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We investigate the viscosities of the quark-gluon plasma in strong magnetic fields within the leading-log
and lowest Landau level (LLL) approximations. We first show that the bulk viscosity in the direction
parallel to the magnetic field is the only component that has a contribution from the quarks occupying the
LLL. We then compute the bulk viscosity from the Kubo formula and find an intriguing quark-mass
dependence as a consequence of a competition between the suppression of the bulk viscosity by conformal
symmetry and an enhancement of the mean-free path by chirality conservation, which governs the behavior
in the massless limit. The quark contribution to the viscosity along the magnetic field becomes larger than
the one in the absence of a magnetic field. We also briefly estimate the other transport coefficients by
considering the contribution of gluons. We show that the shear viscosities are suppressed compared to their
values in the absence of a magnetic field.
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I. INTRODUCTION

Heavy-ion collisions are the only way to experimentally
investigate the quark-gluon plasma (QGP), a form of matter
composed of quarks and gluons liberated from color
confinement at high temperatures (T), under controlled
laboratory conditions. At the same time, such experiments
may provide us with an opportunity to investigate QGP
matter under the influence of strong magnetic fields (B),
since noncentral heavy-ion collisions are thought to gen-
erate (via Ampere’s law) the strongest magnetic fields ever
created in terrestrial experiments [1] (see Refs. [2,3] for
recent reviews).
Hydrodynamic simulations have played an important

role in the study of phenomenological aspects of heavy-ion
collisions. Recent efforts are directed toward applying
magnetohydrodynamics (MHD), which takes into account
the dynamical coupling of the magnetic field to the fluid in
a self-consistent way [4–9]. This is an important progress in
the investigation of the QGP in strong magnetic fields.
However, these studies have not yet implemented transport
coefficients computed in the presence of a magnetic field.
In the studies [10,11], the authors have computed the

electrical conductivity in a strong magnetic field. In this
case, quarks are confined to the lowest Landau level (LLL).
It was shown that the microscopic properties of the LLL
dynamics manifest themselves as drastic modifications of

the macroscopic transport properties. The key observation
was that there is a mismatch between the spatial dimensions
in which the quarks reside as compared to gluons: LLL
quarks can only propagate in one spatial dimension
(parallel to the magnetic field), while gluons can move
in all three spatial dimensions. This mismatch of dimen-
sions opens a kinematical window for 1-to-2 scattering
[10–12], and this emergent contribution dominates over
the conventional leading-order contributions from 2-to-2
scatterings at weak coupling ðg ≪ 1Þ. On the other hand,
the chirality-conservation law for one-dimensional quarks
strictly prohibits scatterings in the massless limit (mf ¼ 0).
Therefore, the parametric dependence of the quark damp-
ing rate has been established as ∼g2m2

f=T, up to a
logarithmic factor (see Refs. [10,11] and Sec. IV), which
significantly enhances the electrical conductivity. This
dependence is one of the intriguing manifestations of the
LLL dynamics,1 and serves as motivation to investigate
other transport coefficients, in order to see whether LLL
dynamics has a similarly important influence. Whereas
LLL dynamics has been intensively investigated in studies
of anomalous transport phenomena (see, e.g., Refs. [2,3,15]
for reviews), its manifestation in the transport coefficients
of MHD has not been fully explored yet.
In this paper, we evaluate the contribution of the LLL

quarks to the transport coefficients of MHD, on the basis of
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1See also Refs. [13,14] for a consequence of LLL kinematics,
which manifests itself in the drag force.

PHYSICAL REVIEW D 96, 094009 (2017)

2470-0010=2017=96(9)=094009(13) 094009-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.96.094009
https://doi.org/10.1103/PhysRevD.96.094009


the aforementioned quark damping rate and the Kubo
formulas obtained in Ref. [16]. Since the magnetic field
breaks the isotropy of the system, in general MHD has
more independent transport coefficients than conventional
(isotropic) hydrodynamics. However, we will show that,
within the LLL approximation, LLL quarks contribute only
to the component of the bulk viscosity parallel to the
magnetic field. (The only other transport coefficient with a
contribution from LLL quarks is the longitudinal conduc-
tivity [10,11].) We find a nontrivial dependence of the bulk
viscosity on the current quark mass as a result of the
competition between the chirality-conservation law and
conformal symmetry. To evaluate the bulk viscosity, we
apply the same method that was used to evaluate the
electrical conductivity [10,11]. The analyses of the present
paper together with those in Refs. [10,11] conclude the
computation of the LLL-quark contribution to a certain set
of transport coefficients shown in Ref. [16], within the
leading-log and LLL approximations. Other related works
on the transport coefficients of MHD are, for example, the
calculation of the shear viscosities in a weak magnetic field
[17,18] and in the holographic setup [19–22], and the
calculation of the anisotropic bulk viscosities due to
electroweak interactions in dense quark matter [23].
This paper is organized as follows: In the next two

sections, we recapitulate the basic equations of MHD and
the Kubo formulas, and then identify the relevant compo-
nents of the viscosities. In Sec. IV, we evaluate the
component of the bulk viscosity parallel to the magnetic
field within the leading-log and LLL approximations.
Section V is devoted to evaluating the quark contribution
to the bulk viscosity in heavy-ion collisions. In Sec. VI, we
make order-of-magnitude estimates for the gluon contribu-
tion to the shear and bulk viscosities. We conclude with a
summary of our results in Sec. VII. In Appendix A, we
briefly discuss the Landau-level quantization, and, in
Appendixes B and C, we evaluate the thermodynamic
quantities in the LLL approximation which are necessary
for the evaluation of the bulk viscosity. We also derive an
expression for the bulk viscosity from the linearized
Boltzmann equation in (1þ 1) dimensions which is con-
sistent with our result obtained via the Kubo formula.

II. MAGNETOHYDRODYNAMICS AND
KUBO FORMULAS

In this section, we briefly summarize the results of
Ref. [16], which comprise the equations of motion of
MHD and the constitutive relations. In the presence of a
magnetic field,MHD contains two bulk viscosities, five shear
viscosities, and three electrical conductivities. We also reca-
pitulate the Kubo formulas for these transport coefficients.

