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Based on a chiral constituent quark model, we calculate the charge distributions of d�ð2380Þ. We
consider the existence of two different interpretations of the d�: a compact structure in the two-coupled-
channel (ΔΔþ CC) approximation, and a resonant structure of D12π. We calculate the charge distribution
of the d� with a compact structure, and we also roughly estimate the charge distribution for aD12π structure
on the same base. The result shows that there is a remarkable difference in the charge distributions of the
two structural pictures. Therefore, we expect that future experiments may provide a clear signal for the d�

structure.
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I. INTRODUCTION

d�ð2380Þ is a new resonance recently observed by the
CELSIUS/WASA andWASA@COSY collaborations [1,2].
It was found in the analysis of the double pionic fusion
channels pn → dπ0π0 and pn → dπþπ− when the ABC
effect [3] and the analyzing power Ay of the neutron-proton
scattering data were studied. It is argued that the observed
structure cannot be simply understood by either the inter-
mediate Roper excitation contribution or the t-channel
ΔΔ process. References [1,2] proposed the assumption
of there existing a d� resonance whose quantum number,
mass, and width are IðJPÞ ¼ 0ð3þÞ, M ≈ 2370 MeV, and
Γ ≈ 70 MeV, respectively (see also their recent paper [4];
the averaged mass and width are M ≈ 2375 MeV and
Γ ≈ 75 MeV, respectively). Since the baryon number of
the d� is 2, it would be treated as a dibaryon, and could be
explained by either “an exotic compact particle” or “a
hadronic molecule state” [5]. Moreover, since the observed
mass of the d� is about 80MeV below theΔΔ threshold and
about 70 MeV above the ΔπN threshold, the threshold (or
cusp) effect may not be as significant as that in the XYZ
particles (see the review of XYZ particles in Ref. [6], for
example). Thus, understanding the internal structure of the
d� would be of great interest.
The existence of such a nontrivial six-quark configuration

with IðJPÞ ¼ 0ð3þÞ (called d� lately) has triggered great
attention and has intensively been studied in the literature
even before the COSY’s discovery [7–15]. In fact, after the
experimental observation of the d�, there are three main
types of model explanations for its nature in the market. The
first type regards it as aΔΔ bound state. The typicalwork is a
calculation in terms of the chiral SUð2Þ quark model in
Refs. [16,17]. The second type asserts that the d� has a
resonant structure of D12π [18–24] with a resonant pole
around ð2363� 20Þ þ i (65� 17 MeV). In this model,D12

is an NΔ resonance with an S-matrix pole positioned at
2159 − i70 MeV obtained by solving NNπ Faddeev equa-
tions [18–21]. The third type, following our previous
prediction [15], suggests a dominant hexaquark structure
for the d�, with a mass of about 2380–2414 MeV and a
width of about 71 MeV [25–29]. Most recently, another
ΔΔ −D12π mixed model is also proposed, in which the
fraction of the ΔΔ component is about 5=7 [30]. From the
above mentioned model results, one has the following
observations: (1) All proposedmodels can almost reproduce
the observed mass of the d�. (2) Only the last two models
provide a total width for the d� which is compatible with the
observed data. Moreover, in terms of the third (hexaquark-
dominant) model, the predicted width of the single-pion
decay mode of d� → NNπ is about 1 MeV, which is small
compared with its double-pion decay widths [29]. Here, we
particularly mention that this value is much narrower than
the width for a pure D12π structure with the second
approach, but it is not contradictory to experimental obser-
vation [31] or the result from theΔΔ-D12πmixedmodel [30]
found very recently.Anyway, all the outcomes from the third
model support the idea that the d� is probably a compact six-
quark-dominated exotic state due to its largeCC component,
which has also been pointed out by Bashkanov, Brodsky,
and Clement [32]. Therefore, the model decay width of the
d� → NNπ processmight help us to understand its structure;
in other words, the width might be sensitive to the structure
of the d�. However, to ultimately pin down its structure,
more discriminating observables and processes should still
be investigated. A general review on the dibaryon studies
can be found in Ref. [33].
It is known that the electromagnetic probe is one of the

most useful tools to test the internal structure of a
complicated system. For example, the electromagnetic
form factors of the nucleon show its charge and magnetic
distributions. The slopes of the charge and magnetic
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distributions at the origin give the charge and magnetic
radii of the system. The precise measurement of the charge
radius of the proton provides criteria for different model
calculations. For the spin-1 particle, like a deuteron or a ρ
meson, the charge, magnetic, and quadrupole form factors
tell us its intrinsic structures as well, like charge and
magnetic distributions and the quadrupole deformation of
the system. Therefore, the form factors of the d�—for
instance, the charge distribution—might also be a discrimi-
nating quantity for its structure. In particular, if the d� has a
considerably large hidden color component (HCC), such a
component does not contribute to its hadronic decays in the
leading-order calculation, but plays a rather important role
in its charge distribution calculation. Therefore, the charge
distribution of the d� reveals the effect of HCC in it. On the
other hand, because the chiral SUð3Þ constituent quark
model with fixed model parameters can well explain the
data of the baryon ground states, the nucleon-nucleon
scattering phase shifts and nucleon-hyperon cross sections,
the binding energy of the deuteron, and even the H particle
in its present experimental status, etc. [25,26,34–38], the
model has certain power of prophecy. Therefore, in this
work, the charge distribution of the new resonance
d�ð2380Þ will be discussed on the base of the chiral
SUð3Þ constituent quark model with a single ΔΔ structure
or a coupled ΔΔþ CC structure. For comparison, the
charge distribution of the d� with a resonant structure of
D12π is also calculated on the base of the same quark
model. Now, since the d�ð2380Þ is a spin-3 particle, it has
2Sþ 1 ¼ 7 form factors. A detailed discussion of all seven
form factors is beyond the scope of this work and will be
given elsewhere. Here we only concentrate on its charge
distribution and the charge radius of the d�ð2380Þ in the
two scenarios.
This paper is organized as follows: In Sec. II, a brief

discussion about the electromagnetic form factors of the
particles with spin 1=2, spin 1, and spin 3 will be shown.
An explicit calculation of the charge distribution of the d�
with two scenarios is given in Sec. III. Section IV is devoted
to a short summary.

