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We perform a complete and systematic calculation of the octet-baryon form factors within the fully
covariant approach of SUð3Þ chiral perturbation theory at Oðp3Þ. We use the extended on-mass shell
renormalization scheme and include explicitly the vector mesons and the spin-3=2 decuplet intermediate
states. Comparing these predictions with data including magnetic moments, charges, and magnetic radii,
we determine the unknown low-energy constants and give predictions for yet unmeasured observables,
such as the magnetic moment of the Σ0 and the charge and magnetic radii of the hyperons.
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I. INTRODUCTION

The electromagnetic structure of hadrons plays a funda-
mental role in our understanding of the structure of matter
and the underlying strong interaction. At high energies, the
fundamental properties of hadrons are well described by
perturbative QCD (pQCD). However, in order to describe
interactions at distances larger than the size of hadrons,
corresponding to energies well below 1 GeV, pQCD breaks
down, and suitable low-energy effective-field theories
(EFTs) are useful. This energy regime is the focus of this
paper, and we use the methods of fully covariant SUð3Þ
baryon chiral perturbation theory (ChPT) for our descrip-
tion of the hadron properties [1–3]. We use this EFT of
QCD including explicitly the decuplet of spin-3=2 baryons
[4–7] and the vector-meson contributions [8–13].
At each order in the chiral expansion, the interactions are

parametrized by a set of low-energy constants (LECs), many
of which have already been determined from data. When
including baryons in ChPT, the chiral power counting in
terms ofmomenta andmasses seems to be spoiled [2]. This is
due to the baryon masses being of the order of 1 GeV. As a
result, a priori, there is no clear way to associate a specific
chiral order with a definite number of loops. Several
renormalization schemes to solve this issue have been
proposed in the past. The first such approach is semi-
relativistic, which exploits that the baryons are much heavier
than the Goldstone bosons, and hence an expansion in the
inverse baryon mass is made. This is called heavy-baryon
ChPT (HBChPT), first introduced in Ref. [4]. Covariant
approaches are slightly more involved and resum terms of
higher order from the HBChPT viewpoint. The infrared
regularization (IR) scheme separates the loops into infrared
and regular parts, obtained by a manipulation of the baryon
propagators [14–17]. The regular parts fully encode the

power-counting breaking terms (PCBTs) and are thus
absorbed in the LECs of the most general Lagrangians.
This approach is based on the works in Refs. [18,19].
However, we choose the extended on-mass shell (EOMS)
scheme [20,21], which is known to convergewell for a range
of processes [22–37]. This scheme relies on the knowledge
that the PCBTs that spoil the chiral series have fully
analytical expressions. Therefore, they can be identified
with terms of the Lagrangian and absorbed into the corre-
sponding LECs by an extension of the minimal subtraction
(MS) scheme of dimensional regularization.
Some of the differences between the EOMS and IR

schemes are compensated by adjustments in the values of
the LECs; see also the discussions in Refs. [17,29,38–40].
The renormalization of the divergences is treated in the same
way; the difference lies in which subset of the finite terms is
absorbed into the LECs. The EOMS scheme absorbs only
the minimal amount of terms needed to restore the power
counting, thus maintaining the analytical structure of the
amplitudes. This is not the case for the IR scheme, which is
often used as an argument against its usage.
The baryon electromagnetic form factors are obtained

from the reaction amplitudewhich describes a virtual photon
coupling to these hadrons. At small momentum transfer
squared q2, where a Taylor expansion of the amplitude in
terms of q2 is reliable, the coefficients of this expansion yield
insight about quantities such as the charge radii and the
electromagnetic moments. For nonvanishing photon virtual-
ities, one can relate them to the charge andmagnetic densities.
A good general review on nucleon electromagnetic form
factors is given inRefs. [41,42], both from the theoretical and
from the experimental points of view. Assuming CP con-
servation and on-shell baryons, the electromagnetic current
of spin-1=2 baryons is determined by only the Dirac and the
Pauli form factors, or combinations thereof.
The first measurements of the nucleon form factors are

described in Refs. [43–45]. In Ref. [44], it was shown how*hillerbl@uni-mainz.de
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to extract the form factors from the ratio between the
experimental cross section and the expected Mott cross
section of pointlike particles. The separate electric and
magnetic form factors were obtained for the first time by
the intersecting ellipse method, described by Hofstadter in
1955 [46]. Since then, countless efforts have been made to
extract form factors experimentally, at facilities such as the
Stanford Linear Accelerator Center (SLAC), the Deutsches
Elektronen-Synchrotron (DESY), the Nationaal Instituut
voor Kernfysica en Hoge Energie Fysica (NIKHEF), and
the Jefferson Lab (JLab), among many others. More
recently, high-precision experiments with electron beams
have been performed, e.g. at the Mainz Microtron (MAMI).
The nucleon form factors have gathered considerable

attention lately due to apparently conflicting results.
Measurements of the proton charge radius rpE via elec-
tron-scattering experiments [47] have shown a disagreement
with the results from precise atomic measurements of the
muonic hydrogenLamb shift [48]. This is commonly known
as the proton radius puzzle. The first method is based on
writing the electric form factor GE as a function of the
squared momentum transfer q2. The charge radius is then
obtained from the slope of GE at vanishing q2. The second
method uses lasers to induce atomic transitions, where the
charge radius is related to the size of the gap between the
levels. In fact, the mean value reported from electron-
scattering experiments is of rpE ¼ 0.8751ð61Þ fm [47],while
the atomic measurement yielded rpE ¼ 0.84184ð67Þ fm
[48]. Interestingly, similar measurements on normal instead
of muonic hydrogen were compatible with the electron-
scattering result. The main difference between the two types
of hydrogen is that, since the muon mass is approximately
200 times larger than the electron’s, the Bohr radius is 2
orders of magnitude smaller for themuonic hydrogen. Thus,
the muon is much more sensitive to the proton radius,
yielding a higher empirical precision. But even when taking
into account the larger uncertainty of the electron-scattering
measurements, the discrepancy between results is of the
order of 5σ. This has led to speculations about possible new
physics explanations, for instance through dark matter
coupling to muons [49].
The atomic method has been reanalyzed in Refs. [49–53],

while there has also been an effort to better understand the
results from electron scattering [54]. For the latter, an
experimental determination of the slope of GE at the exact
point of real photons q2 ¼ 0 is of course not possible.
However, one can gather probes of very small virtualities and
extrapolate the value to the physical point. It goes without
saying that this extrapolation leads to some model depend-
ence. One could argue that, at least when leaving the region
where q2 is nearly zero, one needs to take into account the
singularities that appear in the complex plane. The first such
point is the two-pion production threshold, where the virtual
photon couples to the baryon via two pions. Therefore, a
polynomial fit for the extrapolation would only be reliable

for momentum transfers significantly lower than this cut,
where data are scarce. Nevertheless, in Ref. [54], such an
analysis has been done, leading to a result compatible with
those from the muonic hydrogen Lamb shift, thus displaying
a possible solution for the issue described above.
In order to be able to reproduce the behavior observed at

higher photon virtualities, one needs to find a theoretical
approach which describes the complex-plane singularities
as well. This question has been studied within dispersion
analyses [55–58] and quark models [59–61] and with lattice
QCD [62–66], among other approaches [67–69]. In the
present work, we use the methods of ChPT to answer the
same question. This effective description of pion loops
ensures that the two-pion cut is taken into account in a
consistent manner [3,11,22,29,70–72]. When moving to yet
higher virtualities, kaon loops [26,73,74] or even vector-
meson exchanges should be considered as well [10–13].
We focus on the extraction of the electromagnetic form

factors of all the octet baryons, in order to obtain insight
into the inner charge and magnetic distributions of these
hadrons. This is particularly interesting because recent
progress in lattice calculations allows for an independent
calculation and comparison of the results [75,76].
Furthermore, the work presented here may have an impact
on calculations that use form factors in order to obtain
information about more complicated processes, such as
Compton scattering; see Ref. [77]. There, the results of the
form factors are used in order to determine the structure
functions needed to obtain the nucleon polarizabilities in a
dispersive representation. Other interesting observables to
study are the baryon charge and magnetic densities. With
dispersion theory, one can relate them to the imaginary
parts of the form factors. The calculation of the peripheral
transverse densities has been performed both in SUð2Þ and
in SUð3Þ [37,78–82].
In a similar approach to ours, in Ref. [74], the magnetic

moments of the octet baryons were calculated, most of
which have also already been experimentally extracted.
Thus, one can constrain the LECs very well and test the
compatibility of theChPTapproachwith the data.We extend
the authors’ work to further observables, the charge and
magnetic radii, for which we additionally include the effects
of the vector mesons, in a model-dependent approach: the
values of the couplings of the vector mesons to the baryons
depend on the phenomenological method with which they
are extracted. We chose those values obtained in Ref. [83]
but also studied the effect on the results when choosing e.g.
the Bonn-potential values [84,85]. In contrast, in Ref. [13], it
has been discussed how to include these spin-1 fields in a
self-consistent manner. While the vector mesons do not
contribute to the magnetic moments, in the case of the radii,
they turn out to give important corrections.
This paper is structured as follows. In Sec. II, we

introduce the formalism for the calculation of the baryon
form factors and the related observables. More precisely, in
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Sec. II A, we show the model-independent decomposition
of the electron-scattering amplitude into the form factors
and its connection to the observables studied, such as the
charge radii. We discuss the ChPT framework in more
detail in Sec. II B. In Sec. II C, we introduce the formalism
needed for the vector-meson contributions. The results are
reviewed in Sec. III. Namely, we give the results for the
electric form factors and related observables and compare
them to those found experimentally and in other theoretical
works. The explicit expressions for the form factors are
given in Appendix B. In Sec. IV, we present a summary and
outlook of this work.

