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We study Siegel modular forms associated with the theta lift of twisted elliptic genera of K3 orbifolded
with g0 corresponding to the conjugacy classes of the Mathieu groupM24. For this purpose we rederive the
explicit expressions for all the twisted elliptic genera for all the classes which belong to M23 ⊂ M24. We
show that the Siegel modular forms satisfy the required properties for them to be generating functions of
1=4 BPS dyons of type II string theories compactified on K3 × T2 and orbifolded by g0 which acts as a ZN

automorphism on K3 together with a 1=N shift on a circle of T2. In particular the inverse of these Siegel
modular forms admit a Fourier expansion with integer coefficients together with the right sign as predicted
from black hole physics. This observation is in accordance with the conjecture by Sen and extends it to the
partition function for dyons for all the 7 CHL compactifications. We construct Siegel modular forms
corresponding to twisted elliptic genera whose twining character coincides with the class 2B and 3B ofM24

and show that they also satisfy similar properties. Apart from the orbifolds corresponding to the 7 CHL
compactifications, the rest of the constructions are purely formal.
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I. INTRODUCTION

The partition function of 1=4 Bogomol’nyi-Prasad-
Sommerfield (BPS) dyons for N ¼ 4 string compactifica-
tions have been studied extensively. Starting from the
original proposal [1] for the degeneracy of dyons in
heterotic string theory on T6 and the study of its asymptotic
property [2], it has been generalized to certain Chaudhuri-
Hockney-Lykken (CHL) compactifications [3]. The
degeneracy of dyons can be obtained from the Fourier
coefficients of the inverse of an appropriate Spð2;ZÞ Siegel
modular forms or its subgroup. For the case of the heterotic
string on T6, it is the Igusa cusp form of weight 10 which is
the theta lift or the multiplicative lift of the elliptic genus of
K3. The elliptic genus of K3 plays a role in the degeneracy
since the counting of these 1=4 BPS states is done in the
type II picture which is compactified on K3 × T2 [4,5]. For
the case of CHL compactifications [6] considered it turns
out that the Siegel modular forms are theta lifts of the
twisted elliptic genus of K3 [7,8]. This is because the CHL
compactifications are dual to ðK3 × T2Þ=ZN where the
orbifold acts as an orderZN Nikulin’s automorphism [9] on
K3 together with a 1=N shift on one of the circles of T2

[10,11]. The construction was carried out for the N ¼ 2, 3,
5, 7 CHL models, that is 4 out of the 7 CHL models.
With the discovery of Mathieu moonshine in K3 [12],

it has been seen K3 admits 26 twining elliptic genera
corresponding to the 26 conjugacy classes of the Mathieu
group M24. Before we proceed let us define the twisted
elliptic genus of K3 by an automorphism g0 of order ZN,
given by

Fðr;sÞðτ; zÞ

¼ 1

N
TrRRg0r ½ð−1ÞFK3þF̄K3g0se2πizFK3qL0−c=24q̄L̄0−c̄=24�:

ð1:1Þ

Here the trace is taken over the Ramond-Ramond sector of
the N ¼ ð4; ; 4Þ superconformal field theory of K3 with
central charge (6,6) and F is the fermion number. The K3
CFT is orbifolded by the action of g0, a ZN automorphism.
The values ðr; sÞ run from 0 to N − 1. For g0 belonging to
the 26 conjugacy classes of M24 only the twining character
Fð0;1Þ has been constructed in [13–15]. The names of these
classes and the corresponding cycle and the cycle shape are
listed in Tables I and II. The order of the symmetry is also
listed. For theM24 conjugacy classes pA, p ¼ 2, 3, 5, 7, the
twisted elliptic genera in all the sectors was given earlier in
[7]. These genera are obtained by orbifolding the K3 by g0
which is an order N ¼ 2, 3, 5, 7 automorphism. The Siegel
modular forms which capture the degeneracy of 1=4 BPS
states in the N ¼ 4 theories obtained by type II compacti-
fied on the orbifold ðK3 × T2Þ=ZN have also been con-
structed in [7]. The most direct method of constructing
these Siegel modular forms is thorough the theta lift of the
corresponding twisted elliptic genus of K3. For this
purpose it is necessary to know the Fourier expansion of
the twisted elliptic genus in all its sectors. In this paper we
study the properties of these Siegel modular forms in the
other conjugacy classes of M24. This is done for all classes
in Table I. We demonstrate that the inverse of these Siegel
modular forms have the required properties to be generat-
ing functions of 1=4 BPS states of type II string compacti-
fied on orbifolds of K3 × T2 by g0 on K3 corresponding to
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these conjugacy classes together with a shift of 1=N on one
of the circles of T2. See [16,17] for reviews. Our main
objective is to study the Fourier expansion of the resulting
Siegel modular forms and observe that their coefficients are
integers as well as positive in accordance with the con-
jecture of [18].
Before we proceed, it is important to stress that the

symmetry group M24 has not been seen in the nonlinear
sigma models ofK3 [19–21]. Among the conjugacy classes
in Table I, the classes pA, p ¼ 1, 2, 3, 5, 7 and 4B; 6A; 8A
correspond to automorphisims of K3 which have already
been studied in the context of CHL compactifications
[6,10,11].1 However for the rest of the conjugacy classes
in Table I it is not clear that symmetries exist at the level of
the nonlinear sigma models of K3, though a vector space

carrying a representation ofM24 exists [22]. It is known that
symmetries of the order 11,14,15 do exist for some K3
models [23], however it is not clear that the twining
characters corresponding to these symmetries do not
correspond to that given by Mathieu moonshine. It is also
known that there are no symmetries of order 23 in K3
sigma models [19–21]. Therefore our analysis for the
classes 11A; 14A=B; 15A=B; 23A=B are purely formal. In
spite of this we will see that the inverse of the Siegel
modular forms corresponding to these twisted elliptic
genera do admit Fourier coefficients which satisfy the
positivity conjecture of [18].
As we have remarked the first step towards constructing

the Siegel modular form obtained as a theta lift of the twisted
elliptic genus of K3 is the knowledge of the Fourier
expansion of the twisted elliptic genus Fðr;sÞ. For the
conjugacy classespA; p ¼ 2, 3, 5, 7, thesewere constructed
in [7]. The twining characterFð0;1Þ corresponding to each of
the classes in Table I is known. The twisted elliptic genus

TABLE I. Conjugacy classes of M23 ⊂ M24 (Type 1)

Conjugacy class Order Cycle shape Cycle

1A 1 124 ()
2A 2 18 · 28 (1, 8)(2, 12)(4, 15)(5, 7)(9, 22)(11, 18)(14, 19)(23, 24)
3A 3 16 · 36 (3, 18, 20)(4, 22, 24)(5, 19, 17)(6, 11, 8)(7, 15, 10)(9, 12, 14)
5A 4 14 · 54 (2, 21, 13, 16, 23)(3, 5, 15, 22, 14)(4, 12, 20, 17, 7)(9, 18, 19, 10, 24)
7A 7 13 · 73 (1, 17, 5, 21, 24, 10, 6)(2, 12, 13, 9, 4, 23, 20)(3, 8, 22, 7, 18, 14, 19)
7A 7 13 · 73 (1, 21, 6, 5, 10, 17, 24)(2, 9, 20, 13, 23, 12, 4)(3, 7, 19, 22, 14, 8, 18)
11A 11 12 · 112 (1, 3, 10, 4, 14, 15, 5, 24, 13, 17, 18)(2, 21, 23, 9, 20, 19, 6, 12, 16, 11, 22)
23A 23 11 · 231 (1, 7, 6, 24, 14, 4, 16, 12, 20, 9, 11, 5, 15, 10, 19, 18, 23, 17, 3, 2, 8, 22, 21)
23B 23 11 · 231 (1, 4, 11, 18, 8, 6, 12, 15, 17, 21, 14, 9, 19, 2, 7, 16, 5, 23, 22, 24, 20, 10, 3)

