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We show that local Lorentz covariance arises canonically as the group of transformations between local
thermal states in the framework of local quantum physics, given the following three postulates: (i) Local
observable algebras are finite-dimensional. (ii) Minimal local observable algebras are isomorphic to
M2ðCÞ, the observable algebra of a single qubit. (iii) The vacuum restricted to any minimal local observable
algebra is a nonmaximally mixed thermal state. The derivation reveals a new and surprising relation
between spacetime structure and local quantum states. In particular, we show how local restrictions of the
vacuum can determine the connection between different local inertial reference frames.
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I. INTRODUCTION

The Lorentz group is a fundamental structure in modern
physics. In special relativity, it arises as the group of
transformations between the global descriptions of physics
by different inertial observers [1]. Together with the group
of spacetime translations, it also forms the isometry group
of spacetime in special relativity, the Poincaré group.
Consequently, the structure of special relativistic quantum
field theory (QFT), and the standard model of particle
physics in particular, is dictated to a large extent by the
requirement of invariance of measurement results under the
Poincaré group [2]. In general relativity, spacetime is no
longer Poincaré symmetric, but a local form of Lorentz
covariance survives the generalization to curved spacetime
manifolds [1]. The equivalence principle requires that
spacetime should look approximately flat in any suffi-
ciently small region. Therefore, the tangent spaces, which
describe the local spacetime structure, inherit the action of
the Lorentz group as the group of transformations between
different local inertial reference frames. The covariance of
physical quantities under local Lorentz transformations
imposes fundamental constraints on the local physics in
general relativity.
The Lorentz group has only infinite-dimensional non-

trivial unitary representations [3]. Since symmetries must
be represented unitarily in quantum theory, it is necessary
to introduce an infinite number of degrees of freedom in
order to incorporate global Lorentz symmetry in quantum
theory. However, in QFT even local bounded spacetime
regions get assigned an infinite number of degrees of
freedom due to the usage of fields. This leads to the
infamous high energy divergencies in QFT. On the other
hand, several well-known results, such as the finiteness of
the black hole entropy [4,5], suggest that gravity should
somehow regulate these divergencies. However, a naive
physical energy cutoff in QFT breaks the local Lorentz

covariance, which leads to severe problems with the
physical plausibility of the regulated theory, given the
fundamental role of the Lorentz group. Such considerations
lead to the thorny puzzle of how to introduce a physical
cutoff to the number of local degrees of freedom in QFT
while preserving the local Lorentz covariance intact.
In this paper, we show that local Lorentz covariance

arises canonically as the group of transformations between
local thermal states in the framework of local quantum
physics, given three physically reasonable postulates about
the local structure of quantum systems: (i) Local observable
algebras are finite-dimensional. (ii) Minimal local observ-
able algebras are isomorphic to M2ðCÞ, the observable
algebra of a qubit. (iii) The restriction of the vacuum state
onto any minimal local observable algebra is a thermal
state, which is not maximally mixed. The result follows
from the mathematical fact, which we prove, that the proper
orthochronous Lorentz group SLð2;CÞ=Z2 is (isomorphic
to) the group of transformations between such thermal
states on M2ðCÞ. Our result provides a natural way to
incorporate local Lorentz covariance into local quantum
physics, which is compatible with and, indeed, follows
from a physical cutoff to the number of local degrees of
freedom. Furthermore, the form of the local Lorentz
covariance reveals a new and surprising connection
between quantum states and spacetime geometry, which
we hope will lead to an improved understanding of
quantum gravity. In particular, we demonstrate how local
restrictions of the vacuum state can be used to determine the
connection between different local inertial reference
frames.