II. FORMALISM

A. Amplitude decomposition

The electromagnetic form factors of the octet baryons are
given by the Lorentz-invariant decomposition of the matrix
element of the vector current Jμ between baryon states,
which reads1

hBðp0ÞjJμjBðpÞi ¼ ūðp0Þ
�
γμF1ðq2Þþ

iσμνqν
2mB0

F2ðq2Þ
�
uðpÞ;

ð1Þ
where uðpÞ is the spinor of the octet baryon with massmB0
and F1 and F2 are its electromagnetic form factors. The
photon momentum is given by q ¼ p0 − p, where p0 and p
are the outgoing and incoming baryon momenta, respec-
tively. The Mandelstam variable t is given by the momen-
tum transfer squared q2. As usual, σμν ¼ i

2
½γμ; γν�.

The baryon electric form factor is then given by

GEðq2Þ ¼ F1ðq2Þ þ
q2

4m2
B0

F2ðq2Þ

¼ cb þ q2
hr2Ei
6

þ q4

2

d2

ðdq2Þ2GEðq2Þjq2¼0

þOðq6Þ; ð2Þ

where cb and rE are the baryon charge and charge radius and
the pseudoscalar meson-loop contribution to d2

ðdq2Þ2 GEðq2Þ
can be given as a prediction of ChPT; see Ref. [37].
Therefore, the inclusion of this analytical function in the
extrapolation of electron-scattering data can be of relevance
for obtaining the proton charge radius. Experimental esti-
mates for the value of the proton d2

ðdq2Þ2 GEðq2Þjq2¼0 were

given, for instance in Refs. [89,90]. As for the baryon
magnetic form factor, it is defined as

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ: ð3Þ

The observables we will be focusing on in this work are
the baryon magnetic moment μB ¼ GB

Mðq2 ¼ 0Þ in units of
the nuclear magneton and the charge and magnetic radii
defined as

hr2Ei ¼
6

GEð0Þ
dGEðq2Þ

dq2

����
q2¼0

;

hr2Mi ¼
6

GMð0Þ
dGMðq2Þ

dq2

����
q2¼0

ð4Þ

for GEð0Þ ≠ 0 and as

hr2Ei ¼ 6
dGEðq2Þ

dq2

����
q2¼0

ð5Þ

for GEð0Þ ¼ 0.

B. Chiral perturbation theory

In SUð3Þ, the Lagrangians involve the pseudoscalar octet
mesons ϕ, the octet baryons B, the decuplet baryons Tμ,
and the photon fields vμ ¼ −eAμQ for e > 0. The explicit
forms of the corresponding matrices in terms of the Gell-
Mann matrices can be found in the literature, e.g. in
Refs. [33,37]. The lowest-order chiral Lagrangian involv-
ing only photons and the two hadron octets reads

L ¼ Lð2Þ
ϕϕ þ Lð1Þ

ϕB; ð6Þ

where

Lð2Þ
ϕϕ ¼ F2

0

4
Trðuμuμ þ χþÞ ð7Þ

is the Oðp2Þ meson Lagrangian and

Lð1Þ
ϕB ¼ TrðB̄ði=D −mB0ÞBÞ þ

D
2
TrðB̄γμγ5fuμ; BgÞ

þ F
2
TrðB̄γμγ5½uμ; B�Þ ð8Þ

is the Oðp1Þ Lagrangian that includes octet baryons. The
commutator and anticommutator refer to flavor space.
Here, mB0 and F0 denote the baryon-octet mass and the
meson-decay constant, respectively, both in the chiral limit.
The vielbein uμ and the covariant derivative Dμ read

uμ ¼ ifu†;∇μug; DμB ¼ ∂μBþ ½Γμ; B�; ð9Þ

where

1There is an additional structure appearing, proportional to qμ;
see also Refs. [3,86–88]. This term is necessary to fulfill the
Ward-Takahashi identities but can be effectively dropped in most
cases, e.g. when the baryons are on shell.
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∇μu¼∂μu− iðvμþaμÞuþ iuðvμ−aμÞ;

Γμ¼
1

2
½u†;∂μu�−

i
2
u†ðvμþaμÞu−

i
2
uðvμ−aμÞu†: ð10Þ

When working exclusively with external photon fields, the
axial field aμ can be set to zero. The LECs D and F are
determined from nucleon and hyperon β decays, where the
combination F þD corresponds to the LEC g0 in the
SUð2Þ limit.
In this article, the terms needed from higher-order

Lagrangians are those that couple the photon to the baryon
directly. They have been constructed in Refs. [3,10,91–93]
and read

Lð2Þ
γB ¼ bF

8mB0
hB̄½fμνþ ; σμνB�i þ

bD
8mB0

hB̄ffμνþ ; σμνBgi; ð11Þ

Lð3Þ
γB ¼ i

d101
2mB0

hB̄½½Dμ; f
μν
þ �; ½Dν; B��i

þ i
d102
2mB0

hB̄f½Dμ; f
μν
þ �; ½Dν; B�gi þ H:c:; ð12Þ

where

fμνþ ¼ uFμν
L u† þ u†Fμν

R u;

Fμν
R ¼ ∂μðvν þ aνÞ− ∂νðvμ þ aμÞ− i½ðvμ þ aμÞ; ðvν þ aνÞ�;

Fμν
L ¼ ∂μðvν − aνÞ − ∂νðvμ − aμÞ − i½ðvμ − aμÞ; ðvν − aνÞ�;

ð13Þ

and bD, bF, d101, and d102 are low-energy constants. Note
that the third-order piece, while being consistent in all
literature up to order Oðp3Þ, has two different representa-
tions that give distinct higher-order contributions. Here, we
choose to use the Lagrangian in Ref. [10], which repro-
duces the results commonly obtained in other works
in SUð2Þ.2
In the present paper, the baryon decuplet is also included.

The relevant terms of the Lagrangian that couples these
decuplet fields Tμ to the octets of baryons and mesons are
given in Refs. [33,74,94], where the lowest-order terms
needed read

Lð1Þ
Tϕ ¼ T̄abc

μ ðiγμναDα −MΔγ
μνÞTabc

ν ; ð14Þ

Lð1Þ
TBϕ ¼ iC

MΔ
ϵilm½ð∂μT̄

ijk
ν Þγμνρujlρ Bkm þ H:c:�: ð15Þ

Here,

γμν ¼ 1

2
½γμ;γν�; γμνρ ¼ 1

2
fγμν;γρg; γμνρσ ¼ 1

2
½γμνρ;γσ�:

ð16Þ

The covariant derivative acts on the decuplet as

DαTabc
ν ¼ ∂αTabc

ν þ ðΓα; TνÞabc;
ðX; YÞabc ¼ XadYdbc þ XbdYadc þ XcdYabd: ð17Þ

When performing the calculations with the SUð3Þ
Lagrangian, and then setting the kaon and η loops to zero,
one reproduces the SUð2Þ result with the LEC correspon-
dence Dþ F ¼ gA and C ¼ − hA

2
ffiffi
2

p . Nevertheless, when

including the additional SUð3Þ loops, a new fit to
decay-width data has to be performed [33], and those
new values should be used for F, D, and C in the
calculations.
When computing loops that include internal baryon

lines, PCBTs might arise. This is referred to as the baryon
ChPT power-counting problem [2]. A diagram of nominal
order N might after integration contain terms of order
n < N. These terms spoil the convergence of the chiral
series and therefore must be identified and renormalized.
Here, this is done in the EOMS scheme where, together
with the divergences, these analytical expressions are
absorbed into the LECs of the lower-order Lagrangians.
The identification of these terms is best done by expanding
the result as a series in small external momenta and masses
and then isolating the terms of order n < N.
Special care is needed when taking the spin-3=2

states into account. Besides the pion mass and the
external momenta, another small parameter appears, δ ¼
MΔ −mB0 ≈ 300 MeV, which is heavier than mπ ≈
140 MeV but small when compared to the spontaneous
symmetry-breaking scale Λ ∼mB0. The propagator for a
spin-3=2 state with four-momentum pμ takes the Rarita-
Schwinger form, see e.g. Ref. [29], and is of the order δ−1.
In the range of external energies considered, it is reasonable
to treat δ as being of the same order as those energies,
OðpÞ. This approach is called small scale expansion
[95,96]. The power N of a diagram with L loops, Vk

vertices from a Lagrangian LðkÞ of order k, Nπ mesonic
propagators, NN octet-baryon propagators, and NΔ propa-
gators for the decuplet is therefore counted as

N ¼ 4Lþ
X∞
k¼1

kVk − 2Nπ − NN − NΔ: ð18Þ

The diagrams contributing up to chiral order Oðp3Þ are
depicted in Figs. 1 and 2. The expressions for the amplitudes
obtained from these figures are discussed in theAppendixes.
We show the wave-function renormalization (WFR) in

2This means that there are contributions to both the form
factors F1 and F2 from this third-order Lagrangian. If one were to
use the other Lagrangian [91–93], only one of the two structures
would survive, F1, while the other would vanish due to being a
fourth-order correction.
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AppendixA,where it is discussed that its inclusion is crucial
in order to obtain the correct behavior at q2 ¼ 0. In
Appendix B, we give the explicit expressions for the
amplitudes of each diagram, decomposed into the form
factors. Finally, in Appendix C, we discuss the PCBTs that
have to be subtracted.

