
Transport coefficients of a hot QCD medium and
their relative significance in heavy-ion collisions

Sukanya Mitra* and Vinod Chandra†

Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
(Received 16 April 2017; published 9 November 2017)

The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is
likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach
adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation
has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle
system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to
include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot
QCD equation of state has been employed through the equilibrium modeling of the momentum
distributions of gluons and quarks with nontrivial dispersion relations while extending the model for
finite but small quark chemical potential. The effective coupling for strong interaction has been redefined
following the charge renormalization under the scheme of the quasi-particle model. The consolidated
effects on transport coefficients are seen to have a significant impact on their temperature dependence.
Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes
in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating
different physical laws.
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I. INTRODUCTION

The subnucleonic world of partonic substructures
(quarks and gluons) has been studied with greater precision
in the last few decades by exploring a deconfined state of
the nuclear matter at relativistically energetic heavy-ion
collider experiments. The experimental facilities at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and the Large Hadron Collider (LHC)
at CERN have provided a fortune of data, which have
helped in revealing the thermodynamic and transport
properties of the created medium after equilibration. A
closer inspection of the experimental observables such as
transverse momentum spectra and collective flows of
charged hadrons or electromagnetic probes reveals that
their quantitative estimates should involve critical depend-
ence upon the transport parameters of the system. This
serves as a strong motivation for the quantitative study of
the transport coefficients of this exotic medium [quark-
gluon plasma (QGP)] that is created while colliding two
heavy ions such as Au-Au or Pb-Pb ultra-relativistically,
along with a detailed study of their temperature depend-
ences. The transport coefficients under investigation are the
shear and bulk viscosities (η and ζ), electrical conductivity
(σel), and thermal conductivity (λ) of the QGP medium at
finite but small quark chemical potential, μq. Besides
providing information about the dissipation and electro-
magnetic (EM) responses of the medium, these transport

parameters give relevant insights about the nature of
interaction and nonequilibrium dynamics of the system
as well. Earlier predictions of charged hadron elliptic flow
from RHIC [1] and their theoretical explanations using
dissipative hydrodynamics [2] first provided experimental
evidence of the existence of transport processes in the QGP.
More recently, a number of ALICE results have recon-
firmed the relevance of transport processes [3]. In particu-
lar, in the context of the signal properties of charged
hadrons and thermally produced particles (photons and
dileptons), electromagnetic responses of the QGP medium
were also observed to play a vital role, which has been
explored in Ref. [4], in the due course of understanding the
QGP medium.
To explore the relative importance of these transport

parameters and associated physical transport processes,
their ratios in the form of known laws (known numbers) in
the literature have been investigated. The analysis has been
done with semiclassical transport theory, adopting the
Chapman-Enskog approach for many-particle systems.
The basic approach of determining the transport coeffi-
cients in kinetic theory is pursued by comparing the
macroscopic and microscopic definitions of thermody-
namic flows, as a result of which the particle interactions
enter into the expressions of transport coefficients as
dynamical inputs. Hence, kinetic theory offers a unique
scheme that bridges between the microscopic events of
particle interactions and their macroscopic effects (trans-
port phenomena) on the thermodynamic system. The
Chapman-Enskog technique has already been employed in
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estimating the transport parameters for hadronic systems [5].
In order to initiate the analysis and set up the appropriate
transport equation, the very first requirement is the knowl-
edge of local equilibrium momentum distributions of the
gluonic and quark degrees of freedom that constitute the
QGP. To that end, the modeling of equilibrium momentum
distributions of gluons and quarks/antiquarks at vanishing
and nonvanishing quark chemical potentials needs to be done
in such a way that a realistic equation of state (EOS) for the
QGP (such as the latticeQCDEOS) could bemimicked. This
has been done by adopting a recently introduced effective
quasi-particle model by Chandra and Ravishankar [6,7],
where the hot QCDmedium effects, present in the equations
of state, have been mapped to the equilibrium momentum
distributions of quasi-quarks and quasi-gluons containing
temperature-dependent quark and gluon effective fugacities.
The modified thermodynamic quantities, along with the
nontrivial dispersion relation and the effective coupling of
the strong interaction within the scope of the quasi-particle
model, are observed to influence the temperature dependence
of the transport parameters and their ratios significantly. It is
to be noted that the validity of quasi-particle descriptions of a
hotQCDmediumcloser to theQCD transition temperature is
under question. However, the weak coupling techniques in
QCD shownice convergence down to the temperature up to 2
Tc as they agreemore or lesswith lattice QCDpredictions on
the EOS. In this domain, quasi-particle models could play a
prominent role. Keeping this very crucial point in view, such
effects models are viable to model the QGP at higher
temperatures.
Notably, the velocity gradient between the adjacent fluid

layers results in the distortion of momentum distribution
within the fluid elements, leading to viscous forces. The
viscous coefficients provide a measure of how the micro-
scopic interactions within the system restore the momen-
tum distribution from skewed back to isotropic. The
thermal dissipation, occurring due to the temperature
gradient over the spatial separations of fluid, is described
in terms of thermal conductivity for a system with con-
served baryon current density. Besides the dissipative
properties, one needs to investigate the electromagnetic
(EM) responses in the QGP system, since a considerably
strong EM field (eB ∼m2

π) is being generated in the early
stages of heavy-ion collisions. In order to quantify the
impact of the fields on electromagnetically charged QGP,
the electrical conductivity plays quite a useful role. It gives
a measure of the electric current being induced in the
response of the early-stage electric field. In strongly
correlated systems like nonrelativistic, ultra-cold atomic
Fermi gases or strongly coupled Bose fluids (in particular,
liquid helium), and for the QGP medium, the specific shear
viscosity (η=s) is observed to have small values, exhibiting
near-perfect fluidity of the system [8,9]. The value of the
shear viscosity has been constrained by its ratio over the
system’s entropy density (η=s) by a lower bound of 1=4π,

following the uncertainty principle and substantiated using
anti–de Sitter space/conformal field theory (AdS/CFT)
correspondence [10]. The agreement of the hydrodynamic
description with the experimental data in Ref. [2] also
confirms this small value (η=s ¼ 2=4π) of shear viscous
coefficient, which appears to be consistent with the values
extracted directly from experiments [11] and lattice sim-
ulations [12] as well. The magnitude of bulk viscosity ζ is
found to be quite small as compared to the shear viscosity η,
due to which early viscous hydrodynamic simulations
ignored bulk viscosity for simplicity [13]. Although it
vanishes for a conformal fluid or massless QGP on the
classical level, quantum effects break the conformal sym-
metry of QCD and generate a nonzero bulk viscosity even
in the massless QGP phase, as recently shown by the lattice
results [14] in the SUð3Þ pure gauge theory.
Following the general argument that the QCD to hadron

gas transition is a crossover, η=s shows a minimum near Tc,
the critical temperature, close to the lower bound [15,16],
whereas the bulk viscosity to entropy density ratio ζ=s
shows large values around Tc [17,18]. Finally, at FAIR
energies and in the low-energy runs at RHIC, where the
baryon chemical potential will be significant, thermal
conductivity (λ) is expected to play important roles in
the hydrodynamic evolution of the system. In Ref. [19], the
thermal conductivity is shown to diverge at the critical point
and used to study the impact of hydrodynamic fluctuations
on experimental observables. As a consequence of the
strong electromagnetic field generated in the early stages of
heavy-ion collisions, the produced matter, after thermal-
ization, involves a non-negligible electrical conductivity
σel. In Ref. [20], nontrivial time dependence of the
electromagnetic fields is observed to be sensitive to this
finite electrical conductivity. In Ref. [21], the electromag-
netic responses in the plasma fireball are demonstrated in
the presence of a realistic σel, demanding a finite value of
electrical conductivity in the QGP system.
The relative behavior of these transport parameters leads

to a comparative measure between different thermody-
namic dissipations and electromagnetic responses. The
mutual ratios between η, λ, and σel can reflect the com-
petition between momentum transport, heat transport, and
charge transport in the medium, respectively. We start with
the Wiedemann-Franz law, which states that the thermal
conductivity of a system is proportional to its electrical
conductivity times the bulk temperature (T) of the system,
such that λ=ðσelTÞ is a constant of temperature. The ratio is
known as the Lorenz number, which for most of the system
including metals is independent of temperature, depending
only on the fundamental constants. In Ref. [22], a break-
down of the Wiedemann-Franz law has been reported for
electron-hole plasma in graphene, indicating the signature
of a strongly coupled Dirac fluid. Recently in Ref. [23], a
violation of the Wiedemann-Franz law has also been
reported for the two-flavor quark matter described by the
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Nambu–Jona-Lasinio (NJL) model. In the same context, it
is interesting to look into the behavior of this law in the
strongly interacting QGP medium as well. Next, we focus
on the relative behaviors of viscous and thermal dissipation.
From AdS/CFT studies of strongly coupled thermal gauge
theories in the framework of the gauge-gravity duality, a
value of the ratio between shear viscosity and thermal
conductivity has been reported [24], providing an analogue
of the Wiedemann-Franz law between momentum transport
and heat transport. For a system with finite chemical

potential μ, the ratio states λμ2

ηTH
¼ 8π2, where TH is the

Hawking temperature. It is more customary to express the
relative importance of kinematic viscosity or shear viscos-
ity and thermal conductivity in a dimensionless ratio called
the Prandtl number (Pr), given by Pr ¼ ηcp=ρλ, where cp is
the specific heat at constant pressure of the system and ρ is
the mass density of the system. In a nonrelativistic
conformal holographic fluid, this number is estimated to
be Pr ¼ 1, from AdS/CFT computations [25]. In Ref. [26],
the Prandtl number is estimated to be Pr ¼ 2=3 for a dilute
atomic Fermi gas, which agrees with the classical gas
result. Finally, we mention the relative behavior between
shear viscosity and electrical conductivity, which character-
izes the relative importance of momentum diffusion and
charge diffusion in an electromagnetically charged system
that undergoes dissipation. We can specify this comparison
by observing the ratio of two dimensionless quantities,
ðη=sÞ=ðσel=TÞ. Since the electromagnetic responses are
mostly carried by the charged components of the system—
i.e., by the quarks in a strongly interacting QGP (although
the diffusion flows of quarks and gluons are constrained to
be coupled with each other, so that the gluon interaction
rate in effect enters into the expression of electrical
conductivity), whereas both quarks and gluons participate
in momentum transport—the shear viscosity should domi-
nate over the electrical conductivity as predicted by
Ref. [27] for a strongly interacting QGP system. These
physical laws and the associated ratios of transport param-
eters, by providing useful information about the dynamics
and relative responses about the system, are instructive in
looking again for the QGP system, which is one of the
major motivations of this work.
In order to provide the spectrum of the theoretical