A. Magnetohydrodynamics

The basic equations of MHD consist of the conservation
laws of energy, momentum, and electric charge, and the

constitutive equations for the energy-momentum tensor
(Tμν) and the electric-charge current (jμ).2 The former ones
are given by

∂μjμ ¼ 0; ð2:1Þ

∂μTμν ¼ Fνμjμ; ð2:2Þ

where Fμν is the electromagnetic field-strength tensor. If the
electric field is much smaller than the magnetic field, the
right-hand side of the second equation can be neglected
[16]. For the evaluation of the transport coefficients, which
is the purpose of this paper, it suffices to consider a static
and homogeneous (nondynamical) magnetic field.
The constitutive equations3 in the Landau frame read [16]

jμ ¼ nuμ þ J μ; ð2:3Þ

Tμν ¼ ϵuμuν − P⊥Ξμν þ P∥bμbν þ T μν; ð2:4Þ

where uμ is the flow vector, normalized as u2 ¼ 1, and bμ ≡
ϵμναβFναuβ=ð2BÞ with B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−BμBμ

p
. The tensor which

projects onto the three-dimensional space orthogonal to the
flow is defined as Δμν ≡ gμν − uμuν, while that which
projects onto the two-dimensional space orthogonal to both
the flow and the magnetic field is Ξμν ≡ Δμν þ bμbν,
respectively. We also have the energy density ϵ, the charge
density n, the thermodynamic pressure P∥ ≡ P, and the
transverse pressure P⊥ ≡ P −MB, including the contribu-
tion of the magnetizationM ≡ ð∂P=∂BÞT;μ (μ is the chemi-
cal potential associated with the electric charge). To leading
order of the derivative expansion the dissipative terms are
given by

J μ ¼ Tðκ⊥Ξμν∇να − κ∥bμbν∇να − κ×bμν∇ναÞ; ð2:5Þ

T μν ¼ 3

2
ζ⊥Ξμνϕþ 3ζ∥bμbνψ þ 2η0

�
wμν −

1

3
Δμνθ

�

þ η1

�
Δμν −

3

2
Ξμν

��
θ −

3

2
ϕ

�

þ 2½−η2ðbμΞναbβ þ bνΞμαbβÞ
− η3ðΞμαbνβ þ ΞναbμβÞ
þ η4ðbμαbνbβ þ bναbμbβÞ�wαβ; ð2:6Þ

where α≡ βμ, bμν ≡ ϵμναβbαuβ, wμν ≡ ð∇μuν þ∇νuμÞ=2,
ϕ≡ Ξμνwμν, ψ ≡ bμbνwμν, θ≡ ∂μuμ, with ∇μ ≡ Δμν∂ν.

2For the sake of simplicity, even in the case of multiple flavors
we consider only the electric-charge current.

3In addition to the terms given in this expression, other terms
are generated by the coupling between the vorticity and the
magnetic field [24]. However, they are not the subject of this
paper, so we have omitted them.
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The three κ’s are the electrical conductivities, the two ζ’s the
bulk viscosities, and the five η’s the shear viscosities,
respectively.

B. Kubo formulas

The transport coefficients in Eqs. (2.5) and (2.6) are
given by the following Kubo formulas [16]:

κ∥ ¼
∂
∂ω ImGR

j3j3 jp¼0;ω→0; ð2:7Þ

ζ∥ ¼
1

3

∂
∂ω ð2ImGR

~P⊥ ~P∥
þ ImGR

~P∥ ~P∥
Þ
p¼0;ω→0

; ð2:8Þ

ζ⊥ ¼ 1

3

∂
∂ω ð2ImGR

~P⊥ ~P⊥
þ ImGR

~P∥ ~P⊥
Þ
p¼0;ω→0

; ð2:9Þ

η0 ¼
∂
∂ω ImGR

T12T12 jp¼0;ω→0; ð2:10Þ

η1 ¼ −
4

3
η0 − 2

∂
∂ω ImGR

~P∥ ~P⊥
jp¼0;ω→0; ð2:11Þ

η2 ¼ −η0 þ
∂
∂ω ImGR

T13T13 jp¼0;ω→0; ð2:12Þ

η3 ¼
1

2

∂
∂ω ImGR

~P⊥T12 jp¼0;ω→0; ð2:13Þ

η4 ¼
∂
∂ω ImGR

T13T23 jp¼0;ω→0; ð2:14Þ

where without loss of generality the direction of the
magnetic field is chosen to point along the 3-direction.
We have defined ~P∥ ≡ P∥ − Θβϵ, ~P⊥ ≡ P⊥ − ðΘβ þΦβÞϵ,
with Θβ ≡ ð∂P∥=∂ϵÞB and Φβ ≡ −Bð∂M=∂ϵÞB. Here,
the retarded Green’s function is defined4 as GR

ABðxÞ≡
iθðx0Þh½AðxÞ; Bð0Þ�i with the average in the equilibrium
state denoted by angular brackets. Since we focus on the
charge-neutral case in this paper, the above Kubo formulas
lack some terms that are present in the nonzero-charge
case [16].
We also note that the right-hand side of Eq. (2.2) should

be maintained to derive the correct Kubo formulas for κ⊥
and κ×. However, since they vanish in the LLL approxi-
mation, we do not go into this issue in the present analysis.
For a discussion of the complete Kubo formulas,
see Ref. [24].

III. CONTRIBUTIONS OF THE LLL QUARKS
TO TRANSPORT COEFFICIENTS

Before we compute the transport coefficients in the
subsequent sections, we briefly describe the LLL approxi-
mation and identify the transport coefficients which have
contributions from the quarks in the LLL.
The periodic cyclotron motion in a magnetic field leads

to the Landau-level quantization, the energies of which are

ϵn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3Þ2 þm2

f þ 2njBfj
q

; ð3:1Þ

specified by a non-negative integer (n ≥ 0). We have
defined Bf ¼ jejqfB with jejqf being the electric charge,
and we explicitly maintain the current quark mass mf as its
dependence turns out to be important later. In this paper, we
focus on the strong-field regime that satisfies the hierarchy
jBfj ≫ T2 ≫ m2

f. Therefore, the occupation number of
quarks in the LLL (n ¼ 0), the energy of which is
independent of jBfj, is large in an ensemble at temperature
T. On the other hand, the occupation number of the higher
Landau levels (hLLs) [n ≥ 1], which are separated from the
LLL by a large energy gap of the order of

ffiffiffiffiffiffiffiffijBfj
p

, is highly
suppressed by the Boltzmann factor. Thus, we entirely
neglect the hLLs in our calculation.
We work in the Landau gauge specified as Aext

2 ¼ Bx1,
with the other components vanishing. Therefore, three
components of the quark momentum, which is denoted
as p̄μ ¼ ðp0; 0; p2; p3Þ, are still good quantum numbers in
a magnetic field. The final one is provided by the principle
quantum number n. The energy eigenstates specified by
these quantum numbers are complete and orthogonal.
Therefore, by using the eigenfunction shown in
Appendix A, the quark field can be expanded as [11,25]

ψðxÞ ¼
Z
p̄
e−ip̄·xHð~xfpÞPþχðpLÞ

þ ðContributions from n ≥ 1Þ; ð3:2Þ
where the explicit expression of the contribution from
the hLLs was suppressed as it will not be discussed below.
We have introduced the abbreviations

R
p ≡

R
dp=ð2πÞ,

pμ
L ≡ ðp0; 0; 0; p3Þ, and ~xfp ≡ x1 − p2=Bf with the second

component of the momentum, p2. The spin projection
operator is defined by P� ≡ ½1� sgnðBfÞiγ1γ2�=2 with a
sign function sgnðBfÞ. The spin of the LLL quark is frozen
in a definite direction along the magnetic field due to the
Zeeman effect. HðxÞ is the normalized Hermite function
coming from the quark wave function in the transverse
plane in the LLL. In Appendix A, we summarize the
properties of HðxÞ which will be used below.
The spin projection operator has the useful property

P�γμP� ¼ γμLP�, with γμL ¼ ðγ0; 0; 0; γ3Þ. Therefore, the
current composed of the LLL quark field is