4B 4 14 · 22 _44 (1, 17, 21, 9)(2, 13, 24, 15)(3, 23)(4, 14, 5, 8)(6, 16)(12, 18, 20, 22)
6A 6 12 · 22 · 32 · 62 (1, 8)(2, 24, 11, 12, 23, 18)(3, 20, 10)(4, 15)(5, 19, 9, 7, 14, 22)(6, 16, 13)
8A 8 12 · 21 · 41 · 82 (1, 13, 17, 24, 21, 15, 9, 2)(3, 16, 23, 6)(4, 22, 14, 12, 5, 18, 8, 20)(7, 11)
14A 14 11 · 21 · 71 · 141 (1, 12, 17, 13, 5, 9, 21, 4, 24, 23, 10, 20, 6, 2)(3, 18, 8, 14, 22, 19, 7)(11, 15)
14B 14 11 · 21 · 71 · 141 (1, 13, 21, 23, 6, 12, 5, 4, 10, 2, 17, 9, 24, 20)(3, 14, 7, 8, 19, 18, 22)(11, 15)
15A 15 11 · 31 · 51 · 151 (2, 13, 23, 21, 16)(3, 7, 9, 5, 4, 18, 15, 12, 19, 22, 20, 10, 14, 17, 24)(6, 8, 11)
15B 15 11 · 31 · 51 · 151 (2, 23, 16, 13, 21)(3, 12, 24, 15, 17, 18, 14, 4, 10, 5, 20, 9, 22, 7, 19)(6, 8, 11)

TABLE II. Conjugacy classes of M24∉M23 (Type 2)

Conjugacy class Cycle shape Cycle

2B 212 (1, 8)(2, 10)(3, 20)(4, 22)(5, 17)(6, 11)(7, 15)(9, 13)(12, 14)(16, 18)(19, 23)(21, 24)
3B 38 (1, 10, 3)(2, 24, 18)(4, 13, 22)(5, 19, 15)(6, 7, 23)(8, 21, 12)(9, 16, 17)(11, 20, 14)

12B 122 (1, 12, 24, 23, 10, 8, 18, 6, 3, 21, 2, 7)(4, 9, 11, 15, 13, 16, 20, 5, 22, 17, 14, 19)
6B 64 (1, 24, 10, 18, 3, 2)(4, 11, 13, 20, 22, 14)(5, 17, 19, 9, 15, 16)(6, 21, 7, 12, 23, 8)
4C 46 (1, 23, 18, 21)(2, 12, 10, 6)(3, 7, 24, 8)(4, 15, 20, 17)(5, 14, 9, 13)(11, 16, 22, 19)
10A 22 · 102 (1, 8)(2, 18, 21, 19, 13, 10, 16, 24, 23, 9)(3, 4, 5, 12, 15, 20, 22, 17, 14, 7)(6, 11)
21A 31 · 211 (1, 3, 9, 15, 5, 12, 2, 13, 20, 23, 17, 4, 14, 10, 21, 22, 19, 6, 7, 11, 16)(8, 18, 24)
21B 31 · 211 (1, 12, 17, 22, 16, 5, 23, 21, 11, 15, 20, 10, 7, 9, 13, 14, 6, 3, 2, 4, 19)(8, 24, 18)
4A 24 · 44 (1, 4, 8, 15)(2, 9, 12, 22)(3, 6)(5, 24, 7, 23)(10, 13)(11, 14, 18, 19)(16, 20)(17, 21)
12A 21 · 41 · 61 · 121 (1, 15, 8, 4)(2, 19, 24, 9, 11, 7, 12, 14, 23, 22, 18, 5)(3, 13, 20, 6, 10, 16)(17, 21)

1We will study the low lying hodge numbers of these cases and
demonstrate the connection of these classes with CHL compac-
tifications.
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Fð1;sÞ has been constructed in the ancillary files provided
with [24]. We will rederive them here for our purpose. To
obtain the other sectors from the twining character, we use
the following transformation property of the twisted elliptic
genus under modular transformation

Fðr;sÞ
�
aτ þ b
cτ þ d

;
z

cτ þ d

�

¼ exp

�
2πi

cz2

cτ þ d

�
Fðcsþar;dsþbrÞðτ; zÞ; ð1:2Þ

with

a; b; c; d ∈ Z; ad − bc ¼ 1: ð1:3Þ

In (1.2) the indices csþ ar and dsþ br belong toZmodN.
For example the (0,1) sector on the left-hand side (LHS) of
(1.2) is related to the (1,0) sector its arguments is evaluated at
ð−1=τ; z=τÞ. However this is not sufficient, since we require
a Fourier expansion of the (1,0) sector to construct the theta
lift, in fact we need further relations to express the expansion
in terms of e−2πi=τ in terms ordinary q ¼ e2πiτ expansions.
Then identities involvingmodular forms ofΓ0ðNÞ allow one
to perform these Fourier expansions. For N prime this
procedure is enough to determine all the sectors of the
twisted elliptic genus. But, when N is composite it is not
possible to relate all the sectors to the (0,1) sector bymodular
transformation. The various sectors of the twisted elliptic
genus break up into suborbits under the action of modular
transformations. For example for the class 4BwithN ¼ 4 in
Table I, the sectors Fð0;2Þ, Fð2;0Þ, Fð2;2Þ form a suborbit and
cannot be related to Fð0;1Þ. We determine the twisted elliptic
genus in these suborbits using its correspondence with the
cycle shape of M24. This correspondence is sufficient to
determine the complete twisted elliptic genus for all the
classes given in Table I. Note that in this situation unlike the
case when N is prime, it is not enough to know the twisted
elliptic genusFð1;sÞ to determine the twisted elliptic genus in
all the sectors. We again emphasise that the construction of
the twisted elliptic genus for these classes are not new. They
can be read out in the ancillary files provided with [24]. We
have rederived them and we find that it is useful to provide a
list of all the twisted elliptic genera in the Appendix. A
detailed comparison with [24] will be made in Sec. 2 3.
Let us now examine the first two conjugacy classes in

Table II, 2B; 3B. In [25], an explicit rational CFT consisting
of 6, SUð2Þ WZW models at level 1 in which an order 4
orbifold can be performed was introduced. Using this
orbifold action the twisted elliptic genus can be evaluated
in all the sectors. It was observed that the twining character
of this orbifold coincides with that of 2B. Further more, the
twisted elliptic genus exhibits the following property which
was called the “quantum symmetry.” This essentially
means that the sum of the twisted elliptic genus in all

its sectors vanishes. For example for the case of 2Bwhich is
an order 4 action in K3 quantum symmetry implies the
equality