estimations of these transport quantities, we need to review
the state-of-the-art developments in recent literature. There
are a number of estimations of the viscosities employing the
transport theory approach, utilizing the kinetic theory of a
many-particle system [28–38]. Under the application of
Kubo formalism, the QGP viscosities have also been
obtained by evaluating the correlation functions using
linear response theory in Ref. [39]. Describing the in-
medium constituent quark interactions under the scheme of
the NJL model, both the shear and bulk viscous coefficients
have been estimated in Ref. [40]. The quasi-particle
approach, introduced in order to describe the hot QCD

medium, has been employed to estimate the viscosities as
well [41,42]. The temperature dependences of η and ζ have
been constrained from hydrodynamic simulations and by
comparison with the experimental data in Refs. [43–45].
Molecular dynamics simulations have been employed in
Ref. [46] to extract the shear viscosity to entropy density
ratio for a strongly coupled QGP. Quite a few times, the
viscous coefficients are being analyzed from holographic
predictions as well. These viscous parameters are studied in
great detail in recent AdS/CFT-based literature employing
holographic QCD models [47]. In comparison to the
estimations of viscosities, the study of thermal conductivity
has received much less attention in the current scenario.
However, a few estimated values of λ are available in works
like Refs. [48–50]. Electrical conductivity, which is
turning out to be an effective signature of electromagnetic
responses in strongly interacting systems, has attained a lot
of interest recently. In the strongly coupled QGP, the
relativistic transport theory, the dynamical quasi-particle
model (DQPM), and the maximum entropy method (MEM)
have found a number of applications to estimate the value
and temperature dependence of σel [27,51–57]. From the
soft photon spectrum in heavy-ion collisions, σel has been
extracted in Ref. [58]. Quite a considerable number of
estimations of σel are available from lattice QCD compu-
tations as well [59–65]. Finally, a number of holographic
estimations have been proposed for both thermal and
electrical conductivities in Ref. [66].
The manuscript is organized as follows: Section II

includes the formal developments of the transport theory,
containing the quasi-particle description of a hot QCD
medium, the evaluation and temperature behavior of
thermal relaxation times of quarks and gluons within the
medium, and the details on the estimations of the transport
coefficients. The results regarding the transport coefficients
and the physical laws concerning their ratios have been
provided in Sec. III. The obtained results are discussed in
Sec. IV. Finally, in Sec. V, the article has been summarized
while providing possible outlooks of the work.

II. FORMALISM: TRANSPORT THEORY

The determination of transport coefficients for a hot
QCD system requires modeling of the system away from
equilibrium. Their determination can be done within two
equivalent approaches: viz., the correlator technique in
QCD using the Green-Kubo formula, and the semiclassical
transport theory (Chapman-Enskog or Grad’s 14 method).
The present analysis is done following the latter approach.
To initiate the formalism, an appropriate modeling of the
equilibrium, isotropic momentum distributions of gluons
and quark-antiquarks in the hot QCD medium at vanishing
or nonvanishing baryon density (whatever be the case),
must be provided. This could be systematically done by
adopting an effective modeling of the hot QCD medium
effects, encoded in the interacting QCD/QGP equations of
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state. To that end, the well-accepted effective fugacity
quasi-particle (EQPM) proposed by Chandra and
Ravishankar [6,7,67] serves the current purpose which
has been discussed below. The quasi-particle modeling of
the system properties is followed by the estimations of the
essential ingredients, such as the thermal relaxation times
of interacting partons and other related quantities that are
necessary while determining various transport coefficients
under consideration here. Finally, the complete formalism
for extracting the transport coefficients is presented with all
the required mathematical details below.

A. Effective modeling of momentum distributions
of gluons and matter sector

The QCD medium at high temperature can conveniently
be realized in terms of its effective quasi-particle degrees
of freedom—viz., the quasi-gluons and quasi–quarks/
antiquarks with nontrivial dispersion relations. There have
been several quasi-particlemodels proposed over the last few
decades to describe the hot QCD equations of state in terms
of noninteracting or weakly interacting effective gluons and
effective quarks and antiquarks. The effective mass models
[68] and the effective mass models with Polyakov loops [69]
describe the medium effects in terms of effective thermal
mass or effective coupling in the medium. In these models,
the thermodynamic consistency condition needs to be
handled carefully, sometimes by introducing a few additional
temperature-dependent parameters. Another set of these
models includes the NJL (Nambu–Jona-Lasinio) and the
PNJL (Polyakov loop extended Nambu–Jona-Lasinio)-
based effective models [70]. The EQPM, which has been
employed here, is described below in detail.

1. The EQPM and its extension to finite
quark chemical potential

The EQPMmodels the hot QCDmedium effects in terms
of effective quasi-partons (quasi-gluons, quasi–quarks/anti-
quarks). The main idea is to map the hot QCD medium
effects present in the hot QCD EOSs, computed within
either improved perturbative QCD (pQCD) or lattice QCD
simulations, onto the effective equilibrium distribution
functions for the quasi-partons. The EQPM for the QCD
EOS at Oðg5Þ (EOS1) and Oðg6 lnð1=gÞ þ δÞ (EOS2),
along with a recent (2þ 1)-flavor lattice QCD EOS
(LEOS) [71] at physical quark masses, has been exploited
in the present manuscript. Note that there are more recent
lattice results with the improved hot QCD actions and
refined lattices [72], for which we need to look at the model
again with a specific set of lattice data (specifically to
define the effective gluonic degrees of freedom). Therefore,
we will stick to the set of lattice data utilized in the model
described in Ref. [7] and leave the issue for further
investigations in the near future.
In either of these EOSs, the form of the quasi-

parton equilibrium distribution functions, feq≡ffg;fq;q̄g

(describing the strong-interaction effects in terms of effec-
tive fugacities zg;q), can be written as

fg=q ¼
zg=q exp½−βEp�

ð1 ∓ zg=q exp½−βEp�Þ
; ð1Þ

where Ep ¼ jp⃗j for the gluons and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2 þm2

q

q
for the

quarks/antiquarks (mq denotes the mass of the quarks). The
parameter β ¼ T−1 denotes the inverse of the temperature,
νg ¼ 2ðN2

c − 1Þ denotes the gluonic degrees of freedom,
and νq ¼ νq̄ ¼ 2NcNf are the quark-antiquark degrees of
freedom for SUðNcÞ with Nf the number of flavors. Since
the model is valid in the deconfined phase of QCD (beyond
Tc), the mass of the light quarks can be neglected while
comparing it with the temperature. Noteworthily, EOS1,
which is fully perturbative, is proposed by Arnold and Zhai
[73,74] and by Zhai and Kastening [75]; EOS2, which is at
Oðg6 lnð1=gÞ þ δÞ, is determined by Kajantie et al. [76]
while incorporating contributions from nonperturbative
scales such as gT and g2T. In the case of vanishing baryon
density, fq ≡ fq̄.
It is important to note that these effective fugacities zg=q are

not merely temperature-dependent parameters that encode
the hot QCD medium effects; they lead to a nontrivial
dispersion relation in both the gluonic and quark sectors as

ωg=q ¼ Ep þ T2∂Tlnðzg=qÞ; ð2Þ

where ωg;q denote the quasi-gluon and quasi-quark disper-
sions (single-particle energy), respectively. The second term
on the right-hand side of Eq. (2) encodes the effects from
collective excitations of the quasi-partons.
The extension of the model to finite baryon/quark

chemical potential is quite straightforward. This could be
done by introducing the quark-chemical potentials (μq) in
the momentum distributions in the matter sector as

fq=q̄ ¼
zq exp½−βðEp ∓ μqÞ�

ð1þ zq exp½−βðEp ∓ μqÞ�Þ
: ð3Þ

It is important to note that the temperature dependences of
the effective fugacities, zg, zq, are set while implementing
the EOS1, EOS2, and LEOS in terms of EQPM. In other
words, while extending the EQPM for finite but small
(μq=T ≪ 1) baryon densities, the same expressions for zg
and zq have been employed so that one can get the correct
limit in the case where μq ¼ 0. The effective fugacities zg,
zq are not related with any conserved number current in the
hot QCD medium. They have merely been introduced to
encode the hot QCD medium effects in the EQPM. The
physical interpretation of zg and zq emerges from the above
mentioned nontrivial dispersion relations. The modified
part of the energy dispersions in Eq. (2) leads to the trace
anomaly (interaction measure) in hot QCD and takes care
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of the thermodynamic consistency condition. It is straight-
forward to compute gluon and quark number densities and
all the thermodynamic quantities such as energy density,
entropy, enthalpy, etc., by realizing the hot QCDmedium in
terms of an effective grand canonical system [6,7].
Furthermore, these effective fugacities lead to a very simple
interpretation of hot QCD medium effects in terms of an
effective virial expansion. Note that zg;q scales with T=Tc,
where Tc is the QCD transition temperature. For the current
analysis, Tc has been taken to be 170 MeV. All the relevant
thermodynamic quantities such as energy density, number
density, pressure, entropy density, speed of sound, heat
capacity, etc., could be straightforwardly obtained in terms
of fg, fq;q̄ following their basic definitions.

2. Charge renormalization and effective
coupling at finite T and μq

In contrast to the effective mass models where the
effective mass is motivated from the mass renormalization
in the hot QCD medium, the EQPM is based on the charge
renormalization in high-temperature QCD. This could be
realized by computing the expression for the Debye mass in
the medium following its definition that is derived in
semiclassical transport theory [77] as

m2
D ¼ 4παsðT; μqÞ

�
−2Nc

Z
d3p
ð2πÞ3 ∂pfgðp⃗Þ

− Nf

Z
d3p
ð2πÞ3 ∂pðfqðp⃗Þ þ fq̄ðp⃗ÞÞ

�
; ð4Þ

where αsðTÞ is the QCD running coupling constant at finite
temperature and chemical potential.
After performing the momentum integral and substitut-

ing the quasi-parton distribution function from Eq. (1) to
Eq. (4), we are left with the expression of Debye mass
within the scheme of the EQPM model with finite quark
chemical potential, up to the order Oð ~μq2Þ (since ~μq

2 ≪ 1):

m2
D ¼ 4παsðT; μqÞT2

��
2Nc

π2
PolyLog½2; zg�

−
2Nf

π2
PolyLog½2;−zq�

�
þ ~μq

2
Nf

π2
zq

1þ zq

�
: ð5Þ

The Debye mass here reduces to the leading-order HTL
expression in the limit zg;q → 1 (ideal EoS: noninteracting
ultra-relativistic quarks and gluons)

m2
DðHTLÞ ¼ 4παsðT; μqÞT2

��
Nc

3
þ Nf

6

�
þ ~μq

2
Nf

2π2

�
:

ð6Þ

From Eqs. (5) and (6), the effective coupling can be
defined as

αeffðT;μqÞ¼αsðT;μqÞ

×

2
64
n
2Nc
π2

PolyLog
h
2;zg

i
− 2Nf

π2
PolyLog½2;−zq�

o
n
Nc
3
þNf

6

o
þ ~μq

2
n

Nf

2π2

o

þ ~μq
2

n
Nf

π2
zq

1þzq

o
n
Nc
3
þNf

6

o
þ ~μq

2
n

Nf

2π2

o
3
75: ð7Þ

The behavior of the ratio m2
D=T

2 as a function of temper-
ature (T=Tc) for various EOSs and finite μq is depicted in
Fig. 1. As expected, the finite but small μq effects are quite
visible at lower temperatures, which are merging with the
zero quark chemical potential cases at higher temperatures.
This is seen to be valid for all of the three EOSs considered
here. The medium effects (thermal) manifested through the
temperature-dependent zg;q play the crucial role in modu-
lating the quantity m2

D=T
2 as a function of temperature.