4Note that this definition has the opposite sign compared to
that in Ref. [16]. Because of this difference, the signs in
Eqs. (2.7)–(2.14) are also opposite to those in Ref. [16].
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jμðxÞ ¼ ψ̄ðxÞγμLψðxÞ; ð3:3Þ

which has only a temporal as well as a spatial component
parallel to the magnetic field. The transverse components
demand a spin flip which, however, costs energy for an
interlevel transition from n ¼ 0 to n ≥ 1. This is the reason
why the LLL quarks contribute only to the longitudinal
component of the conductivity shown in Eq. (2.7). The
computation of the longitudinal conductivity has been
performed in Refs. [10,11].
Similar to the current, we now identify the nonvanishing

components of the energy-momentum tensor in the LLL
and the relevant contributions to the viscosities listed in
Eqs. (2.8)–(2.14). In the absence of QCD interactions, the
quark part of the energy-momentum tensor is written as5

TμνðxÞ ¼ i
2
S
X
f

½ψ̄D⃖μγνψ þ ψ̄Dμγνψ �; ð3:4Þ

where the sum is taken over the flavor index. The covariant
derivatives with the external magnetic field are Dμ ≡ ∂μ þ
iqfjejAext

μ and D⃖μ ≡ −∂⃖μ þ iqfjejAext
μ . The symmetrization

operator works as Sfμν ≡ ðfμν þ fνμÞ=2.
Consider one of the four terms in Eq. (3.4), e.g.,

tμνðqLÞ≡ i
2

Z
d4xe−iqL·xL ψ̄ðxÞγμDνψðxÞ: ð3:5Þ

Since we are interested in the transport coefficients in the
static and homogeneous limit, we have taken the transverse
momentum to be zero, q1;2 ¼ 0. (For the moment, we shall
keep a finite q3 for notational simplicity.) Inserting the
expansion of the quark field (3.2) into the above term,
we have

tμνðqLÞ ¼
1

2

Z
p̄
χ̄ðpL þ qLÞγμLΓνðp̄ÞPþχðpLÞ; ð3:6Þ

where

Γνðp̄Þ ¼
Z

dx1Hð~xfpÞðpν
L − δν2Bf ~x

f
p þ iδν1∂1ÞHð~xfpÞ:

ð3:7Þ

According to the integral formulas given in Appendix A,
only the first term survives,

Γνðp̄Þ ¼ pν
L; ð3:8Þ

which does not depend on the second component p2 within
the LLL approximation. Then, we find

tμνðqLÞ ¼
1

2

Z
p̄
χ̄ðpL þ qLÞγμLpν

LPþχðpLÞ: ð3:9Þ

An important point is that tμν has nonvanishing entries only
in the longitudinal components specified by μ, ν ¼ 0, 3,
and vanishes when either one or both of the indices are
1 or 2. The same conclusion is drawn for the other three
terms of the energy-momentum tensor (3.4). This is a
natural consequence of the fact that the LLL quarks can
carry only an energy and a momentum parallel to the
magnetic field.6

From the above observation, we find that only the
longitudinal pressure ~P∥ has contributions from the LLL
quarks among all Eqs. (2.8)–(2.14). Therefore, the LLL
quark carriers mainly contribute to the longitudinal compo-
nent of the bulk viscosity ζ∥ which is given by the correlator
of the diagonal components, ~P∥ ¼ Tμνbμbν − ΘβTμνuμuν ¼
T33 − ΘβT00. To reach the above conclusion, note also that,
according to Eq. (B8), we have ~P⊥ ¼ P⊥ in the LLL which
is solely given by the transverse components of the energy-
momentum tensor.
All other correlators in Eq. (2.8) also have contributions

from gluons, of which we will make order-of-magnitude
estimates in Sec. VI.

IV. BULK VISCOSITY

Having identified the contribution of the LLL quarks to
the viscosity, we now evaluate the relevant component, that
is, the longitudinal component of the bulk viscosity (ζ∥).
We also discuss the physical meaning of the result.

A. Calculation

We use the real-time formalism [26,27] for the dia-
grammatic calculation of the bulk viscosity. First, by using
the (12) basis, we write the retarded Green’s function in
Eq. (2.8) in the low-energy limit as

∂
∂ω ImGR

~P∥ ~P∥
ðω; 0Þ≃ β

2
Gð12Þ

~P∥ ~P∥
ðp ¼ 0Þ; ð4:1Þ

where Gð12Þ
AB ≡ hTCA1ðxÞB2ð0Þi ¼ hB2ð0ÞA1ðxÞi, and TC is

the path-ordering operator on the complex-time path C,
which is plotted in Fig. 1. The operator with index 1 (2) is
defined on the path Cþ (C−). As discussed in the previous
section, the transverse pressure ~P⊥ does not have a
contribution from the LLL quarks, so that the other
correlator, GR

~P⊥ ~P∥
, in Eq. (2.8) is much smaller than the

one in Eq. (4.1). Therefore, we neglect this contribution in
the following.

5The trace part vanishes if one uses the equation of motion,
which is the on-shell condition for the quark. In our calculation,
this condition applies, so we do not write the trace part here.

6This conclusion could be modified when the hLLs contribute
to the energy-momentum tensor or when the external transverse
momentum q⊥ (spatial modulation) is finite.
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From Eq. (2.4), the relevant pressure component is
expressed as ~P∥ðpÞ ¼ T33ðpÞ − ΘβT00ðpÞ. Thus, Green’s
function with distinct external momenta reads

Gð12Þ
~P∥ ~P∥

ðp; p0Þ ¼ hTC
~P∥ðpÞ ~P∥ðp0Þi

¼
Z
k̄

Z
k̄0
hχ̄2ðpL þ kLÞ=kΘPþχ2ðkÞ

× χ̄1ðp0
L þ k0LÞ=k0ΘPþχ1ðk0Þi; ð4:2Þ

wherewe have defined=kΘ ≡ k3γ3 − Θβk0γ0 and inserted the
expression of the energy-momentum tensor for vanishing
transverse momentum p⊥ ¼ p0⊥ ¼ 0 which was discussed
in the previous section. All four of the terms in Eq. (3.4)
result in the same expression up to differences which will
vanish in the end when we take the limit p; p0 → 0.
We start with the one-loop approximation. In this

approximation, we can evaluate Green’s function by using
Wick’s theorem (the corresponding diagram is drawn in
Fig. 2). The thermal averages of the spinors are replaced by
the thermal LLL propagator SðijÞðkL;k0LÞ¼hχiðkLÞχ̄jðk0LÞi¼
δð3Þðk̄−k̄0ÞSðijÞðkLÞ. Note that there is three-dimensional
momentum conservation in the Landau gauge. Inserting the
propagators into Green’s function, we will, therefore, get a
delta function, δð3Þðpþ p0Þ, for the overall conservation
of external momenta, which in turn becomes the (three-
dimensional) system volume in the limit p; p0 → 0.
Dividing Green’s function (4.2) by the volume V4 ¼
L1δ