X3
r;s¼0

Fðr;sÞðτ; zÞ ¼ 0: ð1:4Þ

We emphasize here that this order 4 action does not
correspond to the Mathieu moonshine class 2B since the
order of this action is 2 though their twining character
coincides. Nevertheless we investigate the properties of the
Siegel modular form corresponding to this class and again
demonstrate that the Fourier coefficients of the inverse of
this Siegelmodular form satisfies the positivity conjecture of
[18]. Let us now look at the twining character for class 3B,
which is Jacobi weak form invariant under Γ0ð9Þ. Therefore
we assume an order 9 orbifold action. Note however the 3B
orbifold corresponding to theMathieumoonshine symmetry
should in fact be a order 3 action on K3. Therefore the
twisted ellipic genus we obtain, just as in the case of the 2B
class, does not correspond to the Mathieu moonshine class
3B. Assuming an order 9 action and demanding that the
orbifold action preserves the holomorphic 2 forms which is
necessary to preserve SUð2Þ holonomy together with the
quantum symmetry, we obtain a twisted elliptic genus
invariant under Γ0ð9Þ and which coincides with the twining
character of the 3B class. Thus our construction again is
formal. We show that again the that the Fourier coefficients
of the inverse of this Siegel modular form corresponding to
this twisted elliptic genus satisfies the positivity conjecture.
Once the twisted elliptic genus is known it is straight

forward to construct and obtain the weights k of the Siegel
modular form ~Φkðρ; σ; vÞ, obtained from the theta lift of the
twisted elliptic genus corresponding to the conjugacy
classes in Table I and the first two classes in Table II.
As we have mentioned for the classes pA, p ¼ 1, 2, 3, 5, 7,
a detailed study of these modular forms has been done in
[7,18]. For the rest of the classes in Table I, their formal
construction is given in [26] which also studied their
factorization property. Our main objective to construct
these Siegel modular forms is to study the positivity
conjecture of [18]. We also study the factorization property
of a closely related modular form Φ̂kðρ; σ; vÞ as v → 0.
This enables us to obtain the asymptotic degeneracies of
1=4 BPS black holes of large charges in type II string
theory compactified on the orbifold ðK3 × T2Þ=ZN includ-
ing the subleading corrections. Using the analysis in [27],
we see the subleading corrections agree precisely with that
obtained using the entropy function method including the
Gauss-Bonnet term in these theories. Finally we explicitly
evaluate the degeneracies of the low charge dyons in these
states using these Siegel modular forms by extracting out
the respective Fourier coefficients. This is given by the
expression
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−B6 ¼ −ð−1ÞQ·P

Z
C
dρdσdve−πiðNρQ2þσ=NP2þ2vQ·PÞ

×
1

~Φðρ; σ; vÞ ; ð1:5Þ

where C is a contour in the complex 3-plane which we will
define. Q, P refer to the electric and magnetic charge of the
dyons in the heterotic frame. A subset of these Fourier
coefficients represent single centered black holes. From the
fact that the single centered black holes carry zero angular
momentum, it is conjectured that the sign of −B6 is positive
[18]. We verify this prediction for low charge dyons. All
these properties of ð ~ΦkÞ−1 indicate that they capture the
degeneracy of dyons in N ¼ 4 theories compactified on
orbifolds ðK3 × T2Þ=ZN where ZN acts as g0 an order N
automorphism inK3 together with a 1=N shift on one of the
circles of T2. This observation of Siegel modular forms for
the cases of composite order 4B; 6A; 8A in Table I com-
pletes the study of the spectrum of 1=4 BPS dyons in all the
7 CHL compactifications introduced in [6,10]. The con-
struction for the rest of the conjugacy classes in Table I and
the construction for the first two classes in Table II is purely
formal as we have mentioned earlier. But it is interesting to
note that the Siegel modular form satisfies the positivity
conjecture.
To highlight the fact that, it is in fact only a special class of

Siegel modular formswhich satisfy the positivity conjecture
of [18],we examine the Siegelmodular forms corresponding
to the torus orbifolds introduced recently in [28].Weobserve
that the Fourier coefficients of the inverse of these modular
forms do not satisfy the positivity conjecture.
Again here we remark the construction of the modular

forms ~Φk given the twisted elliptic genus is quite straight
forward and our method is the extension of the method first
introduced for cyclic orbifolds in [27]. Recently this
construction has been extended for noncyclic orbifolds
in [26,28,29]. However to our knowledge that the obser-
vation of positivity of the Fourier coefficients of the inverse
of ~Φk which is in agreement with the conjecture of
[26,28,29] for all the orbifolds considered in this paper
is new. It is also important to note that a proof for the
positivity conjecture of [18] has been made only for the
case of a class of Fourier coefficients of the partition
function Φ10 by [30]. A general proof of the positivity
conjecture for Φ10 as well as all the cyclic orbifolds
considered in this paper is an open question.
The organization of the paper is as follows: In Sec. II, we

re derive the twisted elliptic genus for different orbifolds of
K3 in each sector, We first discuss the orbifolds of K3
corresponding to the classes in Table I and then move on to
the twisted elliptic genera whose twining character coin-
cides with that of classes 2B and 3B of Table II. In Sec. III,
we use the twisted elliptic genus to construct the Siegel
modular forms that capture degeneracies of 1=4 BPS dyons

of type II theories compactified on ðK3 × T2Þ=ZN whereZN
acts as a order N automorphism on K3 together with a 1=N
shift on one of the circles of T2. We show that low lying
coefficients of the 1=4 BPS index are positive as expected
from black hole considerations in Sec. III A.We also observe
that the Fourier coefficients of Siegel modular forms of some
torus orbifolds constructed in [28] donot satisfy thepositivity
conjecture. Finally the Appendix lists the twisted elliptic
genus for all the conjugacy classes of Table I.

II. TWISTED ELLIPTIC GENUS

In this section we rederive the twisted elliptic genus of the
conjugacy classes in Table I and then examine the classes 2B
and 3B from Table II. Among the classes in Table I, the
complete elliptic genus for the classespAwithp ¼ 2, 3, 5, 7
were given in [7]. To quote the result we first define

A ¼
�
θ2ðτ; zÞ2
θ2ðτ; 0Þ2

þ θ3ðτ; zÞ2
θ3ðτ; 0Þ2

þ θ4ðτ; zÞ2
θ4ðτ; 0Þ2

�
;

Bðτ; zÞ ¼ θ1ðτ; zÞ2
ηðτÞ6 ð2:1Þ

and

ENðτÞ ¼
12i

πðN − 1Þ ∂τ½ln ηðτÞ − ln ηðNτÞ�: ð2:2Þ

Under SLð2;ZÞ transformationAðτ; zÞ transforms as aweak
Jacobi form of weight 0 and index 1 and Bðτ; zÞ transforms
as a weak Jacobi form of weight−2 and index 1. Now ENðτÞ
transforms as a modular form of weight 2 under the group
Γ0ðNÞ. Its transformations under T and S transformations of
SLð2;ZÞ are given by

ENðτþ1Þ¼ENðτÞ; ENð−1=τÞ¼−
τ2

N
ENðτ=NÞ: ð2:3Þ

Then the twisted elliptic genera in all the sectors for the
classes pA with p ¼ 2, 3, 5, 7 are given by

Fð0;0Þðτ; zÞ ¼ 8

N
Aðτ; zÞ;

Fð0;sÞðτ; zÞ ¼ 8

NðN þ 1ÞAðτ; zÞ −
2

N þ 1
Bðτ; zÞENðτÞ;

for 1 ≤ s ≤ ðN − 1Þ;

Fðr;rkÞ ¼ 8

NðN þ 1ÞAðτ; zÞ

þ 2

NðN þ 1Þ EN

�
τ þ k
N

�
Bðτ; zÞ;

for 1 ≤ r ≤ ðN − 1Þ; 1 ≤ k ≤ ðN − 1Þ:
ð2:4Þ
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Note that rk is defined up to mod N. Here N ¼ 2, 3, 5, 7
corresponding to the classes pA respectively. Let us discuss
the low lying coefficients in the expansion of Fð0;sÞ which is
given by

