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Mott dissociation of pions and kaons in hot, dense quark matter
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We describe the Mott dissociation of pions and kaons within a Beth-Uhlenbeck approach based on the
Polyakov-loop improved Nambu—Jona-Lasinio model, which allows for a unified description of bound,
resonant and scattering states. Within this model we evaluate the temperature and chemical potential
dependent modification of the phase shifts both in the pseudoscalar and scalar isovector meson channels
for Ny =2 + 1 quark flavors. We show that the character change of the pseudoscalar bound states to
resonances in the continuum at the Mott transition temperature is signaled by a jump of the phase shift at
the threshold from 7 to zero, in accordance with the Levinson theorem. In particular, we demonstrate
the importance of accounting for the scattering continuum states, which ensures that the total phase shift in
each of the meson channels vanishes at high energies, thus eliminating mesonic correlations from the
thermodynamics at high temperatures. In this way, we prove that the present approach provides a unified
description of the transition from a meson gas to a quark-gluon plasma. We discuss the occurrence of an
anomalous mode for mesons composed of quarks with unequal masses which is particularly pronounced
for K™ and «* states at finite densities a a possible mechanism to explain the “horn” effect for the K+ /z+

ratio in heavy-ion collisions.
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I. INTRODUCTION

Recently, the relativistic Beth-Uhlenbeck (BU) approach
for two-particle correlations in two-flavor quark matter
within the Nambu—Jona-Lasinio (NJL) model [1-4] and the
Polyakov-loop improved NJL (PNJL) model [5-11] has
appeared as a promising candidate for a unified description
of hadron and quark-gluon matter. In particular, the
description of correlations in deconfined quark matter,
sometimes denoted as “bound states above 7T'.” [12-14],
with T, being the pseudocritical temperature of the chiral
and deconfinement crossover transitions, is naturally
achieved within this formulation. Attempts to formulate
a unified thermodynamics of the hadron-to-quark-gluon
matter transition have been made in postulating a spectral
function for hadrons across the chiral/deconfinement tran-
sition [15-17].

In order to reach this description, however, there are a
few more important steps to be made. One of them is the
inclusion of the strangeness degree of freedom. We devote
the present work to this aim, restricting ourselves to the
case of the lightest hadron channels only, the pseudoscalar
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# and K mesons and their chiral partner states, the
corresponding scalar mesons.

As is widely known, the NJL model is capable of
describing the chiral restoration transition in a hot and
dense medium, where the dynamically generated quark
masses drop as a function of temperature and chemical
potentials, thus restoring the mass degeneracy of the chiral
partner states. At the same time, the continuum thresholds
for quark-antiquark scattering channels drop, which results
in a lowering of the binding energy for the pseudoscalar
meson bound states and finally in their dissociation when
they enter the continuum and change their character to
resonances with a finite lifetime (Mott effect). This aspect
of the Mott dissociation is usually identified by mass poles
for mesons becoming complex, with the real part being
the “mass” M; of the resonance i and the imaginary part
being related to a finite width I'; due to its decay into the
quark constituents. The phase shift of these states is well
described by a Breit-Wigner function as long as I'; < M.

Following previous works on the BU approach to pion
dissociation in quark matter in the NJL [1-4] and PNJL
[5-10] models, we point out that the Breit-Wigner descrip-
tion is not complete as it neglects the fact that analytic
properties of continuum states (resonances or just scattering
states) are properly described by Jost functions, defined
along the cut for continuum states in the complex energy
plane. This fact is most appropriately taken into account by
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the introduction of a scattering phase shift function for each
mesonic channel &;(s), which depends on the squared
center-of-mass energy s in the quark-antiquark system and
thermodynamic parameters of the medium, here the tem-
perature 7" and chemical potentials 4, = u; = p and u, for
light and strange quarks, respectively.

The behavior of the phase shift at the threshold can be
used as an indicator for the Mott transition of a bound state
to the scattering state continuum. The phase shift vanishes
at infinity, while it has a value of z at the continuum
threshold as long as there is a bound state below the
continuum. When the bound state merges with the scatter-
ing states continuum, the phase shift jumps to zero, in
accordance with the Levinson theorem.

A striking advantage of the BU approach over phenom-
enological models like [15-17] is the formulation of the
thermodynamics of correlations in terms of phase shift
functions that are in accordance with the Levinson theorem
[1-5,8,9], which guarantees that the partial pressure of
correlations vanishes at asymptotic temperatures (and chemi-
cal potentials). It may be understood as an anticipation of
asymptotic freedom for strong, finite range interactions [18].

As a result, within the present approach the EoS and
thermodynamic properties (like the composition) of the
system of hadrons, quarks and gluons can be described with
the correct asymptotics of the hadron gas (of pions and
kaons) at low temperatures and the quark-gluon plasma at
high temperatures, with the transition in-between.

A quantitative comparison with lattice QCD thermody-
namics data is premature at this stage of the development of
the BU approach, mainly due to the lack of hadronic states
and missing self-consistency. It is therefore deferred to a
future stage of work.

