
electron-proton-scattering energy range, and on the deter-
mination of the asymptotic energy dependence of ðQ2 ¼ 0Þ
photoproduction from the measured W-dependence of the
dipole cross section.

*kurodam@law.meijigakuin.ac.jp
†schild@physik.uni-bielefeld.de
1Compare Refs. [1,2] for an extensive list of references.
2Model-independent means that the results for the photo-

absorption cross section do not depend on a parameter-dependent
explicit ansatz for the qq̄-dipole-proton interaction, except
for a decent unitarity-preserving high-energy behavior.

3The behavior in terms of 1=ηðW2; Q2Þ is valid except for a
logarithmic, lnW2, energy dependence of the dipole cross
section σðqq̄ÞpðW2Þ. See the discussion on the relation of the
dipole cross section to ðQ2 ¼ 0Þ photoproduction to be given in
Sec. IV.
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II. THE PHOTOABSORPTION CROSS SECTION

We start by a discussion of the results for the photo-
absorption cross section, σγ�pðW2; Q2Þ, in the CDP that are
shown in Fig. 1, reproduced from Ref. [2]. The results are
obtained from the explicit analytic expression for
σγ�pðW2; Q2Þ,4 [2]

σγ�pðW2; Q2Þ ¼ σγ�LpðW2; Q2Þ þ σγ�TpðW2; Q2Þ

¼ αReþe−

3π
σð∞ÞðW2Þ

×

�
Ið1ÞT

�
η

ρ
;
μ

ρ

�
GTðuÞ þ Ið1ÞL ðη; μÞGLðuÞ

�
;

ð2:1Þ

derived from an ansatz for the W-dependent dipole cross
section5 that essentially, via coupling of the quark-
antiquark state to two gluons, comprises the color-gauge-
invariant interaction of the qq̄ dipole with the gluon field
in the nucleon. In (2.1), Reþe− ¼ 3

P
qQ

2
q, where q runs

over the active quark flavors, and Qq denotes the quark
charge. The smooth transition to Q2 ¼ 0 photoproduction
in (2.1) allows one [2] to replace σð∞ÞðW2Þ, which stems
from the normalization of the dipole cross section, by the
photoproduction cross section, i.e.

σγ�pðW2; Q2Þ ¼ σγpðW2Þ
limη→μðW2ÞI

ð1Þ
T ðηρ ; μðW

2Þ
ρ Þ

×

�
Ið1ÞT

�
η

ρ
;
μ

ρ

�
GTðuÞ þ Ið1ÞL ðη; μÞGLðuÞ

�
:

ð2:2Þ

We note that Ið1ÞL ðη; μÞ vanishes in the photoproduction
Q2 ¼ 0 limit of ηðW2; Q2 ¼ 0Þ ¼ m2

0=Λ2
satðW2Þ≡ μðW2Þ,

and GTðu≡ ξ
ηÞ≃ 1, and for later reference we also note

lim
η→μðW2Þ

Ið1ÞT

�
η

ρ
;
μðW2Þ

ρ

�
¼ ln

ρ

μðW2Þ : ð2:3Þ

The general explicit analytic expressions for the functions

Ið1ÞT ðηρ ; μðW
2Þ

ρ Þ and Ið1ÞL ðη; μÞ are not needed for the ensuing

discussions, and we refer to Ref. [2], while GTðu≡ ξ
ηÞ and

GLðu≡ ξ
ηÞ are given in (2.9) and (2.10) below. The

numerical results for the photoabsorption cross section
in Fig. 1 are obtained by numerical evaluation of (2.2) upon
insertion of a ðlnðW2ÞÞ2 fit to the experimental results for
the photoproduction cross section σγpðW2Þ from the
Particle Data Group [4]. The results in Fig. 1 were obtained
forW ¼ 275 GeV. Compare Sec. IV, and Fig. 2 in Sec. IV,
for the (weak) W dependence of σγ�pðηðW2; Q2Þ;W2Þ due
to σð∞ÞðW2Þ in (2.1) and σγpðW2Þ in (2.2).
Before going into more detail, we note that the full curve

in Fig. 1, which for the parameter ξ corresponds to the
choice of ξ ¼ ξ0 ¼ 130, is consistent with and provides a
representation of the full set of experimental data on
σγ�pðW2; Q2Þ; compare Fig. 9 in Ref. [1].
In (2.1) and (2.2), the low-x scaling variable ηðW2; Q2Þ is

given by [3]

η≡ ηðW2; Q2Þ ¼ Q2 þm2
0

Λ2
satðW2Þ ; ð2:4Þ

with

μ≡ μðW2Þ ¼ ηðW2; Q2 ¼ 0Þ ¼ m2
0

Λ2
satðW2Þ ; ð2:5Þ

the saturation scale, Λ2
satðW2Þ, being parametrized by

FIG. 1. The theoretical results for the photoabsorption cross
section σγ�pðηðW2; Q2Þ; ξÞ in the CDP as a function of the low-x
scaling variable ηðW2; Q2Þ ¼ ðQ2 þm2

0Þ=Λ2
satðW2Þ for different

values of the parameter ξ that determines the (squared) mass
range M2

qq̄ ≤ m2
1ðW2Þ ¼ ξΛ2

satðW2Þ of the γ� → qq̄ fluctuations
that are taken into account. The experimental results [5] for
σγ�pðηðW2; Q2ÞÞ lie on the full line corresponding to
ξ ¼ ξ0 ¼ 130; compare Refs. [1,2].