Fð0;sÞðτ; zÞ ¼
X∞

j∈Z;n¼0

cð0;sÞð4n − j2Þe2πinτe2πijz: ð2:5Þ

Then it is easy to see from (2.4) that the low lying
coefficients satisfy the following property

XN−1

s¼0

cð0;sÞð�1Þ ¼ 2: ð2:6Þ

The above set of equations corresponds to the number of
(0,0), (0,2), (2,0), (2,2) forms of the pA orbifold of K3. As
expected, these are the same as K3, since the orbifold
preserves these forms [27]. The (2,0) and (0,2) forms are
holomorphic forms which are required to be preserved if
Type II theory compactified on the pA orbifold ðK3 × T2Þ=
ZN needs to be a N ¼ 4 theory. The orbifold preserves the
0-form as well as the top-form of K3. In fact the twisted
elliptic genus satisfies the stronger property

cð0;sÞð�1Þ ¼ 2

N
; s ¼ 0; � � �N − 1: ð2:7Þ

Now we can also see that

XN−1Þ

s¼0

cð0;0Þð0Þ ¼ 2

�
24

N þ 1
− 2

�
: ð2:8Þ

The last equation corresponds to the number of the (1,1)
formswhich are reduced from theK3 value of 20 to 12,8,4,2
forN ¼ 2, 3, 5, 7 respectively. Finally the orbifold action for
all these classes on K3 produces another K3. Therefore, the
elliptic genus of K3=ZN should be the same as that of K3.
This implies that we should obtain

XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 8Aðτ; zÞ: ð2:9Þ

Substituting the expressions for the twisted elliptic genus
given in (2.4), we see that this is ensured by the following
identity satisfied by ENðτÞ for N prime.

XN−1

s¼0

EN

�
τ þ s
N

�
− NENðτÞ ¼ 0: ð2:10Þ

The construction of the twisted elliptic genera for classes
11A and 23A proceeds identically as the case of pA and it
satisfies the properties (2.7) and (2.9). The formula in (2.8)
still holds, however note that the right-hand side (RHS)

yields 0 and −1 for 11A and 23A respectively which clearly
indicates that these constructions are purely formal. We list
out the these twisted elliptic genera in the Appendix. In the
next section we briefly discuss the class 4B, as an example
of an orbifold with composite order. We then move on to
discuss the order 4 and order 9 twisted elliptic genera
whose twining character coincides with that of 2B and 3B
classes respectively.

A. Automorphisms g0 with composite
order and g0 ∈ M23

Let us consider automorphisms g0 with composite order
and those which belong to M23 ⊂ M24. Examples of these
are the classes 4B; 6A; 8A; 14A; 15A given in Table I. When
the order of the automorphism g0 is composite, we cannot
use the SLð2;ZÞ modular transformation in (1.2) to arrive
at all the sectors of the twisted elliptic genus starting from
the twining character. For example for the case of 4B which
is of the order 4 we cannot reach the sectors (0,2),(2,0),(2,2)
starting from the twining character (0,1). We call these
sectors suborbits. In general if the order N admits a
factorization

N ¼
Y
i

ni ð2:11Þ

then there is a suborbit for each divisor. Since the suborbits
are not accessible by modular transformations from the
twining character (0,1) one needs to make a choice of a
particular character in these sectors. To be more specific,
consider the sub-orbit corresponding to the divisor ni we
need to make a choice for the character

Fð0;niÞðτiÞ

¼ 1

N
TrRR½ð−1ÞFK3þF̄K3g0nie2πizFK3qL0−c=24q̄L̄0−c̄=24�: ð2:12Þ

We will see in the cases for composite orders with
g0 ∈ M23 ⊂ M24, the cycle shape of g0ni corresponds to a
conjugacy class of order N=ni. Therefore by appealing to
Mathieu moonshine symmetry we can choose for
Fð0;niÞðτ; zÞ, the twining character corresponding to the
conjugacy class with the cycle structure of g0ni . We show
that with these choices the construction of the twisted
elliptic genera for the remaining conjugacy classes in
Table I can be completed. Note again the construction of
the twisted ellipitc genera for these conjugacy classes
corresponding to composite orders is contained in the
general analysis of [24]. We rederive it and outline the
methods involved here for our purpose.

1. 4B class

The twining character for the 4B conjugacy class is
given by
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Fð0;1Þðτ; zÞ ¼ Aðτ; zÞ
3

−
Bðτ; zÞ

4

�
−
1

2
E2ðτÞ þ 2E4ðτÞ

�
:

ð2:13Þ

Since the modular forms involved in the twining character
is in Γ0ðNÞ, the order of the automorphism corresponding
to the 4B class is 4. Therefore the sectors (0,2), (2,0), (2,2)
are not accessible using SLð2;ZÞ modular transformations.
Now the cycle shape of g0 in this class is given by 14 · 22 ·
44 and the cycle shape of g02 is given by 18 · 28. From
Table I we see that this cycle shape coincides with the
conjugacy class 2A. Therefore we choose the twisted
elliptic genus in the sector (0,2) to be identical to be the
1=2 the twisting character (0,1) of the 2A conjugacy class.
The choice of normalization is because we are in an order 4
conjugacy class. We will also show that this normalization
results in the expected values for the low lying coefficients
of the elliptic genus. Similarly sectors (2,0) and the (2,2) of
the 4B conjugacy class coincide with 1=2 the twisted
sectors (1,0) and (1,1) of the 2A class. The rest of the
sectors can be determined by using the relation (1.2) and
identities relating expansions in e−2πi=τ to e2πiτ. For this we
need the following identities

E2ðτ þ 1=2Þ ¼ −E2ðτÞ þ 2E2ð2τÞ;

E4ðτ þ 1=2Þ ¼ 1

3
ð−E2ðτÞ þ 4E2ð2τÞÞ: ð2:14Þ

One can prove these identities using the definition of ENðτÞ
in (2.2) together with the equation.

η

�
τ þ 1

2

�
¼ eπi=24

η3ð2τÞ
ηðτÞηð4τÞ ; ð2:15Þ

The identities in (2.14) allow us to obtain the (2,1) or the
(2,3) sector from the (1,2). The result for the twisted elliptic
genus using these inputs is given by

Fð0;0Þðτ;zÞ¼2Aðτ;zÞ;

Fð0;1Þðτ;zÞ¼Fð0;3Þðτ;zÞ¼1

4

�
4A
3
−B

�
−
1

3
E2ðτÞþ2E4ðτÞ

��
;

Fð1;sÞðτ;zÞ¼Fð3;3sÞ

¼1

4

�
4A
3
þB

�
−
1

6
E2

�
τþs
2

�
þ1

2
E4

�
τþs
4

���
;

Fð2;1Þðτ;zÞ¼Fð2;3Þ ¼1

4

�
4A
3
−
B
3
ð5E2ðτÞ−6E4ðτÞ

�
;

Fð0;2Þðτ;zÞ¼1

4

�
8A
3
−
4B
3
E2ðτÞ

�
;