In this work we investigate thermodynamic properties
of quark-gluon-meson matter for the PNJL model with
N;=2+1 quark flavors, where the strange chemical
potential is fixed to u; = 0.2 p as motivated by statistical
model analyses of chemical freeze-out parameters for
describing hadron production in heavy-ion collision experi-
ments. We study the temperature dependence of quark and
meson masses along lines of constant 4/ T in the T-u plane
which are seen as approximations to lines of constant
entropy per baryon along which the hydrodynamic evolu-
tion of the heavy-ion collision shall proceed. The EoS
for pressure versus temperature in the Beth-Uhlenbeck
approach is evaluated for /T = 0, 0.5, 1.0, 2.0, whereby
the quark, gluon and meson contribution to the total
pressure is given. Special emphasis is on the Mott dis-
sociation of the pseudoscalar meson states which is
illustrated by the behaviour of the corresponding phase
shifts as functions of energy for different temperatures and
chemical potentials. The corresponding scalar meson states
are unbound already in the vacuum, as is characteristic for
the local PNJL model. Nevertheless one can observe how at
high temperatures and chemical potentials the chiral partner
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states become degenerate in their analytic properties as
encoded by the phase shifts.

The paper is organized as follows. In Sec. II we outline
the path integral approach to the partition function of the
2 + 1 flavor PNJL model, including mesonic fluctuations
beyond the meanfield in the scalar and pseudoscalar
channels in Gaussian approximation. In Sec. III we present
the results for the phase diagram and for the temperature
dependence of the order parameters ®, ®, m, = m, and m;
as well as the meson mass spectra, the energy dependent
phase shifts and the pressure with its contributions from
quarks, gluons and mesons along a set of trajectories of
constant /T in the phase diagram. In Sec. IV we present
the conclusions of this study.

II. PARTITION FUNCTION OF THE
2+1 FLAVOR PNJL MODEL

We employ a 2+ 1 flavor chiral quark model with
NJL—type interaction kernel based on the one used in
works on the SU/(3) scalar and pseudoscalar meson
spectrum [19-21] developed on the basis of Ref. [22] and
its generalization by coupling to the Polyakov loop [23,24],

8
L = q(iy"D, + ing)g + Gs Y _ [(34q)* + (qirsi*q)?]
a=0
—U(D[A], D[A]; T). (1)

Here ¢ denotes the quark field with three flavors,
f=u, d, s, and three colors, N, = 3; A* are the flavor
SU/(3) Gell-Mann matrices (a =0,1,2,....8), Gy is a
coupling constant. The scalar-pseudoscalar meson interac-
tion channels in (1) are color singlet and fulfill the require-
ment of being chirally symmetric. Thus, only the diagonal
matrix of current quark masses /7, = diag(my ., mg 4. My ;)
induces an explicit breaking of the otherwise global sym-
metry of the Lagrangian (1). This is a property shared with
the QCD Lagrangian. The covariant derivative is defined as
D* = 9" —iA#, with A* = §AY (Polyakov gauge); in
Euclidean notation A® = —jA,. The strong coupling con-
stant g, is absorbed in the definition of A¥(x) = g, Ak (x) %,
where A% is the (SU.(3)) gauge field and 4, are the Gell-
Mann matrices in SU.(3) color space.

The Polyakov loop field @ appearing in the potential
term of (1) is related to the gauge field through the gauge
covariant average of the Polyakov line [25]

where

L(%) = Pexp {i A ! deAy (&, T)]. (3)
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Concerning the effective potential for the (complex) ©®
field, we adopt the polynomial form and the parametriza-
tion proposed in Ref. [25]. Alternatively, the logarithmic
form of this potential [26] could also be used.

The (P)NJL model is a primer for describing the
dynamical breakdown of the (approximate) chiral sym-
metry in the vacuum and its partial restoration at high
temperatures and chemical potentials. This feature is
governed by the occurrence of a nonvanishing expectation
value for the mean field in the scalar meson channel. At the
same time this model provides a field-theoretic description
of pseudoscalar meson properties which is in accordance
with the low energy theorems of QCD, such as the
Goldstone theorem. This is achieved by considering the
(Gaussian) fluctuations above the mean field in the scalar
and pseudoscalar meson sector. Up to this order the path
integral for the partition function'

Z= / DqDg exp{ //; d*xL(X, 1)} (4)

can be evaluated in closed form after a few steps we will
explain now. After Hubbard-Stratonovich transformation,
i.e., introducing into (4) the auxiliary integral

1 =N | DrDoc { d*x[(¢p* —2Ggr%q)?
/ nDo exp /ﬁ (¢ q2'q)
T - chiysxaqwm}, (5)

the partition function becomes a Gaussian path integral
with respect to the quark spinor fields

Z:J\/’/D;rDaexp{—/ﬁd4 [4)2427[ +U(D, ‘D)]}

x / Dq’Dz]exp{ /ﬂ xgS3 [0, n;Am}, (6)

where the inverse Euclidean quark propagator is
Sg'lh. m As) = iPp(Ay) + m+ Zlgp.a]. (7)

with  Pp(As) =7V 4740, +igAs) and  E[p.a] =
—%(@* + iysn®). The quark fields can now be integrated
out resulting in the bosonized form of the partition function

Z=N / DaDoe~ Al (8)

'We use the abbreviation [, d*x = [f dr [ d’x
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2, 2
Alp, 7, @, D] :/d“x[m—i—u(d),ﬁ))
5 4G

