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We present the first fully differential next-to-leading order QCD calculation for lepton production in
transversely polarized hadronic collisions, p↑p↑ → l�X, where the lepton arises from the decay of an
electroweak gauge boson. The calculation is implemented in the Monte-Carlo like code CHE that already
includes the unpolarized and longitudinally polarized cross sections and may be readily used to perform a
comparison to experimental data and to extract information on the related parton distributions. We analyze
the perturbative stability of the cross-section and double spin asymmetry ATT at RHIC kinematics. We find
that the QCD corrections are non-negligible even at the level of asymmetries and that they strongly depend
on the lepton kinematics. Furthermore, we present two scenarios for transversely polarized parton
distributions, based on the de Florian-Sassot-Stratmann-Vogelsang (DSSV) set of longitudinally parton
densities and fully evolved to NLO accuracy, that can be used for the evaluation of different observables
involving transverse polarization.
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I. INTRODUCTION

The partonic structure of polarized nucleons at the
leading-twist (twist-2) level is characterized by the unpo-
larized, longitudinally polarized, and transversely [1–4]
polarized parton distribution functions f, Δf and δf,
respectively. Unpolarized parton distributions are known
to a high degree of accuracy, allowing for very precise
calculations at hadronic colliders, such as the LHC. On the
other hand, regardless of much progress over the past three
decades, many open questions concerning the helicity
structure of the nucleon still remain. For example, we so
far have only a rather unfinished picture of the individual
longitudinal polarizations of the light quarks and antiquarks
[5–7], and just a first hint on the helicity contribution of
gluons inside the proton [7,8]. Nevertheless, a strong
program of polarized pp collisions is now underway at
the BNL Relativistic Heavy Ion Collider (RHIC) [9,10],
aiming at further unraveling the spin structure of the proton.
Regarding the third leading-twist density, much less is

experimentally known about the distributions of trans-
versely polarized quarks in a transversely polarized proton
(see [11] for a recent extraction of valence transversity
distributions from dihadron production). A number of
different processes, including prompt photon, heavy fla-
vour, inclusive hadrons and jet production have been
proposed as observables to pin down the transversity
distributions (see, e.g., [12]). It has long been recognized
that Drell-Yan Z boson production at the RHIC may
provide clean access to the transverse polarizations of
quarks and antiquarks in the colliding protons [13–18].
The quantity of interest here is the double transversely
polarized asymmetry defined as the ratio between the
transversity cross section and the unpolarized one, as

ATT ≡ dσ↑↑ − dσ↑↓ − dσ↓↑ þ dσ↓↓

dσ↑↑ − dσ↑↓ − dσ↓↑ þ dσ↓↓
≡ dδσ

dσ
; ð1Þ

where the arrows indicate the corresponding transverse
polarization of each beam.
During the last decades, a number of perturbative QCD

next-to-leading (NLO) calculations became available for
this observable, either at the level of the fully inclusive
cross-section [17,19,20] or differential only on some of the
variables [17,18]. For instance, the less inclusive analytical
calculation presented in Ref. [18] provides a result which is
differential on the invariant mass and rapidity of the
dilepton system and the azimuthal angle of one lepton.
But other relevant distributions, such as the transverse
momentum of each of the leptons, cannot be reconstructed
from those.
While providing an estimate of the observables asym-

metries, this kind of approach needs to be expanded in
various ways. On one hand, there is an experimental issue:
the detectors at RHIC do not offer full coverage, which
means that it is not always possible to reconstruct the
momentum of the gauge boson from the leptonic final
states. Furthermore, due to the acceptance of the detector
and also in order to reduce the background, selection cuts
are applied on several leptonic (and sometimes hadronic)
variables which are not described by more inclusive
calculations. On the other hand, at variance with the
unpolarized and longitudinally polarized cases, for trans-
verse polarization there is a strong azimuthal correlation
between the spin of the protons and the momentum of the
outgoing lepton. That makes indispensable to count with a
fully differential description of the observable in terms of
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the leptons.1 Indeed, the strategy adopted by the RHIC
experiments is to detect the charged decay lepton and
determine its transverse momentum pT and rapidity η.
The relevant process therefore becomes the reaction
pp → l�X, similar in spirit to the processes pp → πX,
pp → jetX [21–23] used at RHIC to determine gluon
polarization in the nucleon.
The peculiar azimuthal dependence appearing in trans-

verse polarization scattering can be easily understood at
the level of the matrix elements. At the lowest order, the
only partonic channel that contributes to the process is
qðp1Þq̄ðp2Þ → e−ðl1Þeþðl2Þ. The corresponding (color and
spin averaged) transversely polarized matrix element is
given by