4To indicate the dependence of σγ�pðW2; Q2Þ on ξ, we
frequently use, as in Fig. 1, the notation σγ�pðW2; Q2Þ≡
σγ�pðW2; Q2; ξÞ as well as σγ�pðηðW2; Q2Þ; ξÞ. The dependence
on ξ is contained in GT;Lðu≡ ξ=ηðW2; Q2ÞÞ; see (2.9) and (2.10)
below.

5Following the suggestion of the (anonymous) referee, in
Appendix B, we present a brief (critical) discussion on the
approach of “geometric scaling” based on an x≃Q2=W2-
dependent, and accordingly Q2-dependent, ansatz for the dipole
cross section.
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Λ2
satðW2Þ ¼ C1

�
W2

1 GeV2

�
C2

; ð2:6Þ

and numerically, we have

m2
0 ¼ 0.15 GeV2;

C1 ¼ 0.31; C2 ¼ 0.27: ð2:7Þ

The parameter ρ is related to the longitudinal-to-
transverse ratio RðW2; Q2Þ of the photoabsorption cross
section, and approximately we have RðW2; Q2Þ≃ 1=2ρ for
ηðW2; Q2Þ ≫ μðW2Þ, while RðW2; Q2Þ ¼ 0 for Q2 ¼ 0.
The total cross section is fairly insensitive to the value of ρ,
and the evaluation presented in Fig. 1 is based [2] on ρ ¼ 4

3
.

Our main concern in the rest of this section and the
following one centers around the dependence of the cross
section (2.2) on the constant parameter ξ that, by definition,
restricts the masses of the contributing qq̄ states via

M2
qq̄ ≤ m2

1ðW2Þ ¼ ξΛ2
satðW2Þ: ð2:8Þ

The dependence on ξ in (2.1) and (2.2) is contained [2] in
the functions GT;Lðu≡ ξ=ηðW2; Q2ÞÞ,

GTðuÞ ¼
2u3 þ 3u2 þ 3u

2ð1þ uÞ3 ≃
(

3
2
ξ
η ; ðη ≫ ξÞ;

1 − 3
2
η
ξ ; ðη ≪ ξÞ;

ð2:9Þ

and

GLðuÞ ¼
2u3 þ 6u2

2ð1þ uÞ3 ≃
(
3ðξηÞ2; ðη ≫ ξÞ;
1 − 3ðηξÞ2; ðη ≪ ξÞ: ð2:10Þ

We turn to a more detailed qualitative discussion of the
theoretical predictions in Fig. 1.
The parameter ξ is bounded by ξ ≤ ξMaxðW2Þ, where

ξMaxðW2Þ corresponds to the upper limit of m2
1ðW2Þ ≅ W2

in (2.8); the contributing qq̄-dipole masses cannot exceed
the total available ðqq̄Þp center-of-mass energy W.
Accordingly, we have

ξMax ¼ W2=Λ2
satðW2Þ; ð2:11Þ

as well as

ηðW2; Q2Þ
ξMaxðW2Þ ≅

Q2

W2
≅ xbj; ðfor Q2 ≫ m2

0Þ; ð2:12Þ

where xbj ≲ 0.1, and

GT;LðξMaxðW2Þ=ηðW2; Q2ÞÞ
≅ GT;LðξMaxðW2Þ=ηðW2; Q2Þ → ∞Þ: ð2:13Þ

The total photoabsorption cross section (2.2) for ξ ¼
ξMaxðW2Þ becomes

σγ�pðW2; Q2; ξ ¼ ξmaxÞ ≅ σγ�pðηðW2; Q2Þ; ξ → ∞Þ:
ð2:14Þ

Specificaly, in Fig. 1, we have W ¼ 275 GeV and ξMax ≃
104 ≫ ηðW2; Q2Þ implying the validity of (2.14).
For ξ ¼ ξMax, from (2.8) with (2.11), the upper bound on

qq̄-dipole masses becomes

M2
qq̄

W2
≤ 1: ð2:15Þ

The prediction for the photoabsorption cross section in
Fig. 1 for ξ ¼ ξMax ¼ 104 includes contributions from qq̄
masses that strongly violate the fundamental condition on
ΔE=Mp ≪ 1 in (1.2).
Turning to ξ ¼ ξ0 ¼ 130 ≪ ξMax, in distinction from