— tr, In {Sz' [p. m: Ay}, )

which is an exact transformation of (4). The action (9) is
now a highly nonlinear functional of the mesonic fields. In
order to evaluate the path integral over the mesonic fields
analytically, and thus to obtain a result for the contribution
of the mesonic correlations to the partition function and
thus to the thermodynamic potential of the system, we
perform a Taylor expansion of the effective action (9) up to
the second order of fluctuations around the stationary point

¢a:¢a_¢_')a

1 §*A
Ao+ Pap
Aoz = 280,00 5y
1 8%A
10
+25ﬂa5ﬂ'b Falp - (10)

where Ay = A[p, 7 = 0; D, ®] with the stationary point
defined by 6.4/ 5¢a|¢:5§ =0 (the equation for the quark
mass gap ¢ = m + —mg r), while the stationary values for
the pseudoscalar fields 7, vanish. Restricting ourselves to
the second order mesonic fluctuations, we can perform the
Gaussian path integral over meson fields and obtain the
thermodynamic potential

T
_VIHZGauﬁ = ——

T 1 B
% <A0 +§;TI‘M1I1DMI>
(11)

The propagator D ff, for a meson composed of quark
flavors f and f’ in the flavor channel a is defined as

QGauﬁ =

2G

1-2G1(2.3)’

D (2.3) = (12)

The analytic properties of the meson propagators are encoded
in the matrix elements of the polarization operator which after
analytic continuation from the bosonic Matsubara frequen-
cies to the complex energy variable z reads [27]

= 2N, TZ/

x Sp(pu+2, 5+ U], (13)

Y (z.9) Stp[Se(pa, PITY

where we have performed a unitary transformation from
the original flavor vertices A%, to those of the physical

pseudoscalar (P“) and scalar (S“) states which are linear
combinations denoted as 7¢,. Thus the vertex functions in

-
(13) are [27]
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P a S _ a
Ui =iysT4,, oo =T (14)
(ﬂ + lﬂz)ff/ \/i
Tjif, = (15)
(Aa £ ids) 1/ V2,
(46

+ lﬂ7)ff’ \/z

for P¢= 7" n*,K* K° K° denoting the pseudoscalar
meson states and S¢ = af), ag, k=, k%, k0 the scalar meson
states. Here trj, is the trace over Dirac matrices, the sum over n
denotes the sum over the fermionic Matsubara frequencies
w, = (2n+ D)aT. and S;(p,.p) = [polie, + s +A%) ~
y b—mg]™" is the quark Green function with the dynamical
quark mass m; and chemical potential y for the flavor f.
The matrix elements of the polarization operator can be
represented in terms of two integrals which after summa-
tion over the Matsubara frequencies for mesons at rest in

the medium (§ = 0) are given by
755 (2,0) = 4{F{(T, uy) + I (T, pp)
F [z +ppp)* = (myp F mp)?]

< (2. Toupp)}s (16)

where ppp =pp—pp. Now we want to discuss the
integrals that occur in (16). The first one is a one-loop
integral that does not depend on the energy z and reads

N, [Adpp?
B = g5 [ falE) = fatEL (7

with £, =,/ P>+ m} being the quark energy. The second

one depends on the complex energy variable z and can be
decomposed into two contributions

Ijch (Z’ T, 'Llff/) = I{{;air(z’ T, ﬂff/) + Ij;,];(:an(z, T’”ff’)’

(18)
where the first one,
B (o Topyy) = — A dpp? {1 ~folEp) = fo(Ef)
2, pair \<» sHyy 7 ] _ _ —
877 Jo EgEp | 2= Ep—Ep—psp
1= fo(Ey)

—fE>(Ef’)], (19)

exhibits poles in the integrand which correspond to pair

excitation modes (i.e., with the sum of the one-particle
energies in the denominators) and the second one,
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B (e Topy) = e Ndpp® [ folEy) = fo(Ey)
2.scatt Ir 87;; 0 EfEf’ Z+Ef_Ef/_ﬂff/
~ fg,(Ef/)—fE>(Ef)] (20)
= Ep+Ep —pypp

has poles in the integrand which correspond to scattering
modes (i.e., with the difference of the one-particle energies
in the denominators), see also [3,7]. The generalized
fermion distribution functions fg(E;) [8,24] for quarks
of flavor f with positive (negative) energies in the presence
of the Polyakov loop values ® and ® are

(® +20Y)Y +Y?

Fo(Ep) =1 T3 DOY)Y + 1 (21)
_ (P +20Y)Y 4 Y
fd’(Ef)_1+3(q>+ci>Y)1?+Y3’ (22)

where the abbreviations ¥ =e~(Er#)/T and ¥ = e~ (Ertu0)/T
are used. The functions (21) and (22) fulfill the relationship

fo(=Ef) =1 — f3(E;), and they go over to the ordinary
Fermi functions fi (E;) for ® = ® = 1, where
[Tl p—— (23)
[t 1+ P EsFug)

The quark masses m; are solutions of the gap equation

while the meson mass spectrum is obtained from the pole
condition for the meson propagator (12)

1= 2G T (Mo + in. 0) = 0. (25)

In order to parametrize the model using the known
pseudoscalar meson masses, the vacuum expressions of
the integrals (17) and (18) are used in the polarization
function (16). They are obtained by setting the distribution
functions to zero in (17) and (18). When extending the
calculations to finite temperatures and chemical potentials,
the solution of the gap equation (24) results in a decrease of
the quark masses (partial chiral symmetry restoration) so
that the threshold for the quark-antiquark continuum
states is lowered. The values for T and p where the bound
state merges the continuum define the Mott transition of
meson dissociation. Then the denominators in the integral
(19) develop a zero so that the polarization function (16)
becomes complex with an imaginary part that corresponds
to the meson decay width into quark-antiquark continuum
states. Beyond the Mott transition one can still look for a
strong resonance near the threshold with a negligible or
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small width in the Breit-Wigner approximation of a
complex mass pole, see Appendix A.