δjMj2 ¼ 2

3
C
�
2
t̂ û
ŝ
s1 · s2 þ

4

ŝ
s1 · l1s2 · l1

�
; ð2Þ

where s1 ≡ ð0; cosϕ1; sinϕ1; 0Þ and s2 ≡ ð0; cosϕ2;
sinϕ2; 0Þ are the transverse spin vectors of the incoming
protons, and the usual Mandelstam variables are given by
ŝ ¼ ðp1 þ p2Þ2, t̂ ¼ ðp1 − l1Þ2 and û ¼ ðp2 − l1Þ2. The
charge coefficient C, adding contributions from both
photon and Z-boson exchange, is given by

C≡ e4e2q þ 2e2eqvevq
ŝðŝ −M2

ZÞ
ðŝ −M2

ZÞ2 þ Γ2
ZM

2
Z

− ðv2e þ a2eÞða2q − v2qÞ
ŝ2

ðŝ −M2
ZÞ2 þ Γ2

ZM
2
Z
; ð3Þ

where, for the sake of simplicity in the notation, we write
the corresponding weak coupling as proportional
to (vi − aiγ5).
In the center-of-mass frame of the incoming partons, the

parenthesis in Eq. (2) reads

1

2
sin2 θ cos ð2ϕ − ϕ1 − ϕ2Þ≡ 1

2
sin2 θ cosð2ΦÞ; ð4Þ

where θ and ϕ are the polar and azimuthal angles of the
lepton, respectively. As it occurs for other processes
involving transversely polarized partons, the cosð2ΦÞ term
integrates to zero and, therefore, a special treatment is
required to extract a nonvanishing asymmetry, as it will be
discussed in Sec. II.
While leading-order (LO) calculations in hadronic col-

lisions usually present only a qualitative description of an
observable, higher order corrections are known to be large
and needed to provide reliable quantitative predictions for a
high-energy process. It is, therefore, crucial to determine
the NLO QCD corrections.

In general, the key issue here is to check the perturbative
stability of the process considered, that is, to examine to
which extent the NLO corrections affect the cross sections
and, in spin physics the spin asymmetries relevant for
experimental measurements. Only if the corrections are
under control can a process that shows good sensitivity to a
given transversity parton density be considered as a
genuine probe for that, and be reliably used to extract
accurate distributions from future data. Furthermore, the
inclusion of extra partons in the NLO perturbative calcu-
lation also allows to improve the matching between the
theoretical calculation and the realistic experimental con-
ditions. This is particularly true when the calculation is
performed at the fully differential level, such that all the
four-momenta of all outgoing particles (leptons and par-
tons) are available in order to apply the same cuts used at
the experimental level. For that reason, we present here the
first fully differential (in the hard cross section) NLO
calculation for the production of single leptons, mediated
by the exchange of a photon and a Z-boson, in collisions of
transversely polarized protons p↑p↑ → l�X.
The remainder of this paper is organized as follows: in

the next section we very briefly discuss the nonstandard
characteristics of the NLO calculation with transverse
polarization. In Sec. III we introduce two different scenar-
ios of transversely polarized distributions at NLO accuracy,
a key ingredient for the calculation. In Sec. IV we study the
perturbative stability of the different observables and
provide the phenomenological NLO results for the most
relevant distributions and asymmetries. We finally con-
clude in Sec. V.