(2.15), we find

M2
qq̄

W2
≤ ξ0

Λ2
satðW2Þ
W2

≃ 0.01; ð2:16Þ

where W ¼ 275 GeV from Fig. 1 was inserted. The mass
range of contributing qq̄ states is consistent with
ΔE=Mp ≪ 1.
The experimental results on the photoabsorption cross

section agree with the theoretical prediction for ξ ¼ ξ0 ¼
130 in Fig. 1. The distinctive difference between the

10
-3

10
-2

10
-1

1

10

10 2

10
-2

10
-1

1 10 10
2

10
3

FIG. 2. The theoretical results for the photoabsorption cross
section as a function of ηðW2; Q2Þ for different values of W. The
dependence on W is due to logarithmic η-scaling violations
σð∞ÞðW2Þ ∼ lnW2; compare case (ii) in Sec. IV. For ξ the value
ξ ¼ ξ0 ¼ 130 is used, and the results for W ¼ 275 GeV are
identical to the results shown by the full line in Fig. 1. By
definition, μðW2Þ≡m2

0=Λ2
satðW2Þ.
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theoretical cross section for ξ ¼ ξMax and the experimen-
tally verified one for ξ ¼ ξ0 ¼ 130 seen for ηðW2; Q2Þ ≳
10 in Fig. 1 explicitly demonstrates that the ðqq̄Þp
interaction is due to qq̄-dipole states that are limited in
mass by M2

qq̄ ≤ ξ0Λ2
satðW2Þ. The experimental data on

σγ�pðW2; Q2Þ confirm the validity of the energy imbalance
for γ� → qq̄ transition in (1.2).
We turn to the theoretical results for ξ < ξ0 also shown

in Fig. 1. From the difference of the cross sections for
ξ < ξ0 and ξ ¼ ξ0 ¼ 130 at ηðW2; Q2Þ≳ 1, we conclude
that high-mass qq̄-dipole contributions are definitely
necessary to yield the experimental results for the for-
ward-Compton-scattering amplitude.
The theoretical predictions for σγ�pðW2;Q2;ξÞ for ξ < ξ0

with decreasing ηðW2; Q2Þ, however, show a tendency to
converge towards the results obtained for ξ ¼ ξ0. This
behavior indicates that with decreasing ηðW2; Q2Þ (or
decreasing Q2 at fixed W2), nevertheless, only qq̄ states
with decreasing mass squared M2

qq̄ ≤ ξΛ2
satðW2Þ < ξ0Λ2

sat

are actually relevant, or active, for producing the total
photoabsorption cross section.
A detailed investigation of the mass range of active γ� →

qq̄ transitions is the subject of Sec. III.

III. THE MASS RANGE OF ACTIVE
γ� → qq̄ FLUCTUATIONS

We turn to quantifying the mass range of those qq̄ states
that are responsible for the major part of the experimentally
observed cross section σγ�pðW2; Q2Þ in Fig. 1. The range of
contributing qq̄ masses m2

0 ≤ M2
qq̄ ≤ m2

1ðW2Þ ≤ ξΛ2
satðW2Þ

being determined by the parameter ξ, we search for the
value of ξ that yields a (substaintial) fraction of 1 − ϵ,
where ϵ ¼ const ≪ 1, of the photoabsorption cross sec-
tion σγ�pðW2; Q2Þ.
Employing the expression for σγ�pðW2; Q2Þ in (2.2)

together with the approximate expressions for GT;Lðu≡
ξ=ηðW2; Q2ÞÞ in (2.9) and (2.10), we find that the depend-
ence of σγ�pðW2;Q2Þ on ηðW2;Q2Þ=ξ for ηðW2; Q2Þ=ξ ≪ 1

is approximately given by the factor 1 − ð3=2ÞηðW2; Q2Þ=ξ
in (2.9), i.e. upon employing (2.14),

σγ�pðW2; Q2; ξÞ ¼ σγ�pðηðW2; Q2Þ; ξMaxÞ

×

�
1 −

3

2

ηðW2; Q2Þ
ξ

�
: ð3:1Þ

The experimentally observed cross section, for ηðW2; Q2Þ=
ξ0 ≪ 1 is represented by evaluating (3.1) for ξ ¼ ξ0 ¼ 130,

σγ�pðW2; Q2; ξ0Þ ¼ σγ�pðηðW2; Q2Þ; ξMaxÞ

×

�
1 −

3

2

ηðW2; Q2Þ
ξ0

�
: ð3:2Þ

A fraction of 1 − ϵ of the experimentally observed cross
section (3.2) accordingly is associated with a value of ξ
such that σγ�pðW2; Q2; ξÞ deviates from σγ�pðW2; Q2; ξ0Þ
by the factor (1 − ϵ),