There are only three free functions (zg, zq, and ~μq) in the
EQPM employed here. The first two depend on the chosen
EOS. For EOS1 and EOS2 employed in the present case,
these functions are obtained in Ref. [6] and are continuous
functions of T=Tc. On the other hand, for LEOS, they are
defined in terms of eight parameters obtained in Ref. [7]
(See Table I of Ref. [7]). The quantity ~μq is chosen to be 0.0
and 0.1 GeV throughout our analysis. In addition, the
effective coupling mentioned above depends on the QCD
running coupling constant gðT; μqÞ ¼

ffiffiffiffiffiffiffiffiffiffi
4παs

p
, that explic-

itly depends upon how we fix the QCD renormalization
scale at finite temperature and μq, and up to what order we
define gðT; μqÞ. Henceforth, these are the only quantities
that need to be supplied throughout the analysis here.
Notably, the EQPM employed here has been remarkably

useful in understanding the bulk and the transport proper-
ties of the QGP in heavy-ion collisions [78]. Before

1.5 2 2.5 3 3.5
T/Tc

4

5

6

7

8

m
D

2 /T
2

μq= 0, EOSI

μq= 0.1 GeV, EOSI

μq = 0, EOS II

μq= 0.1 GeV, EOS II

μq=0, LEOS

μq=0.1 GeV, LEOS

FIG. 1. Effective coupling constant using various EOSs as a
function of T=Tc.
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discussing the formalism for estimations of thermal relax-
ation times of the constituent gluons and quarks, it is
important to highlight the utility of quasi-particle models in
the context of understanding the bulk and transport proper-
ties of the hot QCD/QGP medium created out of the heavy-
ion collisions. As already mentioned, transport parameters
of the QGP have been estimated, employing various quasi-
particle models in Refs. [41,42,78–80]. Note that Ref. [80]
offers the estimation of η and ζ for pure gluon plasma
employing the effective mass quasi-particle model. On the
other hand, Ref. [42] reports estimations for both the
gluonic as well as the matter sector. References [79,81]
present the quasi-particle estimations of η and ζ in the
hadronic sector. The thermal conductivity has also been
studied, in addition to the viscosity parameters [79], within
the effective mass model at finite baryon density.
If EQPM is analyzed in contrast to the effective mass

models (with lattice QCD data for the EOS interpreted in
terms of the effective thermal gluon mass and the effective
thermal quark mass), the effective fugacity or the modified
dispersions for the quasi-gluons and quarks/antiquarks
cannot simply be related to the effective mass. This is
because at the level of dispersions, it leads to a momentum-
dependent masslike parameter which is not the same as the
effective mass. This makes it completely distinct from
effective-mass-based models. However, the effective fugac-
ities are not the effective masses, and they can only be
interpreted as effective mass in some limiting case
[p ≪ T2∂T lnðzg;qÞ] (as we shall see later, this cannot be
achieved in the present case). The effective fugacities have
an explanation in terms of a virial expansion [6]. Another
fundamental difference is in terms of realizing the thermo-
dynamic consistency condition in a hot QCD medium.
Unlike effective mass models, in which one needs to add
terms concerning the mean field contribution to the kinetic
theory definition of the energy-momentum tensor, Tμν

(which modifies the expressions for the energy density
and pressure, etc.) [82–84]; in the case of EQPM, the
modified dispersions take care of the thermodynamic
consistency. Therefore, the modified Tμν could be obtained
by simply generalizing its basic kinetic theory definition as
discussed below.
The first step towards setting up an effective kinetic

theory with EQPM is the microscopic (kinetic theory)
definition of the energy-momentum tensor, Tμν, which
leads to correct expressions for the thermodynamic quan-
tities such as energy density, through uμTμνuν ¼ ϵQ in the
local rest frame. Here, ϵQ is the energy density obtained
from EQPM in terms of the dispersion relation ω as

ϵQ ¼
X

k¼g;q;q̄

Z
d3p⃗
ð2πÞ3 ωkfk; ð8Þ

where fg, ωg;q, fq;q̄ are given in Eqs. (1)–(3), respectively.
This expression yields the trace anomaly in hot QCD.

This could be achieved by generalizing the definition of
Tμν in any arbitrary frame, as

Tμν ¼
X

k¼g;q;q̄

Z
d3p⃗

ð2πÞ3ωk
pμ
kp

ν
kfkðp⃗; r⃗Þ; ð9Þ

where pμ
k ≡ ðωk; p⃗Þ is the four-momentum of the effective

gluons and the effective quark-antiquarks, and fkðp⃗; r⃗Þ in
general contains nonequilibrium terms. The expression for
Tμν for the EQPM has been discussed earlier in Ref. [42], in
terms of Tμν of the undressed (bare) degrees of freedom of
the hot QCD and terms containing the quasi-particle
dispersions. This suggests either that no additional
mean-field term is required, as the modified dispersions
of the quasi-particles in our case take care of the thermo-
dynamic consistency condition—or, that if it is at all
required at the level of developing second-order dissipative
hydrodynamics from the effective kinetic theory with
EQPM (as discussed in the Appendix), it must not modify
the definitions of thermodynamic quantities.
Setting up transport theory (for the first-order transport

coefficients) within the EQPM is quite simple, as the bare
four-momenta need to be changed by the quasi-particles
mentioned earlier. Notably, the presence of modified
dispersion relations appearing in the transport equation
is obtained by the action of the drift operator on feq through
the temperature derivative [85]. The effective transport
equation is discussed in the following subsections.

B. Thermal relaxation times

As mentioned earlier, the microscopic interactions
between the constituents of the system provide the dynami-
cal inputs for different transport coefficients. Here, it is
done by introducing the thermal relaxation times of the
partons, which in turn introduce the transport cross sections
to the expressions of the transport coefficients.
In order to define the thermal relaxation times for quasi–

quarks/antiquarks and gluons, we start with the relativistic
transport equation of the momentum distribution functions
of the constituent partons in an out-of-equilibrium, multi-
component system that describes the binary elastic process
pk þ pl → p0

k þ p0
l:

pμ
k∂μfk ¼

XN
l¼1

Ckl½fk; fl�; ½k ¼ 1; 2;…N�: ð10Þ

Here fk is the single-particle distribution function for the kth
species, which depends upon the particle four-momentumpk
and the four-spacetime coordinates x. Here, the right-hand
side of Eq. (10) denotes the collision term that quantifies the
rate of change of fk. For each l, Ckl½fk; fl� defines the
collision contribution due to the scattering of the kth particle,
with the lth one given in the following manner [33]:
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Ckl½fk;fl�¼
1

2

νl
2

Z
dΓpl

dΓp0
k
dΓp0

l
δ4ðpkþpl−p0

k−p0
lÞ

×ð2πÞ4½fkðp0
kÞflðp0

lÞf1�fkðpkÞgf1�flðplÞg
−fkðpkÞflðplÞf1�fkðp0

kÞgf1�flðp0
lÞg�

×hjMkþl→kþlj2i: ð11Þ

The phase-space factor is given by the notation

dΓpi
¼ d3p⃗i

ð2πÞ32ωi
, as ωk is the energy of the scattered particle

(of the kth species). The overall 1
2
factor appears due to the

symmetry in order to compensate for the double-counting of
final states that occurs by interchanging p0

k and p0
l. νl is the

degeneracy of the second particle that belongs to the lth
species. Equations (10) and (11), with fk identified with
quasi-particle momentum distribution functions given in
Eq. (1), lead to conservations of the number current and
energy momentum tensor (with the zeroth and first moments
of the transport equation, respectively). This is due to the fact
that the summation invariant that is followed by particle-
number and four-momentum conservation in the case of
binary elastic collisions remains intact while employing the
EQPM, since the effective fugacities are free from momen-
tum dependence.
In the present case up to next-to-leading order, the out-of-

equilibrium distribution function is constructed as follows:

fk ¼ f0k þ δfk ¼ f0k þ f0kð1� f0kÞϕk; ð12Þ

where the nonequilibrium part δfk of the distribution
function is quantified by the deviation function ϕk. The
distribution functions of the quasi-partons at local thermal
equilibrium are given by Eq. (1).
The simplest method of linearizing the transport equa-

tion (10) is to replace the collision term with the rate of
change of the distribution function over the thermal relax-
ation time τk which is needed by the out-of-equilibrium
distribution function to restore its equilibrium value, such
that the transport equation becomes

dfk
dt

¼ −
δfk
τk

¼ −
ðfk − f0kÞ

τk
: ð13Þ

Consequently, the collision term becomes

XN
l¼1

Ckl½fk; fl� ¼ −ωk
δfk
τk

¼ −ωk
f0kð1� f0kÞϕk

τk
: ð14Þ

Putting (12) into the right-hand side of (11) by assuming that
the distribution functions of the particles other than the
scattered one are very close to equilibrium and comparing
withEq. (14), the relaxation time finally becomes as the inverse
of the reaction rate Γk of the respective processes [86]:

τ−1k ≡ Γk

¼
XN
l¼1

νl
2

1

2ωk

Z
dΓpl

dΓp0
k
dΓp0

l
δ4ðpk þ pl − p0

k − p0
lÞ

× ð2πÞ4hjMkþl→kþlj2i
f0l ð1� f00k Þð1� f00l Þ

ð1� f0kÞ
: ð15Þ

Clearly, the distribution function of final-state particles is given
by primed notation.
Simplifying τk utilizing the δ function, we finally obtain

its expression in the center-of-momentum frame of particle
interaction as

τ−1k ¼Γk

¼
XN
l¼1

νl

Z
d3p⃗l

ð2πÞ3dðcosθÞ
dσ

dðcosθÞ
f0l ð1�f00k Þð1�f00l Þ

ð1�f0kÞ
;

ð16Þ

where θ is the scattering angle in the center-of-momentum
frame and σ is the interaction cross section for the
respective scattering processes. Now, in terms of the
Mandelstam variables s, t, and u, the expression for τk
can be reduced simply to

τ−1k ¼ Γk ¼
XN
l¼1

νl

Z
d3p⃗l

ð2πÞ3 dt
dσ
dt

f0l ð1� f00k Þð1� f00l Þ
ð1� f0kÞ

:

ð17Þ

The differential cross section relates the scattering
amplitudes as dσ

dt ¼ hjMj2i
16πs2 . The QCD scattering amplitudes

for 2 → 2 binary, elastic processes are taken from Ref. [87],
that are averaged over the spin and color degrees of
freedom of the initial states and summed over the final
states. The inelastic processes like qq̄ → gg have been
ignored in the present case, because they do not have a
forward peak in the differential cross section, and thus
their contributions will presumably be small compared to
the elastic ones.
Now, in order to take into account the small-angle

scattering scenario that results in divergent contributions
from t-channel diagrams of QCD interactions, a transport
weight factor ð1 − cos θÞ ¼ 2tu

s2 has been introduced in the
interaction rate [32]. Furthermore, considering the momen-

tum transfer q ¼ jp⃗k − p⃗0
kj ¼ jp⃗l − p⃗0

lj is not too large, we
can make the assumptions f0k ≅ f00k and f0l ≅ f00l [88] to
finally obtain

τ−1k ¼ Γk ¼
XN
l¼1

νl

Z
d3p⃗l

ð2πÞ3 f
0
l ð1� f0l Þ

Z
dt

dσ
dt

2tu
s2

: ð18Þ

This additional transport factor changes the infrared
and ultraviolet behavior of the interaction rate quite
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significantly. Due to the inclusion of this term, all the
higher-order divergences reduce to simple logarithmic
singularities which can be simply handled by putting a
small-angle cutoff in the integration limit. In the integration
involving t-channel diagrams from where the infrared
logarithmic singularity appears, the limit of integration is
restricted from −s to −k2 in order to avoid those divergent
results using the cutoff k2 ¼ g2T2 as an infrared regulator.
Here g2 ¼ 4παs, with αs being the coupling constant of
strong interaction, as already mentioned in Sec. I.
Finally, after pursuing the angular integration in (18), we

are left with the thermal relaxation times of the quark,
antiquark, and gluon components in a QGP system in the
following way:

τ−1g ¼
�
νg

Z
d3p⃗g

ð2πÞ3 f
0
gð1þ f0gÞ

��
9g4

16πhsigg

�
ln

hsigg
k2

− 1.267

��
þ
�
νq

Z
d3p⃗q

ð2πÞ3 f
0
qð1 − f0qÞ

��
g4

4πhsigq

×

�
ln

hsigq
k2

− 1.287

��
þ
�
νq̄

Z
d3p⃗q̄

ð2πÞ3 f
0
q̄ð1 − f0q̄Þ

�

×

�
g4

4πhsigq̄

�
ln

hsigq̄
k2

− 1.287

��
; ð19Þ

τ−1q;ðq̄Þ ¼
�
νg

Z
d3p⃗g

ð2πÞ3f
0
gð1þf0gÞ

��
g4

4πhsiqðq̄Þg

�
ln
hsiqðq̄Þg
k2

−1.287

��
þ
�
νq

Z
d3p⃗q

ð2πÞ3f
0
qð1−f0qÞ

��
g4

9πhsiqðq̄Þq

×

�
ln
hsiqðq̄Þq

k2
−1.417

��
þ
�
νq̄

Z
d3p⃗q̄

ð2πÞ3f
0
q̄ð1−f0q̄Þ

�

×

�
g4

9πhsiqðq̄Þq̄

�
ln
hsiqðq̄Þq̄

k2
−1.417

��
; ð20Þ

where hsikl ¼ 2hpkihpli is the thermal average value of s,

with hpki ¼
R

d3 p⃗k
ð2πÞ3jp⃗kjf0kR

d3 p⃗k
ð2πÞ3f

0
k

. Clearly, in order to account for a hot

QCD medium, the quasi-particle effects must be invoked in
the expressions of these thermal relaxation times obtained so
far. As discussed in Sec. II A, the distribution functions of
quarks and gluons and the coupling g will carry the quasi-
particle descriptions accordingly. Since the cutoff parameter
k also depends upon g, and the thermal average of s includes
f0g;q;q̄, they will reflect the hot QCD equation-of-state effect
as well. Following the definition of the equilibrium distri-
bution function of quarks and gluons fromEq. (1), within the
quasi-particle framework, the thermal averages of gluon and
quark momenta are obtained as

hpgi ¼ 3T
PolyLog½4; zg�
PolyLog½3; zg�

; ð21Þ

hpq=q̄i ¼ 3T

�
PolyLog½4;−zq� � ~μqPolyLog½3;−zq�

þ ð ~μqÞ2
2

PolyLog½2;−zq�
�.�

PolyLog½3;−zq�

� ~μqPolyLog½3;−zq�

−
ð ~μqÞ2
2

lnð1þ zqÞ
�
; ð22Þ

respectively. The degeneracy factors used are νg ¼ 2 × 8 ¼
16 and νq ¼ νq̄ ¼ 2 × Nc × Nf, where Nf and Nc are the
quark numbers of flavors and colors, respectively. From the
above analysis, it turns out that the thermal relaxation times at
a particular μq follow the form

τ−1q=q̄;g ∼ Tα2sln

�
1

αs

�
: ð23Þ

In Figs. 2 and 3, the temperature dependences of the
thermal relaxation times of quasi-gluons and quarks,
obtained from Eqs. (19) and (20), respectively, have been
plotted as a function of T=Tc. The temperature dependence
of τ for both the gluonic and quark components is observed
to exhibit an obvious decreasing trend with increasing
temperature, revealing that the enhanced interaction rates at
higher temperatures make the thermal quarks and gluons
restore down their equilibrium faster. We observe that at a
particular temperature, τq is quantitatively little greater than
τg, indicating stronger interaction rates of the gluonic part.
The order of magnitude of the relaxation times and the fact
that τq is larger than τg agreewith thework given inRef. [29].

2 2.5 3 3.5 4 4.5
T/Tc

2

4

6

8

10

12

τ g(f
m

)

Ideal case, running αs, μq = 0

 Ideal case, running αs, μq= 0.1 GeV

 EQPM + EOS1, μq= 0

 EQPM + EOS1, μq= 0.1 GeV

 EQPM + EOS2, μq= 0

 EQPM + EOS2, μq= 0.1 GeV

 EQPM + LEOS, μq= 0

 EQPM + LEOS, μq= 0.1 GeV

FIG. 2. Thermal relaxation times for gluons using various EOSs
as a function of T=Tc at fixed ~μq.
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In the present case, τg and τq have been estimated for
three different EOSs (EOS1, EOS2, LEOS) within the
scope of EQPM along with ideal EOS with running
coupling, and also for two different quark chemical
potentials (μq ¼ 0, 0.1 GeV). As noticed earlier in the
case of QCD coupling, here also the finite quark chemical
potential effects are only significant at lower temperatures,
which diminishes at higher-temperature regions. The
large values of τg and τq for the ideal case at lower
temperature mostly result from the higher values of running
αsðT; μqÞð∼0.4Þ compared to αeffðT; μqÞð∼0.3Þ contribut-
ing through the logarithmic term. However, at higher
temperatures, the plots of τ’s including the quasi-particle
equation-of-state effects are merging with the ideal ones, as
at those temperature regions, the quasi-particle properties
behave almost like those of the free particles. Three
different set of plots with EQPM calculations are clearly
showing the distinct effects of separate EOSs. In each set,
the small but finite effects of nonzero μq are observed at
lower temperatures, which is more predominant in the plots
of τq for obvious reasons. So, we conclude first that the
logarithmic term in Eq. (23) is playing here the key role in
determining the temperature behavior of τ’s, and second
that different EOSs are describing the interacting medium
through various models (pQCD or lattice) and the nonzero
μq is providing considerable effects on it.

C. Estimation of transport coefficients
in the Chapman-Enskog method

The basic scheme of determining the transport coeffi-
cients of a many-particle system resides in comparing the
macroscopic and microscopic definitions of thermody-
namic flows. The description of irreversible phenomena
taking place in nonequilibrium systems is characterized by
two kinds of concepts: thermodynamic forces and thermo-
dynamic flows. The former create spatial non-uniformities

of the macroscopic thermodynamic state variables, while
the latter tend to restore the equilibrium situation by wiping
out these non-uniformities. Phenomenologically, one finds
to within a good approximation that these fluxes are linearly
related to the thermodynamic forces where the proportion-
ality constants are termed as transport coefficients. As a
consequence, the irreversible part of the energy-momentum
tensor and the heat flow can be expressed in a linear law,
directly proportional to the corresponding thermodynamic
forces, which are, respectively, the velocity gradient and the
temperature gradient of the system. From the second law of
thermodynamics, it is known that the restoration of equilib-
rium is achieved by processes which involve increasing
entropy. From these criteria, the viscous pressure tensor and
the irreversible heat flow of the system are expressed by the
equations [89,90]

Πμν ¼ 2ηh∂μuνi þ ζΔμν∂ · u; ð24Þ

Iμ ¼ λð∂σT − TDuσÞΔμσ; ð25Þ

respectively,where the constants of proportionality η, ζ, and λ
are referred to as the transport coefficients. The notation used
is explained below. The hydrodynamic velocity uμ is defined
in a comoving frame as uμ ¼ ð1; 0; 0; 0Þ. Δμν ¼ gμν − uμuν

is the projection operator, with gμν ¼ ð1;−1;−1;−1Þ as the
metric of the system. htμνi≡ ½1

2
ðΔμαΔνβ þ ΔναΔμβÞ −

1
3
ΔμνΔαβ�tαβ indicates a spacelike symmetric and traceless

form of the tensor tμν.
The alternative definition of thermodynamic fluxes at the

microscopic level involves an integral over the product of
the nonequilibrium or collisional part of the distribution
function of particles and an irreducible tensor of the
quantity which is being transported. Following this pre-
scription, the viscous pressure tensor and the irreversible
heat flow can be given by the following integral equations:

Πμν ¼
XN
k¼1

νk

Z
d3p⃗k

ð2πÞ3p0
k

Δμ
σΔν

τpσ
kp

τ
kδfk; ð26Þ

Iμ ¼
XN
k¼1

νk

Z
d3p⃗k

ð2πÞ3p0
k

ðpk:u − hkÞpσ
kΔ

μ
σδfk: ð27Þ

Here pk and hk are the particle four-momenta and enthalpy
per particle, respectively. So, comparing the sets of equa-
tions in (24), (25) and (26), (27), the values of η, ζ, and λ
can be estimated as a function of the particle distribution
deviation δfk.
The fixing of temperature and chemical potential in

nonequilibrium systems is essentially done by satisfying
the Landau-Lifshitz (LL) conditions. The temperature of
the system is fixed by demanding that the energy density in
the nonequilibrium case in the LRF be the same as that for
the equilibrium case. Similarly, the chemical potential is

2 2.5 3 3.5 4 4.5 5
T/Tc

4

6

8

10

12

14
τ q(f

m
)