II. LOCAL QUANTUM PHYSICS

Local quantum physics (LQP) is a well-established
algebraic approach to rigorously define QFT models [2].
The generally covariant formulation [6] applies to
arbitrary globally hyperbolic spacetimes. The formulation
of a quantum theoretical model according to the LQP*mattiraa@gmail.com
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prescription begins by associating to each local region
O ⊂ M of spacetime M the algebra of quantum observ-
ablesAðOÞ localized in that region, typically assumed to be
a unital C�-algebra. These local observable algebras are
required to satisfy the isotony property: if O1 ⊂ O2 is a
proper inclusion, then AðO1Þ is a proper unital C�-sub-
algebra ofAðO2Þ. We may define the quasilocal observable
algebra containing all the local observables as

AðMÞ ≔ ∪O⊂M AðOÞ;

where the overline denotes the C�-norm completion. A
global quantum state on the quasilocal observable algebra
is then given by a consistent assignment of local states
ωO∶AðOÞ → C to each of the local algebras AðOÞ,
O ⊂ M, such that if O1 ⊂ O2, then the restriction of
ωO2

onto AðO1Þ agrees with ωO1
, i.e., ωO2

jAðO1Þ ¼ ωO1
.

Another important property the local observable algebras
must satisfy is microlocality: If O1 is spacelike separated
from O2, then AðO1Þ commutes with AðO2Þ.
Microlocality guarantees the joint measurability of space-
like separated observables. On the other hand, ifAðO1Þ and
AðO2Þ do not mutually commute, they are statistically
dependent in the sense that all states have correlations over
them (i.e., there are no product states) [7].

III. FINITE-DIMENSIONAL LOCAL ALGEBRAS

For physical QFT models the local observable algebras
are infinite-dimensional hyperfinite factors of type III1 [8].
However, as initially proposed by Haag [2], we want to
consider the case that the local observable algebras are
finite-dimensional.
Postulate 1. Local observable algebras are finite-

dimensional C�-algebras.
The motivation for Postulate 1 comes from the following

two points: (i) As mentioned in the introduction, QFT
suffers from high energy divergencies, which may be cured
by limiting the number of local degrees of freedom. (See,
e.g., [9].) In LQP, such a physical regularization is
particularly simple to implement by requiring the local
observable algebras to be finite-dimensional. We expect
QFT to appear as an effective field theory obtained from
some finite-dimensional model in the infinite-dimensional
limit, where the dimension of the local algebras is taken to
approach infinity, and the divergencies may reappear.
(ii) The entropy of any subsystem in QFT is generically
divergent. However, results on black hole thermodynamics
suggest that black holes [5], and possibly any subsystem
[10], should be endowed with a finite amount of entropy
proportional to the area of its spatial boundary. If a local
observable algebra has dimension n ∈ N, then the von
Neumann entropy of the local states on that algebra is
bounded from above by ∼ lnðnÞ. Accordingly, the finite-
dimensionality of the local observable algebras regulates

the local entropy. For low energy states, the leading
divergence of the entropy in the infinite-dimensional limit
should then scale generically as the boundary area, as in
QFT [11,12], since the low energy states are insensitive to
the microscopic structure of the theory.
Let us remark that, due to microlocality,

AðO1 ∪ O2Þ ≅ AðO1Þ ⊗ AðO2Þ;
when the two regionsO1,O2 ⊂ M are spacelike separated.
Thequantity ln dimðAðOÞÞ is extensiveunder tensorproduct
and measures the maximum amount of information that can
be contained in O. We expect this information carrying
capacity of O to be proportional to the 4-volume of the
domain of dependence of O ∈ M, so that the density of
degrees of freedom is constant in spacetime. Accordingly,
given a causally complete spacetime regionO, wemaywrite

VðOÞ ¼ v ln dimðAðOÞÞ
for the 4-volume of O, where v ∈ Rþ is a constant with
the dimensions of a 4-volume. We suspect that the constant
v determining the density of degrees of freedom in space-
time should be proportional to the Planck volume
vPl ¼ ðℏG=c3Þ2 ≈ 10−140m4. If we keep v fixed, the infin-
ite-dimensional limit corresponds to the infinite-volume
thermodynamical limit. On the other hand, we may take
v → 0 in the infinite-dimensional limit in order to describe
physical systems with finite 4-volume and infinite density
of degrees of freedom, as in QFT. Notice that this “field
theory limit” still describes the physics in any measurable-
sized spacetime volume extremely accurately due to the
smallness of v. If we set v ∝ vPl, the limit v → 0 can
correspond either to ℏ → 0, G → 0, or c → ∞, which
suggests a fundamental inconsistency of local QFT and
quantum gravity: In order to arrive at a local relativistic
(c < ∞) quantum (ℏ > 0) model in the field theory limit, we
must neglect gravitational interactions (G → 0). One pos-
sible way out of this dilemma is to consider the finite-
dimensional local description to give the fundamental def-
inition of the theory, which gives us a further incentive to
study finite-dimensional LQP.