C. Vector-meson contributions

In order to model the behavior of the form factors at
higher momentum transfers, the contributions of the vector
mesons are also included, as has also been done in works
such as Refs. [10,11]. The corresponding diagram to the
order considered here is shown in Fig. 3. The Lagrangian
describing the couplings of the vector-meson fields Vμ with
momentum q to the octet baryons is given by [9]

LVNN ¼ B̄

�
gvγμ þ gt

iσμνqν
2mB0

�
VμB; ð19Þ

where gi ∈ fgv; gtg are the coupling constants which for
the different baryons are related in SUð3Þ as follows:

gi ¼ gFi TrðB̄½V8; B�Þ þ gDi TrðB̄fV8; BgÞ þ gSi V1TrðB̄BÞ:
ð20Þ

The explicit matrix representation of the octet and singlet
vector fields Vμ

8;1 is given e.g. in Refs. [37,81]. In fact, in
Ref. [97], it has been shown with a Dirac constraint analysis
that gDv has to vanish.
We assume the case of ideal mixing, where the mixing

angle φ between the ω and the ϕ is such that sinφ ¼ 1=
ffiffiffi
3

p
.

The Lagrangian coupling a photon to the vector mesons
Vμν ¼ ∂μVν − ∂νVμ is given by [8]

LVγ ¼ −
1

2
ffiffiffi
2

p FV

mV
TrðVμνf

μν
þ Þ; ð21Þ

where the mass and the decay constant of the vector mesons
are given by mV and FV , respectively. In Table I, the values

FIG. 1. Tree-level diagram that contributes to the baryon form
factors. The vertex runs through orders Oðp1Þ to Oðp3Þ. The
wavy and continuous lines correspond to photon and octet-
baryon fields, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

FIG. 2. Loop diagrams that contribute to the baryon form factors up toOðp3Þ. The wavy, dashed, and single (double) continuous lines
correspond to photon, pseudoscalar meson, and octet (decuplet) baryon fields, respectively. All the vertices are of the leading-order
Lagrangians.

FIG. 3. Diagram with vector-meson contributions to the baryon
form factors. The wavy, double dashed, and continuous lines
correspond to photon, vector meson, and octet-baryon fields,
respectively.
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for the masses are shown, as well as the values for the
decay constants resulting from the respective decay widths
ΓV→eþe− [98], via the correspondence

ΓV→eþe− ¼ e4F2
V jp⃗j

6πm2
V

≈
4πα2F2

V

3mV
: ð22Þ

In the last step, the electron masses were neglected
compared to the vector-meson mass, thus leading to
jp⃗j ≈mV=2. One can see that the numerical values for
the FV are in good agreement with SUð3Þ symmetry (the
isospin couplings are also shown in the table), since they
are of very similar size.
From Eq. (20), one can extract the gi for all the couplings

of the baryons to the vector mesons, listed in Table II, and
relate them to the empirical couplings from nucleon-
nucleon scattering data. In the present work, those from
Ref. [83] are used. Note, however, that the values are model
dependent and have large uncertainties; compare e.g. with
Refs. [84,85]. The values we use for our calculations read

gv;ρ0pp ¼ 2.4; gv;ωpp ¼ 16;

gt;ρ0pp ¼ 14.6; gt;ωpp ¼ 0: ð23Þ

Furthermore, assuming that the electromagnetic couplings
of the baryons are saturated by vector-meson dominance
and considering the ratios of their electric charges and
magnetic moments with the assumption of SUð6Þ sym-
metry, one gets

gFv
gFv þ gDv

¼ 1;
gFv þ gFt

gFv þ gDv þ gFt þ gDt
¼ 2

5
; ð24Þ

respectively [99]. Therefore, one can extract the following
information, with the help of which one can obtain all the
other couplings between the vector mesons and the octet
baryons:

gFv ¼ 3.4; gDv ¼ 0; gSv ¼ 16.7;

gFt ¼ 6.2; gDt ¼ 14.5; gSt ¼ −1.2: ð25Þ

Note that this is indeed compatible with the outcome of
Ref. [97], where from theoretical principles gDv ¼ 0 was
obtained.

III. RESULTS

A. Magnetic moments

It is convenient to first calculate the observable GMð0Þ,
which is nothing other than the magnetic moment in units
of the nuclear magneton, since the only unknown param-
eters that it depends on are bD and bF. Moreover,
for the neutron, there is no dependence on bF, and its
experimental value is well determined to be Gn

Mð0Þ ¼
−1.913 [98]. Therefore, one extracts the value bD ¼
3.82 when using the numerical values for the masses
and other constants as summarized in Table III, following
Ref. [33]. Using this result, one then extracts bF ¼ 0.97
from the also well-determined experimental value for the
proton, Gp

Mð0Þ ¼ 2.79.
With these two constants fixed, one can now give

predictions for GMð0Þ and the magnetic radius squared
hr2Mi of all the baryon-octet members. The values are
summarized in Tables IV and V and compared to the
experimental [98] and lattice results [75] where available.
For GMð0Þ, since the experimental errors are negligible,

the main uncertainties arise from the choice of values for
the parameters used in our calculation; e.g. if we were to
use the physical average for the masses, decay constants,
and other coupling constants, the final values for bD and bF
would change by 5% and 15%, respectively, when main-
taining fixed the values forGp

Mð0Þ andGn
Mð0Þ. This leads to

errors for the final results for GMð0Þ as shown in Table IV.
We find that in our approach the results are in very good
agreement with those found experimentally and compatible
with those obtained on the lattice. This shows that, despite
SUð3Þ-symmetry breaking, the framework of SUð3Þ ChPT

TABLE I. Masses of the vector mesons, their decay constants,
and values of the isospin coupling to the photon field.

V mV (MeV) FV (MeV) IsV

ρ 775 156 1
ω 783 138 1

3

ϕ 1019 161
ffiffi
2

p
3

TABLE II. Values of the isospin constants gi for the couplings
of vector mesons to the octet baryons.

ρ ω ϕ

p gFi þgDiffiffi
2

p 3gFi −g
D
i þ2

ffiffi
3

p
gSi

3
ffiffi
2

p − gDi −3g
F
i þ

ffiffi
3

p
gSi

3

n − gFi þgDiffiffi
2

p 3gFi −g
D
i þ2

ffiffi
3

p
gSi

3
ffiffi
2

p − gDi −3g
F
i þ

ffiffi
3

p
gSi

3

Σþ ffiffiffi
2

p
gFi

ffiffi
2

p
gDi þ

ffiffi
6

p
gSi

3

2gDi −
ffiffi
3

p
gSi

3

Σ0 0
ffiffi
2

p
gDi þ

ffiffi
6

p
gSi

3

2gDi −
ffiffi
3

p
gSi

3

Σ− −
ffiffiffi
2

p
gFi

ffiffi
2

p
gDi þ

ffiffi
6

p
gSi

3

2gDi −
ffiffi
3

p
gSi

3

Λ 0 −
ffiffi
2

p
gDi −

ffiffi
6

p
gSi

3
− 2gDi þ

ffiffi
3

p
gSi

3

Ξ0 gFi −g
D
iffiffi

2
p − 3gFi þgDi −2

ffiffi
3

p
gSi

3
ffiffi
2

p − gDi þ3gFi þ
ffiffi
3

p
gSi

3

Ξ− gDi −g
F
iffiffi

2
p − 3gFi þgDi −2

ffiffi
3

p
gSi

3
ffiffi
2

p − gDi þ3gFi þ
ffiffi
3

p
gSi

3

TABLE III. Numerical values for the hadron masses and low-
energy constants used in the calculations [33]. All the dimen-
sionful values are given in units of MeV.

MB0 MΔ mπ mK mη F0 D F C

880 1152 140 496 547 87 0.623 0.441 −D
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TABLE IV. Numerical values for GMð0Þ, compared with those extracted experimentally [98] and on the lattice [75]. We compare our
full model with a refitted version without the inclusion of the decuplet (Δ) states. We also show theOðp3Þ andOðp4Þ ChPT calculations
of Ref. [10], which does not include the decuplet (no Δ) intermediate states; the Oðp3Þ ChPT calculation, which does not include the
vector mesons (no VM) [74]; a refit of the HBChPT results of Ref. [70] for SUð3Þ; a quark-model (QM) approach [61]; and a calculation
within the Nambu–Jona-Lasinio (NJL) model [68].