Fð2;2sÞðτ;zÞ¼1

4

�
8A
3
þ2B

3
E2

�
τþs
2

��
: ð2:16Þ

Note that sector (0,1) is the twining character given by [13–
15] for the 4B conjugacy class. Using this, the modular
transformation property (1.2) and the relations in (2.14) we
obtain the sectors (2,1), (2,3). Finally the sectors ð0; 2Þ,
ð2; 2sÞ belong to the suborbit which can be identified with
the 2A class. Note the twisted elliptic genus for this suborbit
is 1=2 of that twisted elliptic genus for the 2A class. It is
interesting to note that our result in (A6) for the twisted
elliptic genus coincides with that obtained in [31]. This was
obtained prior to the discovery of the M24 symmetry.
The approach followed in [31] involved writing down the
possible Γ0ð4Þ and Γ0ð2Þ forms allowed in the ð0; sÞ sectors
and constraining the coefficients using topological data.
Let us now evaluate the low lying coefficients of the

elliptic genus. We have

cð0;sÞð�1Þ ¼ 1

2
; s ¼ 0; � � �N − 1;

XN−1

s¼0

cð0;sÞð�1Þ ¼ 2 ð2:17Þ

and

XN−1

s¼0

cð0;sÞð0Þ ¼ 6: ð2:18Þ

This equation implies that the number of (1,1) forms due to
the orbifolding is down to 6 from 20 of the K3. This agrees
with the analysis of [10] which studies the orbifold of K3
dual to the N ¼ 4 CHL compactification. We can therefore
identify the compactification of type II on ðK3 × T2Þ=Z4

where Z4 is the 4A automorphism to be dual to the N ¼ 4
heterotic CHL compactification. Let us now evaluate the
full elliptic genus of K3 orbifolded by the 4B automor-
phism. This is given by

XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 8Aðτ; zÞ: ð2:19Þ

To show this we substitute the twisted elliptic genus given
in (A6) along with the identity in (2.10) and finally use the
relation

1

4

X3
s¼0

E4

�
τ þ s
4

�
¼ E2ðτÞ: ð2:20Þ

B. The conjugacy classes 2B and 3B

In this section we will consider the twining character 2B
and 3B and write down twisted elliptic genera whose
twining character coincides with that of the 2B and 3B class
of Mathieu moonshine. However as mentioned in the
introduction, the twisted elliptic genera does not corre-
spond to any orbifold action on K3. In fact the twisted
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elliptic genus we write down whose twining character
coincides with that of 2B involves a order 4 action. This has
been constructed in [25] using an explicit rational con-
formal field theory consisting of 6 SUð2Þ Wess-Zumino-
Witten (WZW) models at level 1 which realizes K3. The
action of the orbifold by g0 is explicitly realized in this CFT.
It was observed that this orbifold satisfied the property
called quantum symmetry

XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 0: ð2:21Þ

In this section starting from the twining characters for the
2B and 3B conjugacy class given in [25] we determine all
the sectors of the twisted elliptic genus. This is done by
assuming quantum symmetry together with the following
condition on the low lying coefficients of the twisted
elliptic genus

XN−1

s¼0

cð0;sÞð�1Þ ¼ 2 ð2:22Þ

where order N is 4,9 for the 2B and 3B conjugacy class
respectively. As we have discussed earlier, the above
condition on the low lying coefficients of the twisted
elliptic genus ensures that the type II theory compactified
on ðK3 × T2Þ=ZN preserves N ¼ 4 supersymmetry.

1. An order 4 orbifold

An explicit realization of an orbifold action of order 4 on
K3was given in [25] in whichK3 is realized a rational CFT
consisting of 6 SUð2ÞWZWmodels at level 1. Rather than
use this realization, we will start from the twining character
given in [13–15] for the 2B conjugacy class

Fð0;1Þðτ; zÞ ¼ Bðτ; zÞ
2

ðE2ðτÞ − E4ðτÞÞ ð2:23Þ

Note that this is distinct from the classes belonging to
Table I in that it does not have any component of the weak
Jacobi form Aðτ; zÞ. It is clear form the structure of the
twining character, the 2B automorphism is of the order 4.
Using the modular transformations (1.2) together with the
identities in (2.14), we can determine the elliptic genus in
the following sectors to be given by

Fð0;1Þðτ;zÞ¼Fð0;3Þðτ;zÞ;
Fð1;sÞðτ;zÞ¼Fð3;3sÞðτ;zÞ

¼−
Bðτ;zÞ

4

�
E2

�
τþs
2

�
−E4

�
τþs
4

��
;

Fð2;1Þðτ;zÞ¼Fð2;3Þðτ;zÞ¼Bðτ;zÞ
2

�
−
1

6
E2ðτÞþ

2

3
E2ð2τÞ

�
:

ð2:24Þ

The remaining sectors (0,2), (2,0), (2,2) belong to a
suborbit. To determine the structure of the elliptic genus
in this suborbit let us first focus on the (0,2) sector. We
assume that is a Γ0ð2Þ weak Jacobi form. Thus it can be
written as

Fð0;2Þðτ; zÞ ¼ αAðτ; zÞ þ βBðτ; zÞE2ðτÞ; ð2:25Þ
where α, β are undetermined constants. Now the sectors
(2,0) and (2,2) can be determined using the modular
transformations (1.2) to be

Fð2;2sÞðτ; zÞ ¼ αAðτ; zÞ − β

2
E2

�
τ þ s
2

�
: ð2:26Þ

Imposing the Eqs. (2.21) and (2.22) we obtain

α ¼ β ¼ −
2

3
: ð2:27Þ

To summarize the twisted elliptic genus for the order 4
orbifold is given by

Fð0;0Þðτ; zÞ ¼ 2A; Fð0;1Þðτ; zÞ ¼ Fð0;3Þðτ; zÞ;

Fð0;1Þðτ; zÞ ¼ Bðτ; zÞ
2

ðE2ðτÞ − E4ðτÞÞ;

Fð0;2Þðτ; zÞ ¼ −
2Aðτ; zÞ

3
−
2Bðτ; zÞ

3
E2ðτÞ;

Fð1;sÞðτ; zÞ ¼ Fð3;3sÞ

¼ −
Bðτ; zÞ

4

�
E2

�
τ þ s
2

�
− E4

�
τ þ s
4

��
;

Fð2;1Þðτ; zÞ ¼ Fð2;3Þ ¼ Bðτ; zÞ
2

�
−
1

6
E2ðτÞ þ

2

3
E2ð2τÞ

�
;

Fð2;2sÞðτ; zÞ ¼ −
2Aðτ; zÞ

3
þ Bðτ; zÞ

3
E2

�
τ þ s
2

�
: ð2:28Þ

We have also evaluated the complete twisted elliptic genus
using the explicit rational CFT realization of this orbifold in
[25] and have verified that it agrees with that given in
(2.28). Note that the twining character of the orbifold
coincides with the 2B conjugacy class. Evaluating the low
lying coefficient corresponding to the invariant (1,1) forms
of K3 we obtain

X3
s¼0

cð0;sÞð0Þ ¼ 0: ð2:29Þ

Therefore, as expected this twisted ellipitc genus is purely a
formal construction.

2. An order 9 orbifold

Let us consider the twining character of the 3B con-
jugacy class which is given by
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Fð0;1Þðτ; zÞ ¼ −
2Bðτ; zÞ

9

η6ðτÞ
η2ð3τÞ ð2:30Þ

Note that this is invariant under Γ0ð9Þ, therefore we look for
a twisted elliptic genus corresponding to an order 9
orbifold. Thus the following sectors

ð0; 3Þ; ð0; 6Þ; ð3; 0Þ; ð3; 3Þ; ð3; 6Þ;
ð6; 0Þ; ð6; 3Þ; ð6; 6Þ ð2:31Þ

forms a suborbit under Slð2;ZÞ modular transformations.
The remaining sectors can be obtained from the twining
character in (2.30) by using the transformation (1.2),
together with the modular properties of the η function.
Once that is obtained we assume the following Jacobi weak
form of Γ0ð3Þ for the (0,3) sector of the (2.31).

