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We provide the first explicit calculation showing that parapositronium can decay into three photons.
While this decay is forbidden within quantum electrodynamics because it violates charge conjugation
symmetry, it proceeds through the weak interaction. We compute the charged weak boson contribution to
the photon energy spectrum and the rate of this decay.
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I. INTRODUCTION

Positronium (Ps) is an atom composed of an electron and
a positron. The ground state is the spin singlet para-
positronium (p-Ps) while the lowest excited state is the
spin triplet orthopositronium (o-Ps).
Within pure quantum electrodynamics (QED), p-Ps can

decay only into an evennumber of photons ando-Ps only into
an odd number of photons. This is because QED is invariant
under charge conjugation symmetry (C-symmetry).
With the inclusion of C-violating weak interactions, Ps

gains access to new photonic decaymodes. The simplest one
being p-Ps → 3γ (the o-Ps → 2γ is forbidden by the Landau-
Yang theorem [1,2]). While Ref. [3] argues that this decay is
possible and estimates its branching ratio, their statement has
not yet been supported by an explicit calculation.
We compute the W-boson contribution to the p-Ps → 3γ

decay and thus demonstrate that it does indeed occur. In
Sec. II we calculate the amplitude generated by W-boson
loops to order Oðm6

e=m6
WÞ where me is the mass of the

electron and mW is the mass of theW-boson. In Sec. III we
use the result of Sec. II to compute the decay rate,
branching ratio and photon spectrum of p-Ps → 3γ decays.
We conclude in Sec. IV.

II. DECAY AMPLITUDE

We start by noting that since the p-Ps → 3γ decay
violates C-symmetry, it must also violate parity in order
to conserve CP. Therefore, the final state must be com-
posed of three spatially symmetric photons with vanishing
total angular momentum—identical to that of the neutral
pion decay into three photons (π0 → 3γ) [4].
The p-Ps → 3γ decay amplitude can be written as a sum

of tensors made up of the external momentummultiplied by
scalar functions, Fi, called form factors. The form factors
are functions of the only available scalars: x, y, z where
x; y; z ¼ k01;2;3=me and ki is the 4-momentum of the ith
photon in the final state.
Following Ref. [4], we the use gauge invariance of the

photon field to construct the general form of the amplitude
(detailed in Appendix A)

M ¼ ϵ�μ1ϵ
�
μ2ϵ

�
μ3M

μ1μ2μ3ðk1; k2; k3Þ ð1Þ

where

Mμ1μ2μ3ðk1;k2;k3Þ¼
�
kμ31 −kμ32

k1 ·k3
k2 ·k3

�
ðkμ21 kμ12 −k1 ·k2gμ2μ1ÞF1ðx;y;zÞþ

�
kμ21 −kμ23

k1 ·k2
k2 ·k3

�
ðkμ13 kμ31 −k3 ·k1gμ1μ3ÞF2ðx;y;zÞ

þ
�
kμ12 −kμ13

k1 ·k2
k1 ·k3

�
ðkμ23 kμ32 −k2 ·k3gμ2μ3ÞF3ðx;y;zÞþ½kμ32 ðkμ21 kμ13 −k1 ·k3gμ2μ1Þ−kμ31 ðkμ23 kμ12 −k3 ·k2gμ2μ1Þ

þkμ12 k1 ·k3g
μ3μ2 þkμ23 k1 ·k2g

μ3μ1 −kμ21 k2 ·k3g
μ3μ1 −kμ13 k1 ·k2g

μ3μ2 �F4ðx;y;zÞ: ð2Þ

and the ϵi are the photon polarizations. Furthermore, Bose
symmetry places restrictions on the form factors such that
only F1 and F4 need to be calculated,

F2ðx; y; zÞ ¼ F1ðx; z; yÞ; ð3Þ

F3ðx; y; zÞ ¼ F1ðy; z; xÞ: ð4Þ

The form factors F1 and F4 can be projected out from the
total amplitude by contracting Mμ1μ2μ3ðk1; k2; k3Þ with
suitable tensors (Appendix A).
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To lowest order in perturbation theory, p-Ps → 3γ
proceeds through one-loop processes in electroweak theory.
It is especially convenient to employ the nonlinear renor-
malizable gauge (Rξ) [5,6], which eliminates the three point
Goldstone-W-photon vertex, reducing the number of dia-
grams that need to be computed. In this formalism,

LGauge-fix ¼ −
1

2α
ð∂μAμÞ2 −

1

2η
ð∂μZμ − ηmZχÞ2

−
1

ξ
ð∂μWþ

μ − iξmWϕ
þ − igA3

μWþμÞ

× ð∂μW−
μ þ iξmWϕ

− þ igA3
μW−μÞ; ð5Þ

where α, η and ξ are gauge parameters. The Feynman rules
in this gauge are listed in Appendix B.
To calculate the amplitude, the electron and positron are

approximated to be at rest with four-momentum p ¼ ðm; 0Þ
and the p-Ps projection operator Ψp-Ps ¼ ð1þ γ0Þγ5=2 ffiffiffi