ð3Þð0ÞwithL1 being the length in the residual dimension,
we have

Gð12Þ
~P∥ ~P∥

ðp ¼ 0Þ ¼ 1

V4

Gð12Þ
~P∥ ~P∥

ðp ¼ 0; p0 ¼ 0Þ; ð4:3Þ

and the one-loop expression is found to be

Gð12Þ
~P∥ ~P∥

ðp ¼ 0Þ

¼ −Nc

X
f

jBfj
2π

Z
kL

Tr½Sð21ÞðkLÞ=kΘPþSð12ÞðkLÞ=kΘ�

¼ Nc

X
f

jBfj
2π

Z
kL

Tr½fð=kL þmfÞ=kΘg2Pþ�

× nFðk0Þ½1 − nFðk0Þ�½ρSðkLÞ�2: ð4:4Þ
In the first line,we obtained the density of states jBfj=ð2πÞ in
the transverse plane as explained in Appendix A. In the last
line, we have inserted Sð12ÞðkLÞ¼−ð=kLþmfÞnFðk0ÞρSðkLÞ
and Sð21ÞðkLÞ ¼ ð=kL þmfÞ½1 − nFðk0Þ�ρSðkLÞ with the
quark spectral function ρSðkLÞ and the Fermi distribution
function nFðk0Þ≡ ½eβk0 þ 1�−1.
The trace in Eq. (4.4) is evaluated as

Tr½fð=kL þmfÞ=kΘg2Pþ� ¼ 4½ðϵLk Þ2X −m2
f�2; ð4:5Þ

where we have introduced X ¼ 1 − Θβ and used the on-

shell condition k0 ¼ �ϵLk ðϵLk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk3Þ2 þm2

f

q
Þ, which will

be justified later. According to Appendix B, X vanishes at
mf ¼ 0, and so does the trace in the massless limit.
The square of the spectral function needs to be treatedwith

care: If we naively use the noninteracting form for the
spectral function, ρS0ðkLÞ¼2πsgnðk0Þδðk2L−m2

fÞ, it diverges
on account of a pinch singularity. Physically, the viscosity is
indeed expected to diverge in a free theory and becomes finite
due to interactions. Therefore, the spectral function
resummed with a finite damping rate (ξk) gives a finite
result [28–31]. By using ρSðkLÞ ¼ 4ξkk0=½ðk2L −m2

fÞ2þ
ð2ξkk0Þ2�, it is approximated as [11,32]

½ρSðkLÞ�2 ≃ ρS0ðkLÞ
2ξkk0

; ð4:6Þ

where we have neglected terms that vanish after the k0

integration.
The spectral function (4.6) and the trace in Eq. (4.5)

allow us to express Green’s function (4.4) in terms of the
damping rate. Plugging these expressions into the Kubo
formula (2.8), the bulk viscosity can be written as

ζ∥ ¼
2β

3
Nc

X
f

jBfj
2π

m4
f

Z
kL

�
3

π2T2
ðϵLk Þ2 − 1

�
2

×
ρS0ðkLÞ
2ξkk0

½1 − nFðk0Þ�nFðk0Þ; ð4:7Þ

where the expression of X in Eq. (B5) has been used.

C+

x0

C-

t0 tf

tf-i

t0-i

FIG. 1. The contour in the complex-time plane. The part Cþ
runs along the real axis and the part C− runs parallel to this axis,
but is displaced by −iε.

k

FIG. 2. The one-loop diagram for Gð12Þ
~P∥ ~P∥

. The solid line is the
quark propagator, and the blob is the vertex for ~P∥, which is
k3γ3 − Θβk0γ0.
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Thequark damping rate arising from1-to-2 scatteringwas
already evaluated at the leading-log accuracy in Ref. [11] in
the following two cases: One is the case Mg ≪ mf ≪ T,
with Mg being the Schwinger mass of the gluon [33,34],

M2
g ≡ 1

2

g2

π

X
f

jBfj
2π

; ð4:8Þ

where g is theQCD coupling constant. The result in this case
reads

ϵLk ξk ≃
g2Cfm2

f

4π

�
1

2
þ nBðϵLk Þ

�
ln

�
T
mf

�
; ð4:9Þ

at the leading-log accuracy, withCf ≡ ðN2
c − 1Þ=ð2NcÞ and

nBðk0Þ≡ ½eβk0 − 1�−1. The factor ofm2
f can be explained in

terms of chirality conservation [11,35]. In the other case, we
have mf ≪ Mg ≪ T. The expression in this case can be
obtained by replacing the log in Eq. (4.9) with lnðT=MgÞ.

B. Results

By combining Eqs. (4.7) and (4.9), we can evaluate ζ∥.
In the case Mg ≪ mf the result reads

ζ∥ ¼
8β

3
Nc

X
f

jBfj
2π

m2
f

g2Cf lnðT=mfÞ

×
Z

∞

0

dk3
1

ϵLk

�
3

π2T2
ðϵLk Þ2 − 1

�
2

N̄ðϵLk Þ

≃ Nc

X
f

jBfj
2π

m2
f

g2CfT lnðT=mfÞ
�
4

π2
−
56

3
ζ0ð−2Þ

�

∼ eBT2

�
m2

f

T2

�2 T
g2m2

f lnðT=mfÞ
; ð4:10Þ

where we have defined N̄ðϵLk Þ≡ ½1 − nFðϵLk Þ�n2FðϵLk Þ=
nBðϵLk Þ and assumed mf ≪ T. Useful integration formulas
are given by

R∞
0 dϵϵ3N̄ðϵÞ ¼ T4π2=2,

R∞
0 dϵϵN̄ðϵÞ ¼ T2=2,

and
R
∞
0 dϵϵ−1N̄ðϵLk Þ ¼ −7ζ0ð−2Þ with the first derivative of

the zeta function ζ0ð−2Þ≃ −0.0304. Expression (4.10) is
one of the central results of our paper, which is valid when
the thermal excitations are well activated (mf ≪ T) and the
LLL approximation works (T ≪

ffiffiffiffiffiffiffiffijBfj
p

).7 Although the
above result was obtained by the diagrammatic method
applied to a Kubo formula, we can obtain the same result by
using the Boltzmann equation in (1þ 1) dimensions, as is
shown in Appendix C. We note that this quantity is
proportional to m2

f, so the s quark contributes more than

the u and d quarks. This is in striking contrast to the
longitudinal component of the electrical conductivity
[10,11], which is proportional to m−2

f , and thus the u
and d quarks dominate over the contribution from the
s quark.
Several remarks on the parametric behavior are in order:

To this end, we first recapitulate the behavior at B ¼ 0 [36],
which reads

ζB¼0 ∼ ðtypical momentumÞ4 ðconformal breaking factorÞ2
ðmean-free pathÞ−1

∼ T4

�
m2

f

T2

�2 1

g4T lnð1=gÞ : ð4:11Þ

The physical origin of the two conformal breaking factors
are clear in the calculation with the Boltzmann equation
[36], which is done in Appendix C. In comparison, we find
the following points in our results:

(i) An overall factor of jBfj appears. It originates from
the Landau degeneracy of the quarks in the trans-
verse plane, which are carriers of the pressure. This
factor replaces one factor of T2 in the expression for
B ¼ 0, resulting in an enhancement of the bulk
viscosity in a strong magnetic field, jBfj ≫ T2.