II. NEXT-TO-LEADING ORDER CALCULATION

In order to evaluate the NLO QCD corrections to the
process we rely on the version of the subtraction method
introduced and extensively discussed in Refs. [24,25], and
later extended to the polarized case in Ref. [22]. We refer
the reader to those references for the details. The calcu-
lation is implemented in the Monte-Carlo like code CHE

(standing for collisions at high energies)2 which provides
access to the full kinematics of the final-state particles,
allowing for the computation of any infrared-safe observ-
able in hadronic collisions and the implementation of
realistic experimental cuts. It is worth noticing that the
same code can compute the unpolarized, the longitudinally
single polarized and the (longitudinally and transversely)
double polarized cross sections. Even though the region of
most interest at RHIC corresponds to the production of a
lepton pair due to the decay of a Z boson, the code also
allows for the computation of the corrections arising from
photon exchange at the same accuracy in perturbative

1Furthermore, in order to better reproduce the experimental
cuts it is also necessary to be able to describe the hadronic activity
in the final state 2The code is available upon request from deflo@unsam.edu.ar
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QCD.3 We show in Fig. 1 some of the Feynman diagrams
contributing at LO and NLO.
We point out that at NLO the contribution from photon

exchange, qq̄ → γ�g followed by γ� → lþl−, may generate
large contributions when the high-transverse momentum
photon splits almost collinearly into the lepton pair,
producing high-pT leptons with a very low invariant mass.
A proper treatment of this configuration would require the
addition of a fragmentation contribution based on parton-
to-dilepton fragmentation functions [26]. On one hand, it is
likely that configurations with two nearly collinear leptons
can be distinguished experimentally from true single high-
pT leptons. On the other hand, the kinematical region of
interest for transverse polarization at RHIC is limited to the
high invariant mass configuration around the Z mass, MZ.
Therefore, in our calculation we can formally avoid such
dangerous configurations by requiring the lepton pair to
have an invariant mass Ml1l2 > 10 GeV, without any
compromise in the result since most phenomenological
analysis will actually demand Ml1l2 ≳ 70 GeV.
The Monte-Carlo like implementation relies on the

integration by using numerical adaptive routines, such as
Vegas, in order to improve the necessary cancellation of
different terms in the subtraction method. The transversity
cross section introduces an extra complication towards that,
due to the particular azimuthal dependence cos 2Φ which
integrates to zero over the full phase space. In order to avoid
that, and to produce results according to the conventional
strategy, we multiply the corresponding squared matrix
elements by signðcos 2ΦÞ, such that the azimuthal integra-
tion becomesZ

π

−π
cos2ΦdΦ

→

�Z
−3π=4

−π
−
Z

−π=4

−3π=4
þ
Z

π=4

−π=4
−
Z

3π=4

π=4
þ
Z

π

3π=4

�
cos2ΦdΦ;

ð5Þ
maximizing the transversity cross section.
As a check of the implementation of the calculation, we

have also computed the fully inclusive transversely polar-
ized cross sections, integrated over all lepton angles. For

these cross section, analytical results are available [27],
with which we agree.

III. TRANSVERSITY PARTON
DISTRIBUTIONS AT NLO

In analogy to the longitudinally polarized densityΔf, the
transversity distribution δf is defined as the difference of
finding a parton of flavor f at a scale Q with momentum
fraction x and its spin aligned (↑↑) and antialigned (↓↑) to
that of the transversely polarized nucleon:

δfðx;QÞ≡ f↑↑ðx;QÞ − f↓↑ðx;QÞ: ð6Þ
At variance with the longitudinally polarized and unpolar-
ized cases, there is no transversity gluon density for spin
1=2 hadrons [28,29]. The lack of a gluon distribution, and
its corresponding mixing with quarks, has striking effects
on the (factorization) scale dependence of the transversity
densities, which evolve as nonsinglet quantities. Valence
and sea quark distributions evolve very similarly, with
small differences that start at NLO accuracy.
In order to analyze the perturbative stability of the NLO

cross section, it is indispensable to count with transversity
parton distributions evolved with the corresponding NLO
kernels [27,30,31]. Given that little information on trans-
versity distributions is available so far, we will present two
extreme scenarios for them. The first one is based on
Soffer’s inequality [32]