GMð0Þ p n Σþ Σ−

This work 2.79 −1.913 2.1(4) −1.1ð1Þ
This work (no Δ) 2.79 −1.913 2.5(2) −1.4ð1Þ
Experiment [98] 2.79 −1.913 2.458(10) −1.160ð25Þ
Lattice [75] 2.3(3) −1.45ð17Þ 2.12(18) −0.85ð10Þ
Oðp3Þ [10] (no Δ) 2.61 −1.69 2.53 −1.160
Oðp4Þ [10] (no Δ) 2.79 −1.913 2.458 −1.00
Oðp3Þ [74] (no VM) 2.61 −2.23 2.37 −1.17
Oðp3Þ HBChPT [70] 2.79 −1.913 2.8(4) −0.9ð1Þ
QM [61] 2.735(121) −1.956ð103Þ 2.537(201) −0.861ð40Þ
NJL [68] 2.78 −1.81 2.62 −1.62

GMð0Þ Σ0 Λ Ξ0 Ξ−

This work 0.5(2) −0.5ð2Þ −1.0ð4Þ −0.7ð1Þ
This work (no Δ) 0.6(2) −0.6ð2Þ −1.1ð3Þ −0.98ð2Þ
Experiment [98] � � � −0.613ð4Þ −1.250ð14Þ −0.6507ð25Þ
Lattice [75] � � � � � � −1.07ð7Þ −0.57ð5Þ
Oðp3Þ (no Δ) [10] 0.76 −0.76 −1.51 −0.93
Oðp4Þ (no Δ) [10] 0.649 −0.613 −1.250 −0.651
Oðp3Þ (no VM) [74] 0.60 −0.60 −1.22 −0.92
Oðp3Þ HBChPT [70] 1.0(2) −1.0ð2Þ −1.9ð4Þ −0.9ð1Þ
QM [61] 0.838(91) −0.867ð74Þ −1.690ð142Þ −0.840ð87Þ
NJL [68] � � � � � � −1.14 −0.67

TABLE V. Numerical values for hr2Mi, compared with those extracted experimentally [98] and on the lattice [75]. We compare our full
model with a refitted version without the inclusion of the decuplet (Δ) states. We also show the Oðp3Þ and Oðp4Þ ChPT calculations of
Ref. [10], which does not include the decuplet intermediate states (no Δ); a refit of the HBChPT results of Ref. [70] for SUð3Þ; a QM
approach [61]; and a calculation within the NJL model [68].

hr2Mi (fm2) p n Σþ Σ−

This work 0.9(2) 0.8(2) 1.2(2) 1.2(2)
This work (no Δ) 0.7(2) 0.7(3) 0.8(1) 0.7(2)
Experiment [98] 0.777(16) 0.862(9) � � � � � �
Lattice [75] 0.71(8) 0.86(9) 0.66(5) 1.05(9)
Oðp4Þ [10] (no Δ) 0.699 0.790 0.80(5) 1.20(13)
Oðp3Þ HBChPT [70] 0.9(2) 1.0(2) 0.8(2) 1.1(2)
QM [61] 0.909(84) 0.922(79) 0.885(94) 0.951(83)
NJL [68] 0.87 0.91 0.88 0.96

hr2Mi (fm2) Σ0 Λ Ξ0 Ξ−

This work 1.1(2) 0.6(2) 0.7(3) 0.8(1)
This work (no Δ) 0.8(2) 0.3(3) 0.5(1) 0.2(1)
Experiment [98] � � � � � � � � � � � �
Lattice [75] � � � � � � 0.53(5) 0.44(5)
Oðp4Þ [10] (no Δ) 0.20(10) 0.48(9) 0.61(12) 0.50(16)
Oðp3Þ HBChPT [70] 0.6(2) 0.3(2) 0.4(3) 0.2(1)
QM [61] 0.851(102) 0.852(103) 0.871(99) 0.840(109)
NJL [68] � � � � � � 0.66 0.51
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gives reliable results. The prediction for GΛ
Mð0Þ turns out to

be of the same magnitude as GΣ0

M , but with opposite sign.
The same behavior has been seen in other approaches
[10,61,74].
Our approach builds upon that of Ref. [74]. There, the

renormalization scheme used was also EOMS, and the
spin-3=2 states were included as explicit intermediate
states, too. The vector-meson contributions were not
included, but they do not enter the result of GMð0Þ since
the contribution of vector mesons at q2 ¼ 0 vanishes. Thus,
in that work, they gave a complete analysis of the numerical
values for this particular observable. The difference in our
results lies in the fact that they did a global fit to all the
experimentally extracted magnetic moments available
while we fixed our results to those of the best determined
ones: those of the nucleons.
We show the results presented in Ref. [10], which were

also obtained within the framework of covariant ChPT. The
main differences between their work and ours are the
renormalization scheme used (they use IR instead of
EOMS), the order calculated [in that work, the calculations
were performed up toOðp4Þ], and the fact that they did not
consider the explicit inclusion of the spin-3=2 intermediate
states. The values we obtained for bD and bF are compatible
with those obtained in Ref. [10] at Oðp3Þ, keeping in mind
that they have to be slightly different due to the different
renormalization schemesand intermediate states considered.
In fact, in Table IV, we also show the results that were

obtained in Ref. [10] at orderOðp3Þ and our refitted results
at the same order without the inclusion of the decuplet.
Thus, the only difference is the renormalization scheme
used, and the results for the observables should be
equivalent. This is indeed the case, and it is important to
stress that the data for the nucleon magnetic moments used
in Ref. [10] are outdated. Therefore, the fit results can of
course not be compared exactly.
It is interesting to see that for the observable GMð0Þ it

suffices to stay at Oðp3Þ if one includes the decuplet
intermediate states explicitly, as was done in the present
work. The results turn out to be as good the Oðp4Þ
calculation in Ref. [10], despite being of a lower order.
In fact, while for the neutron the contribution of the
intermediate decuplet states is negligible, in the other
cases, these intermediate states make up 20% to 90% of
the values, the most striking case being that of the Ξ−. This
is reflected in the result for its magnetic moment, thus
showing the importance of including the spin-3=2 states in
order to obtain a result compatible with the experiment. We
note that our agreement with the data seems to be overall
slightly better than that found in some other approaches,
such as relativistic quark models [61] and Nambu-Jona–
Lasinio calculations [68]. Furthermore, the LECs appear to
be more stable when including the decuplet; bD almost does
not change, and bF gets reduced to approximately half. In
contrast, in Ref. [10], when going to Oðp4Þ, bD shifts from

3.65 to 5.18, and bF shifts by more than a factor 3, from
1.73 to 0.56.
In order to get an idea about the dependence of the

results on the renormalization used, it is useful to calculate
the observables in other schemes as well. As discussed in
the Introduction, the IR scheme has the downside of failing
to conserve the analytical structure of the loop diagrams.
Furthermore, the EOMS scheme is technically much
simpler to perform. Therefore, we refrain from comparing
our EOMS results to a technically expensive calculation in
the IR scheme.
Instead, we reanalyze the SUð2Þ HBChPT calculations

performed in Ref. [70], by extending them to SUð3Þ. In
order to do so, we use the expressions listed in that work,
taking into account that the LECs’ renormalization and the
WFR have to be adjusted to the SUð3Þ case studied in the
present work. The spin-3=2 degrees of freedom had already
been included in the original calculation. The result of the
refit for all the octet baryon magnetic moments is shown in
Table IV. One can see that, when fixing the LECs in order to
reproduce the experimental values for the proton and the
neutron, the hyperon magnetic moments seem to be slightly
overestimated, with the exception of the Σ−. The results
qualitatively point into the correct direction, though. Here,
too, one can find that the magnetic moments of the Σ0 and
the Λ are the same up to their sign.
This comparative study confirms the need to perform

covariant ChPT and gives an idea about the dependence on
the renormalization scheme used. As has already been
suggested in Ref. [77], the fully covariant approach is
expected to give a better convergence of the form factor
results up to higher values of momentum transfer squared.
Thus, it might be of interest to reanalyze the polarizabilities
studied in Ref. [77] with the calculations presented here.

B. Magnetic radii

The observable hr2Mi is slightly more involved; it
depends on the effects of the intermediate vector mesons,
the inclusion of which is model dependent. We chose the
parametrization of Ref. [83] for the vector-meson cou-
plings, but when choosing the Bonn-potential values, the
results vary by 15% to 40% percent. Thus, for this
observable, the vector mesons are the main source of the
uncertainty in the final results shown in Table V. Taking this
into account, our calculation is in good agreement with the
experimental data for the nucleons.
Concerning the hyperons, there are no experimental data

available on their magnetic radii. Thus, we compare our
results to those extracted in other theoretical frameworks.We
have good agreement with other predictions, although for
somecases, suchas theΣþ, theΣ0, and theΞ−, the tendency is
that our prediction is of a slightly larger magnetic radius. In
those cases, there is a big difference between our result and
that in Ref. [10]. As a result, our prediction for the magnetic
radius of the Σþ is the same as that for Σ−. Nevertheless, we

A. N. HILLER BLIN PHYSICAL REVIEW D 96, 093008 (2017)

093008-8



would like to stress here that it has already been shown in
Ref. [10] that it iscrucial toperformafullOðp4Þcalculationin
order to obtain a gooddescriptionof theq2 dependenceof the
form factors GEðq2Þ and GMðq2Þ. Since the charge and
magnetic radii are obtained from the slope of the form factors
at q2 ¼ 0, for these observables, the effects of the next chiral
order are felt more strongly than for themagneticmoment. It
is also important to point out that the Oðp4Þ calculation
performed in Ref. [10] was in perfect agreement with the
experimental dataexistingat the time. It is intriguing, though,
that thequark-modelpredictions [61]arecompatiblewithour
result. In particular, the effect of the decuplet intermediate
states is again striking in the final numerical result of theΞ−.
For this observable, too, we perform a comparative study

in HBChPT, following Ref. [70]. Apart from extending
their results to SUð3Þ, as explained in the previous section
for the observable GMð0Þ, we additionally include the
vector-meson contributions, in order to obtain a direct
comparison to our covariant model. Since the vector
mesons enter at tree level only, their effect is not renorm-
alization-scheme dependent, and we include them in
exactly the same phenomenological way as in our fully
covariant model. Again, the qualitative behavior of the
magnetic radii is compatible in the covariant and non-
relativistic schemes, but the numerical values vary. This is
especially true for the Ξ− of which the central value
changes dramatically despite having small error bars.