σγ�pðW2; Q2; ξÞ ¼ σγ�pðW2; Q2; ξ0Þð1 − ϵÞ: ð3:3Þ

Substitution of (3.1) and (3.2) into (3.3) yields

1 −
3

2

ηðW2; Q2Þ
ξ

¼
�
1 −

3

2

ηðW2; Q2Þ
ξ0

�
ð1 − ϵÞ ð3:4Þ

or

ξ ¼ 3

2ϵ
ηðW2; Q2Þ 1

1þ 3ηðW2;Q2Þ
2ϵξ0

ð1 − ϵÞ
: ð3:5Þ

This is the value of ξ that, according to (3.3), for given
ηðW2; Q2Þ ≪ ξ0 yields a fraction of 1 − ϵ of the photo-
absorption cross section σγ�pðW2; Q2; ξ0Þ. For ϵ → 0, con-
sistently, we have ξ → ξ0 in (3.5), orm2

1ðW2Þ¼ξ0Λ2
satðW2Þ,

corresponding to the experimentally observed cross
section.
For ηðW2; Q2Þ=ξ0 ≪ ϵ, we may approximate (3.5) by

ξ ¼ 3

2ϵ
ηðW2; Q2Þ; ð3:6Þ

and this approximation is adopted subsequently. For e.g.
ϵ ¼ 0.1, from (3.6), we have ξ ¼ 15ηðW2; Q2Þ. For any
given ηðW2; Q2Þ ≪ ξ0, from (3.5) or (3.6), we obtain a
value of ξ that for e.g. ϵ ¼ 0.1 provides 90% of the
experimentally verified photoabsorption cross section.
In terms of m2

1ðW2Þ ¼ ξΛ2
satðW2Þ, from (3.6), we have

m2
0 ≤ M2

qq̄ ≤ m2
1 ¼

3

2ϵ
ηðW2; Q2ÞΛ2

satðW2Þ

¼ 3

2ϵ
ðQ2 þm2

0Þ: ð3:7Þ

For any W2 and Q2 with ηðW2; Q2Þ ≪ ξ0, the constraint
(3.7) determines the mass range of qq̄-dipole states that are
essential for the cross section in the sense of providing a
fraction of magnitude 1 − ϵ of the photoabsorption cross
section σγ�pðW2; Q2Þ. In other words, the dominant con-
tribution to the photoabsorption cross section for fixed
ηðW2; Q2Þ ≪ ξ0 is due to qq̄ states that have masses below
the limit given in (3.7). The masses of these active qq̄ states
are restricted by the value of the photon virtuality Q2

according to (3.7). A fixed value of Q2 is uniquely
associated with a fixed qq̄-dipole-mass range.
In Table I, for the choice of ϵ ¼ 0.1, we show the results

of a numerical evaluation of the upper limit m2
1 from (3.7)

for various values of ηðW2; Q2Þ ≪ ξ0 and for energies in
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the range of W ≲ 300 GeV explored at HERA [5], and at
the energy W ¼ 104 GeV recently discussed in view of
future collider projects [6]. For the saturation scale
Λ2
satðW2Þ, and for m2

0, we use the parameters adjusted to
the experimental data from HERA for xbj ≅ Q2=W2 ≲ 0.1;
compare (2.7).
According to Table I, for various fixed values of

ηðW2; Q2Þ, with increasingW, we find the expected increase
of the upper limit of the masses of relevant qq̄ states,
M2

qq̄≲m2
1. For e.g. ηðW2;Q2Þ¼1, we have M2

qq̄ ≤ m2
1 ¼

29 GeV2 at W¼30GeV, and M2
qq̄≤m2

1¼101GeV2 at
W¼300GeV, and finally M2

qq̄≤m2
1¼672GeV2 at W ¼

104 GeV. With decreasing ηðW2; Q2Þ at fixed W, the

decrease inQ2 is accompanied by a decrease inm2
1, leading

to (the W-dependent value of) M2
qq̄ ≤ m2

1 ¼ 2.25 GeV2 at
ηðW2; Q2Þ ¼ ηðW2; Q2 ¼ 0Þ≡ ηMin. It is amusing to note
that the value of m1 ¼ 1.5 GeV practically coincides with
the value of m1 ¼ 1.4 GeV from the 1972 GVD interpre-
tation [7,8] of the first data on DIS from the SLAC-MIT
collaboration [9].
In Table II, we present the values of the scaling variable

ηðW2; Q2Þ corresponding to fixed values of Q2 [and of m2
1

according to (3.7) with ϵ ¼ 0.1], for different values of W
chosen as in Table I. The table illustrates that an identical
fixed mass range, defined by m2

0 ≤ M2
qq̄ ≤ m2

1, is respon-
sible for cross sections in the color transparency region and
the saturation region; e.g. for Q2 ¼ 2 GeV2 and m1 ¼
5.68 GeV, we see the transition from η ¼ 1.1≳ 1 at
W ¼ 30 GeV to η ¼ 4.8 × 10−2 ≪ 1 that is reached at
W ¼ 104 GeV. As a consequence of the two-gluon color-
dipole interaction, a massive qq̄ state of mass m0 ≤
Mqq̄ ≤ m1, dependent on the energy W, either interacts
with a small cross section (color transparency),
σγ�pðW;Q2Þ ∼ 1=ηðW2; Q2Þ, or with a moderately large
one (saturation), σγ�pðW2; Q2Þ ∼ lnð1=ηðW2; Q2ÞÞ.