IV. MINIMAL LOCAL OBSERVABLE ALGEBRAS

According to the isotony property of the local observable
algebras, smaller spacetime regions should correspond to
algebras of smaller dimensionality. Assuming that the local
observable algebras that correspond to causally complete
spacetime regions are factors (i.e., have trivial centers), as
in QFT [8], we find that the minimal local observable
algebras must be isomorphic to MpðCÞ, the algebra of
p-by-p complex-valued matrices, for some p prime: None
of these can be included into one another as unital
subalgebras, since such inclusions are of the form

MpðCÞ ↦ MpðCÞ ⊗ 1k ⊂ MpkðCÞ;

MATTI RAASAKKA PHYSICAL REVIEW D 96, 086023 (2017)

086023-2



where 1k is the identity matrix in MkðCÞ for some k ∈ N,
and obviously pk ∈ N cannot be prime. The smallest non-
trivial such algebra is M2ðCÞ, and therefore we postulate:
Postulate 2. Minimal local observable algebras are

isomorphic to M2ðCÞ.
M2ðCÞ is exactly the observable algebra of a single qubit,

which is a system capable of storing a minimal amount of
(quantum) information.

V. LOCAL THERMAL STATES

In Minkowski spacetime, the global vacuum state is
characterized by its minimal energy. However, restricted to
local subregions, the vacuum gives rise to thermal states
[2]. Due to the equivalence principle, according to which
any small enough spacetime region is well-approximated
by a piece of the Minkowski spacetime, we expect the
vacuum to be approximately thermal also in any suffi-
ciently small region of a generic curved spacetime. By
extension, we postulate:
Postulate 3. The vacuum restricted to any minimal local

observable algebra is a thermal state, which is not max-
imally mixed.
A thermal state of a finite-dimensional quantum system

is represented by a density matrix of the Gibbs form

ρ ¼ e−βH=Zβ;H; ð1Þ

where Zβ;H ≔ trðe−βHÞ is the partition function, H is the
Hamiltonian operator, and β ∈ Rþ is the inverse temper-
ature. The maximally mixed state corresponds to ρ ¼ 1

2
12.

In Appendix A we prove:
Proposition 1. Let ρ ∈ M2ðCÞ be a non-degenerate

density matrix, and ρ ≠ 1
2
12. Then, at any fixed inverse

temperature β ∈ Rþ, there exists a unique Hamiltonian H
with spectrum f0; ϵ > 0g satisfying (1).
In fact, any nondegenerate densitymatrix inM2ðCÞ can be

written in the form (1). However, the physical property that ρ
is thermal at the inverse temperature β implies that H
measures the physical energy content of the system. For
the restricted vacuum state on the minimal local observable
algebras AðOÞ ≅ M2ðCÞ, we therefore interpret the unique
operator H provided by Proposition 1 to measure the local
energy content in the associated minimal 4-volume
VðOÞ ¼ v lnð4Þ. The restriction ρ ≠ 1

2
12 is motivated by

the requirement that ρ is a finite temperature thermal state
with respect to a nonzero local Hamiltonian, so that local
excitationscarrynonzeroenergy. In the following,we restrict
to consider nonmaximally mixed (NMM) thermal states.