C. Charge radii

Lastly, we show the results for the average charge radii
squared, hr2Ei, shown in Table VI. Again, the values are
compared to the data and calculations in other works. We
fixed bD and bF to the values extracted above and
determined d101 and d102 by comparison to the two
experimental values for the proton and for the Σ−. We
obtained d101 ¼ 0.61 and d102 ¼ −0.70, while a fit without
the decuplet intermediate states would have resulted in
d101 ¼ 0.54 and d102 ¼ −1.05. The constant d102 seems to
be sensitive to the inclusion of the decuplet. However, the
effect on d101 is very soft, in contrast to the result of going
to Oðp4Þ, where d101 changes by a factor 1=3.
With the values of the LECs obtained from the fit, we

gave predictions for the charge radii of the other members
of the baryon octet. The findings here are similar to those
remarked in the case of the magnetic radii: the results are
sensitive to higher-order contributions, but overall a behav-
ior compatible with other calculations can be seen. Again,
the choice between different vector-meson parametriza-
tions is the main source of uncertainty in the results. Note
that the data available at the time of the calculations
performed in Refs. [10,61] are outdated, which naturally
leads to a discrepancy in the fit results. In the case of the
charge radii, the inclusion of the decuplet is negligible, and
the vector mesons are the ones giving significant
contributions.

TABLE VI. Numerical values for hr2Ei, compared with those extracted experimentally [98] and on the lattice [76]. We compare our full
model with a refitted version without the inclusion of the decuplet (Δ) states. We also show the Oðp4Þ ChPT calculation of Ref. [10],
which does not include the decuplet intermediate states (no Δ); a refit of the HBChPT results of Ref. [70] for SUð3Þ; a QM approach
[61]; and a calculation within the NJL model [68].

hr2Ei (fm2) p n Σþ Σ−

This work 0.878 0.03(7) 0.99(3) 0.780
This work (no Δ) 0.878 0.04(7) 0.95(3) 0.780
Experiment [98] 0.878(5) −0.1161ð22Þ � � � 0.780(10)
Lattice [76] 0.76(10) � � � 0.61(8) 0.45(3)
Oðp3Þ [10] (no Δ) 0.717 −0.113 0.63 0.72
Oðp4Þ [10] (no Δ) 0.717 −0.113 0.60(2) 0.67(3)
Oðp3Þ HBChPT [70] 0.878 −0.04ð7Þ 0.93(3) 0.780
QM [61] 0.767(113) −0.014ð1Þ 0.781(108) 0.781(108)
NJL [68] 0.87 −0.37 0.96 0.86

hr2Ei (fm2) Σ0 Λ Ξ0 Ξ−

This work 0.10(2) 0.18(1) 0.36(2) 0.61(1)
This work (no Δ) 0.09(1) 0.20(2) 0.38(2) 0.605(7)
Experiment [98] � � � � � � � � � � � �
Lattice [76] � � � � � � 0.53(5) 0.37(2)
Oðp3Þ [10] (no Δ) −0.05 0.05 0.15 0.56
Oðp4Þ [10] (no Δ) −0.03ð1Þ 0.11(2) 0.13(3) 0.49(5)
Oðp3Þ HBChPT [70] 0.07(2) 0.21(1) 0.42(2) 0.54(1)
QM [61] 0 0 0.014(8) 0.767(113)
NJL [68] � � � � � � 0.49 0.76
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The model in Ref. [68] describes the nucleon data rather
well, but the experimental value for Σ− is not reproduced.
In our work, we find that when fixing the couplings so as to
also reproduce the results for this baryon, we obtain a
charge radius which is slightly larger for the Σþ than for the
Σ−. This is not surprising, since the main contribution from
the kaon cloud to the Σþ comes from the transition to a
virtual pK̄0 state, while that to the Σ− is nK−. Thus, while
the pion cloud contributes equally to both Σþ and Σ−, the
kaon cloud leads to a breaking of this symmetry. This is an
interesting outcome of the extension of the ChPT calcu-
lations to SUð3Þ. Additionally, the relative sign between the
contributions of the ρ and the other two vector mesons, ω
and ϕ, is different depending on the charge of the Σ.
Finally, even when considering the direct coupling of the
photon to these baryons at Oðp2Þ and Oðp3Þ, one finds
different contributions to each of them, since the relative
sign between the charge cb and cb23 is different for each
case; see Table VII.
Unlike the magnetic observables, the charge radii do not

change drastically when performing a HBChPT calculation
instead of the fully covariant approach. Again, the hyperon
of which the central value changes the most compared to its
error bars is the Ξ−, but not as strongly as in the case of the
magnetic radius. Furthermore, it is important to point out
that in the HBChPT calculation the central value for the
neutron is indeed negative, as expected from the experi-
ment and other calculations.

IV. SUMMARY

We presented a systematic and extensive calculation of
the baryon electromagnetic form factors within the frame-
work of covariant ChPT up to the chiral order Oðp3Þ.
Building on the work of Ref. [74], we explicitly included
not only the decuplet but also the vector-meson contribu-
tions in the covariant EOMS renormalization scheme. In
addition to the magnetic moments, we analyzed the charge
and magnetic radii.
We first introduced the tools necessary for the calculation

of the relevant amplitudes. With this framework, we
extracted the magnetic moments, charge, and magnetic
radii. Comparing the results with data, we determined all
unknown low-energy constants. Finally, we provided pre-
dictions for the properties of those baryons for which these
observables have not yet been determined experimentally.
Our results for the magnetic moments are in excellent

agreement with the data. In fact, we even find as good an
agreement as in calculations at higher chiral order Oðp4Þ.
This shows the importance of including the spin-3=2 degrees
of freedom explicitly and the reliability of SUð3ÞChPT in its
covariant EOMS renormalization framework. Both in the
case of the magnetic moment and of the magnetic radius, we
find that the effect of the decuplet intermediate states is
crucial for the result for the Ξ− hyperon.

However, we confirmed that for observables sensitive to
the q2 behavior, such as the charge and magnetic radii, an
extension of these calculations to the chiral order Oðp4Þ is
crucial. So far, such calculations in SUð3Þ have been
performed only in the IR renormalization scheme and
without the explicit inclusion of the decuplet intermediate
states. However, even atOðp3Þ, we obtained results in good
agreement with data. In order to study the effect on the
results of the renormalization scheme used, we compared
our calculations to those obtained in HBChPT. Since this
scheme is nonrelativistic, it is the one which is expected to
lead to the most different numerical outcome. Thus, it gives
a quantitative idea about the uncertainties due to different
renormalization schemes.
Finally, we would like to stress that the proton charge

radius extractedwith the help of this framework by a fit to the
GEðq2Þ data at low q2 might be more reliable than the
polynomial fits that are usually performed. The latter cannot
take into account the effects of poles in the amplitude, such
as those at the opening of the two-pion threshold. Such
effects are correctly described within ChPT.
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APPENDIX A: WAVE-FUNCTION
RENORMALIZATION

At the order considered, the WFR amounts to including
a factor

ffiffiffiffi
Z

p
in the amplitude, for each of the baryon legs.

The WFR of the photon leg would lead to higher-order
corrections. Therefore, in total, one needs

ffiffiffiffi
Z

p
2 ¼ 1

1 − Σ0
���
=p¼mB0

; ðA1Þ

where Σ is the baryon self-energy that arises from the
diagrams depicted in Fig. 4. This factor Z is of Oðp2Þ and
therefore gives a Oðp3Þ correction when included in the
tree-level amplitude of OðpÞ. Therefore, we include it only
there, since in the higher-order diagrams one would obtain
corrections of at least Oðp4Þ.
In fact, this WFR is strictly necessary if one wants to

obtain the natural charge of the baryons at q2 ¼ 0:

GEð0Þ ¼ cb: ðA2Þ
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The reason for this is that the loop diagrams at Oðp3Þ do
not all show the behavior of GEðq2 ¼ 0Þ ¼ 0, even after
subtracting the PCBTs. But the expressions obtained for the
WFR exactly cancel these spurious terms when multiplied
to the leading-order tree-level diagram:

cbWFR ¼ cb þ GEð0Þloops
¼ cb þ F1ð0Þloops − F1ð0ÞPCBT: ðA3Þ

For the neutral baryons, this of course means that there is no
WFR contribution. But in their case, the requirement
GEð0Þ ¼ 0 is fulfilled even without WFR. The WFR
expression for the charged baryons is trivially obtained
from Eqs. (A3), (B4) and (C2), and therefore, we do not
show it here.