II. ELECTROMAGNETIC FORM FACTORS

The study of the electromagnetic form factors of the
nucleon (spin-1=2) is of great interest, because it can tell us
information about the charge and magnetic distributions of
a nucleon. In the one-photon approximation, the electro-
magnetic current of a nucleon is

hNðp0ÞjJμN jNðpÞi

¼ ŪNðp0Þ
�
F1ðQ2Þγμ þ i

σμνqν
2MN

F2ðQ2Þ
�
UðpÞ; ð1Þ

where MN is the nucleon mass, q ¼ p0 − p is the momen-
tum transfer, Q2 ¼ −q2, and F1ðQ2Þ and F2ðQ2Þ are the

Dirac and Pauli form factors, respectively. These two form
factors relate to Sach’s form factors, the electric and
magnetic form factors, as

GEðQ2Þ ¼ F1ðQ2Þ − ηF2ðQ2Þ;
GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ; ð2Þ

with η ¼ Q2=4M2
N . The normalization conditions of the

two form factors for the proton and neutron are Gp
Eð0Þ ¼ 1

and Gn
Eð0Þ ¼ 0, and Gp

M ¼ 2.79 and Gn
M ¼ −1.91, respec-

tively. Then, Eq. (1) reduces to [39–44]

hNðp0ÞjJμN jNðpÞi

¼ 1

1þη
ūNðp0;s0Þ

�
ð1þηÞGMγ

μ−
GM−GE

2MN
Pμ

�
uNðp;sÞ;

ð3Þ
where P¼p0þp. In the Breit frame, we have qμ ¼ð0; q⃗Þ,
p02 ¼ p2 ¼ M2

N , p⃗ ¼ −p⃗ 0 ¼ − 1
2
q⃗, and p0 ¼ p0

0 ¼ E ¼
MNð1þ ηÞ1=2. Then, the time and space components of
the nucleon electromagnetic current in Eq. (1) are propor-
tional to particular combinations of the Dirac and Pauli
form factors that can be interpreted as Fourier transforms of
electric charge and magnetization spatial densities of the
nucleon [39–44]. We have

hNðq⃗=2ÞjJ0N jNð−q⃗=2Þi ¼ ð1þ ηÞ−1=2χþs0 χsGEðQ2Þ;

hNðq⃗=2ÞjJ⃗N jNð−q⃗=2Þi ¼ ð1þ ηÞ−1=2χþs0
σ⃗ × q⃗
2MN

χsGMðQ2Þ:

ð4Þ
Clearly, the matrix element of J0N is directly related to the
electric form factor GEðQ2Þ and to the diagonal matrix
element without spin flip, and by employing the Breit
reference frame, one may easily sort out the charge form
factor of the nucleon.
A spin-1 particle, like a deuteron [45–49] or a ρ meson

[50–53], contains three form factors. In the one-photon
approximation, the electromagnetic current is

Jμjkðp0; pÞ ¼ ϵ0�αj ðp0ÞSμαβϵβkðpÞ; ð5Þ
where ϵα and ϵ0β stand for the polarization vectors of the
incoming and outgoing deuterons, i and k are the polar-
izations of the two deuterons, and

Sμαβ ¼ −
�
G1ðQ2Þgαβ −G3ðQ2ÞQαQβ

2M2
D

�
Pμ

−G2ðQ2ÞðQαg
μ
β −Qβg

μ
αÞ; ð6Þ

where P ¼ p0 þ p. The three form factors G1;2;3ðQ2Þ relate
to the charge GCðQ2Þ, magnetic GMðQ2Þ, and quadrupole
form factors GQðQ2Þ as
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GCðQ2Þ¼G1ðQ2Þþ2

3
ηDGQðQ2Þ; GMðQ2Þ¼G2ðQ2Þ;

ð7Þ

GQðQ2Þ ¼ G1ðQ2Þ − G2ðQ2Þ þ ð1þ ηDÞG3ðQ2Þ; ð8Þ

with ηD ¼ Q2=4M2
D and MD the deuteron mass. The

charge, magnetic, and quadrupole form factors are
normalized to GCð0Þ ¼ 1, GMð0Þ ¼ MD

MN
μd ¼ 1.714, and

GQðQ2Þ ¼ M2
DQd ¼ 25.83, respectively. One may also

extract the charge form factor of the deuteron GCðQ2Þ by
directly calculating the matrix element 1

3

P
λhp0; λjJ0jp; λi

in the Breit reference frame.
For the d�ð2380Þ particle, since its spin is 3, it has

2Sþ 1 ¼ 7 form factors. Its field can be expressed as
ϵαβγ , a rank-3 tensor, which is traceless. Clearly, ϵααβ ¼ 0,
ϵαβγ ¼ ϵβαγ , andpαϵαβγ ¼ 0. Moreover, we have (in analogy
to the spin-2 case in Ref. [54]),

X
pol

ϵμνσϵ
�
αβγ ¼

1

6
½~gμαð~gνβ ~gσγ þ ~gνγ ~gσβÞ þ ~gμβð~gνα ~gσγ þ ~gνγ ~gσαÞ þ ~gμγð~gνα ~gσβ þ ~gνβ ~gσαÞ�

−
1

15
½~gμνð~gσα ~gβγ þ ~gσβ ~gαγ þ ~gσγ ~gαβÞ þ ~gμσð~gνα ~gβγ þ ~gνβ ~gαγ þ ~gνγ ~gαβÞ þ ~gνσð~gμα ~gβγ þ ~gμβ ~gαγ þ ~gμγ ~gαβÞ�; ð9Þ

with

~gμν ¼ −gμν þ
pμpν

M2
; ð10Þ

where M is the mass of the d�.
In the one-photon exchange approximation, the general form of the electromagnetic current of the 3þ particle is

J μ ¼ ðϵ�Þα0β0γ0 ðp0ÞMμ
α0β0γ0;αβγϵ

αβγðpÞ; ð11Þ
and the matrix element

Mμ
α0β0γ0;αβγ ¼ ½G1ðQ2ÞPμ½gα0αðgβ0βgγ0γ þ gβ0γgγ0βÞ þ permutations�

þG2ðQ2ÞPμ½qα0qα½gβ0βgγ0γ þ gβ0γgγ0β� þ permutations�=ð2M2Þ
þG3ðQ2ÞPμ½qα0qαqβ0qβgγ0γ þ permutations�=ð4M4Þ
þG4ðQ2ÞPμqα0qαqβ0qβqγ0qγ=ð8M6Þ þ G5ðQ2Þ½ðgμα0qα − gμαqα0 Þðgβ0βgγ0γ þ gβ0γgβ0γÞ þ permutations�
þG6ðQ2Þ½ðgμα0qα − gμαqα0 Þðqβ0qβgγ0γ þ qγ0qγgβ0β þ qβ0qγgγ0β þ qγ0qβgγβ0 Þ þ permutations�=ð2M2Þ
þG7ðQ2Þ½ðgμα0qα − gμαqα0 Þqβ0qβqγ0qγ þ permutations�=ð4M4Þ�; ð12Þ

where P ¼ p0 þ p, and G1;2;3;4;5;6;7ðQ2Þ are the seven
elastic form factors. The gauge invariant condition

qμM
μ
α0β0γ0;αβγ ¼ 0 ð13Þ

is fulfilled, as well as the time-reversal invariance. In
general, the combinations of the above seven elastic form
factors G1;2;…7ðQ2Þ can give the physical form factors of
the d� such as the charge, magnetic, quadrupole, and
octupole, as well as other higher-order multiple form
factors. However, those combinations are unknown. More-
over, the normalizations of all the form factors are unknown
as well, except for the charge form factor of Gcð0Þ ¼ 1.
In analogy to the spin-1=2 nucleon and spin-1 deuteron

cases, we assume that the charge distribution of the spin-3
particle, d�ð2380Þ, is also directly related to the spin
nonflip matrix element of J0 which is the time component

of the current Jμ, and working in the Breit frame, we may
untangle the complex relations of the seven elastic form
factors and pick up the charge distribution like the cases of
the nucleon and spin-1 particle. According to this hypoth-
esis, the charge distribution of the d�ð2380Þ, which is a six-
quark system, can approximately be extracted from the spin
nonflip matrix element of J0 in the Breit frame, as well in
the form of

Gd�
E ðQ2Þ ¼ 1

7

X3
md�¼−3

hp0; md� jJ0jp;md� i; ð14Þ

where the quark-quark-photon current reads

J0 ¼
X6
i¼1

eiq̄iγ0qi ¼
X6
i¼1

j0i : ð15Þ
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It should be mentioned that although a detailed study of all
seven elastic form factors should be carried out, it is beyond
the scope of this paper, and it will be done in the future.

III. CALCULATIONS OF THE d� CHARGE
DISTRIBUTION IN TWO SCENARIOS

Two extreme pictures for the d� structure are a compact
hexaquark-dominated state [25–29] and a ΔNπ (or D12π)
state. Since these two structures have same quantum
numbers, the observed state might be of their mixture,
namely an extended structure [30]. If the former structure
has a large fraction, the system is more like a compact
hexaquark-dominated state, and otherwise like a quasimo-
lecular state. We believe that the future measured charge
distribution of the d� would help us to figure out the
fractions of these two structures in it, and consequently to
obtain its structure information. Therefore, in this paper, we
would concentrate on the charge distribution of the
d�ð2380Þ, and show how the charge distribution curve
goes in these two extreme cases, scenarios A and B.

A. Scenario A: Hexaquark-dominant structure

We first consider the charge distribution of the d�ð2380Þ
with a hexaquark-dominated structure. As mentioned in
Refs. [25–27], our model wave function for the d�ð2380Þ is
obtained by dynamically solving the bound-state RGM
(resonating group method) equation of the six-quark
system in the framework of our extended chiral SUð3Þ
quark model [34,35], and then successively projecting the
solution onto the inner cluster wave functions of the ΔΔ
and CC channels. The resultant wave function of the d� can
finally be abbreviated to a form of

jΨd�ð2380Þi ¼ αjΔΔiðSIÞ¼ð30Þ þ βjCCiðSIÞ¼ð30Þ

¼ j½ϕΔðξ⃗1; ξ⃗2ÞϕΔðξ⃗4; ξ⃗5ÞχΔΔðr⃗ÞζΔΔ
þ ϕCðξ⃗1; ξ⃗2ÞϕCðξ⃗4; ξ⃗5ÞχCCðr⃗ÞÞζCC�iðSIÞ¼ð30Þ;

ð16Þ

where α and β are the fractions of the ΔΔ and CC
components in the d�ð2380Þ, ϕΔ and ϕC denote the inner
cluster wave functions of Δ and C (color-octet particle) in
the coordinate space, χΔΔ and χCC represent the channel
wave functions in the ΔΔ and CC channels (in the single
ΔΔ channel case, the CC component is absent), and ζΔΔ
and ζCC stand for the spin-isospin wave functions in the
hadronic degrees of freedom in the corresponding channels,
respectively [25,26]. It should be specially mentioned that
in such a d� wave function, two channel wave functions are
orthogonal to each other and contain all the effects of
totally antisymmetrized wave functions of quarks implicitly
[25,26] (refer also to the Appendix for more detailed
information).