Fð0;3Þðτ; zÞ ¼ αAðτ; zÞ þ βBðτ; zÞE3ðτÞ: ð2:32Þ

Here α, β are undetermined constants. Then using modular
transformation (1.2) and the identities satisfied by Γ0ð3Þ
forms we can obtain the twisted elliptic genus in the
suborbit. Finally imposing the conditions (2.21) and
(2.22) we determine the constants α, β as

α ¼ −
1

9
; β ¼ 1

4
: ð2:33Þ

Using all these steps we obtain the twisted elliptic genus
for the 3B conjugacy class to be given by

Fð0;0Þðτ; zÞ ¼ 8Aðτ; zÞ
9

;

Fð0;1Þðτ; zÞ ¼ Fð0;2Þ ¼ Fð0;4Þ ¼ Fð0;5Þ ¼ Fð0;7Þ ¼ Fð0;8Þ;

Fð0;1Þðτ; zÞ ¼ −
2Bðτ; zÞ

9

η6ðτÞ
η2ð3τÞ ;

Fð0;3Þðτ; zÞ ¼ −
Aðτ; zÞ

9
−
Bðτ; zÞ

4
E3ðτÞ;

Fðr;rsÞðτ; zÞ ¼ 2Bðτ; zÞ
3

η6ðτ þ sÞ
η2ðτþs

3
Þ ; r ¼ 1; 2; 4; 5; 7; 8

Fð3;1Þðτ; zÞ ¼ −
2Bðτ; zÞ

9
e2πi=3

η6ðτÞ
η2ð3τÞ ;

¼ Fð3;4Þ ¼ Fð3;7Þ ¼ Fð6;2Þ ¼ Fð6;8Þ ¼ Fð6;5Þ;

Fð3;2Þðτ; zÞ ¼ −
2Bðτ; zÞ

9
e4πi=3

η6ðτÞ
η2ð3τÞ ;

¼ Fð3;5Þ ¼ Fð3;8Þ ¼ Fð6;1Þ ¼ Fð6;7Þ ¼ Fð6;4Þ;

Fð3r;3rkÞðτ; zÞ ¼ −
Aðτ; zÞ

9
þ Bðτ; zÞ

12
E3

�
τ þ k
3

�
: ð2:34Þ

The number of (1,1) forms is given by consider the following
low lying coefficients of the twisted elliptic genus

X8
s¼0

cð0;sÞð0Þ ¼ −2 ð2:35Þ

Again the orbifold of K3 by the order 9 action is formal.
The rest of the conjugacy classes in Table II have more

than one suborbit. Quantum symmetry given in (2.21) and
the supersymmetry condition (2.22) is not enough to
determine the unknown constants in these suborbits. It
will be interesting to determine the twisted elliptic genera
for all the remaining conjugacy classes of Table II.

C. Comparision with literature

As remarked earlier the work of [24] provides the
mathematical justification for the construction of the
twisted elliptic genus over for all the cyclic orbifolds
considered in this paper. To compare with the rederivation
of the twisted elliptic genera in this paper, let us briefly
review their construction. Let g0 be the cyclic orbifold
corresponding to the conjugacy class of M24 with order N.
Then the twisted elliptic genus admits the following
decomposition in terms of the characters of the N ¼ 4
superconformal algebra with central charge c ¼ 6

Fðr;sÞðτ; zÞ ¼
X∞

k¼nþ r
N≥0

TrHg0r;kðρg0r;kðg0sÞÞchh¼1
4
þk;lðτ; zÞ

ð2:36Þ
Note that l ¼ 1

2
except when h ¼ 1=4 for which both l ¼ 1

2

and l ¼ 0 are understood to be present in the sum. The
vector space Hg0r;k is finite dimensional and is the projec-
tive representation of the centralizer CM24

ðg0Þ which sat-
isfies properties detailed in [24]. Thus the problem of
determining the twisted twining elliptic genera reduces to
determing characters of the projective representations.
Though not easy to extract from the ancillary files provided
along with [24], a careful examination of the files lists out
some of the twisted twining elliptic genera for the orbifolds
considered in the paper. The Fð1;sÞ sector which is listed out
in the ancillary files. The files also enable the evaluation of
the characters of the projective representations and a
verification of the expansion of the twisted elliptic genera
as given in (2.36). Though explicit expressions are not
listed in the main body of the paper, this is sufficient to
construct the twisted elliptic genera in all the sectors easily
for the case when the order the orbifold is prime.2

Note that explicit formulas for the twisted elliptic genera
for pA orbifolds with p ¼ 2, 3, 5, 7 were known even
before the discovery of moonshine symmetry in [7] and
before the work of [24]. Since the latter paper as well the
present work uses modular transformations (1.2) to obtain

2We have been informed by Mathias Gaberdiel that these
explicit expressions were known to the authors of [24] however
they did not write them out in the body of their paper.
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the twisted elliptic genera we are assured that both the
constructions agree. In our discussion in the Appendix we
have also explicitly compared the low lying coefficients of
the twisted elliptic genera for the case of 4B, 6A, 8A
orbifolds with the Hodge numbers of the CHL compacti-
fictaions discussed in [6,10] and found agreement. The
check that sum over all the sectors of the orbifolds when
g0 ∈ M23 yields back the elliptic genus of K3 was also
performed in [24] as can be read from the discussion in the
text.3 In this work this is assured by the identities of the
kind given (2.10).
As we have discussed earlier, when the order of the

orbifold is composite, there are suborbits in the twisted
sectors which cannot be reached by modular transforma-
tions from the twining character. We have used moonshine
symmetry to determine the twisted elliptic genus in these
sectors. The treatment of such situations in [24] is more
general. Their discussion also encompases orbifolds by
non-cyclic groups. Though not treated explicitly, the case
of the cyclic orbifolds is implicit in their discussion.4

III. 1=4 BPS DYON PARTITION FUNCTIONS

Given the twisted elliptic genus one can construct a
Siegel modular form as follows [27]. The twisted elliptic
genus can be expanded as

Fðr;sÞðτ; zÞ ¼
X1
b¼0

X
j∈2þb;n∈Z=N

cðr;sÞb ð4n − j2Þe2πinτþ2πijz:

ð3:1Þ
Then a Siegel modular form associated with the twisted
elliptic genus is given by

~Φðρ;σ;vÞ
¼e2πið ~αρþ ~βσþvÞ

×
Y
b¼0;1

YN−1

r¼0

Y
k0∈Zþ r

N;l∈Z;
j∈2Zþb

k0 ;l≥0;j<0k0¼l¼0

ð1−e2πiðk0σþlρþjvÞÞ
P

N−1
s¼0

e2πisl=Ncr;sb ð4k0l−j2Þ:

ð3:2Þ
where

~β ¼ 1

24N
χðMÞ;

~α ¼ 1

24N
χðMÞ − 1

2N

XN−1

s¼0

Q0;s
e−2πis=N

1 − e2πis=N
;

Qr;s ¼ Nðcr;s0 ð0Þ þ 2cr;s1 ð−1ÞÞ: ð3:3Þ

Evaluating ~α, ~β for the twisted elliptic genus corresponding
to all the conjugacy classes considered in the previous
section as well as the pA classes with p ¼ 1, 2, 3, 5, 7 we
obtain