 Ideal case, running αs, μq= 0

 Ideal case, running αs, μq= 0.1GeV

 EQPM + EOS1, μq= 0

 EQPM + EOS1, μq= 0.1 GeV

 EQPM + EOS2, μq= 0 

 EQPM + EOS2, μq= 0.1 GeV

 EQPM + LEOS, μq= 0

 EQPM + LEOS, μq= 0.1 GeV

FIG. 3. Thermal relaxation times for quarks using various EOSs
as a function of T=Tc at fixed ~μq.
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fixed by demanding that the number density in the non-
equilibrium case, again in the LRF, be the same as that for
the equilibrium system. In other words, the shift in energy
and number density due to the nonequilibrium terms
vanishes at the LRF. In an arbitrary frame, this could be
achieved by choosing nonequilibrium terms orthogonal to
uμ. The LL conditions in an arbitrary frame can be written
as uμδTμνuν ≡ 0 and uμδNμ ≡ 0 (here δTμν is the non-
equilibrium decomposition of Tμν and δNμ is the same for
the number current). These conditions are well satisfied in
our formalism that is ensured by the form of the non-
equilibrium terms. In the context of viscosities within
EQPM, the LL conditions are discussed in Ref. [42].
For a system with electrically charged constituents,

under the influence of an external electric field, the induced
current density relates with the field itself by a linear
relation via electrical conductivity (σel) as

Jμ ¼ σelEμ: ð28Þ

In a microscopic definition, the current density of such a
system is given by

JμðxÞ ¼
XN
k¼1

qkI
μ
k ¼

XN−1

k¼1

ðqk − qNÞIμk; ð29Þ

where qk is the electric charge associated with the kth
species. The diffusion flow Iμa for a nonequilibrium
relativistic system taking all reactive processes into account
is given by

Iμa ¼
XN
k¼1

qakIk; ½a ¼ 1; 2;…N0� ð30Þ

¼
XN
k¼1

qakfNμ
k − xkNμg: ð31Þ

Here a stands for the index of the conserved quantum
number, and qak is the ath conserved quantum number
associated with the kth component. Nμ

kðxÞ ¼
P

N
k¼1 N

μ
kðxÞ

stands for the total particle four-flow, where the particle
four-flow for the kth species in a multicomponent system is

defined as Nμ
kðxÞ ¼

R d3p⃗k
ð2πÞ3p0

k
pμ
kfkðx; pkÞ. xk ¼ nk

n is defined

as the particle fraction corresponding to the kth species,

with nk ¼
R d3p⃗k

ð2πÞ3 fkðx; pkÞ and n ¼ P
N
k¼1 nkðxÞ as the

particle number density of the kth species and the total
number density of the system, respectively.
Putting Eq. (31) into Eq. (29) and comparing with

Eq. (28), we can obtain σel again as a function of the
particle distribution deviation δfk.
Observing that the transport coefficients depend upon

δfk ¼ f0kð1� f0kÞϕk, we need to obtain a scheme to

determine this quantity in an out-of-equilibrium thermody-
namic system. We proceed by solving the relativistic trans-
port equation (10) in a technique called theChapman-Enskog
method from the kinetic theory of a multicomponent, many-
particle system. In the Chapman-Enskog method, the dis-
tribution function is expanded in a series in terms of a
parameter. This parameter must be a small, dimensionless
quantity in order to make the series asymptotic, such that
leading-order terms in the expansion must be significant as
compared to the next-to-leading-order ones.
In the presence of an external electromagnetic force, the

left-hand side of the relativistic transport equation includes
also a covariant force term qkFαβpβ

∂fk∂pα
k
, where qk is the

electronic charge of the kth-species particle and Fμν ¼
−uμEν þ uνEμ is the electromagnetic field tensor with
electric field Eμ, in the absence of any magnetic field in
themedium.After incorporating this force term into Eq. (10),
we finally obtain the relativistic transport equation:

pμ
k∂μfkþqkFαβpβ

∂fk
∂pα

k
¼
XN
l¼1

Ckl½fk;fl�; ½k¼1;2;…N�;

ð32Þ

which, following the Chapman-Enskog hierarchy, finally
reduces to the linearized transport equation,

pμ
kuμðDfkÞ0 þ pμ

k∇μf0k þ
1

T
f0kð1� f0kÞqkEμp

μ
k

¼ −
ωk

τk
f0kð1� f0kÞϕk; ð33Þ

with

ðDfkÞ0 ¼
∂f0k
∂T DT þ ∂f0k

∂ðμkT Þ
D

�
μk
T

�
þ ∂f0k
∂uμ Duμ: ð34Þ

The terms containing derivatives over μk
T and uμ follow the

conventional prescriptions, while the term having a deriva-
tive over temperature picks up the additional part from the
energy dispersion relation [Eq. (2)] to produce the correct
expression of quasi-particle energy in the linearized trans-
port equation—namely,

∂f0k
∂T ¼ 1

T2
f0kð1� f0kÞfEp þ T2∂Tlnzg=qg

¼ 1

T2
f0kð1� f0kÞωk: ð35Þ

Following the same treatment for the gradient term of
Eq. (33) as well, we finally reduce the transport equation
into the following form:
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f0kð1� f0kÞ
��

ω2
k

T2
DT þ ωkD

�
μk
T

�
− ωk

pμ
k

T
Duμ

�

þ
�
pμ
k
ωk

T2
∇μT þ pμ

k∇μ

�
μk
T

�
−
pμ
kp

ν
k

T
∇μuν

�

þ
�
qk
T
E · pk

��
¼ −

ωk

τk
f0kð1� f0kÞϕk: ð36Þ

So, applying the definition of the equilibration momen-
tum distribution function of quasi–quarks/antiquarks and
quasi-gluons from Eq. (1) to the left-hand side of Eq. (33),
we find a number of terms containing time derivatives and
spatial gradients over thermodynamic variables, displayed
in Eq. (36). While spatial gradient terms contribute to the
thermodynamic forces the time derivatives are needed to be
eliminated exploiting a number of thermodynamic iden-
tities that are nothing but equilibrium thermodynamic
evolution equations of macroscopic state variables of the
system, following from certain conservation laws. Hence,
we are listing here the evolution equation of the particle
number density, the equation of energy evolution, and the
equation of motion as follows:

Dnk ¼ −nk∂ · u; ð37Þ

XN
k¼1

xkDωk ¼ −
P

N
k¼1 PkP
N
k¼1 nk

∂ · u; ð38Þ

Duμ ¼ ∇μPP
N
k¼1 nkhk

þ
P

N
k¼1 qknkP
N
k¼1 hknk

Eμ; ð39Þ

with Pk as the partial pressure and hk ¼ ek þ Pk
nk

as the
enthalpy per particle assigned for the kth species.
Equation (39) reveals that even if the pressure gradient
is zero, the Lorentz force acting on the particles due to the
electric field Eμ produces nonzero acceleration.
Replacing the time derivatives with the above mentioned

identities, we are left with a number of thermodynamic
forces with different tensorial ranks:

QkX − hpμ
kp

ν
kihXμνi þ hpν

kifðpk:uÞ − hkgXqk

þ hpν
ki
XN0−1

a¼1

ðqak − xaÞXaν ¼ −
Tωk

τk
ϕk; ð40Þ

with

X ¼ ∂ · u; ð41Þ

Xqμ ¼
�∂μT

T
−
∂μP

nh

�
þ
�
−
1

h

XN
k¼1

xkqkEμ

�
; ð42Þ

Xkμ ¼
�
ð∂μμkÞP;T −

hk
nh

∂μP

�

�
qk − qN −

hk − hN
h

XN
l¼1

xlql

�
Eμ; ð43Þ

hXμνi ¼h∂μuνi ¼
1

2

�
ΔμαΔνβ þ ΔναΔμβ −

2

3
ΔμνΔαβ

�
∂αuβ:

ð44Þ

Here, Qk ¼ 1
3
fjp⃗kj2 − 3ω2

kc
2
sg, where cs is the velocity of

sound propagation within the medium, and ð∂μμaÞP;T ¼P
N0−1
b¼1 f∂μa∂xbgP;T;fxag∂μxb, where xa and μa are the particle

fraction and chemical potential associated with the ath
quantum number, respectively. Tensors of the forms
hpμ

kp
ν
ki ¼ 1

2
fΔμαΔνβ þΔναΔμβ − 2

3
ΔμνΔαβgðpkÞαðpkÞβ and

hpμ
ki ¼ ΔμνðpkÞν are called irreducible tensors of rank 2

and 1, respectively, where the rank 0 is simply a scalar.
Now, we observe that different thermodynamic forces

indicated by Eqs. (41)–(44) involve different transport
processes. X, expressing the trace part of the velocity
gradient, is known as the bulk viscous force. The quantity
Xqμ is related to the temperature gradient known as the
thermal driving force. Xkμ includes the spatial gradient over
chemical potential that can be translated into the gradient
over particle fraction [ð∇μμkÞP;T ¼ T

xk
∇μxk], and thus

known as the diffusion driving force. Finally, hXμνi,
containing the traceless part of the velocity gradient is
known as the shear viscous force. The respective viscous
forces give rise to the shear (η) and bulk (ζ) viscous
coefficients, whereas the thermal driving force gives rise to
the thermal conductivity λ. We notice that, apart from the
spatial gradients over thermodynamic quantities, the ther-
mal driving force and the diffusion driving forces include
finite contributions purely from Eμ, reflecting the response
of the external electric field in the medium. So we can
conclude that in the expressions of thermal and diffusion
driving forces, terms proportional to the electric field give
rise to electrical conductivity (σel).
Now, in order to be a solution of Eq. (40), the deviation

function ϕk must be a linear combination of the thermo-
dynamic forces in the following manner:

ϕk ¼ AkX þ Bμ
kXqμ þ

1

T

XN0−1

a¼1

Bμ
akXaμ − Cμν

k hXμνi; ð45Þ

where A, B, and C are the unknown coefficients with
appropriate tensorial ranks consistent with the thermody-
namic forces, such that ϕk becomes a scalar, needed to be
estimated from the transport equation itself. In order to do
so, we put Eq. (45) on the right-hand side of Eq. (40), and
by virtue of the fact that thermodynamic forces are
independent of each other, we finally obtain
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Ak ¼
Qkn
− Tωk

τk

o ; Bμ
k ¼ hpμ

ki
ωk − hkn
− Tωk

τk

o ;

Bμ
ak ¼ Thpμ

ki
qak − xan
− Tωk

τk

o ; Cμν
k ¼ hpμ

kp
ν
kin

− Tωk
τk

o : ð46Þ

Utilizing the expressions from Eq. (46) and putting them
into the expression of ϕk from Eq. (45), we finally obtain
the full expression of the deviation of the partonic dis-
tribution function δfk. Now we are in a situation where by
putting the expression of deviation of the distribution
function into the microscopic definitions of thermodynamic
fluxes and comparing them with the macroscopic defini-
tions of the same, the transport coefficients can be
estimated explicitly, as has been done in the next section.