IV. THE EXTRACTION OF THE Q2 = 0
PHOTOPRODUCTION CROSS SECTION

So far in this paper, we have been concerned with the
ηðW2; Q2Þ dependence of the photoabsorption cross section
and its connection with the mass range of contributing
γ� → qq̄ transitions. As previously mentioned, and explic-
itly seen in (2.1) and (2.2), there is a deviation from a pure
ηðW2; Q2Þ dependence that originates from theW2 depend-
ence of the dipole cross section. We recall that the results in
(2.1) and (2.2) follow by specializing [1–3] the generic two-
gluon-exchange form of the dipole cross section

TABLE I. The ðη;WÞ matrix elements give the numerical values from (3.7) with ϵ ¼ 0.1 of the mass range
m0 ≤ Mqq < m1 of γ� → qq̄ transitions for fixed values of ηðW2; Q2Þ ¼ ðQ2 þm2

0Þ=Λ2
satðW2Þ and energy W. At

fixed η, with increasing energy W, increasing qq̄ masses determine the cross section. At fixed W, with decreasing
ηðW2; Q2Þ smaller masses determine the cross section.

W [Gev] 30 300 104

Λ2
satðW2Þ½GeV2� 1.95 6.75 44.8

ηMinðW2Þ 7.6 × 10−2 2.2 × 10−2 3.3 × 10−3

Q2 ¼ 1.8 GeV2 Q2 ¼ 6.9 GeV2 Q2 ¼ 44.7 GeV2

η ¼ 1 m2
1 ¼ 29 GeV2 m2

1 ¼ 101 GeV2 m2
1 ¼ 672 GeV2

m1 ¼ 5.4 GeV m1 ¼ 10 GeV m1 ¼ 25 GeV

Q2 ¼ 4.5 × 10−2 Q2 ¼ 0.53 GeV2 Q2 ¼ 4.3 GeV2

η ¼ 0.1 m2
1 ¼ 2.9 GeV2 m2

1 ¼ 10.1 GeV2 m2
1 ¼ 67 GeV2

m1 ¼ 1.7 GeV m1 ¼ 3.2 GeV m1 ¼ 8.2 GeV

Q2 ¼ 0
η ¼ ηMin m2

1 ¼ 2.25 GeV2

m1 ¼ 1.5 GeV

TABLE II. The ðQ2;WÞ matrix elements are the values of
ηðW2; Q2Þ ¼ ðQ2 þm2

0Þ=Λ2
satðW2Þ. A fixed value of Q2 is

associated with a fixed (squared) mass range, m2
0 ≤ M2

qq̄ ≤ m2
1.

With increasing energy W, for fixed Q2 and fixedM2
qq̄ < m2

1, the
transition from color transparency ðη ≫ 1Þ to saturation ðη ≪ 1Þ
takes place. For Q2 ≃ 0, hadronlike saturation behavior occurs
for all values of W shown. With decreasing Q2 at fixed W
decreasing masses, M2

qq̄ < m2
1 determine the cross section.

W [Gev] 30 300 104

Λ2
satðW2Þ½GeV2� 1.95 6.75 44.8

Q2 ¼ 10 GeV2 5.2 1.5 2.3 × 10−1

m2
1 ¼ 152 GeV2

m1 ¼ 12.3 GeV
Q2 ¼ 2 GeV2 1.1 3.2 × 10−1 4.8 × 10−2

m2
1 ¼ 32.3 GeV2

m1 ¼ 5.68 GeV
Q2 ¼ 0 7.7 × 10−2 2.2 × 10−2 3.3 × 10−3

m2
1 ¼ 2.25 GeV2

m1 ¼ 1.5 GeV
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σðqq̄Þð⃗r⊥; zð1 − zÞ;W2Þ ¼
Z

d2l⊥ ~σð⃗l2⊥; zð1 − zÞ;W2Þ

× ð1 − e−⃗l⊥ ·⃗r⊥Þ ð4:1Þ

via the ansatz

~σð⃗l2⊥; zð1 − zÞ;W2Þ ¼ σð∞ÞðW2Þ
π

× δð⃗l2⊥ − zð1 − zÞΛ2
satðW2ÞÞ: ð4:2Þ

The connection between the normalization of the dipole
cross section, σð∞ÞðW2Þ, which coincides with the limit
of the dipole cross section for Λ2

satðW2Þ⃗r2⊥ → ∞, and the
Q2 ¼ 0 photoproduction cross section, σγpðW2Þ, is implic-
itly contained in (2.1) to (2.3), i.e.