2
p

[7] is used to project out the correct spin configuration of
the electron and positron.
Similar to the π0 → 3γ and o-Ps → γνlν̄l decays, the

diagrams that contribute to p-Ps → 3γ must contain an
axial-vector interaction in the trace along the fermion line
in order to break C-symmetry [4,8]. At the one-loop level,
this restricts the relevant diagrams to those that do not
contain virtual photons.
Since our goal is to ascertain whether the p-Ps → 3γ decay

is possible, we can examine either the W- or Z-boson
contributions to this decay. For simplicity, we focus our
attention, in this paper, on diagrams containing W-bosons;
these diagrams aregiven inFig. 1.Countertermdiagrams1(g)
and 1(h) (Appendix C) cancel the divergences of Figs. 1(e)
and 1(f).
As a consistency check, we keep the gauge parameter of

the W-bosons and show that the form factors in the total
amplitude are gauge independent. Namely,

Fiðx; y; z ¼ 2 − x − yÞ ¼ 7GFe3me

360π2m4
W
ð1 − xÞfiðx; yÞ ð6Þ

where

f1 ¼
1 − y
x

−
1 − x
y

; ð7Þ

f2 ¼ ð1 − yÞ
�

1

2 − x − y
−
1

x

�
; ð8Þ

f3 ¼ ð1 − yÞ
�

1

2 − x − y
−
1

y

�
; ð9Þ

f4 ¼ 0: ð10Þ

Here, GF ≃ 1.166 × 10−5=GeV2 is the Fermi coupling
constant [9] and e > 0 is the electric charge of a proton.
Substituting these form factors into (2) yields the W-boson
contribution to total p-Ps → 3γ decay amplitude. The form
factors (7)–(10) have corrections of order Oðm2

e=m2
WÞ that

we ignore. Their leading order terms are remarkably simple
compared to the one-loop form factors for the analogous
decay of o-Ps [10]. This is because theW-loop is essentially
pointlike relative to the other distance scales in Ps.
As mentioned above, both W- and Z-bosons can con-

tribute to this decay. Diagrams containing virtual Z-bosons
are proportional to the factor 1– 4sin2θW from the vector
coupling in the Zeþe− vertex (where θW is the weak mixing
angle and sin2 θW ≈ 0.238 is numerically close to 1=4 [11]).
Despite this suppression, the Z-boson diagrams likely
dominate because the Z-boson loops depend on two mass
scales: me and mZ. The large distance scale related to me
can enhance the Z-boson mediated decay relative to the
W-boson mediated decay.
Explicit calculation of the Z-boson contribution is out-

side the scope of this paper. Since the Z-boson loops

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1. The W-boson contributions to the C-violating amplitude of p-Ps → 3γ. In addition to Figs. (a)-(f) there are the analogous
diagrams where the W-bosons are replaced by charged Goldstone bosons ϕ�. Figs. (g) and (h), are counterterm diagrams that remove
the divergences of Figs. (e) and (f).
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depend on two mass scales, evaluation of Z-loops is
significantly more difficult than the W-loops.

III. DECAY RATE AND PHOTON SPECTRUM

With the results of the previous section, it is simple to
obtain the decay rate and photon spectrum. Using (2) with
(6), we obtain

Γðp-Ps → 3γ;W-loopsÞ

¼ ð14 700π2 − 145 081ÞG2
Fα

6m13
e

58 320 000π5m8
W

≈ 3.5 × 10−67 s−1:

ð11Þ

The corresponding branching ratio is

Brðp-Ps → 3γ;W-loopsÞ

¼ Γðp-Ps → 3γ;W-loops onlyÞ
Γðp-Ps → 2γÞ ≈ 4.4 × 10−77: ð12Þ

Comparing with the estimated branching ratio of [3],

α½GFm2
eð1 − 4sin2θWÞ�2 ≈ 10−27; ð13Þ

we see that the W-loop contribution is tiny. Our qualitative
understanding of this suppression is as follows. Consider
the annihilation of e−eþ at high energies (center of mass
energies greater than about 1 GeV). In this energy regime,

the mass of the electron/positron may be ignored and mass
of the W-boson becomes the only relevant mass scale.
Photon gauge invariance requires three powers of ki in
the amplitude, each of which must be divided by the only
available mass: mW. When transitioning from the high
energy to the low energy regime, the W-boson mass
dividing the ki’s in the amplitude cannot be replaced by
the electron mass. Of course, in a low energy process, the
electron mass becomes important and may give rise to
additional contributions, but they will be no less suppressed
by the W-boson mass.
The corresponding photon spectrum is calculated to be

1

Γ
dΓ
dx

¼ 70ð1− xÞ
14700π2− 145081

�
−840þ 7700x2 −14560x3þ 10192x4 −2489x5−

840ð2þ 6x− 6x2þ x3Þð1− xÞ4 lnð1− xÞ
ð2− xÞx

�

ð14Þ

where x is the energy of one of the photons divided by the
electron mass and Γ ¼ Γðp-Ps → 3γ;W-loopsÞ is given in
(11). Equation (14) is plotted in Fig. 2.
When one photon has maximal energy (x ¼ 1), the other

two photons must move collinearly and in the opposite
direction. However, this configuration does not conserve
angular momentum and thus the photon spectrum (14)
vanishes at x ¼ 1. This is in contrast with the spectrum of
the orthopositronium decay into 3γ, which reaches its
maximum at x ¼ 1. Figure 2 also shows the suppression
of low-energy photon emission by a neutral system. In the
low energy limit the photon spectrum is of Oðx5Þ in
agreement with Low’s theorem [12].