2jδfðx;QÞj ≤ fðx;QÞ þ Δfðx;QÞ; ð7Þ
which has been shown to be preserved under evolution at
LO and NLO [15,27,33]. For the transversity maximally
saturated scenario we assume that the inequality is satu-
rated (choosing the positive sign) at a low scale
Q ¼ 1 GeV. For the unpolarized distributions we use
the MSTW set [34], while for the helicity densities we
rely on the latest DSSV14 [5–7] analysis. By saturating the
inequality at Q ¼ 1 GeV, one usually generates trans-
versity distributions that can be unnaturally large, in
particular in the sea quark sector. Given the nonsinglet
nature of the transversity distributions, the sea quark
densities at Q ∼MZ can only be large at small x if the
same distribution is already sizable at the low initial scale
Q ¼ 1 GeV. In contrast, the unpolarized and longitudinally
polarized sea quark distributions are driven at small x by

(a) (b) (c)

FIG. 1. Feynman diagrams for Z, γ production with leptonic decay: (a) leading-order, (b) NLO virtual correction, (c) NLO real
emission. Crossed diagrams are not shown.

3Notice that the cross section is identically zero for transverse
polarization in the case of W� exchange
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their mixing to the gluon density through the evolution and
can grow considerably.
A more conservative scenario relies on a possible

analogy between longitudinally and transversely polarized
quark densities. Since the assumption δfðx;QÞ≡
Δfðx;QÞ cannot be maintained for all scales Q due to
the different evolution of δfðx;QÞ andΔfðx;QÞ, we set the
equality between both distributions at the initial scale
Q ¼ 1 GeV in the transversity-helicity scenario. The result
for both scenarios at Q ¼ MZ, along with the unpolarized
and longitudinally polarized counterparts, are shown in
Figs. 2 and 3 for the u, ū and d, d̄ quark distributions,
respectively.
As can be observed, and in agreement with the argu-

ments presented above, in the transversity-helicity scenario
the quark densities follow the same trend of the helicity-
distributions, while in the antiquark sector we see larger
differences originated by the scale evolution. On the other
hand, more sizable transversity distributions are obtained in
the transversity maximally saturated scenario, where we
also notice a notorious difference in the small x-behaviour
between the transversity and unpolarized distributions due
to their nonsinglet and singlet nature, respectively.

Along this paper, we discard eventual contributions from
heavy quark distributions in the polarized case, an rely only
on the three massless flavor approach. Furthermore, we
only produce NLO evolved parton densities, and use them
as discussed in Sec. IV4

IV. PHENOMENOLOGICAL RESULTS FOR RHIC

In this section we analyze the perturbative stability of
different observables in lepton production. We now use
our NLO code to present some numerical results for
polarized pp collisions at RHIC at center-of-mass energyffiffiffi
S

p ¼ 500 GeV. We do not include any QED or electro-
weak (EW) corrections, but choose the coupling constants
α and sin2 θW in the spirit of the “improved Born approxi-
mation” [35,36], in order to effectively take into account
the electroweak corrections. This approach results in
sin2 θW ¼ 0.23119 and α ¼ αðMZÞ ¼ 1=128. We also
require the lepton pair to have an invariant mass
Ml1l2 > 10 GeV, in order to avoid potentially large NLO
contributions from production of a high-pT nearly real
photon that subsequently decays into a pair of almost
collinear leptons, as discussed before. We set the mass of
the vector boson to MZ ¼ 91.1876 GeV and the corre-
sponding decay width to ΓZ ¼ 2.4952 GeV [37]. For the
unpolarized cross section we will use the MSTW distri-
butions with five massless flavors, while for the trans-
versely polarized case we rely on the (3-flavor) sets of
distributions presented in Sec. III.
We study two different observables for lepton production

in pp → l−X: the transverse momentum (pT) distribution
of the electron with a rapidity cut of jηej < 1, and the
rapidity distribution with pT > 20 GeV. There are two
hard scales in the process, which are of the same order: the
mass of the gauge boson and the transverse momentum of
the observed lepton. We choose μ2F ¼ μ2R ¼ ðM2