III. TRANSPORT COEFFICIENTS AND THEIR
TEMPERATURE DEPENDENCES

A. Shear viscosity

As discussed in the previous section, in order to estimate
the viscous coefficients, we need to compare the expres-
sions of the viscous pressure tensor from Eqs. (24) and (26).
It is convenient to split Πμν into a traceless part and a
remainder, such as

Πμν ¼ hΠμνi þ ΠΔμν: ð47Þ

The viscous pressure Π is defined as one third of the
trace of the viscous pressure tensor,

Π ¼
XN
k¼1

νk
1

3

Z
d3p⃗k

ð2πÞ3p0
k

Δμνp
μ
kp

ν
kδfk: ð48Þ

So, the traceless part of the viscous pressure tensor comes
out to be

hΠμνi¼Πμν−ΠΔμν ¼
XN
k¼1

νk

Z
d3p⃗

ð2πÞ3p0
hpμpνiδfk: ð49Þ

Clearly, Eq. (48) will give rise to bulk viscosity, while
Eq. (49) gives rise to shear viscosity. Putting the expression
of δfk, with the expression of ϕk from Eq. (45), into
Eq. (49) and comparing with Eq. (24), we can obtain the
expression of shear viscosity. In the context of the current
article, the shear viscosity for a strongly interacting QGP
system is provided with the help of the thermal relaxation
times of constituent partons from Eqs. (19) and (20), and
the quasi-particle equilibrium distribution functions of
the same under the EQPM scheme from Eq. (1) as the
following:

η ¼
X

k¼g;q;q̄

νk
τk
15T

Z
d3p⃗k

ð2πÞ3
jp⃗kj4
ω2
k

f0kð1� f0kÞ: ð50Þ

Here, the quasi-particle energy per parton under the EQPM
model can be derived from the dispersion relation given in
Eq. (2) as

ωk ¼ jp⃗kj
�
1þ

�
T
jp⃗kj

��
T
Tc

�
∂ð T

Tc
Þflnzkg

�
: ð51Þ

We have estimated η from Eq. (50) in two ways. First, an
exact estimation of η from Eq. (50) has been obtained using
full numerical coding. Second, we perform an analytical
approximation of Eq. (50) in the following manner by
investigating its level of accuracy. By analyzing the
temperature dependence of the effective fugacity parameter
zk, we have examined the second term on the right-hand
side of Eq. (51). For the gluonic case, at T=Tc ¼ 2.5 we
obtain from Eq. (51) ωg ¼ jp⃗gj½1þ 0.094�, so the correc-
tion inωk due to the fugacity term is less than 10%. (Similar
estimations can be shown for quark degrees of freedom as
well.) So, ωk can be conveniently expanded in a binomial
series keeping only up to second-order terms. Following
this prescription, the expression of η, with the analytical
approximation performed, becomes

η ¼
X

k¼q;q̄;g

νk
τk
15T

�Z
d3p⃗k

ð2πÞ3 jp⃗kj2f0kð1� f0kÞ

− 2

�
T

�
T
Tc

�
∂ð T

Tc
ÞðlnzkÞ

�Z
d3p⃗k

ð2πÞ3 jp⃗kjf0kð1� f0kÞ
�
:

ð52Þ

The full analytic computations of the momentum inte-
grations over the equilibrium quasi-particle distribution
functions that give compact results in terms of PolyLog
functions of the fugacity parameters of quasi-quarks and
gluons are provided in the Appendix.
In Figs. 4 and 5, the obtained shear viscosity over entropy

density ratio has been plotted as a function of T=Tc. Figure 4
is showing a comparison between the fully numerical
estimation directly from Eq. (50) and the approximated
analytical estimation from Eq. (B1) of η=s for Nf ¼ 3, with
LEOS under the EQPM scheme at μq ¼ 0.1 GeV. The plot
shows that the two curves are merely separable from each
other above T=Tc ∼ 2ðT ∼ 300 MeV). So, it can be clearly
inferred that the analytical approximation performed in the
estimation of η is quite reliable in the temperature range we
are interested in currently. Figure 5 exhibits the temperature
dependence of η=s estimated under the EQPM scheme using
three separate EOSs mentioned in Sec. II A for zero and
nonzero μq. As predicted by other pQCD estimates, thevalue
of η=s, which is ∼0.1, is observed to be greater than the
experimental extractions and AdS/CFT predictions. Here the
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leading log terms in thermal relaxation time are majorly
responsible for the enhanced value of η=s. Up to T=Tc ∼ 4,
the equation-of-state effects under EQPM are quite
distinctly visible, while merging with the ideal ones in high-
temperature ranges. The nonzero μq effects are only slightly
visible in lower temperatures, becoming negligible in high
temperatures.

B. Bulk viscosity

The bulk viscous coefficients can be estimated in the
same spirit as η by comparing Eqs. (48) and (24), and
putting the expression of ϕk from Eq. (45) into δfk:

ζ ¼
X

k¼q;q̄;g

νk
τk
9T

Z
d3p⃗k

ð2πÞ3
1

ω2
k

fp2
k − 3ω2

kc
2
sg2f0kð1� f0kÞ:

ð53Þ

Under the analytical approximation mentioned in the earlier
section, Eq. (53) becomes

ζ ¼ ð1 − 3c2sÞ2
X

k¼q;q̄;g

νk
τk
9T

Z
d3p⃗k

ð2πÞ3 jp⃗kj2f0kð1� f0kÞ

− 2ð1 − 9c4sÞ
X

k¼q;q̄;g

νk
τk
9T

�
T

�
T
Tc

�
∂ð T

Tc
Þflnzkg

�

×
Z

d3p⃗k

ð2πÞ3 jp⃗kjf0kð1� f0kÞ þ ð1þ 3c2sÞ2

×
X

k¼q;q̄;g

νk
τk
9T

�
T

�
T
Tc

�
∂ð T

Tc
Þflnzkg

�
2

×
Z

d3p⃗k

ð2πÞ3 f
0
kð1� f0kÞ: ð54Þ

After performing the momentum integrals over separate
partonic degrees of freedom, the consolidated expression of
ζ in terms of the PolyLog functions over fugacity param-
eters is given in the Appendix.
In Figs. 6 and 7, the temperature dependence of the

estimated ζ=s has been depicted. The former figure again
proves the authenticity of the analytical approximation in
Eq. (B2), as it agrees sensibly with the full numerical
coding [Eq. (54)]. The temperature dependence of ζ=s is
displaying the conventional decreasing trend with increas-
ing temperature above Tc, and away from (T=Tc ∼ 2) its
magnitude appears to be quite small as expected, indicating
the diverging nature of ζ only around Tc. We note from
Eq. (53) that the ideal EOS will result in a vanishing
contribution to ζ for massless QGP. The different EOSs
under EQPM are showing distinct temperature behavior of
ζ=s around T=Tc ∼ 2, which are merging together into
extremely small values at higher temperatures. However,
due to the small order of magnitude of ζ even around Tc (in
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FIG. 4. Comparison between analytical and numerical estima-
tions of the shear viscosity to entropy ratio.
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FIG. 5. Shear viscosity to entropy ratio using various EOSs as a
function of T=Tc at fixed ~μq.
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FIG. 6. Comparison between analytical and numerical estima-
tions of the bulk viscosity to entropy ratio.
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comparison with other transport coefficients), the nonzero
quark chemical potential effects are barely visible in this
case.
After obtaining the expressions of η and ζ, their ratios

have been plotted while scaled with f2ð1=3 − c2sÞg (scaling
1) and f15ð1=3 − c2sÞ2g (scaling 2), including three differ-
ent EOS effects and with μq ¼ 0.1 GeV in Figs. 8 and 9.
These scaling factors have been widely used to illustrate the
interplay between bulk and shear viscous coefficients in
literature based on pQCD, AdS/CFT, and experimental
extractions of transport parameters. However, in our case,
the second case offers a better scaling, at least at higher-
temperature regions, for all three EOSs, whereas the first
one fails to prove a sensible scaling of the ζ=η ratio.

C. Thermal conductivity

The analytical expression of thermal conductivity can be
obtained by comparing Eqs. (25) and (27), and replacing ϕk
in δfk from Eq. (45) in the following form:

λ ¼
X

k¼q;q̄;g

νk
τk
3T2

Z
d3p⃗k

ð2πÞ3
jp⃗kj2
ω2
k

ðωk − hkÞ2f0kð1� f0kÞ:

ð55Þ

An analytical approximation of λ estimated in a similar
manner is given in the Appendix.
The results of thermal conductivity are displayed as a

function of temperature in Figs. 10 and 11. Like in the other
two previous cases, here too the analytical approximation
works wonderfully well, showing convincing agreement
with full numerical coding. We have plotted the dimension-
less quantity λ=T2 as a function of T=Tc in the second plot,
for all possible EOSs and both zero and nonzero quark
chemical potentials. As before, the different EOSs are
providing recognizably different effects at lower temper-
atures, which are fusing with the ideal one at higher
temperatures. The nonzero μq effects are only visible at
quite low temperatures. Around T=Tc ∼ 2, the LEOS

1 2 3 4 5 6
 T/Tc

0

0.2

0.4

0.6

0.8

1
ζ/

s
 EQPM + EOS1, μq= 0

 EQPM + EOS2, μq= 0

 EQPm + LEOS, μq=0

 EQPM + EOS1, μq= 0.1 GeV

 EQPM + EOS2, μq=0.1 GeV

 EQPM + LEOS, μq= 0.1 GeV

FIG. 7. Bulk viscosity to entropy ratio using various EOSs as a
function of T=Tc at fixed ~μq.
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FIG. 8. Bulk viscosity to shear viscosity ratio using scaling 1.
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FIG. 9. Bulk viscosity to shear viscosity ratio using scaling 2.
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FIG. 10. Comparison between analytical and numerical esti-
mations of thermal conductivity.
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results with μq ¼ 0.1 GeV are in good agreement with the
NJL estimation of thermal conductivity by Marty [49].