(ii) Since the dominant scattering process is 1-to-2 [10–
12] instead of 2-to-2, the g dependence of the quark
damping rate (∼ inverse of the mean-free path) is
∼g2, not ∼g4. Therefore, the denominator of the bulk
viscosity is proportional to g2.

(iii) The mf dependence is also different because of
chirality conservation. It yields a factor of m2

f=T in
the inverse of the mean-free path, and this factor
partially cancels the mf dependence coming from
the two conformal breaking factors ðm2

f=T
2Þ2 in the

numerator. Thus, the mf dependence of ζ∥ becomes
a quadratic one in the end, meaning that the bulk
viscosity decreases with a decreasing mass more
slowly than the one computed without the effects of
the strong magnetic field. This is a consequence of
the competition between the two constraints which
govern the behavior in the massless limit.

These points are shown clearly in the final lines of
Eqs. (4.10) and (4.11).
Finally, we comment on the effect of higher-loop orders.

In general, ladder-diagram contributions could be of the
same order of magnitude as the one-loop diagram when a
pinch singularity appears [28–31]. For this reason, one may
wonder if one needs to resum all-order ladder diagrams to
obtain the correct leading-order result. However, it is easy
to show that the resummation is not required at the leading-
log accuracy, meaning that our result (4.10) is correct at
this order.

7When mf ≪ Mg, the log factor is replaced by lnðT=MgÞ as
indicated in the previous section. The former condition is also
replaced by Mg ≪ T, accordingly.
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The proof follows the line shown in Sec. 5 of Ref. [11].
There are two steps in the proof. The first step is to identify
the terms which have the maximum number of pinch
singularities and are potentially as large in magnitude as
the one-loop contribution. As in the case without external
magnetic field, one indeed finds, by using the r/a basis, the
terms in which all pairs of fermion propagators facing each
other in the ladder diagram have pinch singularities. In the
second step, one obtains the Bethe-Salpeter equation for the
ladder resummation, which results in a gauge-invariant
integral equation. Inserting the explicit forms of the quark
and gluon spectral functions, one finds that the iterative
correction vanishes8 when mf ≫ Mg and is suppressed by
an inverse log factor 1= lnðT=MgÞ when mf ≪ Mg.
Therefore, in both cases the one-loop result is correct
within the leading-log approximation, which is valid when
the inverse log factor is small, i.e., when T=mf ≫ 1 and
T=Mg ≫ 1, respectively.

V. ESTIMATE OF THE BULK VISCOSITY

In this section, we compute the value of ζ∥ for some
choices of the parameters, which appear to be realistic for
heavy-ion collisions, and compare it with the value at
B ¼ 0. We use the following values for the parameters:

αs ≡ g2

4π
¼ 0.3;

Nc ¼ 3;

eB ¼ 10m2
π ¼ ð443 MeVÞ2;

mf ¼ 100 MeV ðs quarkÞ; ð5:1Þ

where we have assumed a strong magnetic field, withmπ ¼
140 MeV being the pion mass. For the case Nf ¼ 3, the
parameters above yield Mg ≃ 160 MeV. Because it is
larger than mf, we use the expression for the bulk viscosity
in the case Mg ≫ mf,

ζ∥ ¼ Nc
jBfj
2π

m2
f

g2CfT ln ðT=MgÞ
�
4

π2
−
56

3
ζ0ð−2Þ

�

≃ 0.031
jeBjm2

f

T ln ðT=MgÞ
; ð5:2Þ

where we have taken only the contribution from the s
quark, since it is dominating over the contributions from the
other flavors.
Let us compare this estimate with the one at B ¼ 0. The

contribution from the s quark is estimated as [36]

ζB¼0 ≃ 0.011
m4

f

α2sT
≃ 0.12

m4
f

T
; ð5:3Þ

where we used the same parameters (5.1). Equations (5.2)
and (5.3) are plotted as functions of T in Fig. 3. To show the
limit of our LLL and leading-log approximations, we have
colored the temperature regions,

ffiffiffiffiffiffi
eB

p
< T andT <

ffiffiffiffiffiffiffiffiffiffi
αseB

p
,

in which the two approximations are not justified. The two
approximations are reliable only in the window between
these areas. This plot suggests that the presence of a strong
magnetic field enhances the longitudinal component of the
bulk viscosity in awide temperature range. This can actually
be understood by looking at the parametric behavior:
Neglecting log factors, we have ζ∥ ∼ eBm2

f=ðg2TÞ and
ζB¼0 ∼m4

f=ðg4TÞ, and their ratio is ζ∥=ζB¼0∼g2eB=m2
f ∼

ðMg=mfÞ2. From the values estimated around Eq. (5.1), this
ratio is larger than one with the current values of the
parameters. The temperature dependence in Fig. 3 comes
from the logarithmic factor in ζ∥, because of the temperature-
independent infrared cutoff.

VI. GLUON CONTRIBUTION TO SHEAR
AND BULK VISCOSITIES

In this section, we estimate the order of magnitude of the
contribution of gluons to the shear and bulk viscosities. All
estimates are performed in the LLL approximation assum-
ing that jBfj ≫ T2. There is no gluon contribution to the
conductivities, since the gluon does not carry electric
charge, so we do not discuss them here.

A. Shear viscosities

We begin with the five shear viscosities, η0;…;4. In this
case, the order-of-magnitude estimate can be performed
using the schematic expression,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 200  300  400  500

T
ζ |

|/(
eB

m
2 f)

T [MeV]

FIG. 3. The solid (red) line is our result (ζ∥), and the dotted
(blue) line is ζB¼0. The red (blue) area on the right (left) is the
temperature region

ffiffiffiffiffiffi
eB

p
< T (T <

ffiffiffiffiffiffiffiffiffiffi
αseB

p
) in which the LLL

(leading-log) approximation is not reliable.

8Nevertheless, the quark damping rate is computed within the
leading-log approximation.
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ηi ∼
ðtypical momentumÞ4
ðmean-free pathÞ−1 ; ð6:1Þ

which can be finite without any conformal breaking factor,
in contrast to the bulk viscosity. The typical momentum is
apparently of the order of T, while the mean-free path needs
further consideration. Let us consider the following three
scattering processes: (1) 1-to-2 scattering, (2) 2-to-2 gluon-
quark t-channel scattering, and (3) 2-to-2 gluon-gluon
t-channel scattering. They were estimated in Sec. V and
Appendix B of Ref. [10] in the context of the color
conductivity.
It was discussed that process (1) gives a gluon damping

rate (∼ inverse of the mean-free path), which is of the order
of g2m2

feB=T
3. A naive estimate of the contribution from

process (2) to the damping rate is of the order of
g4TeB=Λ2

IR, where the dominant infrared (IR) cutoff Λ2
IR ∼

ðg2eB=m2
fÞ

2
3T2 arises from Landau damping [see discus-

sions below Eq (B.9) of Ref. [10]]. The color randomiza-
tion can be achieved without a momentum exchange, so
that it is not suppressed in the IR regime. However, for the
randomization of the gluon momentum, which is relevant
for the computation of viscosities, one finds a smaller IR
enhancement, because the difference between the thermal
distribution functions in the initial and final states also
vanishes in the numerator of the collision integral as the
momentum transfer decreases. An appropriate treatment of
this point gives a modification of the parametric estimate as
g4TeB=Λ2