Z þ p2
TÞ=4

as the default factorization and renormalization scales. We
note that the scale dependence of the cross sections and, in
particular of the spin asymmetries is extremely mild in case
of vector boson production, so that other choices like μF ¼
μR ¼ MZ or μF ¼ μR ¼ Ml1l2 provide rather similar results.
Given that the main reason to study polarized scattering is

to shed light on the spin structure of the proton, and, in this
particular case, to obtain information on the transversely
polarized distributions, we begin by analyzing which is the
sensitivity range of the observable in themomentum fraction
carried by partons. With the selection cuts implemented in
this analysis, the process is dominated by the kinematics on
the Z-pole and, therefore, one expects a correlation between
the partonic momentum fractions and the Z’s rapidity (yZ),
for which one has x1;2 ¼ MZffiffi

S
p e�yZ at the Born level. It has

been shown [38,39] that this relation between momentum

FIG. 2. Left: Next-to-leading order xuðx;QÞ evaluated at
the scale Q ¼ 91.2 GeV for the unpolarized MSTW [34] dis-
tributions (solid), helicity DSSV [5–7] distribution (dashes),
transversity maximally saturated (dashed-blue), and transver-
sity-helicity distributions (dots-blue). Right: Same for xūðx;QÞ
(right-hand side).

FIG. 3. Same as Fig. 2 but for the xdðx;QÞ and xd̄ðx;QÞ
distributions.

4A Fortran code with the sets of tranversely polarized parton
distributions is available upon request from deflo@unsam.edu.ar
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fractions and rapidity at the gauge boson level is inherited by
the lepton, even to NLO accuracy. A remarkably strong
correlation is found between hx1;2i and ηe , as a rough
approximation, one can parametrize these correlations by
the simple “empirical” formulas

hx1;2i ∼
MZffiffiffi
S

p e�ηe=2: ð8Þ

Considering that RHIC experiments will allow to reach
rapidities of the order of jηej ∼ 1, one can expect sensitivity
to the transversely polarized quark and antiquark distribu-
tions in the region 0.07≲ x≲ 0.4.
By observing the distributions in Fig. 2, it is clear that the

leading u, ū, d and d̄ transversity distributions are always
positive in that kinematical range for the transversity
maximally saturated scenario, while ū and d̄ densities
are mostly negative (with a sign change in that relevant
region) for the transversity-helicity scenario. The overall
sign of the transversely polarized cross section (and there-
fore the sign of the corresponding asymmetry) arises from
the combination of the parton distributions and the partonic
cross section. For qq̄ → γ� → e−eþ annihilation the polar-
ized partonic asymmetry is positive, after removing the
overall cos 2Φ term. The situation changes at the Z-pole
due to the different electroweak couplings, as observed at
the leading order in Eq. (3), such that the ratio between the
corresponding partonic contributions to the cross section is
roughly given by

δσqq̄→e−eþðMl1l2 ∼MZÞ
δσqq̄→e−eþðMl1l2 ≪ MZÞ

∼ −
ðv2e þ a2eÞða2q − v2qÞ

e4e2q
ð9Þ

and, therefore, the transversity partonic asymmetry
becomes negative at Ml1l2 ∼MZ. We can observe this
feature in Fig. 4, where we present the dilepton invariant

mass distribution for the transversely polarized cross
section. The sign of the cross section around the peak is
therefore fixed by (the opposite sign of) the one arising
from the combination of the polarized parton distributions,
resulting in a negative asymmetry for the transversity
maximally saturated scenario and a positive one for the
transversity-helicity scenario (due to the mostly negative
antiquark distributions). On the other hand, for invariant
masses far from the Z peak (i.e. Ml1l2 ≲ 70 GeV or
Ml1l2 ≳ 110 GeV), the cross section is dominated by
photon exchange and the opposite sign is observed.
We move now on the relevant issue of analyzing the