APPENDIX B: EXPLICIT EXPRESSIONS
FOR THE FORM FACTORS

In this section, the amplitudes of the diagrams in Figs. 1
and 2 are given, separated into the two form factors. The
charges of the meson, of the octet baryon, and of the
decuplet baryon are denoted as cm, cb, and cT , respectively.
For the direct coupling of the photon to the baryon atOðp2Þ
and Oðp3Þ, apart from the baryon charge, a further
definition cb23 is needed, the values of which are summa-
rized for each baryon in Table VII. We denote the isospin
constant of the coupling of two mesons to a baryon at one
point as Ismm. Its values for the different baryons are
summarized in Tables X and XI. In some of the loop
diagrams, each channel has a particular isospin combina-
tion of the LECs D and F. Therefore, we call the
combination thereof cDF. The values of this combination
for the different channels are summarized in Tables VIII
and IX. Furthermore, Ism is the coupling constant of the
vertex of the decuplet-to-octet baryon transition via a
coupling to a meson. Its values are summarized in
Tables XII and XIII. The couplings IsV between a photon
and a vector meson are summarized in Table I.
For the expressions that arise from the dimensional

regularization, we use the definitions

TABLE VIII. Values of the isospin constant cDF for the
different channels of the octet baryon-to-octet baryon transition
via a pion or a kaon.

p n Σþ Σ0

p Dþ F
ffiffiffi
2

p ðDþ FÞ ffiffiffi
2

p ðD − FÞ D − F

n
ffiffiffi
2

p ðDþ FÞ −ðDþ FÞ 0 F −D

Σþ ffiffiffi
2

p ðD − FÞ 0 2F −2F
Σ0 D − F F −D −2F 0

Σ− 0
ffiffiffi
2

p ðD − FÞ 0 2F

Λ − Dþ3Fffiffi
3

p − Dþ3Fffiffi
3

p 2Dffiffi
3

p 2Dffiffi
3

p

Ξ0 0 0
ffiffiffi
2

p ðDþ FÞ −ðDþ FÞ
Ξ− 0 0 0 Dþ F

Σ− Λ Ξ0 Ξ−

p 0 −ðDþ3Fffiffi
3

p Þ 0 0

n
ffiffiffi
2

p ðD − FÞ −ðDþ3Fffiffi
3

p Þ 0 0

Σþ 0 2Dffiffi
3

p
ffiffiffi
2

p ðDþ FÞ 0

Σ0 2F 2Dffiffi
3

p −ðDþ FÞ Dþ F

Σ− −2F 2Dffiffi
3

p 0
ffiffiffi
2

p ðDþ FÞ
Λ 2Dffiffi

3
p 0 3F−Dffiffi

3
p 3F−Dffiffi

3
p

Ξ0 0 3F−Dffiffi
3

p F −D
ffiffiffi
2

p ðD − FÞ
Ξ− ffiffiffi

2
p ðDþ FÞ 3F−Dffiffi

3
p

ffiffiffi
2

p ðD − FÞ D − F

TABLE IX. Values of the isospin constant cDF for the coupling
of an η meson to an octet baryon.

p n Σþ Σ0 Σ− Λ Ξ0 Ξ−

3F−Dffiffi
3

p 3F−Dffiffi
3

p 2Dffiffi
3

p 2Dffiffi
3

p 2Dffiffi
3

p − 2Dffiffi
3

p − 3FþDffiffi
3

p − 3FþDffiffi
3

p

TABLE X. Values of the isospin constant Ismm for the coupling
of two pions to an octet baryon.

p n Σþ Σ0 Σ− Λ Ξ0 Ξ−

− 1
4

1
4

− 1
2

0 1
2

0 − 1
4

1
4

FIG. 4. Diagrams contributing to the proton self-energy with
nucleon (a) and Δ (b) loop contributions.

TABLE XI. Values of the isospin constant Ismm for the coupling
of two kaons to an octet baryon.

p n Σþ Σ0 Σ− Λ Ξ0 Ξ−

− 1
2

− 1
4

− 1
4

0 1
4

0 1
4

1
2

TABLE VII. Values of the isospin constant cb23 for the higher-
order coupling of a photon to an octet baryon.

p n Σþ Σ0 Σ− Λ Ξ0 Ξ−

1
3

− 2
3

1
3

1
3

1
3

− 1
3

− 2
3

1
3
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λ1ðΔÞ¼
Γð1−d

2
Þ

ð4πÞd=2Δ1−d
2

¼−
Δ

16π2

�
2

ϵ
− log

�
Δ
MSc

�
þ logð4πÞ−γEþ1þOðϵÞ

�
;

λ2ðΔÞ¼
Γð2−d

2
Þ

ð4πÞd=2Δ2−d
2

¼ 1

16π2

�
2

ϵ
− log

�
Δ
MSc

�
þ logð4πÞ−γEþOðϵÞ

�
;

λ3ðΔÞ¼
Γð3−d

2
Þ

ð4πÞd=2Δ3−d
2

¼ 1

16π2Δ
þOðϵÞ;

ρ1ðΔÞ¼−
Δ
8π2

; ρ2ðΔÞ¼
1

8π2
; ðB1Þ

where ϵ ¼ 4 − d and MSc is the scale parameter, which in
this work is set to the octet-baryon mass mB0. Furthermore,
γE ¼ −Γ0ð1Þ is the Euler-Mascheroni constant. In the
renormalization prescription gMS used here, terms propor-
tional to

L ¼ 2

ϵ
þ logð4πÞ − γE þ 1 ðB2Þ

are subtracted. Special care has to be taken for amplitude
terms which are proportional to the dimension d ¼ 4 − ϵ.
They arise, e.g., from expressions as gμνγμγν ¼ d ¼ 4 − ϵ
in the numerator. The ϵ piece of these expressions cancels
the divergence in 2=ϵ, therefore leading to the appearance
of the additional finite terms ρ1ðΔÞ and ρ2ðΔÞwhich are not
absorbed into the renormalization. Were one to set d ¼ 4
from the very beginning, they would have erroneously
disappeared.
Furthermore, we define the following arguments of the

loop integrals:

Δ2ðaÞ ¼ M2;

Δ2ðbÞ ¼ M2 − q2fað1 − faÞ;
Δ2ðcÞ ¼ Δ2ðdÞ ¼ M2ð1 − faÞ þ f2am2

B0;

Δ2ðeÞ ¼ M2ð1 − fbÞ þ f2bm
2
B0 − q2fað1 − fa − fbÞ;

Δ2ðfÞ ¼ M2ð1 − fa − fbÞ þ ðfa þ fbÞ2m2
B0 − q2fafb;

Δ2ðgÞ ¼ Δ2ðhÞ ¼ M2ð1 − faÞ −m2
B0fað1 − faÞ þM2

Δfa;

Δ2ðiÞ ¼ M2ð1 − fbÞ −m2
B0fbð1 − fbÞ þM2

Δfb

− q2fað1 − fa − fbÞ;
Δ2ðjÞ ¼ M2ð1 − fa − fbÞ þ ðfa þ fbÞðM2

Δ −m2
B0Þ

þ ðfa þ fbÞ2m2
B0 − q2fafb: ðB3Þ

With the above considerations, the evaluation of the
diagrams in Figs. 1 and 2 leads to the following expressions
for the form factors F1 and F2:

F1;1 ¼ cb þ q2ðcbd101 þ cb23d102Þ;

F1;2ðaÞ ¼ −
Ismm

F2
0

λ1ðΔ2ðaÞÞ;

F1;2ðbÞ ¼ −2
Ismm

F2
0

Z
1

0

dfaλ1ðΔ2ðbÞÞ;

F1;2ðcÞ ¼ F1;2ðdÞ ¼
c2DFcm
4F2

0

Z
1

0

dfa

�
2λ1ðΔ2ðcÞÞ −m2

B0f
2
aλ2ðΔ2ðcÞÞ −

1

2
ρ1ðΔ2ðcÞÞ

�
;

TABLE XII. Values of the isospin constant Ism for the different
channels of the decuplet-to-octet baryon transition via a pion or a
kaon.

p n Σþ Σ0 Σ− Λ Ξ0 Ξ−

Δþþ −1 0 1 0 0 0 0 0
Δþ ffiffi

2
3

q
−

ffiffi
3

p
3

ffiffi
3

p
3 −

ffiffi
2
3

q
0 0 0 0

Δ0
ffiffi
3

p
3

ffiffi
2
3

q
0 −

ffiffi
2
3

q
−

ffiffi
3

p
3

0 0 0

Δ− 0 1 0 0 −1 0 0 0
Σ�þ −

ffiffi
3

p
3

0 −
ffiffi
6

p
6

ffiffi
6

p
6

0
ffiffi
2

p
2

ffiffi
3

p
3

0

Σ�0 ffiffi
6

p
6

−
ffiffi
6

p
6

−
ffiffi
6

p
6

0
ffiffi
6

p
6

−
ffiffi
2

p
2

ffiffi
6

p
6

−
ffiffi
6

p
6

Σ�− 0
ffiffi
3

p
3

0
ffiffi
6

p
6

−
ffiffi
6

p
6

−
ffiffi
2

p
2

0 −
ffiffi
3

p
3

Ξ�0 0 0 −
ffiffi
3

p
3

ffiffi
6

p
6

0
ffiffi
2

p
2

−
ffiffi
6

p
6

ffiffi
3

p
3

Ξ�− 0 0 0
ffiffi
6

p
6

ffiffi
3

p
3

−
ffiffi
2

p
2

−
ffiffi
3

p
3

−
ffiffi
6

p
6

Ω− 0 0 0 0 0 0 −1 1

TABLE XIII. Values of the isospin constant Ism for the
decuplet-to-octet baryon transition via an η meson.