IR × ðΛIR=TÞ2 ∼ g4eB=T (up to a possible loga-
rithmic factor), as was discussed in Appendix B of
Ref. [10]. In the same way, the contribution from (3) is
expected to be g4T3=Λ2

IR × ðΛIR=TÞ2 ∼ g4T with ΛIR ∼ gT.
This is smaller than the contribution from (2), so we do not
need to take this contribution into account.
The relative magnitude of contributions (1) and (2)

depends on that of mf and gT. But actually, whichever
the larger contribution is, contribution (2) determines the
shear viscosity,9 as can be seen in the following: The
Coulomb-gauge gluon propagator was shown to have two
orthogonal components around themass shell (p2 ≃ 0) [34],

Dμν ≃ −
Pμν
T − Pμν

⊥
p2 − ðΠT þ Π∥Þ

−
Pμν
⊥

p2 − ðΠT þ Π⊥Þ
: ð6:2Þ

The first term has a damping rate given by ImðΠT þ Π∥Þ
while the other term has one determined by ImðΠT þ Π⊥Þ.
Here, Πi are the coefficients of the tensor decomposition
of the retarded gluon self-energy Πμν, namely Πμν ¼P

i¼T;L;∥;⊥ΠiP
μν
i . We refer to Ref. [34] for the definitions

of the projection tensors Pμν
i .

The scattering process (1) only contributes to ImΠ∥ [14],
while we can show by explicit calculation that (2) contrib-
utes to ImΠT . The perpendicular component Π⊥ is absent.
Therefore, when the former contribution is much larger
than the latter one (ImΠ∥ ≫ ImΠT), the contribution to the
shear viscosity from the second mode in Eq. (6.2) is much
larger than that from the first mode. In the opposite case
(ImΠ∥ ≪ ImΠT), the damping rates are determined by
ImΠT and both terms in Eq. (6.2) contribute to a similar
order of magnitude.
Thus, the inverse of the mean-free path is of order

g4eB=T. Combining these order-of-magnitude estimates,
we have

ηi ∼ T4 ×
T

g4eB
¼ T5

g4eB
: ð6:3Þ

This is suppressed compared to the value at B ¼ 0,
η ∼ T3=g4, by a factor of T2=eB.10 Physically, this origi-
nates from the fact that the gluon damping rate is enhanced
by the abundance of the quark scatterers, the density of
which increases with eB in the transverse plane.

B. Bulk viscosities

The order-of-magnitude estimate of the gluon contribu-
tion to the bulk viscosity is more complicated.
Let us start with the Kubo formula for ζ∥, Eq. (2.8), and

see how one can recover the expression in the absence of
the magnetic field. At B ¼ 0, the expressions of the two
components of the pressure in terms of Tμν reduce to

~P∥ ¼ T33 − ΘβT00; ð6:4Þ

~P⊥ ¼ 1

2
ðT11 þ T22Þ − ΘβT00; ð6:5Þ

so that 2 ~P⊥ þ ~P∥ ¼
P

iT
ii − 3ΘβT00. In this case, we note

that Θβ ¼ 1=3 − X, where X ∼ g4 or m2=T2. The former
contribution to X comes from the conformal anomaly,
while the latter one is from the explicit breaking of the
conformal symmetry by the current quark mass. Then,
Eq. (2.8) gives

ζ∥¼
1

3

∂
∂ωImGR

ð2 ~P⊥þ ~P∥Þ ~P∥
ðp¼0;ω→0Þ

¼1

3

β

2

�
ð−Tμ

μþ3XT00Þ2
�
T33−

1

3
T00þXT00

�
1

�
ðp¼0Þ:

ð6:6Þ

9This point was not correctly considered in Ref. [10].

10If the contribution of the second term in Eq. (6.2) vanishes
due to the tensor structure or any other reason, the shear
viscosities will be even more suppressed with only the contri-
bution from the first term, when ImΠ∥ ≫ ImΠT .
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The first factor (−Tμ
μ þ 3XT00) vanishes in the conformal

case, so it yields one conformal breaking factor. In the other
factor ðT33 − 1

3
T00 þ XT00Þ, one can replace T33 by 1

3

P
iT

ii

because of rotation symmetry in the absence of a magnetic
field. Therefore, this factor also yields the same conformal
breaking factor. In total, the bulk viscosity atB ¼ 0 contains
two conformal breaking factors as elaborated in
Refs. [36,37], resulting in the parametric estimate shown
in Eq. (4.11). The evaluation of ζ⊥ can be done in the same
way. Here, we could recover the expression at B ¼ 0
because of the rotation symmetry and the three-dimensional
equation of state (EoS), P ¼ 1

3
ϵþ oðm2

fÞ þ oðg2Þ.
Now, let us check what happens in the presence of strong

magnetic fields. In the same way as above, we have

ζ∥ ¼
1

3

β

2
hð−Tμ

μ þ 3XT00Þ2ðT33 − T00 þ XT00Þ1iðp ¼ 0Þ:
ð6:7Þ

Notice the difference to the B ¼ 0 case: Namely, the factor
in front of T00 in the second factor is unity instead of 1=3.
This factor of unity originates from the one-dimensional
EoS in a strong magnetic field, P∥ ¼ ϵþ oðm2

fÞ þ oðg2Þ,
and makes a big difference in the order-of-magnitude
estimate, as we will see below.
We focus on the product of 3XT00 and T33 − T00 taken

from the first and second factors in Eq. (6.7), respectively.
At one-loop order we have

ζ∥ ∼ −
β

2
XhTCðFa0αFa0

αÞ2
× ð−Fb3βFb3

β þ Fb0βFb0
βÞ1iðp ¼ 0Þ

¼ −
β

2
XhTCð½∂0Aaα�½∂0Aa

α�Þ2
× ð−½∂3Abβ�½∂3Ab

β� þ ½∂0Abβ�½∂0Ab
β�Þ1iðp ¼ 0Þ

¼ −βXðN2
c − 1Þ

Z
d4k
ð2πÞ4 ðk

0Þ2½ðk0Þ2 − ðk3Þ2�

× nBðk0Þ½1þ nBðk0Þ�ραβðkÞραβðkÞ; ð6:8Þ

where ρμνðkÞ is the spectral function of the gluon. We have
used the energy-momentum tensor of the gluons,

Tμν ¼ gμν

4
FaαβFa

αβ − FaμαFaν
α; ð6:9Þ

and the on-shell condition k2 ≃ 0, and adopted the
Coulomb gauge, in which A0 and kiAi do not contribute
at this order. Here, the field-strength tensor is Fa

μν ≡
∂μAa

ν − ∂νAa
μ − gfabcAb

μAc
ν with the SUðNcÞ structure con-

stant fabc.
In the last line of Eq. (6.8), we do not see a reason for the

factor ðk0Þ2 − ðk3Þ2 to vanish. This is in contrast to the case

of the LLL quark contribution which has a (1þ 1)-
dimensional conformal symmetry: We have seen that this
factor indeed vanishes in the massless limit because the
LLL quark has a (1þ 1)-dimensional dispersion relation,
leaving a small factor of m2

f.
11 As a result of the mismatch

between the dimensions of the quark-dominant EoS and of
the gluon dispersion relation, the gluon contribution to the
bulk viscosities is expected to have only one conformal
breaking factor. Therefore, we get the estimate

ζ∥;⊥ ∼ ðtypical momentumÞ4 ðconformal breaking factorÞ
ðmean-free pathÞ−1

∼ T4 ×
T

g4eB
× X ∼

T3m2
f

g4eB
; ð6:10Þ

up to a possible logarithmic factor. When the dimensionless
combination Mg

ffiffiffiffiffiffi
eB

p
=T2 is much larger than unity, the

gluon contribution is subdominant compared to the quark
contribution. Also, compared to the bulk viscosity at
B ¼ 0, the gluon contribution is suppressed in a strong
magnetic field such that eB ≫ T2ðT=mfÞ2, where the ratio
T=mf is of order one because of the important contribution
from s quarks.