~α ¼ 1; ~β ¼ 1

N
: ð3:4Þ

Here N is the order of the orbifold action. This Siegel
modular form in (3.2) transforms as a weight k form under
appropriate subgroups of Spð2;ZÞ. The weight k is related
to the low lying coefficients of the twisted elliptic genus
and is given by

k ¼ 1

2

XN−1

0

c0;s0 ð−1Þ: ð3:5Þ

The weights of the Siegel modular forms corresponding to
the twisted elliptic genera constructed in this paper is listed
in Tables III and IV. Now consider type II theory compacti-
fied on ðK3 × T2Þ=ZN where ZN acts as the automorphism
g0 belonging to any of the conjugacy classes together with a
1=N shift along one of the circles of T2, S1. Then by the
analysis in [27], the generating function of the index of 1=4
BPSstates in this theory is givenby1= ~Φðρ; σ; vÞ. Let uswork
in the dual heterotic frame in which the orbifolded heterotic
theory is compactified in general on T6. For example the
cases of thepA orbifolds ofK3 × T2withp ¼ 2, 3, 4, 5, 6, 7,
8 corresponds to the N ¼ 2, 3, 4, 5, 6, 7, 8 CHL compacti-
fications on the heterotic side. Let us label the charges of the
1=4 BPS state by ðQ;PÞ corresponding to the electric and
magnetic charge of the dyon. LetQ2,P2 andQ · P denote the
continuous T-duality invariants in this duality frame. Then
the 1=4 BPS index in this frame is given by

−B6ðQ;PÞ ¼ 1

N
ð−1ÞQ·Pþ1

Z
C
dρdσdve−πiðNρQ2σP2=Nþ2vQ·PÞ

×
1

~Φðρ; σ; vÞ : ð3:6Þ

TABLE IV. Weight of Siegel modular forms corresponding to
the classes ∉M23.

Type 2 2B 3B

Weight 0 −1

TABLE III. Weight of Siegel modular forms corresponding to
classes in M23.

Type 1 pA 4B 6A 8A 14A 15A

Weight 24
pþ1

− 2 3 2 1 0 0

3See discussion in the beginning of Sec. IV of [24].
4We thank Mathias Gaberdiel for correspondence which

enabled us to compare our work with [24].
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The contour C is defined over a 3 dimensional subspace of
the 3 complex dimensional space ðρ¼ρ1þiρ2;σ¼σ1þiσ2;
v¼v1þiv2Þ.

ρ2 ¼ M1; σ2 ¼ M2; v2 ¼ −M3;

0 ≤ ρ1 ≤ 1; 0 ≤ σ1 ≤ N; 0 ≤ v1 ≤ 1: ð3:7Þ

The choice of ðM1;M2;M3Þ is determined by the domain in
which one needs to evaluate the index −B6 [32,33]. We pick
up the Fourier coefficients by expanding 1= ~Φ in powers of
e2πiρ, e2πiσ and e−2πiv. For this expansion to make sense we
must have [27,32]

M1;M2 ≫ 0; M3 ≪ 0; jM3j ≪ M1;M2: ð3:8Þ
Since this is an index, the Fourier coefficient−B6 must be an
integer. Let us now focus on 1=4BPS states which are single
centered black holes. Then from the fact that the single
centered black holes carry zero angular momentum, it is
predicted that the index −B6 for these black holes is positive
[18]. The argument for this goes as follows. Given the
domain (3.8), these 1=4 BPS black states have regular event
horizons and are single centered only if the charges satisfy the
condition [18]

Q · P ≥ 0; ðQ · PÞ2 < Q2P2; Q2; P2 > 0: ð3:9Þ
Thus if we can show that the index −B6 is positive for states
satisfying the condition (3.9), then it will imply the −B6 is
positive for single centered 1=4BPSdyons as predicted from

black hole considerations. In the next section we show that
for low lying charges satisfying (3.9),−B6 is indeed positive
for all the Siegel modular forms associated with the twisted
elliptic genera constructed in this paper. This is the gener-
alization of the observation seen first in [18] for the pA
conjugacy classes with p ¼ 1, 2, 3, 5, 7. For p ¼ 1 and for a
special class of charges it was proved that the coefficient−B6

is positive [30].
Before we proceed we will study two properties of the

Siegel modular forms which are theta lifts of the twisted
elliptic genera constructed in this paper. First the Siegel
modular forms factorize in the v → 0 limit as

lim
v→0

~Φkðρ; σ; vÞ ∼ v2fðkþ2ÞðρÞgðkþ2ÞðσÞ: ð3:10Þ

where fðkþ2Þ, gðkþ2Þ are weight kþ 2 modular forms
transforming under Γ0ðNÞ. The explicit modular forms
on which the Φ0

ks factorize are given in Table V. The
function 1=fðkþ2ÞðρÞ is the partition function of purely
electric states while 1=gðkþ2ÞðσÞ is the partition function of
purely magnetic states. In fact fðkþ2Þ and gðkþ2Þ are related
to each other by a S transformation.
The second property we discuss is the asymptotic

property of the index in (3.6) when the charges Q, P are
equally large. The procedure to obtain the asymptotic
behaviour has been developed in [4,27,34], which we
summarize briefly.5 Consider another Siegel modular form
Φ̂ðρ; σ; vÞ of weight k associated with the twisted elliptic
genus defined by

Φ̂ðρ; σ; vÞ ¼ e2πiðα̂ρþβ̂σþvÞ Y
b¼0;1

YN−1

r¼0

Y
k0 ;l∈Z;
j∈2Zþb

k0 ;l≥0;j<0k0¼l¼0

ð1 − e2πir=Ne2πiðk0σþlρþjvÞÞ
P

N−1
s¼0

e−2πisr=Nc0;sb ð4k0l−j2Þ: ð3:11Þ

Here we have,

β̂ ¼ α̂ ¼ γ̂ ¼ 1

24
χðMÞ ¼ 1: ð3:12Þ

Under v → 0, this modular form factorizes symmetrically in ρ and σ as

TABLE V. Factorization of ~Φkðρ; σ; vÞ as lim v → 0 as shown in (3.10), p ∈ f1; 2; 3; 5; 7; 11; 23g.
Conjugacy class k fðkþ2ÞðρÞ gðkþ2ÞðσÞ
pA 24

pþ1
− 2 ηkþ2ðρÞηkþ2ðpρÞ ηkþ2ðσÞηkþ2ðσ=pÞ

4B 3 η4ð4ρÞη2ð2ρÞη4ðρÞ η4ðσ
4
Þη2ðσ

2
Þη4ðσÞ

6A 2 η2ðρÞη2ð2ρÞη2ð3ρÞη2ð6ρÞ η2ðσÞη2ðσ
2
Þη2ðσ

3
Þη2ðσ

6
Þ

8A 1 η2ðρÞηð2ρÞηð4ρÞη2ð8ρÞ η2ðσÞηðσ
2
Þηðσ

4
Þη2ðσ

8
Þ

14A 0 ηðρÞηð2ρÞηð7ρÞηð14ρÞ ηðσÞηðσ
2
Þηðσ

7
Þηð σ

14
Þ

15A 0 ηðρÞηð3ρÞηð5ρÞηð15ρÞ ηðσÞηðσ
3
Þηðσ

5
Þηð σ

15
Þ

2B 0 η8ðρÞ
η4ð2ρÞ

η8ðσÞ
η4ðσ

2
Þ

3B −1 η3ðρÞ
ηð3ρÞ

η3ðσÞ
ηðσ

3
Þ

5We follow the discussion in [27].
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lim
v→0