perturbative stability of the QCD expansion for different
observables. One usual way to display the size of radiative
QCD corrections is in terms of a “K-factor,” which
represents the ratio of the NLO and LO results. In the
calculation of the numerator of K one obviously has to use
NLO-evolved parton densities. As far as the denominator is
concerned, a natural definition requires the use of LO-
evolved parton densities. However, by using NLO-evolved
parton densities and LO partonic cross sections, one still
obtains a hadronic cross section accurate to LO, and
therefore the denominator of the K-factor can also be
computed with NLO-evolved parton densities. The longi-
tudinally polarized parton distributions, which are at the
basis of both transversity distribution scenarios, are not yet
as well determined as the unpolarized ones. Therefore,
different results might arise for some of them when fits are
performed at LO or at NLO accuracy, resulting in rather
large K-factors for the distributions themselves. As an
outcome of that, the use of LO distributions in the
evaluation of the denominator could generate artificially
large or small K-factors in the transversely polarized cross
sections, with effects far beyond those originated by the
perturbative corrections. Therefore, along this paper, we
always use NLO distributions for both LO and NLO
observables to emphasize the true outcome of the higher
order terms.
We start by presenting in Fig. 5 the dependence of the

transversely polarized cross sections on the transverse
momentum of the electron. On first hand, we observe that
the cross sections are dominated by the production of
leptons around the Jacobian peak pT ∼MZ=2. In this
region the QCD corrections, as observed in the K-factors
presented in the inset plot, become rather large and
unstable. This is not unexpected: at LO, reaching pT >
MZ=2 is only possible due to the finite width structure of
the Z boson, while starting at NLO that region can be filled
by the decay of leptons from a Z boson with net transverse
momentum, feature possible due to the emission of extra
gluons at higher orders. Therefore, that kinematical regime
becomes very sensitive on soft gluon emission, and its
proper description requires all-order resummation of the
large logarithms that spoil the convergence of the pertur-
bative expansion. However, after one integrates over a

FIG. 4. Dilepton mass distribution for the transversely polar-
ized cross section computed at NLO accuracy with the trans-
versity maximally saturated (solid) and transversity-helicity
(dotted) polarized densities.
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sufficiently large region of lepton transverse momentum,
these logarithms turn into finite corrections and their
resummation is not necessary. From the point of view of
extracting transversely polarized parton distribution func-
tions, it therefore seems advisable to focus on observables
integrated over the lepton’s transverse momentum (such as
the rapidity dependence presented here), because these are
insensitive to soft-gluon effects, and to use a plain NLO
calculation. On the other hand, at low transverse momen-
tum, we observe a change of sign in the cross sections due
to the dominance of the pure QED (photon-exchange)
contribution, similarly to what occurs at low dilepton
invariant mass, as already observed in Fig. 4. In this
kinematical region, due to the change of sign, the QCD
corrections also become rather large and very much
dependent on the scenario used for the transversity parton
distributions.

In Fig. 6 we show the rapidity dependence of the NLO
and LO transversely polarized cross sections, for both
scenarios of transversity parton distributions. It is clear
from there that the QCD corrections to the cross section are
sizable and very much dependent on the set of distributions
used. The inset plot displays the K-factors, explicitly
manifesting corrections in the range of 20%–35%. It is
important to notice that even in the rather restricted rapidity
range relevant for RHIC, usual assumptions like constant
K-factors, as those obtained from fully inclusive calcula-
tions of Z production, would fail to provide an accurate
description of this observable.
Finally, we present in Fig. 7 the corresponding LO and

NLO results for the transversity asymmetry. For the sake of
simplicity we do not include the background contribution
that might arise from pp → W� → l�ν in the unpolarized
cross section needed to define the asymmetry. That would
only result in a slightly smaller asymmetries, without any
modification of the features presented along this paper, and,
furthermore, is usually avoided by requiring the presence of
two charged leptons in the detector [40]. The general
features of the asymmetries can be easily understood. In
the transversity maximally saturated we find negative (due
to the Z pole dominance) and larger asymmetries than for
the (positive asymmetry) transversity-helicity distributions,
due to the more sizeable transverse polarization of both
valence and quark densities in the first scenario.
It is also visible that, within the proposed scenarios, the

asymmetries are at the few percent level, similarly to other
observables involving transversely polarized beams [12]. In
principle it would be possible to generate transversely
polarized distributions with a larger polarization, assuming
that the boundary condition is imposed at even lower initial
scales, but that might turn out into rather unphysical
scenarios. While large luminosities will be clearly needed

FIG. 6. Rapidity dependence of the NLO (solid) and LO
(dashes) transversely polarized cross sections. The corresponding
K-factors are shown in the inset plot.