VII. SUMMARY

We have evaluated the longitudinal component of the
bulk viscosity ζ∥ of the QGP in a strong magnetic field, by
using the LLL approximation and the Kubo formula.
Together with the longitudinal component of the electrical
conductivity [10,11], this completes the evaluation of the
first-order transport coefficients to which the LLL quarks
contribute. We found that the current quark mass depend-
ence significantly changes compared with the one at B ¼ 0
[36], and explained this behavior as a result of the
competition between conformal symmetry and chirality
conservation. We also estimated the gluon contribution to
the shear and bulk viscosities which is suppressed by a
large value of the gluon damping rate, which is enhanced
by the density of the LLL quark scatterers ∼eB.
When the LLL quark contribution is larger than the

gluon contribution, the longitudinal component ζ∥ is larger
than ζ⊥. This anisotropy may lead to modifications of the
hydrodynamic expansion of the QGP in heavy-ion colli-
sions. Indeed, a large value of ζ∥ has the tendency to
suppress the hydrodynamic expansion in the direction of
the magnetic field, as is schematically sketched in Fig. 4.
Therefore, our result suggests that a strong magnetic field
(which is in general orthogonal to the reaction plane)

11As seen in Eq. (3.1), the dispersion relations of the hLLs
explicitly depend on the field strength B, which, thus, will serve
as the dominant conformal symmetry breaking factor at moderate
magnetic field strengths, m2

f ≲ eB ≲ T2, where populations of
thermal excitations in the hLLs are as large as that in the LLL.
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potentially induces a positive contribution to the elliptic
flow measured in heavy-ion collisions.
To complete the full evaluation of the shear and bulk

viscosities in strong magnetic fields and to make a more
quantitative estimate for phenomenological implications,
we need to calculate the gluon contributions in more detail.
We leave this interesting task to future work.
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APPENDIX A: DIRAC EQUATION IN A
MAGNETIC FIELD

We briefly summarize the solution for the Dirac equation
in a magnetic field,

ði=D −mfÞψ ¼ 0: ðA1Þ

We introduce the operators a;a†¼i½D1�sgnðBfÞiD2�=ffiffiffiffiffiffiffiffiffiffiffi
2jBfj

p
where the upper and lower signs are for a and

a†, respectively. These operators satisfy ½a; a†� ¼ 1. Then,
the Dirac operator is cast into the form

i=D −mf ¼ i=∂L −mf −
ffiffiffiffiffiffiffiffiffiffiffi
2jBfj

q
γ1ðaPþ þ a†P−Þ: ðA2Þ

Spin eigenstates ψ� ¼ P�ψ should satisfy

½∂2
t − ∂2

z þ ð2a†aþ 1 ∓ 1ÞjqfBj þm2
f�ψ� ¼ 0: ðA3Þ

Therefore, the solution for the ground state, the LLL, is
ψþ ¼ e−ipL·xϕðx⊥ÞPþχðpLÞ with a Dirac spinor χðpLÞ and
an eigenfunction such that aϕðx⊥Þ ¼ 0. We find the LLL
dispersion relation to be ðϵLpÞ2 ¼ ðp3Þ2 þm2

f.
Inserting ψþ of the LLL into the Dirac equation, one

finds that the Dirac spinor χðpLÞ obeys the (1þ 1)-dimen-
sional “free” Dirac equation

ð=pL −mfÞχðpLÞ ¼ 0: ðA4Þ

This equation indicates that the LLL spinor depends only
on the longitudinal momentum pL, and the LLL fermions
have a (1þ 1)-dimensional “free” propagator. From the
condition aϕðx⊥Þ ¼ 0, the normalized wave function in the
Landau gauge is obtained as

ϕðx⊥Þ ¼ eip
2x2H

�
x1 −

p2

Bf

�
; ðA5Þ

where

HðxÞ ¼
�jBfj

π

�1
4

e−
x2
2
jBf j: ðA6Þ

We use the following properties of the Hermite function in
the LLL:

Z
dxHðxÞHðxÞ ¼ 1; ðA7Þ

Z
dxxHðxÞHðxÞ ¼ 0; ðA8Þ

Z
dxHðxÞ∂xHnðxÞ ¼ 0: ðA9Þ

Finally, we count the density of states in a finite box
[25,38]. To this end, note that the second component p2 of
the canonical momentum serves as a label of the degenerate
states, and the center coordinate of the cyclotron motion is
given by x1c ¼ p2=Bf. Accordingly, when the cyclotron
center is located within the length of the system
0 ≤ x1c ≤ L1, we have 0 ≤ py ≤ BfL1 when sgnðBfÞ > 0,
and −jBfjL1 ≤ p2 ≤ 0 when sgnðBfÞ < 0. Therefore, we
get the density of states in the transverse plane as

1

L1

Z jBf jL1

0

dp2

2π
¼ jBfj

2π
: ðA10Þ

FIG. 4. Schematic picture of the elliptic flow and the effect of
the anisotropic bulk viscosity on it.
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APPENDIX B: THERMODYNAMIC QUANTITIES
IN THE LLL APPROXIMATION

In this appendix,we first evaluateΘβ, which is required for
the calculation of the bulk viscosity in the LLL approxima-
tion. Before we do so, we need to obtain the energy density
and the pressure in the direction of B: The contribution from
the quarks in the LLL reads

ϵ ¼ jBfj
2π

Nc
2

π

Z
∞

0

dk3
ðϵLk Þ2
ϵLk

nFðϵLk Þ; ðB1Þ

P∥ ¼
jBfj
2π

Nc
2

π

Z
∞

0

dk3
ðk3Þ2
ϵLk

nFðϵLk Þ: ðB2Þ

In the massless limit, both quantities are equal, as
ϵ ¼ P∥ ¼ jBfjNcT2=12. In this case, Θβ ¼ 1, which corre-
sponds to X ¼ 0. This result can be understood by remem-
bering that, at B ¼ 0, conformal symmetry requires that
Θβ ¼ 1=3, since the number of spatial dimensions is three. In
our case, the number of spatial dimensions is effectively
reduced to one thanks to the strong magnetic field, so Θβ

is unity.
As we have seen in Eq. (4.5), we need to evaluate the

deviation from themf ¼ 0 case. Therefore, what we should
evaluate is

ϵ − P∥ ¼ m2
f

jBfj
2π

Nc
2

π

Z
∞

0

dk3
1

ϵLk
nFðϵLk Þ: ðB3Þ

We note that this integral has a logarithmic infrared
divergence in the massless limit. At the leading-log
accuracy in terms of lnðT=mfÞ, we get