In general, the properties of the continuum states are
fully described by the spectral function corresponding to
the imaginary part of the meson propagator (12). For details
see, e.g., Ref. [23].

Equivalently, one can choose a polar representation of
the complex meson propagator

DY (@ +in.G) = [DY (0 + in G (26)
and describe the spectral properties in the meson channel M
by the phase shift function [3,5]

ImDM, w + in’ 1
Sy (w, ) = —arctan f}g( . q_))) @)

= ~ImIn DY, (o + in, ). (28)

Now we are in a position to return to the main goal of this
work, the study of the thermodynamics of mesonic corre-
lations in the Gaussian approximation to the partition
function which results in the following decomposition of
the total pressure of the quark-gluon-meson plasma

Ptot = _QGauﬁ = Pg + Pq + Pm> (29)

where the gluon meanfield pressure is given by the
Polyakov-loop potential

pe =U(D, D), (30)
and the meanfield pressure for quarks is
Pa= > P (31)
f=ud,s
(mf — mg f)2 N.. A
=——— "+ | dpp’E
br 56 2 A PP oy
N, [dpp* .
E o(Ef)]. (32
The mesonic pressure
(33)

Pw =Y Pu
M

is obtained from the second term in Eq. (11), given by a
sum over the mesonic channels M that include all scalar
and pseudoscalar meson states introduced above, and by
the trace over mesonic quantum numbers, to be performed
as an integral over the meson three-momentum g and the

PHYSICAL REVIEW D 96, 094008 (2017)

sum over mesonic Matsubara frequences v,, = 2mxzT. The
latter can be performed analytically using the spectral
representation [3]

o dw

2
M /- > M . —n
InD3 (ivy.q) = ][_oo T — wImlanf, (w+in,q)

(34)

and the polar representation (26) in order to obtain the
Beth-Uhlenbeck form of the mesonic pressure formulated
with the phase shifts (28)

dq [°dw .
Pu = /W/_mﬂg(a)_ﬂM)aM(va)
dq [~dw -
= /W/O ﬂ[g(w—ﬂM)+9(W+MM)]5M(0%Q)’
(35)
where g(E) is the Bose function
1
9E) = 5 (36)

In the last step, after splitting the - integral and using fact
that the phase shifts are odd functions under reflection
6(—w) = —6(w) while for the Bose functions holds
g(—w —u) = —=(1+4 g(w + u)), we have applied the no-
sea approximation, which consists in removal of the
divergent vacuum contribution [3]. This crude step may
be justified a posteriori since a comparison of the no-sea
approximation with the result obtained by including the
vacuum term regularized by a cutoff to the momentum
integral (see, e.g., Ref. [7]) shows that the results from the
vacuum term is negligible.

Note that the physical mesons are color singlet states
and therefore their distribution functions do not depend on
the Polyakov loop. This is in striking difference to the case
of diquarks which are colored objects and their distribution
is strongly suppressed by the coupling to the Polyakov loop
in the confined domain. In the deconfined domain, diquarks
are suppressed too by the Mott dissociation to their quark
constituents [8]. Therefore we do not include them in our
considerations in this work.

III. RESULTS AND DISCUSSION

The parameters used for the numerical studies in
this work are the bare quark masses mq, 4 =5.5MeV
and mgy, = 138.6 MeV, the three-momentum cutoff A =
602 MeV and the scalar coupling constant GgA? = 2.317.
With these parameters one finds in vacuum a constituent
quark mass for light quarks of 367 MeV, a pion mass of
135 MeV and pion decay constant f, = 92.4 MeV. We
present the results along trajectories in the PNJL phase
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300 ———— PNJL, crossover
— PNJL, first order
200 | ‘ ""/ ........ . /‘/A
S : g N -7
@) \
= -
— e /‘/V/‘
100 F ’." ./‘/‘ ]

200 300 400
i [MeV]

FIG. 1. Phase diagram of the PNJL model: the black solid
line corresponds to the first order phase transition which
turns into a crossover transition shown by the black dotted
line. Three thin lines correspond to fixed ratios u/T = 0.5
(red dotted line), u/T = 1.0 (green dashed line) and u/T =
2.0 (blue dash-dotted line).

diagram shown in Fig. 1. Each trajectory corresponds to a
constant ratio /T = 0, 0.5, 1.0, 2.0, where y = p,, = u, is
the light quark chemical potential. For the strange quark
chemical potential the relation y, = 0.2 p is used [28], see
also [29].

A. Phase diagram

In Fig. 1 we show the phase diagram of the present
model. To this end we find the positions of the minima
of the temperature derivative (the steepest decrease) of the
quark mass as the chiral order parameter dM/dT in the
T — p plane and display them by the dashed line. These
pseudocritical temperatures go over to the critical temper-
atures of the first order phase transition characterized by a
jump of the quark mass at the corresponding position in the
T — p plane.