Unlike in the calculations of the decay processes of
d� → dππ, d� → NNππ, and d� → NNπ, where the CC
component does not contribute to the widths, here in the
calculation of the charge distribution of the d�, both the CC
andΔΔ components contribute. Considering that the Δ and
C are antisymmetric, the charge distribution is

GðAÞ
E ðQ2Þ ¼ 1

7

X
md�

hd�ðP0; md� Þj
X6
i¼1

j0i jd�ðP; md�Þi

¼ 3

7

X
md�

hd�ðP0; md� Þjðe3j03 þ e6j06Þjd�ðP; md� Þi;

ð17Þ

where the superscript (A) stands for scenario A, P⃗0−P⃗¼ q⃗,

Q2 ¼ −q2 ¼ q⃗2, and e3;6 ¼ 1
6
þ τz

3;6

2
. Then

GðAÞ
E ðQ2Þ ¼ 3½α2ðIΔ3 þ IΔ6 ÞOΔOχΔ þ β2ðIC3 þ IC6 ÞOCOχC �;

ð18Þ

where OΔ;C denote the overlaps of the wave functions of
the third quark (or sixth quark) which is bombarded by the
photon in the Δ and C systems, and OχΔ and OχC represent
the contributions from the ΔΔ and CC channel wave
functions, respectively. IΔ;C3;6 can be calculated by

IΔ3;6 ¼ ðI;IzÞhΔΔje3;6jΔΔiðI;IzÞ;
IC3;6 ¼ ðI;IzÞhCCje3;6jCCiðI;IzÞ: ð19Þ

Finally, one obtains

GðAÞ
E ðQ2Þ ¼

�
α2 exp

�
−
b2Δq⃗

2

6

�
OχΔ þ β2 exp

�
−
b2cq⃗2

6

�
Oχc

�
;

ð20Þ

where bΔ;C are the size parameters of the Δ and C systems.
As has been discussed explicitly in Ref. [27], for easily
making analytic derivation, the channel wave function for
the ΔΔ channel obtained by solving the bound-state RGM
equation is fitted by

χðrÞΔΔ ¼
X4
m¼1

cmffiffiffiffiffiffi
4π

p exp

�
−

r2

2b2m

�
; ð21Þ

where cm and bm can be determined in the fitting process.
Thus,
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OχΔðQ2Þ ¼ hχΔΔðk⃗þ q⃗=2ÞjχΔΔðk⃗Þi

¼
X
mn

cmcn
b3mb3n
4π

�
2π

b2m þ b2n

�
3=2

× exp

�
−

b2mb2n
8ðb2m þ b2nÞ

q⃗2

�
: ð22Þ

For the CC component, the channel wave function is
dominated by the single S-wave Gaussian function

χCCðrÞ ¼ ðbrc
ffiffiffi
π

p Þ−3=2 exp½−r2=2ðbrcÞ2�: ð23Þ

Similarly, the contribution from the CC component can be
calculated by

OχCðQ2Þ ¼ hχCCðk⃗þ q⃗=2ÞjχCCðk⃗Þi ¼ exp

�
−
ðbrcÞ2
16

q⃗2

�
:

ð24Þ

B. Scenario B: D12π structure

Now, we calculate the charge distribution of a d� which
is assumed to have a D12π structure. We should be aware
that D12π in the isospin space should be decomposed as

jd�i ¼ 1ffiffiffi
3

p ½D12ðIz ¼ 1Þπ− −D12ðIz ¼ 0Þπ0

þD12ðIz ¼ −1Þπþ�: ð25Þ

The Jacobi momenta of the D12 − π system are

P⃗ ¼ p⃗π þ p⃗D12
;

~⃗q ¼ mπp⃗D12
−MD12

p⃗π

mπ þMD12

¼ ap⃗D12
− a0p⃗π; ð26Þ

where p⃗π and p⃗D12
are the momenta of π and D12, respe-

ctively, and ~⃗q stands for the relative momentum
between the two systems. From the above equation, one
sees that the bombarding effect of the photon on the

relative momentum ~⃗q is much smaller in the case where
D12 is stricken than that in the case where π is hit. This is
because of the factors of a ¼ mπ=ðMD12

þmπÞ ∼ 6=100
and a0 ¼ 1 − a ¼ MD12

=ðMD12
þmπÞ ∼ 94=100.

From Sec. III A, one sees that the charge distribution of a
six-quark system comes from three factors: one is related to
the isospin part, and the other two are the parts related to the
wave functions of the constituents in the system and to the
relative wave function between the constituents. Similarly,
the contributions to the charge distribution of the d� with a
D12π structure should come from the D12, the π, and from
the relative wave function between D12 and π,

GðBÞ
E;md� ðQ2Þ ¼ 1

3

�X
mt;ml

CJd�md�
sD12

mD12
lml

ðGD12

E ðmtÞOrel
D12

ðaq;mlÞ

þ ŜπOrel
π ða0q;mlÞÞ

�
; ð27Þ

where GD12

E ðmtÞ and Ŝπ denote the charge distributions
of D12 and π, respectively, and Orel

D12;π
describes the

contribution of the relative wave function between D12

and π, with the subscript D12 (or π) representing the case
where D12 (or π) is hit by the photon.
We first consider the charge distribution of the D12.