D. Electrical conductivity

In order to estimate σel, we start with the expression of
diffusion flow given in Eq. (31). We clearly observe that at
leading order with the equilibrium distribution function f0k
in the definitions of Nμ

k, N
μ, and xk, the diffusion flow

vanishes, while in the next-to-leading order the correction
term δfk ¼ f0kð1� f0kÞ gives finite contribution to the
diffusion flow as follows:

Iμa ¼
XN
k¼1

ðqak − xaÞ
Z

d3p⃗k

ð2πÞ3p0
k

pμ
kf

0
kð1� f0kÞϕk: ð56Þ

Using the value of ϕk from (45), we get the linear law
obeyed by the diffusion flow,

Iμa ¼ laqX
μ
q þ

XN0−1

b¼1

labX
μ
b; a ¼ 1;…; ðN0 − 1Þ; ð57Þ

where the coefficients associated with thermal diffusion
and particle concentration diffusion are given as

laq ¼
XN
k¼1

ðqak − xaÞ
Z

d3p⃗k

ð2πÞ3 f
0
kð1� f0kÞ

τk
T
jp⃗kj2
ω2
k

ðωk − hkÞ;

ð58Þ

lab ¼
XN
k¼1

ðqak − xaÞðqbk − xbÞ
Z

d3p⃗k

ð2πÞ3 f
0
kð1� f0kÞ

τk
T
jp⃗kj2
ω2
k

;

ð59Þ

respectively. Substituting the expression of diffusion flow
from Eq. (57) into the microscopic definition of current

density in Eq. (29), and pertaining to the terms proportional
to the electric field only, we finally obtain the expression
for the electric current density as

Jμ ¼
XN−1

k¼1

ðqk − qNÞ
�XN−1

l¼1

lkl

�
ql − qN −

hl − hN
h

XN
n¼1

xnqn

�

−
lkq
h

XN
n¼1

xnqn

�
Eμ: ð60Þ

Finally, by comparing Eq. (60) with the macroscopic
definition of induced current density from Eq. (28), we get
the expression for electrical conductivity as the following:

σel ¼
XN−1

k¼1

ðqk − qNÞ
�XN−1

l¼1

lkl

�
ql − qN

−
hl − hN

h

XN
n¼1

xnqn

�
−
lkq
h

XN
n¼1

xnqn

�
: ð61Þ

For a QGP system with quarks, antiquarks, and gluons as
the degrees of freedom, the expression of σel turns out to be

σel ¼ q2q

�
ðl11 þ l21Þ

�
1 −

hq − hg
h

ðxq þ xq̄Þ
�

þ ðl12 þ l22Þ
�
1 −

hq̄ − hg
h

ðxq þ xq̄Þ
�

− ðl1q þ l2qÞ
ðxq þ xq̄Þ

h

�
; ð62Þ

The value q2q ¼
P

kνkq
2
qk is simply the square of the

fractional quark charges taking the sum over quark degen-
eracy. For up, down, and strange quarks, the fractional
quark charges are taken to be 2=3, −1=3, and −1=3,
respectively. Apart from the full numerical coding, we
have done the analytical approximation as well in estimat-
ing the value of σel. For this purpose, the two relevant
integrals present in Eqs. (58) and (59), indicated by I1 and
I2 as follows,

fI1gk ¼
Z

d3p⃗k

ð2πÞ3 f
0
kð1� f0kÞ

jp⃗kj2
ω2
k

ðωk − hkÞ; ð63Þ

fI2gk ¼
Z

d3p⃗k

ð2πÞ3 f
0
kð1� f0kÞ

jp⃗kj2
ω2
k

; ð64Þ

need to be computed analytically as indicated earlier. The
estimated values of the integrals for different partonic
degrees of freedom in terms of the fugacity parameters
and their derivatives are given in the Appendix.
We end this section by giving the results of electrical

conductivity in Figs. 13 and 14. Again, the analytical
approximation works quite well, as seen from Fig. 12. The
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FIG. 11. Thermal conductivity using various EOSs as a
function of T=Tc.
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dimensionless ratio σel=T has been plotted against T=Tc for
Nf ¼ 2 and Nf ¼ 3, employing different EOSs in the
EQPM. The results with μq ¼ 0.1 GeV differ from the
same with μq ¼ 0 as given in Ref. [57] below T=Tc ∼ 2, in
a small but quantitative amount. The three-flavor case
appears to be slightly greater than the two-flavor ones,
since the quark charge q2q in Eq. (62) includes the fractional
quark charge of the strange quark also. At lower temper-
atures, the lattice data from Ref. [60] is observed to
underpredict the current results; however, the quenched
lattice estimations of electrical conductivity from Gupta
et al. [62] agree with the current estimation of σel quite
sensibly. For the three-flavor case beyond T=Tc ∼ 3, the
estimations of σel are matching with the trend given in
Cassing et al. [53] and agree with their statement that above
T ∼ 5Tc, the dimensionless ratio σel=T becomes approx-
imately constant (≈0.3). In the estimations of σel through-
out, the electronic charges are explicitly given by the
relation e2

4π ¼ 1
137

.

E. Relative significance of the transport
coefficients and related physical laws

Here, the relative importance of the charge diffusion, the
momentum diffusion, and the heat diffusion in a hot QCD
medium has been explored by studying the ratios of various
transport coefficients, as explicated below.

1. Thermal diffusion vs charge diffusion:
The ratio λ=σelT

The relation between electrical conductivity σel and
thermal conductivity λ for any substance can be understood
in terms of the Wiedemann-Franz law. The basic math-
ematical statement of the law is

λ

σelT
¼ L½L∶ Lorenz number�: ð65Þ

For instance, in the case of metals, L is a constant and
quantifies the fact that metals are good electrical as well as
thermal conductors. The temperature dependence of the
Lorenz number for the QGP/hot QCD is depicted in
Fig. 15. For the temperature range 2 − 10Tc, L varies
between 250 and 100 for various realistic QGP EOSs. For
T ≥ 4Tc, the number saturates closer to a value 100, which
is also the Stefan-Boltzmann (SB) limit (QGP as an ultra-
relativistic gas of gluons and quarks). Clearly, the violation
is quite apparent for the temperatures which are smaller
than 4Tc (in fact, the violation becomes quite prominent
while moving towards 2Tc). The law in the case of the QGP
mainly depends on the effective coupling, the EOS chosen,
and the contributions that are included while computing the
thermal relaxation times. To make any sensible argument
about the violation and its connection with the other
Wiedemann-Franz-law-violating quantum fluids such as
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FIG. 12. Comparison between analytical and numerical esti-
mations of σel.
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FIG. 13. Electrical conductivity using various EOSs as a
function of T=Tc for Nf ¼ 2.
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FIG. 14. Electrical conductivity using various EOSs as a
function of T=Tc for Nf ¼ 3.
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graphene [22], a deeper analysis is needed (inclusion of
higher-order QCD processes and appropriate collision and
source terms in the transport equation and also effects from
momentum anisotropy). Nevertheless, the observation from
our study perhaps indicates towards a much more complex
nature of the QGP as a strongly interacting quantum fluid
for temperatures that are not very large compared to the
QCD transition temperature, Tc. Noticeably, such devia-
tions have also been observed in holographic anisotropic
models that are dual to spatially anisotropic, N ¼ 4 super-
Yang-Mills theory at finite chemical potential [91] which
further violates the KSS bound of η=S in the longitudinal
direction. The numbers obtained in Fig. 15 are slightly
higher compared to those from holographic models [24], by
holographic estimates.

2. Momentum diffusion vs charge diffusion

The relative significance of the momentum diffusion and
the charge diffusion in a medium could be understood in
terms of a dimensionless ratio,

Rη=σel ¼
η=S
σel=T

: ð66Þ

In a hot QCD medium, unlike gluons, a quark (antiquark)
carries EM charge. Therefore, it is reasonable to expect that
its contribution to the σel would be predominant, as gluons
enter only through the interactions (qg and gg scattering
contributions). Since the gluonic scattering rates are larger
as compared to that for the quarks and antiquarks, the quark
contribution to the shear viscosity is also expected to be
dominant. The ratio Rη=σel could be an indicator of the
relative significance of the gluonic and matter sectors as far
as the relative importance of the momentum and the charge
transports in the QGP medium are concerned. This point
has been realized to some degree of detail in Ref. [27],

where a scaling in terms of gluon and quark relaxation
times was seen. In contrast, in the present analysis, such a
scaling highlighting the relative importance of gluonic and
quark contributions is not expected due to the more
systematic treatment of the scattering cross sections and
the computation of relaxation times and inclusion of all the
relevant effects from the gluonic sector. The ratio decreases
with increasing temperature and subsequently saturates
towards the SB limit (the black line in Fig. 16). The ratio
is always greater than unity for the whole range of
temperature. It can be inferred that the momentum transfer
has dominant impact over the charge diffusion.

3. Momentum diffusion vs thermal diffusion:
The Prandtl number for the QGP

The relative magnitude of the momentum and the
thermal diffusions is quantified in terms of the Prandtl
number, Pr (the ratio of momentum diffusibility and
thermal diffusibility):

Pr ¼ ηcp
ρλ

; ð67Þ

where cp is the specific heat at constant pressure. This
number signifies the relative importance of shear viscosity
and thermal conductivity in the sound attenuation in a
liquid medium. Before describing it for a hot QCD/QGP
medium, let us get an idea about its magnitude for other
strongly coupled systems. For liquid helium, the Prandtl
number is around 2.5 [9]; for a weakly interacting unitary
Fermi gas at high temperature, it is 2=3 [9,92]. On the other
hand, for conformal nonrelativistic theories, the number is
of the order of 1 [25].
To define the Prandtl number for the QGP, apart from η,

σel, and cp, one needs to know the mass density ρ. The only
mass scale in high-temperature QCD is the thermal mass of
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FIG. 15. Lorenz number using various EOSs as a function of
T=Tc.
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FIG. 16. Shear viscosity to entropy ratio vs electrical conduc-
tivity as a function of T=Tc.
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a dressed parton (gluon or quark) that is obtained in terms
of the QCD effective coupling constant at high temperature
and the temperature scale of the system. In our case, the
mass density for the QGP can be defined as

ρ ¼ mgng þmqðnq þ nq̄Þ; ð68Þ

where mg and mq are the thermal (medium) masses of the
gluons and quarks, respectively, and ng, nq;q̄ are their respec-
tive number densities obtained from the momentum distri-
butions, following the basic thermodynamic definitions.
The gluon medium massmg and quark medium massmq

for the QCD are obtained in terms of gluon and quark/
antiquark distributions functions as [93]

m2
gð¼m2

DÞ≡ 4παsðT;μqÞ
�
−2Nc

Z
d3p⃗
ð2πÞ3 ∂pfgðp⃗Þ

−Nf

Z
d3p
ð2πÞ3 ∂pðfqðp⃗Þ þ fq̄ðp⃗ÞÞ

�
;

m2
q ¼

�
N2

c − 1

2Nc

�
4παsðT;μqÞ

×
Z

d3p⃗
ð2πÞ3jp⃗j

�
fgðp⃗Þ þ

�
fqðp⃗Þ þ fq̄ðp⃗Þ

2

��
:

ð69Þ

The number is plotted as a function of T=Tc in Fig. 17 for
various EOSs within their EQPM descriptions. The number
is in the range 20–35 for the all cases considered here. All
the other liquids/systems mentioned previously possess
much smaller numbers as compared to the QGP; therefore,
sound attenuation is mostly governed by the momentum
diffusion here. In this context, we may perhaps ignore the
effects that are coming from thermal diffusion, unlike

holographic models, where both these effects are on an
equal footing.