σð∞ÞðW2Þ ¼ 3π

αReþe−

1

ln Λ2
satðW2Þ
m2

0

σγpðW2Þ; ð4:3Þ

or

σγpðW2Þ ¼ αRe¼e−

3π
σð∞ÞðW2Þ lnΛ

2
satðW2Þ
m2

0

; ð4:4Þ

where we put ρ ¼ 1 for simplicity. According to (4.3) and
(4.4), the dipole cross section σð∞ÞðW2Þ and the photo-
production cross section are uniquely related to each
other. For

(i) σð∞ÞðW2Þ ¼ const., from (4.4) and (2.2) with (2.3),
we have strict validity of scaling in ηðW2; Q2Þ, i.e.
σγ�pðW2; Q2Þ ¼ σγ�pðηðW2; Q2ÞÞ, and σγpðW2Þ∼
lnW2, while for

(ii) σð∞ÞðW2Þ ∼ lnW2, we have logarithmic violation
of scaling in ηðW2; Q2Þ for σγ�pðW2; Q2Þ, while
σγpðW2Þ ∼ ðlnW2Þ2, and finally,

(iii) a hadronlike dipole cross section, σð∞ÞðW2Þ∼
ðlnW2Þ2, leads to σγpðW2Þ ∼ ðlnW2Þ3. From a
different angle, a potential dependence as ðlnW2Þ3
was recently considered by Mueller [10].

In Fig. 2, we show the results corresponding to case (ii),
based on the high-energy extrapolation in W of the fit to
photoproduction experimental data based on assuming
hadronlike behavior, σγp ∼ ðlnW2Þ2 [4]. We recall that a
dependence as ðlnW2Þ2 for hadron-hadron interactions was
first predicted by Heisenberg [11] and later recognized as
the maximally allowed growth by Froissart [12]. We note
that the hadronlike behavior of photoproduction assumed in
Fig. 2 is associated with a lnW2 behavior of the dipole
cross section σð∞ÞðW2Þ, and not with the hadronlike
ðlnW2Þ2 behavior corresponding to case (iii).
The important conclusion from the above discussion

is obvious. The measurement of σγ�pðW2; Q2Þ at fixed

ηðW2; Q2Þ as a function of W2 allows one to extract
σð∞ÞðW2Þ, and, according to (4.4), allows one to extract
the Q2 ¼ 0 photoproduction cross section. Compare
Fig. 2, which illustrates the specific case (ii) of
σγpðW2Þ ∼ ðlnW2Þ2.
In Fig. 3, we show the photoabsorption cross section

for fixed values of Q2 > 0 as a function of W reaching
W ≅ 104 GeV, the energy range discussed in connection
with future electron-proton colliders [6]. As indicated in
Fig. 3, fixed values ofQ2, according to (3.7), correspond to
definite fixed values of m2

0 ≤ M2
qq̄ ≤ m2

1. The approach to
the true asymptotic limit [2,3] of

lim
W→∞

Q2
1
;Q2

2
>0 fixed

σγ�pðW2; Q2
1Þ

σγ�pðW2; Q2
2Þ

¼ 1; ð4:5Þ

or

lim
W→∞

Q2>0 fixed

σγ�pðW2; Q2Þ
σγpðW2Þ ¼ 1; ð4:6Þ

according to Fig. 3 is extremely slow. Empirical evidence
for the behavior in (4.5) and (4.6) can nevertheless be
obtained from precise measurements at values of Q2

around Q2 ≅ 1 GeV2.

10
-3

10
-2

10
-1

10 10
2

10
3

10
4

FIG. 3. The photoabsorption cross section as a function of the
energyW for different values ofQ2. Note that a fixed value ofQ2

is associated with a fixed mass range of qq̄ dipole states,
M2

qq̄ ≤ m2
1 as determined by (3.7). Compare also Table II.

Transition from color transparency to saturation at fixed Q2 is
a consequence of the two-gluon coupling of the qq̄-dipole state.
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V. CONCLUSIONS

The present work is concerned with an interpretation
of the photoabsorption cross section in terms of the
range of the masses Mqq̄ of γ� → qq̄-dipole states that
actively contribute to this cross section. The essential
result is contained in (3.7). The mass range of active qq̄
fluctuations is uniquely determined by a proportionality
to the photon virtuality Q2. At fixed Q2 ≥ 0, it is a
fixed range of dipole masses that, as a consequence of
the two-gluon qq̄ dipole coupling, with sufficient
increase of the energy W leads to the observed transition
from color transparency, σγ�pðηðW2; Q2ÞÞ ∼ 1=ηðW2; Q2Þ
for ηðW2; Q2Þ ≫ 1, to saturation, σγ�pðηðW2; Q2ÞÞ ∼
lnð1=ηðW2; Q2ÞÞ for ηðW2; Q2Þ ≪ 1. Alternatively, at fixed
energy W, a sufficient decrease in Q2 towards Q2 ≅ 0,
associated with a decrease of the mass range of active
fluctuations, also leads from ηðW2; Q2Þ ≫ 1 (color trans-
parency) to ηðW2; Q2Þ ≪ 1 (saturation). Even though for
Q2 > 0 fixed, the active qq̄ fluctuations have a larger
mass than atQ2 ¼ 0, in the true limit ofW → ∞ the ratio of
the cross section at fixed Q2 > 0, to the Q2 ¼ 0 photo-
production cross section converges towards unity.
The low-x scaling of the photoabsorption cross section in