Assuming the D12 to be a bound state of the Δ and N, this
distribution can also be obtained straightforwardly by
calculating three factors: the isospin part, Êmt

3;6; the part

related to the wave function of the Δ (N), ŜN;Δ; and the part
related to the relative wave function between the Δ and N,
OχNΔ

. The explicit form of the charge distribution can be
written as

GD12

E ðmtÞ ¼ 3½ŜN Ê
mt
3 þ ŜΔÊ

mt
6 � ×OχNΔ

; ð28Þ

where mt stands for the third component of the isospin
of D12,

Êmt
3 ¼h1;mtje3j1;mti¼

1

6

�
1

2
;1;

3

2

�
; ðmt¼1;0;−1Þ;

Êmt
6 ¼h1;mtje6j1;mti¼

1

6

�
7

2
;1;−

3

2

�
; ðmt¼1;0;−1Þ;

ð29Þ

ŜN;ΔðQ2Þ ¼ exp

�
−
b2N;Δq⃗

2

6

�
; ð30Þ

and

OχNΔ
ðQ2Þ ¼ hχNΔðk⃗þ q⃗=2ÞjχNΔðk⃗Þi: ð31Þ

To calculate Eq. (28), we need the relative wave function
χNΔ between Δ and N. To be consistent with the frame in
the above subsection, we calculate the wave function ofD12

in the NΔ system with the quantum numbers of I ¼ 1
and S ¼ 2 by using our chiral SUð3Þ constituent quark
model with a set of reasonable model parameters. The
obtained mass of the D12 is about MN þMΔ − ϵ ∼
ð2167–2171Þ MeV (ϵ is the binding energy), which is
very close to the threshold of the NΔ of 2171 MeV and
compatible with the theoretical results of 2171 MeV from
other quark model calculation [55], and even that of
2159 MeV from a N − N − π three-body calculation
[18,19]: namely, all theoretical predictions for the binding
energy of the D12 tend to a value of (0–12) MeV. It should
be mentioned that although we can produce a mass of about
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2151 MeV, according to the experimental hint [56,57], by
adjusting our model parameters in the seemingly reason-
able regions, the resultant binding energy for the deuteron
would be very large, which implies that the larger binding
energy for theD12 can only be a reference. The discrepancy
between the theoretical prediction and the experimental
measurement indicates that the observed D12 might not be
a pure NΔ state; its more complex structure should be
carefully investigated. Now, as a crude estimation in the
preliminary study, we temporarily assume that the D12

has a simple NΔ structure with a mass in the range of
2153–2171 MeV. Then, by solving the bound-state RGM
equation, one can obtain the relative wave function between
the N and Δ similar to the form of Eq. (A10).
Now, we consider the contribution from the pion. For

simplicity, we may take a phenomenological monopole
parametrization of the pion charge distribution [58] as an
approximation.
Finally, we calculate the contribution from the relative

wave function between the D12 and π. Since the quantum
numbers IðJPÞ of the D12, π, and d� are 1ð2þÞ, 1ð0−Þ, and
0ð3þÞ, respectively, from the conservations for spin, iso-
spin, and parity, the relative wave function between theD12

and π must be at least a P-wave. Therefore, one can take a
relative P-wave function with various size parameters as a
test wave function to see how the charge distribution of the
d� goes. A typical form of such a wave function can be
written as

χD12πð ~⃗q;mlÞ ¼
ffiffiffi
2

p
b5=2

π3=4
Y1ml

ðΩ ~qÞ expð− ~b2 ~⃗q2=2Þ; ð32Þ

where Y1;ml
ðΩ ~qÞ is a so-called solid harmonics with

ðl; mlÞ ¼ ð1; mlÞ, and ~b denotes the size parameter for
the relative motion between the D12 and π. Then the
contribution of such a relative wave function can be
calculated by

Orel
D12ðπÞð ~⃗k;mlÞ ¼ hχD12πð ~⃗qþ ~⃗k;mlÞjχD12πð ~⃗q;mlÞi; ð33Þ

where ~⃗k stands for the change of the relative momentum ~⃗q
when the photon hits the D12 (or π). The result shows that
when ~b takes a value in a rather large region—for instance,
from 0.6–6 fm—the obtained charge distribution of the d�
only has a very small variation. Therefore, as a rough
estimation in our preliminary study for comparison, we can
take a single P-wave function with a size parameter in the
above mentioned region as the relative wave function
without strictly solving the D12π system but still keeping
the general character of such a structure.
It should be stressed that the pion contributions from the

first and the third terms of Eq. (25) cancel each other, since
we consider the matrix element weighted by the charge.
Moreover, the one from the second term vanishes as well,

since it relates to the neutron π. Therefore, our estimated
charge distribution of the d�ð2380Þ in this scenario is
irrelevant to the explicit form of the pion charge form
factor, and it is only due to the contributions by theD12 and
by the relative motion between the D12 and π. Averaging
over the initial states with various magnetic quantum
numbers of the d�, one finally obtains the charged
distribution of the d� in the D12π scenario as