VI. LOCAL LORENTZ COVARIANCE

Thermal states are generally not Lorentz invariant, since
the Hamiltonian H must measure the energy content of a
system with respect to some particular inertial reference
frame [13]. Therefore, the Lorentz group must act

non-trivially on the local thermal states on the minimal
local observable algebras. Indeed, the proper orthochronous
Lorentz group is (isomorphic to) SLð2;CÞ=Z2, which acts
canonically on the Hermitian elements H ∈ M2ðCÞ as [1]

H ↦ ΛHΛ�; Λ ∈ SLð2;CÞ: ð2Þ

We may take SLð2;CÞ=Z2 to act similarly on the local
Hamiltonian on any AðOÞ ≅ M2ðCÞ. To justify the inter-
pretation of the action (2) ofSLð2;CÞ on a localHamiltonian
as a Lorentz transformation, we note that the eigenvalues
of H transform as the timelike component of a Lorentz
4-vector under this implementation of the Lorentz group,
as is appropriate for energy: Parametrize the local
Hamiltonian as

H ¼ h012 þ
X3
i¼1

hiσi; ð3Þ

where hμ ∈ R, μ ¼ 0;…; 3, and σi, i ¼ 1, 2, 3, are the Pauli
matrices. The eigenvalues of H in terms of hμ are
h0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðhiÞ2

p
. Since the eigenvalues of H are 0 and

ϵ > 0, we find h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðhiÞ2
p

and ϵ ¼ 2h0 ≡ trðHÞ. The
parameters hμ transform as a 4-vector under the action (2) of
SLð2;CÞ [1], h0 being the timelike component. Thus, the
eigenvalues 0 and ϵ of H transform as the timelike
components of the 4-vectors 0 and 2hμ, respectively.
The map (2) acts on thermal density matrices as

e−βH=Zβ;H ↦
Λ

e−βðΛHΛ�Þ=Zβ;ΛHΛ� : ð4Þ

By the above transformation properties of H, the action (4)
maps NMM thermal states to each other. Furthermore, we
can also show:
Proposition 2. Any two NMM thermal states onM2ðCÞ

can be mapped to each other by the action (4) of SLð2;CÞ.
Proof.—Let the two states on M2ðCÞ be given by

the density matrices ρa ¼ e−βaHa=Zβa;Ha
, a ¼ 1, 2. By

Proposition 1 we may choose β1 ¼ β2 ≡ β and Ha with
spectra f0; ϵa > 0g. Then, the 4-vectors hμa parametrizing
Ha according to (3) are forward lightlike, i.e., h0a > 0 and
ðh0aÞ2 −

P
iðhiaÞ2 ¼ 0. Any two such 4-vectors can be

mapped to each other by a proper orthochronous
Lorentz transformation. Since (2) can give rise to any such
transformation, the claim is true. □

In summary, (i) any Lorentz transformation (4) maps a
NMM thermal state on M2ðCÞ to another NMM thermal
state, i.e., the map (4) cannot take us outside the set of
NMM thermal states, and (ii) any two NMM thermal states
on M2ðCÞ are mapped to each other by a Lorentz trans-
formation (4). Also, 12 ∈ SLð2;CÞ is the only element
leaving all the NMM thermal states fixed. In this way,
the Lorentz group appears canonically as the group of
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transformations between nonmaximally mixed thermal
states on any minimal local observable algebra.

VII. SPACETIME GEOMETRY FROM VACUUM

Postulate 3 and Proposition 2 together imply that the
vacuum is homogeneous throughout spacetime, up to local
Lorentz transformations. Therefore, we may interpret the
change in the local Hamiltonian from one minimal local
observable algebra to another as indicating that the two
algebras occupy different local inertial reference frames.
Conversely, we may infer relations between the local
inertial reference frames of the minimal local observable
algebras by comparing their local Hamiltonians.
For a simple demonstration of how this recovery of the

connection between local inertial reference frames works,
let us consider the inclusion of a minimal local observable
algebra AðOÞ ≅ M2ðCÞ into a larger local observable
algebra B ≅ M2nðCÞ for some n ∈ N. Concretely, we
may write this inclusion as a ↦ a ⊗ 1n ∈ M2nðCÞ for
all a ∈ M2ðCÞ, where 1n is the identity matrix in MnðCÞ.
Denote the image of AðOÞ under this inclusion as
A1 ¼ M2ðCÞ ⊗ 1n ⊂ M2nðCÞ. Let us also consider another
inclusion of M2ðCÞ, which is related to the first one by an
infinitesimal unitary transformation:

A2 ¼ eiϵXðM2ðCÞ ⊗ 1nÞe−iϵX ⊂ M2nðCÞ ð5Þ

for some Hermitian X ∈ M2nðCÞ and ϵ ≪ 1. At least for
some X, we may think of A2 as obtained from A1 by an
infinitesimal spatiotemporal displacement, because (i) any
minimal spatiotemporal subvolume of the larger system B
corresponds to a subalgebra ofB isomorphic toM2ðCÞ, and
(ii) any two isomorphic subalgebras of B ≅ M2nðCÞ are
related by a unitary transformation.
Now, let the vacuum restrict on B to a state represented

by the density matrix ρ ∈ M2nðCÞ. Then, the restrictions of
ρ ontoA1 andA2 are given by the reduced density matrices

ρ1 ¼ ðid2 ⊗ trnÞðρÞ ∈ M2ðCÞ;
ρ2 ¼ ðid2 ⊗ trnÞðe−iϵXρeiϵXÞ ∈ M2ðCÞ;

respectively, where ðid2 ⊗ trnÞ denotes the partial trace
over the second tensor product factor in the decomposition
M2nðCÞ ¼ M2ðCÞ ⊗ MnðCÞ. Accordingly, we find

d
dϵ

����
ϵ¼0

ρ2 ¼ −iðid2 ⊗ trnÞð½X; ρ�Þ ≕ δXρ1

for the perturbation of ρ1 under the infinitesimal unitary
transformation (5) of A1.
On the other hand, we may consider an infinitesimal

Lorentz transformation of ρ1. By Postulate 3 and
Proposition 1, ρ1 ¼ e−βH1=Zβ;H1

for some β ∈ Rþ and
H1 such that trðH1Þ > 0, detðH1Þ ¼ 0. An infinitesimal

Lorentz transformation of the form (4) is induced by
Λϵ ¼ eϵZ ∈ SLð2;CÞ, where Z ∈ M2ðCÞ is traceless.
Then, from the equation

d
dϵ

����
ϵ¼0

e−βðΛϵH1Λ�
ϵÞ

Zβ;ΛϵH1Λ�
ϵ

¼ d
dϵ

����
ϵ¼0

ρ2 ≡ δXρ1 ð6Þ

we may solve for Z in order to find out, which infinitesimal
Lorentz transformation the unitary displacement (5) of A1

in the direction of X induces.
The derivation of the general solution for Z is deferred to

Appendix B. There, we find

Z ¼ 1

trðH1Þ2
�
τ

�
H1 −

1

2
trðH1Þ12

�
þ ½δXH1; H1�

�
; ð7Þ

where we use the following notations:

δXH1 ≔ −β−1ρ−
1
2

1 LβH1
ðδXρ1Þρ−

1
2

1 ;

τ ≔
2trðH1δXH1Þ − trðH1ÞtrðδXH1Þ

trðH1Þ
;

LβH1
≔

adβH1
=2

sinhðadβH1
=2Þ :

Here, LβH1
is a linear operator on M2ðCÞ defined in terms

of adβH1
ðYÞ ≔ β½H1; Y� by the Taylor expansion

LβH1
ðYÞ ¼

X∞
n¼0

βn

n!

�
dn

dxn

�
x=2

sinhðx=2Þ
��

x¼0

ðadH1
ÞnðYÞ;

where ðadH1
Þn denotes the n-fold composition of adH1

.
The remarkable consequence of the general solution

(7) is that the vacuum state can encode properties of the
local spacetime geometry by providing the connection
between the local inertial reference frames associated
to infinitesimally different minimal spatiotemporal
volumes.