A characteristic feature of the phase diagram is that
lowering the ratio 7'/u — 0, the phase transition turns from
crossover to first order. The chiral restoration is a result
of the phase space occupation due to Pauli blocking
which effectively reduces the interaction strength in the
gap equation.

B. Mass spectrum for quarks and mesons
at finite temperatures

In Fig. 2 we show the masses of quarks together with the
sum and the difference of the traced Polyakov loop ® and
its conjugate ® along different trajectories y1/T = const in
the T — u plane. We note that the chiral symmetry restora-
tion in the light quark sector is correlated with a rise in the
traced Polyakov loop which, due to the polynomial form
of the Polyakov-loop potential, which also exceeds the
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FIG. 2. Temperature dependence of the dynamical masses for
light quarks m,, = m, and for the strange quark m, (lower panel)
together with the sum and the difference of the traced Polyakov
loop @ and its conjugate ® (upper panel) along different
trajectories in phase diagram: p/T = 0 (solid black line), u/T =
0.5 (blue dash-dotted line), u/T = 1.0 (green dashed line) and
u/T =2.0 (red dotted line). The value of the strange quark
chemical potential is set to p, = 0.2u.

value 1. For finite chemical potentials ® # @ holds in the
domains where ® # 0.

In Figs. 3 and 4 we present masses of the pseudoscalar 7z
and K* mesons as well as of their scalar partners, the a,
and x* mesons, respectively, together with the appropriate

1.2

"WT=1, 1;=0.2u
10}

0.8 r

0.6 AN

Mass[GeV]

04r

02r

0.0 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

T[MeV]

FIG. 3. Masses of pions and their chiral partner state a, as a
function of temperature along the line u/7 =1 in the phase
diagram of Fig. 1 for u; = 0.2y as obtained from solving the mass
pole condition (25). Also shown is the corresponding continuum
threshold m, + m, (red dotted line). While the a, is unbound
because it is found above the threshold at all temperatures, the
pion is deeply bound with a fairly constant mass, independent of
temperature, it undergoes a Mott transition to the quark-antiquark
continuum at about 220 MeV. For temperatures above 230 MeV
the masses of pion and a, become degenerate, indicating chiral
symmetry restoration.
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1.2

1.0 k<
0.8

0.6

Mass[GeV]

0.4

02} -

250

0.0 : : :
0 50 100 150

T[MeV]

200 300
FIG. 4. Same as Fig. 3 but for K™ (K™) and its their chiral

partner state k™ (x7) shown together with the corresponding
continuum threshold m,, + m, + u,, (m, + mg + uy,).

continuum thresholds. These masses may be found in
different ways.

The first one is by solving the homogeneous Bethe-
Salpeter equation, where the mass is obtained as the pole
of the meson propagator. This method works well as long
as the particle is a true bound state for temperatures below
the Mott temperature (Tﬁmt) for the meson M, where the
polarization function has no imaginary part. Above the
Mott temperature the meson becomes an unbound state and
the definition of mass is complicated by the fact that the
pole becomes complex and the solution is not unique.
Therefore, to find approximate solutions in this case one is
generally using the Breit-Wigner form of the propagator
with the width defined by I =1Im(g,). However, this
approximation is valid only close to T . as it was
discussed in our previous work [3]. In the strict sense
the scalar mesons are always unbound since they lie above
their continuum thresholds.

At high temperatures, we observe that the masses of
scalar and pseudoscalar partner states become degenerate in
accordance with the restoration of chiral symmetry that is
also reflected in the dropping of the quark masses.

The second method of finding the meson masses
involves the phase shift of the quark-antiquark correlation
in the considered mesonic interaction channel. To define
the mass we determine the energy w where the phase shift
assumes the value z/2. In the rest frame of the meson this
energy corresponds to the mass. Below the Mott temper-
ature, the phase shift jumps from zero to z at this position
so that its derivative is a delta function, characteristic for a
true bound state. Here, we do not yet discuss the positive
kaon mode at low energy which arises in the strange sector
for K, k. For the behaviour of the phase shifts see Figs. 5-7.

The third method to determine the meson mass also
involves the phase shift. One finds the value of the mass
from the position of the maximum of the derivative of the
phase shift. For a true bound state, the derivative of the

PHYSICAL REVIEW D 96, 094008 (2017)

T T =10 MeV

w B ‘ T =150 MeV
Ha. s =02p

™ ‘ ‘ T — 250 MeV

s =0.2p

FIG. 5. Dependence of the phase shift (27) in pion and q
meson channel on the center of mass energy for different
temperatures 7 = 10, 150, 250, 300 MeV (from top to bottom)
along different trajectories in the phase diagram: u/T = 0 (black
solid line), u/T = 0.5 (blue dash-dotted line), u/T = 1.0 (green
dashed line) and u/T = 2.0 (red dotted line).
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phase shift corresponds to a delta function while for a
resonance in the continuum it is a smooth function [3,5].
For a meson at rest in the medium, the position of the peak
of the energy derivative of the phase shift corresponds to
the value of the meson mass.