GðBÞ
E ðQ2Þ¼1

2
fD12

ða2q⃗2Þ
×OχNΔ

½expð−b2Nq⃗2=6Þþexpð−b2Δq⃗2=6Þ�; ð34Þ

where

fD12
ða2q⃗2Þ ¼

�
1 −

a2 ~b2

5
q2
�
exp

�
−
a2 ~b2

16
q⃗2
�
: ð35Þ

C. Numerical results in the two scenarios

In our calculations, bN ¼ bΔ ¼ 0.5 fm, bc ¼ 0.45 fm,
brc ¼ 0.45 fm, and ~b ¼ 1.2 fm are taken as inputs. The
probabilities in Eq. (16) are α2 ∼ 0.31 and β2 ∼ 0.69. The
channel wave functions of the ΔΔ in both the single ΔΔ
channel (scenario A1) and the coupled ΔΔþ CC channel
(scenario A2) approximations are plotted in Fig. 1(a).1 In
terms of the same chiral SUð3Þ constituent quark model,
the wave functions of the NΔ system with ðI; SÞ ¼ ð1; 2Þ
can also be obtained by performing a bound-state RGM
calculation with a set of model parameters whose values are
slightly varied but are still in the reasonable regions. It is
shown that in the obtained wave function, the 5S2 compo-
nent dominates with a fraction of about 94.47%, when the
NΔ system is weakly bound with a binding energy of
ϵ ¼ 0.25–18 MeV. The wave functions of the D12 in the
two cases, ϵ ¼ 0.25 MeV and 18 MeV, are displayed in
Fig. 1(b).
In terms of the wave functions in the A1, A2, and D12

cases, the root-mean-square radii (rms) of the d� and D12

can be calculated straightforwardly. The obtained rms’s are
listed in Table I. From this table, one sees that for the
d�ð2380Þ in scenario A2, its size is small. This is because
the fraction of the CC component of the d� wave function
in the coupled channel case is about 0.69. However, for the
D12, one finds that its size is rather large. This can be
attributed to its weak binding—namely, the energy level of
this state is relatively closer to theNΔ threshold, the system
becomes easily to break up, so the N and Δ are “almost
free,” and the separation between them becomes rather
large. The smaller the binding energy is, the larger the size
of the system would be.

1The wave functions rχðrÞ in Fig. 1(a) are different from those
of rψðrÞ in Refs. [25,26] by a factor of 1= ffiffiffiffiffi

4π
p

due to the relation
χðrÞ ¼ ψðrÞY00ðr̂Þ.
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The charge distributions of the d� in scenario A can be
calculated by Eq. (20). The parameters cm and bm in
Eqs. (21) and (A10) can be found in Refs. [27,28]. The
obtained charge distributions from the ΔΔ and CC com-
ponents are demonstrated in Fig. 2. In this figure, the black
solid and the red dashed curves denote the contributions
from the ΔΔ and CC components (scenario A2), respec-
tively, and the black dotted curve represents the total
contribution by summing over the former two curves.
Here, we only consider the dominanted S-wave component,
ignore the small D-wave effect, and normalize the distri-
bution to unity. The charge distribution of the single ΔΔ
model (scenario A1) is also plotted in Fig. 2 by a pink
dotted-dashed curve for comparison. These curves tell us

that the contribution from the CC component is larger than
that from the ΔΔ component, especially in the larger-
momentum-transfer region, and the charge distribution of
the d� is dominated by the CC component. It implies that
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(
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FIG. 1. The wave functions of the d� and its components in scenario A (a) and of theD12 in the NΔ system (b) in our chiral constituent
quark model approach. For the wave functions of the d� and its components, the pink dashed-dotted curve denotes the relative wave
function between Δ and Δ in the single ΔΔ channel only [scenario A1 (denoted by “S”)], and the black solid and red dashed curves
represent the wave functions of the ΔΔ and CC components in the coupled ΔΔþ CC channel [scenario A2 (denoted by “C”)],
respectively, in the framework of our chiral SUð3Þ constituent quark model [25,26]. For the D12 wave functions of the NΔ system, the
blue double-dotted-dashed and the maroon double-dotted-dashed curves show the relative wave functions of the 5S2 component in the
D12, with the binding energies being ϵ ¼ 0.25 MeV and ϵ ¼ 18 MeV, respectively.

TABLE I. The calculated rms for the d�ð2380Þ in the scenarios
A1 and A2 and for our D12 in the cases B1 and B2, where the
corresponding binding energies ϵ are 0.25 MeV and 18 MeV,
respectively (in units of fm).

d�ð2380Þ
Cases A1 A2

rms (fm) 1.09 0.72

D12

Cases B1 B2

rms (fm) 2.64 1.87

0 0.5 1 1.5 2

Q
2
(GeV

2
)

-0.2

0

0.2

0.4

0.6

0.8

1

G
d* E

(Q
2 )

ΔΔ
CC

Total

Coupled-channel

Single channel
Scenario B (D12π)ΔΔ

Scenario A

ε=0.25 MeV

ε=18   MeV

FIG. 2. The obtained charge distributions of the d� in our chiral
constituent quark model. The solid (black), red (dashed), and
black (dotted) curves stand for jΔΔχΔi, jCCχci, and the total
contributions in the coupled channel approximation, respectively.
The pink dotted-dashed curve represents the single-channel
case of scenario A. The blue double-dotted-dashed curve and
the maroon double-dotted-dashed curve stand for the results
of the D12π scenario with ϵ ¼ 0.25 MeV and ϵ ¼ 18 MeV,
respectively. The shaded area represents the results with
0.25 MeV ≤ ϵ ≤ 18 MeV.
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the quark contents in theCC component tend to concentrate
in a more compact region than that in the ΔΔ component.
This physical picture coincides with the radii of the two
components of the d� calculated in our previous papers
[25,26]. Moreover, the curvature of the distribution curve in
the A1 case is larger than that in the coupled channel case
of A2. It indicates that quarks in the former case distribute
in a larger region than those in the latter case. The size
information of the d� can also be seen from the slope of the
distribution curve at the origin, because such a slope is
closely related to the radius of the system. The larger the
slope at the origin is, the larger the radius of the system
would be. Comparing these slopes with the wave functions
shown in Fig. 1(a), we find that the obtained slopes at the
origin here coincide with the radii shown in Fig. 1(a).
Namely, the radius obtained in the A2 case is smaller than
that in the A1 case, and the contribution from the CC
component is smaller than that from the ΔΔ component.
In order to roughly estimate the size character of theD12π