VIII. SUMMARY AND DISCUSSION

We have shown that, given our Postulates 1, 2 and 3,
local Lorentz covariance appears in finite-dimensional local
quantum physics as transformations between thermal states
on the minimal local observable algebras. Moreover, we
demonstrated how the vacuum can encode local spacetime
geometry by providing the connection between the local
inertial reference frames of infinitesimally different mini-
mal spacetime regions. Our results provide a new and
surprising relation between spacetime structure and local
quantum states, which we hope will lead to an improved
understanding of quantum gravity.
The general idea of deriving spacetime symmetries from

elementary quantum theory is not new, of course; see, e.g.,
[14]. More recent work [15] provides a derivation of the
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local Lorentz covariance from quantum information theory.
The approach of [15] is complementary to ours in the sense
that it focuses on the communication relations between
local observers instead of the local properties of the
vacuum. In our view, the main strength of our approach
as compared to [15] is its direct relation to QFT via finite-
dimensional LQP, which should allow for a more imme-
diate application to quantum gravity.
It is also worth noting that our derivation, as that of [15],

is specific to the 3þ 1-dimensional Lorentz group. This
limitation does not worry us too much at the moment, as all
experimental data to date is consistent with four spacetime
dimensions. In fact, it can also be considered to be a
positive feature, since it means that the framework is
immediately ruled out, if a larger spacetime symmetry
group is found. Falsifiability of a theoretical idea should
always be a positive thing in science.
In [16] we introduced a spacetime-free framework for

quantum theory, which is based on the construction of the
kinematical quantum observable algebra “from the ground
up” as the free product of component algebras corre-
sponding to individual observables. The physical observ-
able algebra was suggested to be obtained via the GNS
representation induced by some reference state, such as
the vacuum. An important application of this framework
will be the construction of finite-dimensional LQP models
by applying the free product construction of [16] to glue
collections of minimal local observable algebras together
in different ways, and studying the quantum systems that
arise in this way. The results in this paper will allow us to
directly associate spacetime geometries to the reference
states of such systems.
Ultimately, our goal is to develop a theoretical

framework capable of accommodating both QFT and
gravity. A more thorough investigation of finite-dimen-
sional LQP from this perspective is ongoing. As already
mentioned, we expect QFT to emerge out of finite-
dimensional LQP in the field theory limit. Therefore, the
explicit definition and study of the infinite-dimensional
limits of finite-dimensional LQP models will be vital to
our future work. Gravity, on the other hand, should
perhaps be expected to manifest itself only outside this
limit, as we have argued above. Following, e.g., [17,18],
we suspect that gravity is a quantum statistical effect.
Finite-dimensional LQP seems to provide a suitable and
well-behaved framework to further study this idea. We
look forward to explore its relation with the connection
of local quantum states to spacetime geometry un-
covered in this work.
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APPENDIX A: PROOF OF PROPOSITION 1

Let us first prove the following lemma.
Lemma 1. A nondegenerate density matrix ρ ∈ M2ðCÞ

can always be written in the form

ρ ¼ e−K

trðe−KÞ ðA1Þ

such that the spectrum of K is f0; ϵ ≥ 0g. Moreover, K
satisfying these requirements is uniquely given by

− ln ρ − λ12; ðA2Þ

where λ ∈ Rþ is the smallest eigenvalue of − ln ρ > 0.
Proof.—Notice that K ¼ − ln ρ − λ12 satisfies (A1) for

any λ ∈ R. Moreover, we can easily verify that all matrices
K satisfying (A1) for a fixed ρ are of this form by taking
logarithms on both sides of (A1). Then, detðKÞ ¼ 0 gives

detð− ln ρ − λ12Þ ¼ 0;

the characteristic equation of − ln ρ, which has two
solutions: the eigenvalues λi > 0 of − ln ρ. (Notice that
− ln ρ > 0, as 0 < ρ < 1.) Let λ1 ≤ λ2. Then, − ln ρ −
λ112 ≥ 0 and − ln ρ − λ212 ≤ 0. Accordingly, (A2) is the
unique solution for K satisfying (A1) with spectrum
f0; λ2 − λ1 ≕ ϵ ≥ 0g □