IV. DISCUSSIONS ON THE RESULTS

The present result for η=S based on the EQPM model,
employing binary elastic scattering processes among
quarks and gluons, turned out to be closer to predictions
from pQCD and effective theory-based models [33].
However, a sharp rise of η=S below T=Tc ∼ 3 indicates
the nontrivial αs dependence of the interaction cross section
through the logarithmic behavior. In most of the pQCD
estimations, the cross section is proportional to αs, leading
to η=s ∼ 1=αs [41]. In the present case, the τ−1 ∼ α2slnf 1

αs
g

term is controlling the behavior of η=S crucially, which
leads to the sharp increase of η=S at lower temperatures
with αs ∼ 0.3–0.4, where the logarithmic term predomi-
nates, and the moderate increase at higher temperature with
αs ∼ 0.15, where the α2s term prevails. Hence, we conclude
that the EQPM model—which is basically dressing up the
bare particles by defining their collective properties in a
thermal medium, and those properties are being reflected
through the logarithmic term in the viscosity—is respon-
sible for the large values (∼2) of η=S. In this context, the
significance of the inelastic processes will be a matter of
future investigations. Our results on bulk viscosity are
observed to be consistent with other perturbative estimates
on the same. In all the estimations of bulk viscous
coefficient, the value of ζ=s has been reported to be
extremely smaller except near Tc. In Ref. [44], the 3D
hybrid simulation agrees with data from ALICE and CMS
for ζ=s ≈ 0.3 around Tc. The lattice Monte Carlo calcu-
lation for SUð3Þ gluodynamics in Ref. [14] reports ζ=s <
0.15 near Tc (T=Tc ¼ 1.65), which becomes negligibly
small ζ=s < 0.015 away from Tc. The leading-order pQCD
estimation from Ref. [94] also gives a small value of bulk
viscosity, ζ ¼ 0.2α2sT3, for reasonable perturbative values
of 0.2≲ αs ≲ 0.3.
In comparison to the viscosities, the investigations on

thermal conductivity are really quite limited in the existing
literature. In Ref. [48], the λ of a massless Boltzmann gas
using the partonic cascade model has been listed as a
temperature-independent quantity for a number of isotropic
cross sections. In Ref. [49], the dimensionless quantity
λ=T2 has been plotted against T=Tc for both the NJL model
and the dynamical quasi-particle particle model (DQPM),
which displays two completely different trends. However,
at lower temperature ranges (T=Tc ∼ 1.5–2.5), our estima-
tions appear to be quite consistent at the quantitative level
with the NJL one. On the other hand, the lattice data from
Refs. [59–61,63,64] provide an estimation for σel=T that is
below 0.05, up to temperature 350 MeV, which quite
underpredicts our results, but the quenched lattice estima-
tion from Ref. [62] offers quite sensible agreement. The
DQPM results from Ref. [53] also exhibit a compatible
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FIG. 17. Prandtl number using various EOSs as a function of
T=Tc.
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trend with our result. The maximum entropy method
(MEM) according to Ref. [55] gives σel=T ∼ 0.4 at
T=Tc ¼ 3, which is also close to our result.
Interplay of the thermal diffusion and the electrical

diffusion could be understood in terms of the
Wiedemann-Franz law—the dimensionless number
(Lorenz number). For a large class of metals, this is
constant and depicts the common origin of both the
transport processes. In other words, the metals are good
thermal and electrical conductors at the same time. The
Lorenz number for the hot QCD system in the current work
converges to a number slightly higher than 100 at higher
temperatures. For the temperatures that are lower than 3Tc,
there is a significant rise as we decrease the temperature.
This indicates towards the violation of the above mentioned
law. In some known systems, such as graphene, this
violation leads to a strongly interacting quantum fluid also
termed as Dirac fluid [22]. In this present case, the violation
is mainly due to the 1=αs term and the strongly interacting
EOS. To make any such concrete connection with the other
interesting quantum fluids is quite early, as it will require
more refined computation of the Lorenz number while
including higher-order hot QCD effects in the current
analysis. This will be one direction on which the future
investigation will focus. In order to explore the relative
importance of the momentum diffusion and the charge
diffusion in the hot QCD medium, the ratio of η=s to σel=T
is studied as a function of temperature. The ratio for the
QGP turns out to be much greater than unity for the whole
range of the temperature considered here, indicating the
more prominent role of the momentum diffusion in agree-
ment with the prediction of Ref. [27]. Finally, the relative
significance of the thermal and the momentum diffusions
has been quantified in terms of the Prandtl number. For the
hot QCD system here, this number came out to be much
greater than unity, signifying the dominance of the momen-
tum diffusion over the thermal one. In other words, sound
attenuation in the hot QCD/QGP system will mainly be
governed by the shear viscous effects, which is in contrast
to the observations for dilute Fermi gases [9] or the
holographic systems [25]. For example, in liquid helium,
the number is 2.5 [9], which is but an order of magnitude
smaller.

V. CONCLUSIONS AND OUTLOOK

The current article is concerned with the temperature
behavior of various transport coefficients that measure the
dissipative and electromagnetic responses in a strongly
interacting QCD system at finite temperature with nonzero
quark chemical potential. The most important feature of
this work is to highlight the concerned physical laws
expressing the relative importance of different transport
phenomena by obtaining the temperature dependences of
their mutual ratios. The detailed Chapman-Enskog tech-
nique for a multicomponent fluid, adopted from the kinetic

theory of many-particle systems, has been discussed, which
gives the mathematical expressions of shear and bulk
viscosities, thermal conductivity, and electrical conduc-
tivity in terms of the medium interactions. The interaction
cross sections are provided through the thermal relaxation
times of constituent quarks, antiquarks, and gluons by
leading-order QCD estimations. The effects of a strongly
coupled thermal medium have been introduced in the
evaluation of these transport parameters through the
EQPM model, which describes the collective properties
of quarks and gluons by considering them as quasi-particles
rather than bare ones. The finite-temperature effects have
been folded through this EQPM scheme by introducing the
pQCD- and lattice-QCD-based equation-of-state effects in
particle momentum distribution and effective couplings.
Finally, they are applied to the current formalism of
estimating transport coefficients and studying the related
physical laws. So we conclude by saying that we have
investigated the transport properties and electromagnetic
responses along with the associated physical laws in a
strongly interacting hot QCDmedium quite thoroughly and
reasonably, presenting a sensible, realistic scenario created
out of the relativistic heavy-ion collisions. The results
obtained in our approach are seen to be consistent with
other parallel or distinct approaches.
The current work opens up a horizon of possible

extensions and applications in related areas in the near
future—e.g., the inclusion of more realistic collision terms
that ensure local number and energy-momentum conser-
vations away from equilibrium (such as BGK [95] and
other nonlocal collision terms) along with the Vlasov term
to accommodate the influence of color fields in the initial
stages of the RHIC, while setting up the transport equation
that estimates the transport coefficients will be a significant
improvement. The viscosities controlling the magnitude of
hydrodynamic fluctuations in the fluid can be extracted
directly from the correlation observables in heavy-ion
collisions [96]. This can offer a means to predict the
viscosity, independent from the traditional collective flow
analysis and can shed some light regarding the dissimi-
larities in the viscosity values extracted by them from the
pQCD measurements. Finally, the estimations of all the
above mentioned transport coefficients by including
higher-order thermal QCD effects with appropriate colli-
sion, Vlasov, and source terms in the transport equation
while also including the anisotropic aspects of the QGP in
heavy-ion collisions could be another interesting direction
for future explorations to focus on.
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APPENDIX A: ENERGY-MOMENTUM
CONSERVATION IN EFFECTIVE KINETIC

THEORY WITH EQPM

The energy-momentum conservation could be realized in
terms of the first moment of the transport equation, (32), as

X
k

Z
d3p⃗

ð2πÞ3ωk
pνpμ∂μfk ¼

X
k

Z
d3p⃗

ð2πÞ3ωk
pνC½fk�:

ðA1Þ

The right-hand side of Eq. (A1) vanishes by virtue of the
summation invariant. The left-hand side breaks up into the
following two parts:

X
k

�
∂μ

Z
d3p⃗

ð2πÞ3ωk
pνpμfk−

Z
d3p⃗
ð2πÞ3 ∂μ

�
pνpμ

ωk

�
fk

�
¼ 0:

ðA2Þ

The second term could be neglected, since it involves only
second-order derivatives, or products of first-order deriv-
atives or higher-order ones. This can be seen below. Let us
define the second term as

I ¼
Z

d3p⃗
ð2πÞ3 ∂μ

�
pμpν

ωk

�
fk: ðA3Þ

Here, pμ (in LRF) could be written in terms of bare
momentum p0μ ≡ fEk; p⃗g as pμ ¼ p0μ þ Δuμ, with

Δ ¼ T2∂T lnðzg;qÞ. Following this definition, Eq. (A3) will
lead to

∂μ

�
pμpν

ωk

�
¼ 2Δ

ωk
uνDΔ −

Δ2

ω2
k

uνDΔþ Ep

ω2
k

p0νDΔ

þ Ep

ω2
k

uνp0μ∂μΔ −
1

ω2
k

p0μp0ν∂μΔ

þ 1

ωk
Δp0μ∂μuν þ

Δ2

ωk
Duν

þ 1

ωk
Δpν∂ · uþ 1

ωk
Δ2uν∂ · u; ðA4Þ

where D ¼ uμ∂μ. As stated earlier, all the terms are either
second order in gradients or the product of two first-order
derivatives in gradients or higher ones. Therefore, in
developing first-order dissipative hydrodynamics, these
terms have been neglected. In view of the above consid-
erations, Eq. (A1) can be rewritten as

∂μT
μν
QP ≡ 0; ðA5Þ

with Tμν
QP having the following expression:

Tμν
QP ¼

X
k

Z
d3p⃗

ð2πÞ3ωk
pνpμfk: ðA6Þ

APPENDIX B: FULL ANALYTIC EXPRESSION
OF TRANSPORT COEFFICIENTS

The analytic expressions for various transport para-
meters of the QGP and some integrals involved while
computing the electrical conductivity σel are listed
below.

The shear viscosity η is obtained as

η ¼
�
2T4

5π2

�
νgτg

�
2Polylog½4; zg� −

��
T
Tc

�
∂ð T

Tc
ÞðlnzgÞ

�
Polylog½3; zg�

�
þ
�
2T4

5π2

�
νqτq

�
−2

�
Polylog½4;−zq�

þ ~μqPolylog½3;−zq� þ
~μq
2

2
Polylog½2;−zq�

�
þ
��

T
Tc

�
∂ð T

Tc
ÞðlnzqÞ

��
Polylog½3;−zq� þ ~μqPolylog½2;−zq�

−
~μq
2

2
lnð1þ zqÞ

��
þ
�
2T4

5π2

�
νq̄τq̄

�
−2

�
Polylog½4;−zq� − ~μqPolylog½3;−zq� þ

~μq
2

2
Polylog½2;−zq�

�

þ
��

T
Tc

�
∂ð T

Tc
ÞðlnzqÞ

��
Polylog½3;−zq� − ~μqPolylog½2;−zq� −

~μq
2

2
lnð1þ zqÞ

��
: ðB1Þ

The bulk viscosity ζ is obtained as
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ζ ¼ ð1− 3c2sÞ2τgνg
�
4T4

3π2

�
PolyLog½4; zg�− ð1− 9c4sÞτgνg

�
2T4

3π2

���
T
Tc

�
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�
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2
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The thermal conductivity of hot QCD, λ, is obtained as

λ ¼
�
2T3

9π2
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The integral identities that are used in obtaining electrical conductivity σel are listed below:

fI1gg ¼ −
T4
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2
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T
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