FIG. 7. Rapidity dependence of the NLO (solid) and LO
(dashes) transversely polarized asymmetries for the two sets of
the transversely polarized parton distribution functions defined
above. The corresponding K-factors are shown in the inset plot.

FIG. 5. Transverse momentum dependence of the NLO (solid)
and LO (dashes) transversely polarized cross sections. The
corresponding K-factors are shown in the inset plot.
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at RHIC to perform the measurement, even the observation
of the sign of the asymmetry would be of great help to
improve our understanding on the spin content of the
proton. For more details on the experimental possibilities
for the measurement, we refer the reader to the recent
analysis in [16].
While asymmetries are in general rather stable under the

QCD corrections, since many effects present in the indi-
vidual cross sections cancel in the corresponding ratio, the
NLO contributions still have a nontrivial impact. In the
inset plot of Fig. 7 we show the corresponding asymmetry
KA ≡ ANLO

ALO
-factors, where we can observe corrections of the

order of 10% for the asymmetry computed with the
transversity-helicity set. It is interesting to notice that KA
is always below one for both sets of transversity distribu-
tions, but that this is not an overall feature of QCD. For
example, a tiny modification in the transverse momentum
cut for the lepton can produce a rather large effect in the
observed asymmetries. By lowering the corresponding cut
from 20 GeV to 15 GeV, as can be observed on the results
presented in Fig. 8, the asymmetries are considerably
reduced with respect to the previous case and the NLO
corrections become more sizable, with KA deviating even
further away from unity. This effect can be understood on
simple basis; while the unpolarized cross section grows
monotonically as the cuts become less restrictive, the
transversely polarized cross section is reduced by a
cancellation between the EW and photon contributions.

While a modification in the cut around 15–20 GeV does not
affect substantially the pure EW term, which typically
produces leptons with transverse momentum around
pT ∼MZ=2, it does modify significantly the photon share
that contributes to the integral with the opposite sign and
reduces the asymmetry. Furthermore, the size of the QCD
corrections slightly depend on the relevant transverse
momentum of the event: they are typically larger for lower
scale contributions, such as those relevant for the QED part,
than for higher scale ones, as those involve in the EW term.
This results in an even more prominent cancellation
between QED and EW contributions at NLO. Therefore,
the perturbative stability of the asymmetry turns out to be
affected also by the explicit leptonic cuts used in the
analysis.
On the other hand, by selecting leptons with larger

transverse momentum, or directly by choosing events with
dilepton invariant mass in the range 70 GeV ≤ Ml1l2 ≤
110 GeV one finds larger asymmetries with KA closer to
one or even larger. Therefore, it is clear that for a precise
analysis of future RHIC data on this observable, a NLO
fully differential calculation, such as presented here, is
essential for a clear understanding of different observables
even at the asymmetry level.

V. CONCLUSIONS

In this paper, we have presented the first complete
differential calculation at next-to-leading order in pertur-
bative QCD of the Drell-Yan cross section in transversely
polarized hadronic collisions. The calculation is imple-
mented in the Monte-Carlo like code CHE that already
includes the unpolarized and longitudinally polarized cross
sections. Using the aforementioned code, we investigated
in some detail the phenomenological implications of jet
production at RHIC (polarized pp collisions with a
maximum centre-of-mass energy of 500 GeV). We find
that the QCD corrections are sizable, very much dependent
on the cuts and kinematic domain for the observed lepton,
and have a visible effect even for the transversely polarized
double asymmetry.

ACKNOWLEDGMENTS

We are grateful to Werner Vogelsang for many useful
discussions and Carla Göbel for a careful reading of the
manuscript. This work has been partially supported by
Conicet, ANPCyT and the von Humboldt Foundation. We
thank the Pontifícia Universidade Católica do Rio de
Janeiro (PUC-Rio) for the hospitality during the comple-
tion of this work.

FIG. 8. Rapidity dependence of the NLO (solid) and LO
(dashes) transversely polarized asymmetries for the two sets of
the transversely polarized parton distribution functions, with a
modified cut on the transverse momentum of the electron
pT > 20. The corresponding K-factors are shown in the
inset plot.
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