The finite chemical potential in the case nonzero u/T
removes the degeneracy of the meson masses in the strange
channels. A mass difference arises between K™ and K~ as
well as between their chiral partners k™ and x~ see Fig. 4.
The chemical potential shifts the pole in the propagator,
which results in a reduction of the pseudocritical temper-
ature 7', and therefore also in a reduction of the meson Mott
temperatures T4 ..

C. Phase shifts for mesons and the Beth-Uhlenbeck
equation of state

In this subsection we discuss the results for the phase
shifts for 7 and K mesons in comparison with those of their
chiral partners, the a, and the x mesons, resp. (see also
Ref. [9]) and their consequences for the thermodynamics of
quark-meson matter at finite temperature, with the coupling
to the Polyakov-loop. The solutions for the meson phase
shifts at finite temperature are shown in Figs. 5-7 as
functions of the energy w for different temperatures and
values of the ratio u/T. As in Ref. [3] we have made
the simplifying assumption that, even in the medium, the
phase shifts are Lorentz invariant and depending on @ and g
only via the Mandelstam variable s = @® — ¢* in the form
om(@. ) = om(v/s.G=0) =6m(V/s;T.um) for given
temperature and chemical potential of the medium. Then
the BU formula for the mesonic pressure can be given the
following form

PM_dM/éTqPAWZ_;ﬁ{g<\/S+qZ_HM>
+g(\/s+q2+uM> }5m(\/§;T,u). (37)

The bound state mass is located at the jump of the phase
shift from 0 to z and this jump corresponds to a delta-
function in the BU formulas (37) for the correlations. In the
case when the continuum of the scattering states can be
neglected, that is when it is separated by a sufficiently large
energy gap from the bound state, we obtain as a limiting
case the thermodynamics of a statistical ensemble of on-
shell correlations (resonance gas).

In Fig. 5 we show the phase shifts for the nonstrange
mesons 7 and a,. As expected for pseudoscalar and scalar
isovector states, their phase shifts reflect the chiral sym-
metry breaking at low temperatures (and low chemical
potentials), with a deeply bound pion and an a state just
above the continuum threshold, separated from the pion by
alarge gap. At high temperature 7 = 300 MeV these phase
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shifts become indistinguishable, reflecting the chiral sym-
metry restoration.

In Fig. 6 we show the phase shifts for the charged kaons.
For u = 0 their modification with increasing temperature
parallels that of the pions, with the gap between the bound
state and the continuum diminishing with temperature
and becoming zero for 7 = 300 MeV, above the kaon
Mott temperature, where the kaon becomes a resonance in
the continuum. At finite chemical potentials the opposite
charge kaons develop a mass splitting and a new low-
energy mode appears in the spectrum due to the finite mass
difference, see also [7].

In Fig. 7 the phase shifts for the chiral partner states of
the kaons, the charged x mesons, are shown. Comparing
these results with those for the kaons parallels the com-
parison of the scalar a, meson with the pion. The mass
splitting of the opposite charge states with increasing
chemical potential mirrors the behavior of the kaons. At
low temperatures the chiral symmetry breaking is manifest
in the mass splitting and energy gap between the kaons and
the k¥ mesons as chiral partner states. At high temperatures,
when chiral symmetry is restored, these differences vanish
and kaon and « phase shifts become indistinguishable.

Now we want to study the thermodynamics of mesons in
a hot and dense medium encoded in the thermodynamic
potential or equivalently the pressure (37). Equation (37)
has the BU form, where the phase shift obeys the Levinson
theorem in a medium [4,5]

/0°° da;d&:;is)w): 0. (38)

Here we may introduce the energy level of the continuum
threshold wy,, and split (38) in the sum of two integrals with
the intervals of integration [0, wy,] and [wy,, oo], respec-
tively. After integrating out we obtain the Levinson
theorem in the form [8]

mng = Spi(O) — S (00), (39)

which applies also in the case of a hot and dense
medium. The continuum threshold is @y rr(q) =

\/q2 + mtzhr rp T HEp where my, ., = 2m, for the light-

light quark mesons (z, ay) and my, ., = m, + m, for the
mixed light-strange two-particle states (K, k). For energies
below the threshold there can be only a discrete number
ng M of bound states in the channel M, each contributing an
amount of 7 to the change in the phase shift at the bound
state energies wy; = \/¢> +M? with i=1,...,ngy. In
particular, when due to the chiral symmetry restoration the
dropping quark masses entail a lowering of the continuum
thresholds wy, this triggers the dissolution of the bound
states into the continuum (the Mott effect) so that ng; = 0
results.

094008-8



MOTT DISSOCIATION OF PIONS AND KAONS IN HOT, ...

s

FIG. 6. Same as Fig. 5 for the K™ and K~ states.
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FIG. 7. Same as Fig. 6 for the x* and ™ states.
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In Fig. 8 we show the contributions from the mesons
(7, K, ay, k) and partons (u, d, s quarks and gluons) to the
total pressure in hot quark matter as functions temperature
for different values of the ratio x/T. We show the pressure
in units of the Stefan-Boltzmann limit for the quark-gluon
plasma (N. = N, = 3)

2
Pss = = T*{2(N2 - 1)
90

TR )]

f=ud.s

At finite temperature and vanishing y/ T the partial pressure
of the mesons shows a typical behavior, first increasing
with temperature, then, when the chiral phase transition
occurs, decreasing even before the Mott temperature is
reached. Above the Mott temperature, the growing meson
width leads to a stronger reduction of the pressure with a
rather sharp onset of this effect. In case of finite chemical
potentials, along trajectories with fixed ratio u/T, the total
pressure grows faster with increasing temperature because
the chiral transition temperature drops with increasing y/T.