ηðW2; Q2Þ is weakly violated by a lnW2 dependence due
to the dipole cross section, σð∞ÞðW2Þ. The extraction of the
W-dependence of the dipole cross section from DIS
electron-proton scattering allows one to determine the
Q2 ¼ 0 photoproduction cross section and to verify or
falsify a hadronlike ðlnW2Þ2 dependence.

APPENDIX A: THE ENERGY IMBALANCE ΔE

To make this paper self-confined, we add a discussion on
the energy imbalance ΔE in (1.1).
Consider the transition of the (virtual spacelike) photon

of virtuality q2 ¼ ðq0Þ2 − ⃗q2 ¼ −Q2 ≤ 0 to a qq̄ state of
four-momentum Kμ with K2 ≡ KμKμ ¼ ðK0Þ2 − K⃗2 > 0.
With equality of the three-momenta of the photon and the
qq̄ state, K⃗ ¼ ⃗q, the energy imbalance ΔE is given by

ΔE ¼ K0 − q0 ¼ ðK0Þ2 − ðq0Þ2
K0 þ q0

¼ Q2 þ K2

K0 þ q0
: ðA1Þ

We have to consider the high-energy limit of q0 ¼
j⃗qj

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q2

⃗q2

q
≅ j⃗qj and K0 ¼ jK⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

K⃗2

q
≅ jK⃗j ¼ j⃗qj,

where

⃗q2 ≫ Q2;

⃗q2 ¼ K⃗2 ≫ K2; ðA2Þ

and obtain

ΔE≃Q2 þ K2

2j⃗qj : ðA3Þ

To treat the interaction of the photon with the proton of
four-momentum pμ and mass Mp, it is essential to
introduce the center-of-mass energy squared, W2 ¼
ðpþ qÞ2 ¼ M2

p þ 2Mpq0 −Q2, and q0 ≡ ν in the proton

rest frame, and xbj ≡ Q2

2Mpν
≪ 1, and accordingly alsoW2 ≃

2Mpν. The energy imbalance (A2) becomes

ΔE≃Q2 þ K2

W2
Mp: ðA4Þ

It coincides with (1.1), since M2
qq̄ ¼ K2, to the explicit

representation of which we turn now.
The four-momenta of the quark and the antiquark

are denoted by k ¼ ðk0; ⃗kÞ and k0 ¼ ðk00; ⃗k0Þ, where
k2 ¼ k02 ¼ m2

q, and, without much loss of generality, we
assume massless quarks,mq ¼ 0. We choose the z-axis of a
coordinate system in the direction of the three-momentum
⃗q ¼ ⃗kþ ⃗k0. For the ensuing discussion of the high-energy
limit (A2), it is useful to represent the quark and antiquark
momenta as

⃗k ¼ z⃗qþ ⃗k⊥;
⃗k0 ¼ ð1 − zÞ⃗q − ⃗k⊥; ðA5Þ

where ⃗k⊥ · ⃗q ¼ 0. The mass squared of the qq̄ state,M2
qq̄, is

given by

M2
qq̄ ¼ K2 ¼ ðk0 þ k00Þ2 − ð⃗kþ ⃗k0Þ2

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzð1 − zÞ⃗q2 − ⃗k2⊥Þ2 þ ⃗q2 ⃗k2⊥

q
− 2ðzð1 − zÞ⃗q2 − ⃗k2⊥Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkzk0z − ⃗k2⊥Þ2 þ ðkz þ k0zÞ2 ⃗k2⊥

q
− 2ðkzk0z − ⃗k2⊥Þ; ðA6Þ

where kz ≡ zj⃗qj and k0z ≡ ð1 − zÞj⃗qj were introduced in
the last equality in (A6). One may check, as we did, that
(A6) is (trivially) reproduced by applying a Lorentz trans-
formation of magnitude j⃗qj in the z direction to the qq̄ state
at rest.
The relation (1.1) on ΔE requires finiteness of K2 in the

high-energy limit of zð1 − zÞ⃗q2 ≫ ⃗k2⊥, implying a neces-
sary cancellation among the zð1 − zÞ⃗q2 terms in (A6). The
cancellation occurs if and only if jzð1 − zÞj ¼ zð1 − zÞ, or
zð1 − zÞ > 0 or 0 < z < 1. Expansion of the square root in
(A6) for zð1 − zÞ⃗q2 ≫ ⃗k2⊥ yields