Δþþ Δþ Δ0 Δ− Σ�þ Σ�0 Σ�− Ξ�0 Ξ�− Ω

0 0 0 0 −
ffiffi
2

p
2

ffiffi
2

p
2

ffiffi
2

p
2

−
ffiffi
2

p
2

ffiffi
2

p
2

0
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F1;2ðeÞ ¼
c2DFcm
4F2

0

Z
1

0

dfa

Z
1−fa

0

dfb

�
−3λ1ðΔ2ðeÞÞ

þ ðm2
B0ð4fað4fb þ 5Þ þ 17f2b þ 8fb − 10Þ þ q2faðfa þ fb − 1ÞÞλ2ðΔ2ðeÞÞ

− 2m2
B0ð2fa þ 2fb − 1Þ½q2ðfaf2b þ faðfa þ 1Þfb þ 2ðfa − 1ÞfaÞ þ f3bm

2
B0�λ3ðΔ2ðeÞÞ

þ 1

2
ρ1ðΔ2ðeÞÞ−m2

B0ðfb þ 2Þð2fa þ 2fb − 1Þρ2ðΔ2ðeÞÞ
�
;

F1;2ðfÞ ¼
c2DFcb
4F2

0

Z
1

0

dfa

Z
1−fa

0

dfb

�
6λ1ðΔ2ðfÞÞ

− ð6m2
B0ðf2a þ 2faðfb þ 1Þ þ f2b − 2fb − 1Þ þ q2ðfað3− 6fbÞ þ 3fb − 1ÞÞÞλ2ðΔ2ðfÞÞ

þ ðm4
B0ðfa þ fbÞ2ðf2a þ 2faðfb þ 2Þ þ ðfb − 4ÞfbÞ

þm2
B0ðf3að1− 2fbÞ − f2afbð4fb þ 1Þ þ fafbðð7− 2fbÞfb þ 4Þ þ f3bÞq2 þ ðfa − 1Þfaðfb − 1Þfbq4Þλ3ðΔ2ðfÞÞ

−
5

2
ρ1ðΔ2ðfÞÞ þ

�
m2

B0ðf2a þ 2faðfb þ 1Þ þ f2b − 2fb − 2Þ þ q2

2
ð−2fafb þ fa þ fbÞ

�
ρ2ðΔ2ðfÞÞ

�
;

F1;2ðgÞ ¼
C2mB0Is2m
9M3

ΔF
2
0

Z
1

0

dfaðfamB0 −MΔ −mB0Þ

× f6ðMΔðcT þ cmÞ− 2mB0cTÞλ1ðΔ2ðgÞÞ− ðMΔðcT þ cmÞ− 8mB0cTÞρ1ðΔ2ðgÞÞg;

F1;2ðhÞ ¼ −
C2mB0Is2m
9M3

ΔF
2
0

Z
1

0

dfaðfamB0 −MΔ −mB0Þ

× f7ðMΔðcT þ cmÞ− 2mB0cTÞλ1ðΔ2ðgÞÞ− ð19MΔðcT þ cmÞ− 8mB0cTÞρ1ðΔ2ðgÞÞg;

F1;2ðiÞ ¼
C2cmIs2m
M2

ΔF
2
0

Z
1

0

dfa

Z
1−fa

0

dfb

��
2m2

B0 −
8q2

3

�
λ1ðΔ2ðiÞÞ −

�
m2

B0 −
4q2

9

�
ρ1ðΔ2ðiÞÞ

þ ðq42faðfa þ fb − 1Þ þ q2mB0½mB0ð16fafb − 4faðfa þ 4Þ þ 21f2b − 34fb þ 13Þ þMΔð−20fa − 21fb þ 13Þ�

þ 4m3
B0ð10fa þ 8fb − 5Þð−fbmB0 þMΔ þmB0ÞÞ

λ2ðΔ2ðiÞÞ
3

þ ð4m2
B0q

2 − q4Þ
�
−
2

3
famB0ðfa þ fb − 1Þð2fa þ 2fb − 1Þð−fbmB0 þMΔ þmB0Þ

�
λ3ðΔ2ðiÞÞ

þ ðq4ðfa þ fb − 1Þfa þ q22mB0½mB0ð−20fafb þ 2faðfa þ 10Þ− 21f2b þ 32fb − 11Þ þMΔð22fa þ 21fb − 11Þ�

− 4m3
B0ð22fa þ 20fb − 11Þð−fbmB0 þMΔ þmB0ÞÞ

ρ2ðΔ2ðiÞÞ
18

�
;

F1;2ðjÞ ¼
C2cTIs2m
9M4

ΔF
2
0

Z
1

0

dfa

Z
1−fa

0

dfb

�
ð2ð−2MΔmB0q2ð15fa þ 3fb − 10Þ

þ q2ð−2m2
B0ð10fa þ 10fb − 9Þ þ 4q2ðfa þ fbÞ− q2Þ þ 6M2

Δð3m2
B0 þ 2q2ÞÞÞλ1ðΔ2ðjÞÞ

þ ðM2
Δð−3m2

B0q
2ð4fafb þ 3fað7fa − 5Þ þ f2b − 3fb þ 2Þ þ 6m4

B0ð13fa − 7fb − 3Þðfa þ fb − 1Þ
þ q4ð6fafb − 3fa − 3fb þ 1ÞÞ þMΔmB0q2ðm2

B0ðfa þ fb − 1Þð18fafb þ 5fað3fa − 1Þ þ 3f2b − 17fb þ 6Þ
þ q2ðð5− 3faÞf2b þ ð16− 15faÞfafb þ fað5fa − 11Þ− 11fb þ 2ÞÞ
þ q2ð−m2

B0q
2ðfa þ fb − 1Þð34fafb þ fað2fa − 7Þ þ 2f2b − 7fb þ 1Þ þ 2m4

B0ðfa þ fb − 1Þ2ð5fa þ 5fb − 1Þ
þ fafbq4ð7fa þ 7fb − 4ÞÞ þ 2M3

ΔmB0ð6m2
B0ð−8fa þ 2fb þ 3Þ þ ð24fa − 1Þq2Þ þ 18M4

Δm
2
B0Þλ2ðΔ2ðjÞÞ

þ ðfafbq2ðMΔmB0q2ðq2ðf2a − 3fa þ f2b − 3fb þ 2Þ− 2m2
B0ðfa þ fb − 5Þðfa þ fb − 1ÞÞ

þM2
Δð12m4

B0ð3fa − fb − 1Þðfa þ fb − 1Þ− 4ð3ðfa − 1Þfa þ 2Þm2
B0q

2 þ q4Þ
þ q2ðfa þ fb − 1Þð4m2

B0 − q2Þðm2
B0ðfa þ fb − 1Þ2 − fafbq2Þ
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− 2M3
ΔmB0ð12ð2fa − 1Þm2

B0 − 6faq2 þ q2Þ þ 12M4
Δm

2
B0ÞÞλ3ðΔ2ðjÞÞ

þ ðq4½−22ðfa þ fbÞ þ 1� þ q2½MΔmB0ð249fa þ 21fb − 206Þ þ 2m2
B0ð79fa þ 79fb − 69Þ − 132M2

Δ�

− 162M2
Δm

2
B0Þ

ρ1ðΔ2ðjÞÞ
6

þ ðq6½−17fa − 17fb þ 5�fafb þ q4½MΔmB0ðf2að51fb − 31Þ þ faðfbð3fb − 74Þ þ 43Þ þ ð43 − 31fbÞfb − 4Þ
þ 2m2

B0ðfa þ fb − 1Þð2f2a þ fað46fb − 7Þ þ fbð2fb − 7Þ þ 1Þ þM2
Δðfað27 − 69fbÞ þ 27fb − 2Þ�

− q2½−6M2
Δm

2
B0ð27f2a þ fað11fb − 23Þ þ fbð5fb − 17Þ þ 8Þ

þMΔm3
B0ðfa þ fb − 1Þð51f2a þ fað54fb − 49Þ þ fbð3fb − 97Þ þ 30Þ

þM3
ΔmB0ð75fa − 9fb þ 26Þ þ 8m4

B0ðfa þ fb − 1Þ2ð4fa þ 4fb þ 1Þ þ 36M4
Δ�

− 6M2
Δm

2
B0ðMΔ −mB0ðfa þ fb − 1ÞÞðmB0ð−31fa þ 13fb þ 9Þ þ 9MΔÞÞ

ρ2ðΔ2ðjÞÞ
6

�
; ðB4Þ

F1;3 ¼ −IsV
gvFV

mV

q2

q2 −m2
V
;

F2;2ðaÞ ¼ F2;2ðbÞ ¼ F2;2ðcÞ ¼ F2;2ðdÞ ¼ F2;2ðgÞ ¼ 0;