D. A possible explanation of the “horn effect”
for the K* /z™* ratio?

We want to come back to the observation made in the
discussion of the phase shifts for the kaons shown in Fig. 6
and their scalar partner states shown in Fig. 7 that at finite
baryon density and sufficiently high temperature a low-
energy resonance or even bound state occurs in the
positively charged channels and that is practically absent
in the negatively charged channels. The appearance of this
anomalous mode is a consequence of the unequal masses of
the constituents of these composite states and it is absent for
the pions and their scalar partner states.

We are curious to see whether these anomalous states
have a potential to contribute to the resolution of the
puzzling observation of an enhancement of the ratio
K" /z" over the ratio K~ /n~ of particle yields in heavy-
ion collisions at /syy ~8 GeV (equivalent to Ej,, ~
30 AGeV in fixed target experiments (the “horn™ effect
[30]), see [31] for the references to the experimental data
and an early attempt to explain the location of the “horn”
within a statistical model. This work suggests that the
transition from baryon to meson dominated entropy density
may explain the position of the peak for the K*/z™ ratio.
The sharpness of the peak, however, is not well reproduced
by the statistical model. While standard kinetic approaches
to particle production in heavy-ion collisions have failed
to explain the horn effect, the inclusion of chiral symmetry
restoration effects for the string decay in the PHSD
approach recently resulted in a striking improvement
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FIG. 8. Pressure of the 2 + 1 flavor PNJL model with scalar and
pseudoscalar meson correlations as a function of temperature
(black solid line) normalized to the Stefan-Boltzmann pressure
(40) for the cases u/T =0, 0.5, 1.0, 2.0 (from top to bottom).
Also shown are the partial pressures of the components: light and
strange quarks (red dotted); “gluon” contribution from Polyakov
loop potential U/ (green dashed); light and strange quarks plus
gluons (blue dashed-dotted); mesonic contributions (magenta
dash-double-dotted).
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FIG. 9. Mapping of points on the chemical freezeout line
parametrized in Ref. [35] to points on the pseudocritical
transition line of the present PNJL model under the assumption
that corresponding states shall lie on a line of constant y/T. The
dots stand for values for |/syy/[GeV] = 1.5, 2, 3, 5, 10, 20,
100, 500, starting from 7T ~ 0 at u ~ 310 MeV to T ~ 160 MeV
at yu~0.

[32]. Chiral symmetry restoration as the precondition for
the Mott dissociation of hadrons has also been the key
element in an alternative attempt to provide a mechanism
for chemical freeze-out [33,34] and for the horn effect by
Mott-Anderson localization [28].

On the basis of the present approach to in-medium phase
shifts for quark-antiquark scattering in hot, dense quark
matter and the resulting mesonic contributions to the
thermodynamics described within the Beth-Uhlenbeck
approach, we propose to consider the ratios of partial
pressures for the meson states according to Eq. (37) for
describing the ratio of meson yields at freeze-out

T T T
0,4 -
0,3
i)
€ oot
/ K*/* - with anomalous |
4 I .
0,1F ’,i ===-K/n - with anomalous |
/ —KY/n*
/
S K/n
4
0,0 LA | N N | L
1 10 100 1000
s]]q/:[, [GeV]

FIG. 10. Ratio of yields K™ /z* and K~/z~ with and without
the anomalous low-energy states as a function of the nucleon-
nucleon center of mass energy ,/syy in heavy-ion collisions.
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FIG. 11. The contour of energy dependence of the phase shifts for
K (upper panel), K~ (middle panel) and = (lower panel) along the
chemical freeze-out line in the phase diagram of Fig. 9, parametrized
with the cms energy /sy, of the heavy-ion collision creating the
corresponding freeze-out conditions. Note that for the K™ an
additional, low-mass quasibound state arises which is prominent
in the energy range of the “horn effect” for the K™ /z ™ ratio.
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ng: [ dM [ dp(M/E)[eEFI/T — 117154 (M)
ne [dM [ dp(M/E)eF T —1)7Ts (M)

where temperature and baryochemical potential are related
to the collision energy /syy by the fit formula for the
freeze-out parameters in the statistical model given, e.g., by
[35]. The nonequilibrium pion chemical potential is chosen
as u, = 120 MeV [36]. For a recent discussion of the
nonequilibrium pion distribution with a chemical potential,
see [37]. We follow the concept of Refs. [33,34] that
chemical freeze-out may be triggered by chiral symmetry
restoration (see also [38]) and evaluate therefore the particle
ratios (41) along the line of the (pseudo-)critical temper-
atures in the phase diagram of Fig. 1. In order to relate these
numbers to the actual phenomenology of chemical freeze-
out in heavy-ion collisions we map points with a fixed
value of /T on the pseudocritical line of our PNJL model
to points on the curve fitted to statistical model analyses
of the freeze-out parameters 7'y, us, with the same value
of us,/Ty,, corresponding to a certain collision energy
\/Snn-» see Fig. 9. With this prescription we obtain the
energy scan for the ratios K*/z" and K~ /z~ shown in
Fig. 10. In order to highlight the possible role of the
anomalous low-energy states for explaining the horn
effect we show by thin lines the same ratios without
these states.