COLOR DIPOLE PICTURE AT LOW-x DIS: THE MASS … PHYSICAL REVIEW D 96, 094013 (2017)

094013-7



M2
qq̄ ¼ K2 ≃ 2ðzð1 − zÞ⃗q2 − ⃗k2⊥Þ

×

�
1þ ⃗q2 ⃗k2⊥

2ðzð1 − zÞ⃗q2 − ⃗k2⊥Þ2
�

− 2ðzð1 − zÞ⃗q2 − ⃗k2⊥Þ; ðA7Þ

or

M2
qq̄ ¼ K2 ≃ ⃗k2⊥

zð1 − zÞ
�
1þ

⃗k2⊥
zð1 − zÞ⃗q2

�
≃ ⃗k2⊥

zð1 − zÞ :

ðA8Þ

We add the comment that upon solving the equation
in (A6) for ⃗k2⊥=zð1 − zÞ in terms of K2, ⃗q2 and zð1 − zÞ,
one finds

⃗k2⊥
zð1 − zÞ ¼

K2

1þ K2

⃗q2

�
1þ K2

4zð1 − zÞ⃗q2
�
: ðA9Þ

Requiring zð1 − zÞ⃗q2 ≫ K2 reproduces the result (A8).
From (A9), upon introducing sin2 ϑcm, where ϑcm

denotes the polar angle of the quark in the qq̄ center-of-
mass frame,

sin2ϑcm ¼
⃗k2⊥
⃗k2cm

¼ 4⃗k2⊥
K2

; ðA10Þ

we find

sin2ϑcm ¼ 4k2⊥
K2

¼
4zð1 − zÞ þ K2

j⃗qj2

1þ K2

⃗q2
≅ 4zð1 − zÞ: ðA11Þ

Combining (A10) and (A8) yields

M2
qq̄ ¼ K2 ¼ 4⃗k2⊥

sin2ϑcm
≅

⃗k2⊥
zð1 − zÞ : ðA12Þ

The fraction z of the momentum ⃗q of the photon
taken over by the quark, or rather the product zð1 − zÞ,
in the ⃗q → ∞ limit yields the sine of the polar
angle ϑvm.
In the CDP, we are exclusively dealing with the

⃗q2 → ∞ limit, and accordingly we replace the approximate
equalities in (A8) and (A12) by the equality

M2
qq̄ ¼ K2 ¼ 4k2⊥

sin2ϑcm
¼

⃗k2⊥
zð1 − zÞ : ðA13Þ

This expression for the qq̄ mass squared enters (1.1) and
(1.2) and all the subsequent considerations; M2

qq̄ denotes
the square of the qq̄ mass in the γ� → qq̄ transition to a qq̄
state with lifetime of order 1=ΔE.

APPENDIX B: COMMENT ON SATURATION
AND GEOMETRIC SCALING

The representation of the experimental data in Fig. 1 for
ξ ¼ ξ0 ¼ 130 in terms of the low-x scaling variable
ηðW2; Q2Þ ¼ ðQ2 þm2

0Þ=Λ2
satðW2Þ looks similar to a plot

of the experimental data known as geometric scaling [13].
The result in [13] is a consequence of a “saturation model”
[14] using an ansatz for the dipole cross section in the color
dipole approach, σ̂ðx; rÞ ¼ σ0gðr=R0ðxÞÞ, that depends on
Bjorken x ≅ Q2=W2, and, accordingly, at any given energy
W the dipole cross section depends on Q2, in strong
disagreement with the very foundation of the color dipole
approach. The CDP rests on the transition of the photon of
spacelike virtuality, q2 ¼ −Q2 < 0, to massive qq̄ states of
timelike mass squared,M2

qq̄ > 0, associated with an energy
imbalance ΔE explicitly given in (1.1). The interaction of
the color-dipole-state of mass Mqq̄ with the gluon field in
the proton depends on the ðqq̄Þp center-of-mass energy W
[3,7,15], in no way different from e.g. πp or ρ0p interaction
at asymptotic energies, and it cannot depend on the photon
virtuality Q2. It must be concluded that the approach of the
saturation model including its consequence of geometric
scaling, even though leading to a successful fit to the
experimental results, suffers from employing x≃Q2=W2

as argument of the dipole cross section, where W2 should
be used, and it lacks a sound theoretical justification.
Color transparency and saturation, in distinction from the

saturation model, where saturation appears as an input
assumption, in a consistent formulation of the CDP are
recognized as a direct consequence of the two-gluon
coupling of the qq̄-dipole states. The relevance of the
underlying energy imbalance ΔE between the spacelike
photon of virtuality q2 ≡ −Q2 < 0 and the timelike qq̄
states of mass squaredM2

qq̄ > 0, as pointed out in Sec. II in
the main text, is quantitatively supported by the exper-
imental data.
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