structure, the charge distribution of the d� in this scenario is
calculated by using Eq. (34) as well. Notice that since in this
case we only consider the contribution from the D12π
component here, for comparison, we artificially normalize
the D12π contribution at Q2 ¼ 0 to unity. The obtained
charge distribution of the d� in scenario B is also demon-
strated in Fig. 2, where the shaded area between the blue
double-dotted-dashed curve and the maroon double-dotted-
dashed curve stands for the charge distributions of the
d�ð2380Þwith0.25 MeV ≤ ϵ ≤ 18 MeV in our chiral quark
model calculation. We should be aware again that, as
mentioned above, we take a relative single P-wave function
with a varying size parameter ~b as a test wave function first.
When ~b takes a value from 0.6–6 fm, the obtained charge
distribution of the D12π structure only shows a very small
variation—namely, this curve is almost insensitive to the
size parameter ~b. This is because the incoming photon is
absorbed by the D12 system, and the induced change of the
relative momentum between theD12 and π is very small due
to the factor of mπ=ðMD12

þmπÞ ∼ 6=100. The major
influence to the charge distribution comes from the character
of D12. Therefore, as a rough estimation in our preliminary
study for comparison, we can take a single P-wave function
with a ~b value in the above mentioned region as the relative
wave function without strictly solving the D12π system but
still keep the general character of such a structure.
Comparing the curves in scenario B with the others in

scenario A, we see that the curve in the D12π scenario
decreases and goes to zero much faster than those in
scenario A. A much larger slope at the origin means that the
radius of the D12π system is much larger in comparison
with those in scenario A.
From our numerical calculation, we find that the ratios of

the slopes of the curves at the origin in scenarios A1 and
A2, and in cases B1 and B2, are

R ¼
��

−
∂GðA1Þ

E ðQ2Þ
∂q2

���
−
∂GðA2Þ

E ðQ2Þ
∂q2

��

�
−
∂GðB1Þ

E ðQ2Þ
∂q2

���
−
∂GðB2Þ

E ðQ2Þ
∂q2

������
Q2¼0

¼ 2.30∶1.45∶8.70∶5.10: ð36Þ

It should be mentioned that the contributions from
the ΔΔ and CC components in the coupled-channel

approximation in scenario A2 to ∂GðA2Þ
E ðQ2Þ=∂q2 are

0.64 and 0.81, respectively. As a very rough estimation,
we find that the slopes of the charge distribution of the
D12π structure in the cases B1 and B2 at Q2 ¼ 0 are about
6.0 ∼ 3.5 times larger than that of the d� in scenario A2.
Finally, the very steep charge distribution (or large charge
radii) of the D12π structure in scenario B (the shaded area
between the cases B1 and B2) is mainly attributed to a very
extended wave function of the D12 obtained in the quark-
level calculation. Anyway, a compact structure of the d� in
scenario A2 and a structure of the D12π in scenario B
(namely, two extreme structures) will give very different
descriptions for its charge distribution and its charge radius.
The relevant experimental data in the future would be
expected to clarify the structure of the d�ð2380Þ.

IV. SUMMARY

Based on our chiral SUð3Þ constituent quark model, we
calculate the charge distributions of the d� with a hex-
aquark-dominant structure in scenario A, and that of the d�
with a D12π structure in scenario B. In scenario A2, we
show the total charge distribution and both contributions
from its ΔΔ and CC components. In order to make a
comparison, the result of the single ΔΔ channel is also
shown. Comparing the results in scenarios A2 and B, we see
that the charge distribution of a D12π system is remarkably
different from that of a compact structure in scenarioA2, and
consequentially, the charge radius of theD12π in scenario B
is obviously larger than that of the compact structure in
scenario A2. Finally, it should be reiterated that the present
comparison is just a qualitative discussion, because the
relative wave function between D12 and π is not strictly
solved, but the numerical result has shown an insensitivity to
thewave function form. In addition, it should be emphasized
once more that the concept of theD12π structure of the d� in
our calculation is borrowed from Ref. [18]; however, the
calculation is in the quark degrees of freedom rather than in
the hadron level.
We now expect a series of experiments which may be

able to test the different interpretations of the d� in the
future. Although the direct ed� scattering measurement
may be hard to carry out, one may consider the d� form
factors in the timelike region. Moreover, the production of
the final d�d̄� pair in the eþe− and pp̄ annihilation
processes is also very promising. It is our hope that the
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future upgraded BEPC, Belle, and BABAR and experiments
at P̄anda with high luminosity may provide a platform to
test different theoretical understandings.

ACKNOWLEDGMENTS

Wewould like to thank Heinz Clement, Qiang Zhao, and
Qi-Fang Lü for their useful and constructive discussions.
This work is supported by the National Natural Sciences
Foundations of China under Grants No. 11475192,
No. 11475181, No. 11521505, No. 11565007, and
No. 11635009, the fund provided to the Sino-German
CRC 110 “Symmetries and the Emergence of Structure in
QCD” project by NSFC under Grant No. 11621131001, the
Key Research Program of Frontier Sciences, CAS, Grant
No. Y7292610K1, and the IHEP Innovation Fund Under
Grant No. Y4545190Y2. F. Huang is grateful for the support
of the Youth Innovation Promotion Association of CAS
under Grant No. 2015358.