In the present approach the enhancement of the K™ /z+
ratio in the region of the horn (without affecting the K~ /7~
ratio) is a quark substructure effect due to the anomalous
resonant state in the Bethe-Salpeter kernel for the quark-
antiquark polarization function (16) in the channel of
the K meson. We want to explain this effect further by
showing the phase shifts, thus elucidating the spectral
properties in the K*, K~ and pion channels along the
pseudocritical line (using the mapping of Fig. 9) in Fig. 11.
At the position of the bound state the phase shift jumps
from zero (white) to z (black), so that its mass (energy at
zero momentum) can be identified as the sharp black-white
border line. While the pion mass is fairly unaffected, the
mass of K™ (K™) increases (decreases) at lower NOT
corresponding to higher chemical potential. In the region of
4 GeV < /syy < 20 GeV we can clearly identify a strong
resonance state indicated by the grey band with a mass
corresponding to the white-grey borderline and lying in the
range of 400 to 500 MeV.

IV. CONCLUSIONS

In this work we have described the thermodynamics
of Ny =2 + 1 meson-quark-gluon matter at finite temper-
ature and chemical potential in the framework of the
Beth-Uhlenbeck approach. In this formulation the quark-
antiquark correlations in scalar and pseudoscalar channels
are accounted for by the corresponding phase shifts as
solutions of the Bethe-Salpeter equations for the meson
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propagators. The notion of the phase shifts is generalized
such as to display both the bound and scattering states
spectrum with their characteristic medium effects. Most
prominently this concerns the Mott transition where the
bound state transforms to a resonance in the continuum. This
transition manifests itself in the vanishing of the binding
energy as a consequence of the lowering of the continuum
edge of scattering states due to chiral symmetry restoration.
It appears as a jump of the phase shift at threshold by =z in
accordance with the Levinson theorem. Thus the mesonic
pressure expressed in the BU form reflects this Mott
dissociation effect. While the quark and gluon contribution
to the total pressure is increased towards the Stefan-
Boltzmann limit above the chiral restoration, the mesonic
contribution to the pressure dies out.

In the behaviour of the phase shifts for K* and x*
mesons we obtain an anomalous low-energy mode that is
particularly pronounced for the positive charge states at
finite densities and temperatures. We have discussed this
phenomenon as a possible explanation for the horn effect, a
pronounced peak in the energy scan of the K™ /z™ ratio in
heavy-ion collisions around /syy ~ 8 GeV. This behavior
of the pressure in the meson-quark-gluon system at finite
temperature and chemical potential is in qualitative agree-
ment with the results from lattice QCD simulations, for
the most recent ones see [39,40]. Quantitatively, there are
differences the origin of which is well understood. The
absolute value of the temperature for which the pressure
starts rising towards the Stefan-Boltzmann limit is well
above the one obtained in lattice QCD. This discrepancy
can be traced to the difference in the pseudocritical
temperatures for chiral symmetry restoration. Local NJL
and PNJL models predict chiral restoration temperatures
above 200 MeV, while lattice QCD simulations give
T.=154+£9 MeV [41]. The so-called ‘“entanglement”
PNIJL model has been suggested to cure this problem
[42] by modifying the scalar coupling by a function of the
traced Polyakov loop Gy — Gg(®, ®). Another improve-
ment of the PNJL model concerns its nonlocal generali-
zation which not only provides a solution to the problem of
the pseudocritical temperature absolute value [43,44], but
also describes the running of the quark mass and the wave
function renormalization of the quark propagator, in very
close agreement with lattice QCD simulations at 7 =0
[45]. At high temperatures, lattice QCD thermodynamics
does not approach the massless Stefan-Boltzmann limit but
rather a modified one which is well decribed by thermal
masses in the two-loop approximation to the thermody-
namic potential, see [46] and references therein. In the
transition region, it is a matter of a detailed quantitative
comparison, how many more hadronic resonances might be
of relevance for a satisfactory description of the lattice
QCD data. It is clear that for very low temperatures and
finite baryon densities the inclusion of baryonic states is
customary. Then the EoS constraints from compact star
phenomenology and heavy-ion collisions [47] shall be the
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guideline for the model development where lattice QCD
data are absent. These issues will be subject of subsequent
work along the lines of the Beth-Uhlenbeck approach to
the thermodynamics of the hadron-to-quark-gluon matter
transition.
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APPENDIX: BREIT-WIGNER APPROXIMATION

Note that when there is no bound state solution below
the continuum threshold @y, s (§ = 0) = My pp + pisy,
then in the vicinity of the threshold, one can make the ansatz
of a complex mass pole (Breit-Wigner approximation)
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1

Z:MMa—iEFMa, (Al)

where My« > @y rp(§ =0) and T'ye << Mg, and look
for solutions of Eq. (25) in its complex form in order to
determine the mass of the resonance M ;. and the respective
decay width I'j;«. Thus, we assume that this equation can be
written as a system of two coupled equations [upper (lower)
sign for M4 = P9(§%)]

1
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: . (A2
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