F2;1 ¼ cb23ðbD − d102q2Þ þ cbðbF − d101q2Þ;

F2;2ðeÞ ¼
c2DFcm
4F2

0

Z
1

0

dfa

Z
1−fa

0

dfb½−2ð2fað4fb þ 5Þ þ 8f2b þ 5fb − 7Þλ2ðΔ2ðeÞÞ

þ 2m2
B0ð2fa þ 2fb − 1Þ½q2ðfaf2b þ faðfa þ 1Þfb þ 2ðfa − 1ÞfaÞ þ f3bm

2
B0�λ3ðΔ2ðeÞÞ

þm2
B0ðfb þ 2Þð2fa þ 2fb − 1Þρ2ðΔ2ðeÞÞ�;

F2;2ðfÞ ¼
c2DFcm
4F2

0

Z
1

0

dfa

Z
1−fa

0

dfb½8ð3fa − 1Þm2
B0λ2ðΔ2ðfÞÞ þ 8fam2

B0ððfa − 1Þfbq2 −m2
B0ðfa þ fbÞ2Þλ3ðΔ2ðfÞÞ

− 4fam2
B0ρ2ðΔ2ðfÞÞ�;

F2;2ðhÞ ¼
4C2mB0Is2m
9M3

ΔF
2
0

Z
1

0

dfaðfamB0 −MΔ −mB0Þ

× f2ðMΔðcT þ cmÞ − 2mB0cTÞλ1ðΔ2ðgÞÞ − ð5MΔðcT þ cmÞ − 4mB0cTÞρ1ðΔ2ðgÞÞg;

F2;2ðiÞ ¼
C2cmIs2m
M2

ΔF
2
0

Z
1

0

dfa

Z
1−fa

0

dfb

�
4m2

B0

3

�
4λ1ðΔ2ðiÞÞ þ

1

3
ρ1ðΔ2ðiÞÞ

�
þ ð−q24mB0½mB0ðf2a þ 6faðfb − 1Þ þ 5f2b − 8fb þ 3Þ þMΔð−5fa − 5fb þ 3Þ�

− 4m3
B0ð10fa þ 7fb − 4Þð−fbmB0 þMΔ þmB0ÞÞ

λ2ðΔ2ðiÞÞ
3

þ ð4m2
B0q

2 − q4Þ
�
2

3
famB0ðfa þ fb − 1Þð2fa þ 2fb − 1Þð−fbmB0 þMΔ þmB0Þ

�
λ3ðΔ2ðiÞÞ

þ ðq22mB0½mB0ð−9fafb þ fað2fa þ 9Þ − 11f2b þ 17fb − 6Þ þMΔð11fa þ 11fb − 6Þ�

þ 2m3
B0ð22fa þ 22fb − 13Þð−fbmB0 þMΔ þmB0ÞÞ

ρ2ðΔ2ðiÞÞ
9

�
;

F2;2ðjÞ ¼
C2cTIs2m
9M4

ΔF
2
0

Z
1

0

dfa

Z
1−fa

0

dfb

�
ð−8mB0ð−MΔðm2

B0ð6fa þ 6fb − 13ÞÞ − 4m3
B0ðfa þ fb − 1Þ þ 15M2

ΔmB0Þ

þ q28mB0MΔð6fa þ 1ÞÞλ1ðΔ2ðjÞÞ
þ ð−4mB0ðMΔðm2

B0q
2ð3f3a þ 4f2a þ ðfa þ 9Þð3fa − 1Þfb − 12fa þ 4f2b þ 1Þ
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þ 3m4
B0ðfa þ fb − 2Þðfa þ fb − 1Þ2 − fað3fa þ 4Þfbq4Þ þM3

Δðm2
B0ð−24fa þ 6fb þ 10Þ þ ð12fa − 1Þq2Þ

þM2
ΔmB0ð15m2

B0ðfa − fbÞðfa þ fb − 1Þ þ q2ð3fað−5fa þ 2fb þ 2Þ − 3fb − 1ÞÞ þ 2m5
B0ðfa þ fb − 1Þ3

−m3
B0q

2ðfa þ fb − 1Þð22fafb − 5fa − 5fb þ 1Þ þ fafbmB0q4ð5fa þ 5fb − 2Þ þ 6M4
ΔmB0ÞÞλ2ðΔ2ðjÞÞ

þ ð−4fafbmB0q2ðMΔðm2
B0q

2ð6fafb þ fað2fa − 3Þ þ 2f2b − 3fb þ 1Þ − 6m4
B0ðfa þ fb − 1Þ2 − fafbq4Þ

þM2
ΔmB0ð3m2

B0ð3fa − fb − 1Þðfa þ fb − 1Þ þ ð−3ðfa − 1Þfa − 1Þq2Þ
þmB0ðfa þ fb − 1Þð4m2

B0 − q2Þðm2
B0ðfa þ fb − 1Þ2 − fafbq2Þ

−M3
Δð4ð3fa − 2Þm2

B0 − 3faq2 þ q2Þ þ 3M4
ΔmB0ÞÞλ3ðΔ2ðjÞÞ

þ ðmB0ðmB0ðMΔmB0ð−21fa − 21fb þ 82Þ þ 26m2
B0ðfa þ fb − 1Þ þ 138M2

ΔÞ

− q2½24mB0ðfa þ fbÞ þ 57faMΔ þMΔ − 9mB0�ÞÞ
ρ1ðΔ2ðjÞÞ

3

þ ðmB0ðMΔðm2
B0q

2ðð9fa þ 17Þf2b þ fað21fa þ 58Þfb þ faðfað12fa þ 17Þ − 39Þ − 27fb þ 2Þ
þ 3m4

B0ðfa þ fb − 10Þðfa þ fb − 1Þ2 − fað12fa þ 5Þfbq4Þ
þ 2m3

B0q
2ðfa þ fb − 1Þð−16fafb þ fað3fa þ 2Þ þ 3f2b þ 2fb − 1Þ

þM3
Δðm2

B0ð−69fa − 3fb þ 38Þ þ ð21fa − 2Þq2Þ
þM2

ΔmB0ð6m2
B0ð4fa − 7fb þ 7Þðfa þ fb − 1Þ − q2ð3fað11fa − 20fb þ 4Þ þ 21fb þ 2ÞÞ

− 8m5
B0ðfa þ fb − 1Þ3 þ fafbmB0q4ð7fa þ 7fb þ 5Þ þ 42M4

ΔmB0ÞÞ
ρ2ðΔ2ðjÞÞ

3

�
;

F2;3 ¼ −IsV
gtFV

mV

q2

q2 −m2
V
: ðB5Þ

For a check of our results, we compared them to those obtained in SUð2Þ in the work of Ledwig et al. [29] by setting to
zero the kaon and η-meson contributions. We fully reproduce the analytical and numerical results, except for those of the
diagram in Fig. 2(j). For this particular diagram, in the analytical expression, the terms proportional to q4 and higher were
forgotten. This changed the numerical result, and here we correct this problem.

APPENDIX C: POWER-COUNTING BREAKING TERMS

In the EOMS scheme, the PCBTs are also absorbed into redefinitions of the LECs. The PCBTs for the diagrams with
intermediate spin-1=2 baryon states vanish for the form factor F1. In the particular renormalization schemegMS, they vanish
diagram by diagram, while for other schemes (e.g., MS), they end up cancelling between diagrams. The only contributions
to F2 come from the diagrams in Figs. 2(e) and 2(f), and they have the following simple expressions:

F2;PCBT;2ðeÞ ¼
c2DFcmm

2
B0

16π2F2
0

;

F2;PCBT;2ðfÞ ¼ −
c2DFcbm

2
B0

16π2F2
0

: ðC1Þ

Concerning those diagrams with intermediate spin-3=2 baryon states, most of the contributions vanish as well. The only
pieces that survive are as follows:
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F1;PCBT;2ðgÞ ¼
C2Is2m

144π2F2
0

�ðM3
Δ þ 2M2

ΔmB0 − 2MΔm2
B0 − 6m3

B0ÞðMΔðcm þ cTÞ − 2mB0cTÞ
m4

B0
M2

Δ log

�
MΔ

mB0

�

−
ðMΔ −mB0Þ3ðMΔ þmB0Þ5ðMΔðcm þ cTÞ − 2mB0cTÞ

2M3
Δm

4
B0

log

�
M2

Δ −m2
B0

m2
B0

�

þ cm
−6M6

Δ − 12M5
ΔmB0 þ 9M4

Δm
2
B0 þ 36M3

Δm
3
B0 þ 10M2

Δm
4
B0 − 16MΔm5

B0 − 8m6
B0

12M2
Δm

2
B0

þ cT
−6M7

Δ þ 33M5
Δm

2
B0 þ 18M4

Δm
3
B0 þ 10M3

Δm
4
B0 − 12M2

Δm
5
B0 þ 4m7

B0

12M3
Δm

2
B0

	
;

F1;PCBT;2ðhÞ ¼
C2Is2m

144π2F2
0

�
−
ðM3

Δ þ 2M2
ΔmB0 − 2MΔm2

B0 − 6m3
B0Þð7MΔðcm þ cTÞ − 2mB0cTÞ

m4
B0

M2
Δ log

�
MΔ

mB0

�
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