APPENDIX: d� IN THE CHIRAL
CONSTITUENT QUARK MODEL

The six-quark system with quantum numbers IðJPÞ ¼
0ð3þÞ is solved in the quark degrees of freedom by
employing the chiral SUð3Þ constituent quark model
[34,35]. In this model, the interactive Lagrangian between
quark and scalar and pseudoscalar chiral fields is written as

Lch
I ¼ −gchψ̄

�X8
a¼0

λaσa þ iγ5
X8
a¼0

λaπa

�
ψ ; ðA1Þ

and the interactive Lagrangian between quark and vector
meson fields is read as

Lchv
I ¼ −gchvψ̄γμλaρ

μ
aψ −

fchv
2MN

ψ̄σμνλa∂μρνaψ : ðA2Þ

Then the total Hamiltonian of the system can be found in
the form of

H ¼
X6
i¼1

Ti − TG þ
X6
j>i¼1

ðVOGE
ij þ Vconf

ij þ Vch
ij þ Vchv

ij Þ;

ðA3Þ

with Vch
ij and Vchv

ij being the chiral field and vector-meson-
induced effective interactions, respectively, between the ith
quark and the jth quark,

Vch
ij ¼

X8
a¼0

Vσa
ij þ

X8
a¼0

Vπa
ij ; ðA4Þ

and

Vchv
ij ¼

X8
a¼0

Vρa
ij ; ðA5Þ

where Vσa , Vπa , and Vρa are the potentials induced by the
scalar, pseudoscalar, and vector meson fields, respectively,
with Ti being the kinetic energy operator for the ith quark,
TG the kinetic energy operator for the center-of-massmotion
of the system, and VOGE and Vconf representing the one-
gluon-exchange and confinement potentials, respectively.
Note that the model that includes the vector-meson-induced
potentials is renamed as the extended chiral SUð3Þ con-
stituent quark model. The parameters of the model are
determined by fitting the experimental data of the masses of
the ground-state baryons, the phase shifts and cross sections
of the NN scattering, the binding energy of the deuteron, etc.
The detailed forms of the potentials, model parameter
determinations, and resultant values of parameters can be
found in Refs. [35,37].
To study the properties of this six-quark system, we

proposed a trial wave function in the form of

jΨ6qi ¼ A½ϕΔðξ⃗1; ξ⃗2ÞϕΔðξ⃗4; ξ⃗5ÞηΔΔðr⃗Þ
þ ϕCðξ⃗1; ξ⃗2ÞϕCðξ⃗4; ξ⃗5ÞηCCðr⃗Þ�S¼3;I¼0;C¼ð00Þ; ðA6Þ

where Δ and C stand for the Δ and hidden color states with
the following symmetry and quantum numbers:

Δ∶ ð0sÞ3½3�orb; S ¼ 3=2; I ¼ 3=2; C ¼ ð00Þ;
C∶ ð0sÞ3½3�orb; S ¼ 3=2; I ¼ 1=2; C ¼ ð11Þ:

A is the antisymmetrizer required by the Pauli exclusion
principle, ϕΔðCÞ denotes the antisymmetrized internal wave
functions of the (123) ((456)) three-quark cluster with ξi
[i ¼ 1; 2ð4; 5Þ] being its internal Jacobi coordinates, and
ηΔΔðCCÞ describes the wave function of the relative motion
between two ΔðCÞ clusters, which is determined com-
pletely by the dynamical calculation of the six-quark
system.
For a six-quark system, the binding energy relative to the

threshold of the ΔΔ channel and the corresponding wave
function of the relative motion between clusters are
obtained by numerically solving the bound-state resonating
group method (RGM) equation [25,26],

hδΨ6qjH − EjΨ6qi ¼ 0: ðA7Þ

It should be mentioned that RGM is a standard method for
few-body physics. For example, there are many calcula-
tions for the baryon-baryon interaction by employing this
method in the literature [9,15,35,59–68].
Apparently, the obtained wave functions for ΔΔ and CC

are not orthogonal to each other due to the transition
between these two channels, which is caused by quark
exchanges. Thus, they cannot be used to distinguish the
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components ofΔΔ andCC in d�. Instead, the channel wave
functions in the quark cluster model are introduced [69–
71], which are orthogonal among various channels. In the
present case, the channel wave functions for ΔΔ and CC
are defined as

χΔΔðr⃗Þ≡ hϕΔðξ⃗1; ξ⃗2ÞϕΔðξ⃗4; ξ⃗5ÞjΨ6qi; ðA8aÞ

χCCðr⃗Þ≡ hϕCðξ⃗1; ξ⃗2ÞϕCðξ⃗4; ξ⃗5ÞjΨ6qi; ðA8bÞ

where ϕΔðCÞ andΨ6q are the antisymmetrized internal wave
function for the cluster ofΔðCÞ and the resultant solution of
the RGM equation. Then the wave function of d� can
simply be abbreviated and expanded as

jΨd�i ¼ jΔΔiχΔΔðr⃗ÞζΔΔ þ jCCiχCCðr⃗ÞζCC
¼

X
L¼0;2

�
jΔΔiχ

L
ΔΔðrÞ
r

ζΔΔ þ jCCiχ
L
CCðrÞ
r

ζCC

�
YL0ðr̂Þ:

ðA9Þ

Finally, for easily carrying out analytic derivation in later
calculations, the channel wave functions χΔΔðCCÞ can also
be expended by a set of Gaussian functions

χðrÞΔΔðCCÞ ¼
X4
m¼1

cΔΔðCCÞm ffiffiffiffiffiffi
4π

p exp

�
−

r2

2ðbΔΔðCCÞm Þ2
�
; ðA10Þ

where cΔΔðCCÞm and bΔΔðCCÞm can be determined in the curve
fitting process.
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