ϵ − P∥ ≃m2
f

jBfj
2π

Nc
1

π
ln

T
mf

: ðB4Þ

Now, we can obtain Θβ as

Θβ ¼ 1 −
∂
∂ϵ ðϵ − P∥Þ≃ 1 −

3m2
f

π2T2
; ðB5Þ

in the temperature region mf ≪ T. Here we have used the
property df=dϵ ¼ ðdf=dTÞ=ðdϵ=dTÞ for a fixed value of
B. This result corresponds to X ¼ 3m2

f=ðπ2T2Þ.
Next, we evaluateΦβ. To this end, we need to evaluateM

first. From the definition of M and Eq. (B2), we have

M ¼ P∥

B
; ðB6Þ

which is quite different from the expression at weak B.
From this expression, we get

Φβ ¼ −
�∂P∥

∂ϵ
�

B
¼ −1þ

�∂ðϵ − P∥Þ
∂ϵ

�
B
: ðB7Þ

By comparison to Eq. (B5), we have

Φβ ¼ −Θβ: ðB8Þ

Finally, let us comment on the interpretation of Eq. (B6):
In the case of a weak magnetic field, the effect of B on the
energy or pressure comes mainly from the Zeeman effect,
namely the fact that flipping spins of the quarks costs
energy. Therefore, the magnetization is proportional to the
total number of spins of the quarks, as M is the pressure
difference when we increase B. In contrast, in the presence
of a strong magnetic field, the spins of the quarks in the
LLL are always pointing in the direction of B and they
cannot be flipped. Instead, the main effect of B on the
energy or pressure is to create a large quark density in the
transverse plane, due to the degeneracy of the LLL. For this
reason, the magnetization in a strong magnetic field B
agrees with the pressure due to the quarks, divided by the
degeneracy of the LLL, as can be see from the above result.

APPENDIX C: EQUIVALENCE TO LINEARIZED
BOLTZMANN EQUATION

In this appendix, we show that the linearized Boltzmann
equation can reproduce the result for the bulk viscosity
(4.10) obtained from the diagrammatic calculation. We
follow the strategy of Ref. [36]: We consider the situation
that the system is at equilibrium and at rest in the beginning,
so that the distribution functions are given by the standard
Fermi and Bose ones. Then, the system is disturbed by an
expansion in the direction of B. Linear-response theory
requires one to evaluate the change in the pressure, in order
to get information on the bulk viscosity.
The time evolution of the system is described by the

Boltzmann equation for the quark distribution function (f)
in the LLL, which is effectively a (1þ 1)-dimensional
equation,

ð∂t þ v3∂zÞfðk3; t; zÞ ¼ C½f�; ðC1Þ

where v3 ≡ k3=ϵLk is the velocity in the direction of B, ðt; zÞ
are the space-time coordinates, and C½f� is the collision
term for the 1-to-2 process, the expression of which is given
in Refs. [10,11].
In general, the distribution function can be written in

terms of the deviation from the equilibrium value, namely

fðk3; t; zÞ ¼ feqðk3; t; zÞ þ δfðk3; t; zÞ; ðC2Þ

where

feqðk3; t; zÞ≡ ðexpfβðtÞγu½ϵLk − k3u3ðzÞ�g þ 1Þ−1 ðC3Þ
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is the distribution function in equilibrium in the presence of
the flow (u3). Here γu ≡ ½1 − ðu3Þ2�−1=2 is the gamma
factor. For u3 ¼ 0, feq reduces to nF. We note that the
temperature depends on time, since the expansion
decreases the energy density of the system.
We consider the linear response regime, so u3 and δf are

assumed to be small. Then, the left-hand side of Eq. (C1) is
approximated as

− nFðϵLk Þ½1 − nFðϵLk Þ�½ϵLk ∂tβ − βv3k3θðzÞ�
¼ −βnFðϵLk Þ½1 − nFðϵLk Þ�θðzÞðϵLkΘβ − v3k3Þ; ðC4Þ

where θðzÞ≡ ∂zu3ðzÞ represents the magnitude of the
expansion. In the last line, we have used ∂tβ ¼ βΘβθðzÞ
[36]. The right-hand side of Eq. (C1) vanishes in equi-
librium, so that it is of linear order in δf. In the relaxation-
time approximation, the collision term is given by
−τ−1k δfðk3; t; zÞ with the parameter τk being the relaxation
time. Combining both sides, the solution of the Boltzmann
equation reads

δf ¼ τkβnFðϵLk Þ½1 − nFðϵLk Þ�θðzÞðϵLkΘβ − v3k3Þ: ðC5Þ

We note that, in the massless limit where the system
becomes conformal12 in the classical limit, the quantity in
the bracket vanishes [see the definition of v3 and ϵLk , and
Eq. (B5)]. This means that the system still persists to be at
equilibrium even in the presence of the expansion, which
is a natural consequence of the conformal invariance.
The bulk viscosity appears in the constitutive relation

(2.6) as

δP∥ ¼ −3ζ∥θ; ðC6Þ

where δP∥ is the deviation of P∥ from the equilibrium
value. Here, we have omitted terms proportional to other
transport coefficients which do not have contributions from
the LLL quarks. Thus, we need to evaluate δP∥. Naively, it
is given by

δP∥ ¼
jBfj
2π

Nc
2

π

Z
∞

0

dk3
1

ϵLk
ðk3Þ2δfðkÞ; ðC7Þ

where we replaced nF by δf in Eq. (B2). However, we note
that, even when δf ¼ 0, the pressure changes since the
temperature decreases in time due to the expansion.
Therefore, we need to subtract this effect, which is found
to require subtraction of ΘβT00 from T33 [36]. T00 can be
expressed in terms of δf as in Eq. (C7) with the replace-
ment of ðk3Þ2 by ðϵLk Þ2. The subtracted result is found to be

δ½P∥ − Θβϵ� ¼
jBfj
2π

Nc
2

π

Z
∞

0

dk3
δfðkÞ
ϵLk

½ðk3Þ2 − ΘβðϵLk Þ2�

¼ −
jBfj
2π

Nc
2

π
β

Z
∞

0

dk3
½ðk3Þ2 − ΘβðϵLk Þ2�2

ðϵLk Þ2
× τknFðϵLk Þ½1 − nFðϵLk Þ�θðzÞ: ðC8Þ

We see that another conformal breaking factor ðk3Þ2 −
ΘβðϵLk Þ2 appears in addition to the one in Eq. (C7). By
identifying τ−1k ¼ 2ξk, we find that the expression for the
bulk viscosity obtained from this equation and Eq. (C6) is
identical to Eq. (4.7) from the diagrammatic method.
The equivalence beyond the relaxation-time approxima-

tion can also be shown, as was done in Ref. [11] in the case
of the electrical conductivity.
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