IV. CONCLUSIONS

We have presented the first calculation that explicitly
demonstrates that parapositronium decays into an odd
number of photons. Positronium has been used to test

C-symmetry by looking for forbidden QED decay modes
such as p-Ps → 3γ and o-Ps → 4γ [13–15]. Together with
the previously published estimate of the Z-loops [3], our
calculation demonstrates that standard model contributions
to p-Ps → 3γ decays are far smaller than conceivable
experimental sensitivities. Any detection of p-Ps → 3γ,
in the near future would be a signal of new physics [16,17].
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APPENDIX A: AMPLITUDE STRUCTURE

This appendix summarizes the construction of the
amplitude presented in [4]. We start by defining the matrix
element for p-Ps → 3γ by
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FIG. 2. Plot of the W-boson contribution to the p-Ps → 3γ
photon spectrum (14). Here, x ¼ E=me is the energy of a photon,
E, divided by the electron mass.
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Mðk1; k2; k3Þ ¼ ϵ�μ1ϵ
�
μ2ϵ

�
μ3M

μ1μ2μ3ðk1; k2; k3Þ ðA1Þ

where ϵi are the polarizations of the external photons.
The most general third rank tensor constructed out of the
external photon momentum contains 27 terms of the form
kμ1i k

μ2
j k

μ3
k and 9 terms of the form kμil g

μjμk . Since the
amplitude will be contracted with ϵ�μ3ϵ

�
μ2ϵ

�
μ1 we can identify

kμii ¼ 0. This reduces the number of terms to 14 possible
terms: 8 of the type kμ1i k

μ2
j k

μ3
k and 6 of the type kμil g

μjμk .
Gauge invariance,

k3μ3M
μ3μ2μ1 ¼ k2μ2M

μ3μ2μ1 ¼ k1μ1M
μ3μ2μ1 ¼ 0; ðA2Þ

then restricts the structure of the amplitude to that
of Eq. (2).
To project out the form factors we need the projection

tensors. The F1 projector is obtained by setting

F1 ¼ −
k2 · k3

2ðk1 · k3Þðk1 · k2Þ3
ðA3Þ

F2 ¼ F3 ¼ 0 ðA4Þ

F4 ¼ −
1

4ðk1 · k3Þðk1 · k2Þ2
ðA5Þ

in Eq. (2). Similarly, setting

F1 ¼ −
1

4ðk1 · k3Þðk1 · k2Þ2
ðA6Þ

F2 ¼
1

4ðk1 · k3Þ2ðk1 · k2Þ
ðA7Þ

F3 ¼ −
1

4ðk2 · k3Þ2ðk1 · k2Þ
ðA8Þ

F4 ¼ −
1

2ðk2 · k3Þðk1 · k3Þðk1 · k2Þ
ðA9Þ

in Eq. (2) yields the F4 projector.

APPENDIX B: FEYNMAN RULES IN THE
NONLINEAR Rξ GAUGE

In this appendix, we list the Feynman rules used in our
calculation. The propagator for theW-boson and Goldstone
boson propagators are unchanged from the linear Rξ gauge
and given by

ðB1Þ

ðB2Þ

where ξ is the gauge parameter. Next we list the relevant
vertices in the nonlinear Rξ gauge that differ from those in
the linear Rξ gauge:

ðB3Þ

ðB4Þ
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ðB5Þ

The remaining vertices are unchanged form those in the
linear Rξ gauge (consult Ref. [18] for a complete list of
vertices in the linear Rξ gauge):

ðB6Þ

ðB7Þ

ðB8Þ

ðB9Þ

ðB10Þ

Here, gW ¼ e= sin θW is the weak coupling constant and
e > 0 is the electric charge of a proton.

APPENDIX C: RENORMALIZATION

For our purposes, it is enough to limit our attention to
axial contributions to the electron self-energy and the
renormalized e−eþγ vertex. The axial contributions to
these quantities are [19]

ΣAð=pÞ ¼ =pγ5ðΣ̂Aðp2Þ − δZAÞ; ðC1Þ
Γμ
A ¼ ieδZAγ

μγ5: ðC2Þ

Above, Σ̂A is the axial part of the self energy not including
the counterterm.
The counterterm contribution to the electron propagator

and e−eþγ vertex is fully determined by the axial part of the
electron field strength, δZA. Using on-shell renormalization
conditions, the axial part of the electron field strength
is δZA ¼ Σ̂Að=p ¼ meÞ.
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