The following is a simple consequence of Lemma 1:
Lemma 2. Let ρ ∈ M2ðCÞ be a nondegenerate density

matrix. Then, the inverse temperature β ∈ Rþ and the
Hamiltonian H with spectrum f0; ϵ ≥ 0g, satisfying

ρ ¼ e−βH

trðe−βHÞ ðA3Þ

are unique up to the simultaneous scaling

β ↦ λβ; H ↦ λ−1H; λ ∈ Rþ:

Proof.—By comparing (A3) to (A1), Lemma 1 shows
that the product βH in (A3) is unique. Since the product βH
is invariant under the scaling β ↦ λβ, H ↦ λ−1H for any
λ ∈ Rþ, we are still left with this freedom in the choice of β
and H.□
Thus, fixing β ∈ Rþ leads to a unique Hamiltonian by

Lemma 2. With the restriction ρ ≠ 1
2
12 corresponding to

H ≠ 0 ⇔ ϵ > 0 this proves Proposition 1.

APPENDIX B: DERIVATION OF EQ. (7)

Let us first prove the following helpful lemma.
Lemma 3. Let ρ ∈ M2ðCÞ be a nondegenerate density

matrix. Then, a linear perturbation

ρ ↦ ρþ ϵδρþOðϵ2Þ
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for ϵ ≪ 1 and traceless δρ ∈ M2ðCÞ corresponds to a linear
perturbation of the thermal Hamiltonian given by

H ↦ H þ ϵδH þOðϵ2Þ;

where

δH ¼ −β−1ρ−1
2

adβH=2

sinhðadβH=2Þ
ðδρÞρ−1

2:

Proof.—Remember that ρ ¼ e−βH=trðe−βHÞ, where H is
the thermal Hamiltonian. Up to the first order in ϵ,

ρþ ϵδρ ¼ e−βHeϵρ
−1ðδρÞ

trðe−βHeϵρ−1ðδρÞÞ ;

as can be verified by expanding the exponentials in ϵ, and
noting that trðδρÞ ¼ 0. Let us define δH ∈ M2ðCÞ via the
requirement e−βHeϵρ

−1ðδρÞ ≡ e−βðHþϵδHÞ. By [19] Theorem
3.5, any smooth function ζ∶R → M2ðCÞ satisfies for
sufficiently small ϵ

e−ζðϵÞ
d
dϵ

eζðϵÞ ¼
X∞
n¼0

ð−1ÞnðadζðϵÞÞn
ðnþ 1Þ!

�
dζ
dϵ

ðϵÞ
�

≡
�
1 − e−adζðϵÞ

adζðϵÞ

��
dζ
dϵ

ðϵÞ
�
; ðB1Þ

where adXðYÞ ≔ ½X; Y� for any X; Y ∈ M2ðCÞ, we use the
notation

ðadXÞn ¼ adX ∘… ∘ adX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
npcs

;

and the formal expression on the last line is defined in terms
of the expansion on the previous line. Choosing ζðϵÞ ¼
−βðH þ ϵδHÞ gives ζð0Þ ¼ −βH and dζ

dϵ ðϵÞ ¼ −βδH. On
the other hand, we find

ðe−βHeϵρ−1ðδρÞÞ−1 d
dϵ

e−βHeϵρ
−1ðδρÞ ¼ ρ−1ðδρÞ

at ϵ ¼ 0. Thus, we get from (B1) the relation

ρ−1ðδρÞ ¼
�
eadβH − 1

adβH

�
ð−βδHÞ;

and finally acting on both sides by the inverse operator
adβH=ðeadβH − 1Þ, and using ρ−

1
2ðδρÞρ1

2 ¼ e−adβH=2ðδρÞ, we
find the stated result. □

Any state is invariant under the addition of terms
proportional to the identity to the thermal Hamiltonian,
and therefore also

H ↦ H þ ϵðδH þ c12Þ þOðϵ2Þ; c ∈ R;

induces the same linear perturbation to the state as in
Lemma 3. We may then choose c so that also the
determinant of the perturbed Hamiltonian vanishes (again
up to first order in ϵ):

detðH þ ϵðδH þ c12ÞÞ ¼ 0:

Using the identity detðXÞ ¼ 1
2
ðtrðXÞ2 − trðX2ÞÞ valid for

2-by-2 matrices, and the property H2 ¼ trðHÞH, we may
easily solve for c, and get

c ¼ trðHδHÞ
trðHÞ − trðδHÞ:

The remaining task is then to find an infinitesimal
Lorentz transformation generated by some Z ∈ M2ðCÞ,
trðZÞ ¼ 0, such that eϵZHeϵZ

� ¼HþϵðδHþc12ÞþOðϵ2Þ,
which yields the requirement

ZH þHZ� ¼ δH þ c12:

If we split Z into its Hermitian and anti-Hermitian parts as
Z ¼ Zþ þ Z−, where Z�

� ¼ �Z�, we get

½Zþ; H�þ þ ½Z−; H�− ¼ δH þ c12;

where ½X; Y�� ¼ XY � YX. The Hermitian part of Z
generates a pure boost while the anti-Hermitian part
generates a spatial rotation. Since they commute at the
linear level, we may solve for both separately. The general
idea of the derivation is that we first use Zþ to boost H so
that its trace agrees with the trace of δH þ c12, and we can
then rotate to δH þ c12 using Z−.
Let us first focus on Zþ. We start with the ansatz Zþ ¼

rðH − 1
2
trðHÞ12Þ for some r ∈ R, which generates a boost

to the direction of H. As said, we require

trð½Zþ; H�þÞ ¼ 2rtr

�
H2 −

1

2
trðHÞH

�
¼ trðδH þ c12Þ;

from which we can easily solve

r ¼ trðδHÞ þ 2c
trðHÞ2 :

The next task is then to find Z− such that

½Z−; H�− ¼ δH þ c12 − ½Zþ; H�þ
¼

�
δH −

1

2
trðδHÞ12

�
þ λ

�
H −

1

2
trðHÞ12

�
;

where the last line follows by substitution, and denoting
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λ ≔
2trðHδHÞ − trðHÞtrðδHÞ

trðHÞ2 :

To that end, let us introduce another elementary lemma:
Lemma 4. Let Xi ∈ M2ðCÞ, i ¼ 1, 2, 3. Then,

1

2
½½X1; X2�; X3� ¼ trðXo

2X
o
3ÞXo

1 − trðXo
3X

o
1ÞXo

2;

where Xo
i ≔ Xi − 1

2
trðXiÞ12 is the trace-free part of Xi.

Proof.—Denote Xo
i ¼ x⃗i · σ⃗, where x⃗i ∈ R3,

σ⃗ ¼ ðσ1; σ2; σ3Þ, and σk are the Pauli matrices. Then, the
statement follows directly from the identities ½Xi; Xj� ¼
2iðx⃗i ∧ x⃗jÞ · σ⃗, trðXo

i X
o
j Þ ¼ 2ðx⃗i · x⃗jÞ, and the well-known

triple product identity for vectors in R3

ðx⃗1 ∧ x⃗2Þ ∧ x⃗3 ¼ ðx⃗1 · x⃗3Þx⃗2 − ðx⃗2 · x⃗3Þx⃗1:

□

Using Lemma 4 it is straightforward to verify that
choosing Z− ¼ 1

trðHÞ2 ½δH;H� yields exactly the desired

result. Thus, we find for Z the expression

Z ¼ Zþ þ Z− ¼ r
�
H −

1

2
trðHÞ12

�
þ 1

trðHÞ2 ½δH;H�

¼ 1

trðHÞ2
�
τ

�
H −

1

2
trðHÞ12

�
þ ½δH;H�

�
; ðB2Þ

where τ ≔ ð2trðHδHÞ − trðHÞtrðδHÞÞ=trðHÞ, as stated in
the main text.
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