Φ̂ðρ; σ; vÞ ∼ v2hðkþ2ÞðρÞhðkþ2ÞðσÞ: ð3:13Þ

Then the leading behaviour of the index −B6 is given by

−B6ðQ;PÞ ∼ expð−SðQ;PÞÞ ð3:14Þ

where SðQ;PÞ is obtained by minimizing the function

−SðQ;PÞ ¼ π

2τ2
jQ2 þ τP2j2 − lnðhðkþ2ÞðτÞÞ

− lnðhðkþ2Þð−τ̄Þ − ðkþ 2Þ lnð2τ2Þ ð3:15Þ

with respect to τ1, τ2. The minimum lies at

τ1 ¼
Q · P
P2

; τ2 ¼
1

P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2P2 − ðQ · PÞ2

q
: ð3:16Þ

Substituting the above values for τ1, τ2 results in the
asymptotic behavior of the index −B6. The list of the
Γ0ðNÞ modular forms for the models constructed in this
paper is provided in Table VI.
Let us now compare this to the behavior of the entropy

of single centered large charge 1=4 BPS dyons in these
N ¼ 4 theories obtained compactifying type II theory on
ðK3 × T2Þ=ZN where ZN acts as the automorphisms on K3

together with a 1=N shift on one of the circles of T2. Apart
from the usual 2 derivative terms in the effective action, a
one loop computation shows that the coefficient of the
Gauss-Bonnet term is given by

ΔL ¼ ϕða; SÞðRμνρσRμνρσ − 4RμνRμν þ R2Þ: ð3:17Þ

where a, S is the axion and dilaton moduli in the heterotic
frame. The function ϕða; SÞ is given by

ϕða; SÞ ¼ −
1

64π2
ððkþ 2Þ ln Sþ ln hðkþ2Þðaþ iSÞ

þ ln hðkþ2Þð−aþ iSÞÞ: ð3:18Þ

It is important to note that the Γ0ðNÞmodular form hðkþ2ÞðτÞ
for each of the compactifications is identical to the Γ0ðNÞ
form that occurs in the factorization (3.13) [27]. Now
evaluating the Hawking-Bekenstein-Wald entropy including
the correction due to the Gauss-Bonnet term using the
entropy function formalism leads to the following minimiz-
ing problem. The entropy is given byminimizing the function

EðQ;PÞ ¼ π

2τ2
jQ2 þ τP2j2 − lnhðkþ2ÞðτÞ

− ln hðkþ2Þð−τÞ − ðkþ 2Þ lnð2τ2Þ: ð3:19Þ
Here τ ¼ aþ iS. The entropy function is identical to the
statistical entropy function (3.15) which occurred while
obtaining the asymptotic behavior of−B6. Thus the partition
function1= ~Φðρ; σ; vÞ captures thedegeneracyof large charge
single centered 1=4 BPS black holes in these class ofN ¼ 4
compactifications including the correction from the Gauss-
Bonnet term.
The construction of the Siegel modular form given the

coefficient of the twisted ellipitc genus of K3 is quite
straightforward and for cyclic orbifolds, this was first given
in [27]. Recently the Refs. [26,28,29] extend it for noncyclic
orbifolds and also study its v → 0 limit. It is important to
emphasize the there are 2 modular forms associated with the
twisted ellipitc genus of K3. The ~Φk and the Φ̂k are
constructed in equations (3.2) and (3.11) respectively.
The Fourier expansion of the inverse of ~Φk capture the
degeneracy of the 1=4 BPS dyon and its zeros at v → 0 are
associated with the walls of marginal stability of the dyon.
The zero’s of Φ̂k are however associatedwith the asymptotic
growth of the degeneracies for large charges. We mention
that Φ̂k has not been constructed for the orbifolds listed in
this paper in the Refs. [26,28,29]. We emphasize that our
objective in constructing the Siegel modular form ~Φk in
particular is to verify that the Fourier expansions of the
inverse of these forms are integers and positive as predicted
by the conjecture of [18]. Thiswas verified earlier by [18] for
the Siegelmodular forms ~Φk, associatedwith thepA,p ¼ 1,
2, 3, 5, 7 orbifolds. In this next section we extend this
observation for all the orbifolds discussed in this paper. To
our knowledge, this observation has not been seen in the
works of [26,28,29]. We also emphasize that to obtain this
observation the explicit construction of the twisted elliptic
genus in all its sectors together with the normalizations as
discussed earlier is important.

A. Positivity of the 1=4 BPS index

In this subsection we provide the list for the index −B6

for low lying charges for all the Siegel modular forms ~Φk
associated with the twisted elliptic genera constructed.
From the expansion of ~Φk in Fourier coefficients in the
domain (3.8) together with the expression for −B6 in (3.6)
we see that the electric charge Q2 is quantized in units of

TABLE VI. Factorization of Φ̂kðρ; σ; vÞ as lim v → 0 as shown
in (3.13), p ∈ f1; 2; 3; 5; 7; 11; 23g.
Conjugacy class hðkþ2ÞðρÞ
pA ηkþ2ðρÞηkþ2ðpρÞ
4B η4ð4ρÞη2ð2ρÞη4ðρÞ
6A η2ðρÞη2ð2ρÞη2ð3ρÞη2ð6ρÞ
8A η2ðρÞηð2ρÞηð4ρÞη2ð8ρÞ
14A ηðρÞηð2ρÞηð7ρÞηð14ρÞ
15A ηðρÞηð3ρÞηð5ρÞηð15ρÞ
2B η8ð4ρÞ

η4ð2ρÞ
3B η3ð9ρÞ

ηð3ρÞ
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ð2=NÞZ, while the magnetic charge P2 is quantized in units
of 2Z and the angular momentum Q · P is an integer. We
see that the index −B6 for the low lying charges examined
is always an integer. Furthermore for charges satisfying the
condition (3.9) it is positive. This property is a sufficient
condition which ensures that single centered black holes
carry zero angular momentum. One important point to
emphasize is that it is possible to obtain the Fourier
expansion of the Siegel modular forms for low lying
charges only after the explicit construction of the twisted
elliptic genus. The index −B6 is listed in Tables VII–XV.
As a check on our Mathematica routines to obtain these

Fourier coefficients, we have verified that our routine
reproduces all the tables given in [18] for the pA orbifold
of K3 with p ¼ 1, 2, 3, 5, 7.
It is interesting to note that the nongeometric orbifolds

11A; 14A=B; 15A=B; 23A=B and the order 4 and order 9
orbifold also satisfy the positivity constraints conjectured
by [18], see Tables X–XV. We have attached the
Mathematica files which generate the Fourier coefficients
for the 11A and 3B orbifolds as ancillary files.

1. Torus orbifolds

Let us examine if the Fourier coefficients of the inverse
of the Siegel modular forms corresponding to the torus
orbifolds constructed recently in [28] also satisfy the
positivity conjecture of [18]. These orbifolds realize quan-
tum symmetry. The twisted ellipitc genus of the N ¼ 2
orbifold is given by

Fð0;0Þ ¼ 4Aðτ; zÞ; Fð0;1Þ ¼ −
4

3
Aðτ; zÞ− 4

3
E2ðτÞBðτ; zÞ;

Fð1;0Þ ¼ −
4

3
Aðτ; zÞ þ 2

3
E2

�
τ

2

�
Bðτ; zÞ;

Fð1;1Þ ¼ −
4

3
Aðτ; zÞ þ 2

3
E2

�
τþ 1

2

�
Bðτ; zÞ: ð3:20Þ

TABLE VII. Some results for the index −B6 for the 4B orbifold
of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(1=2, 2) −512 176 8 0 0
(1=2, 4) −1536 896 80 0 0
(1=2, 6) −4544 3616 480 0 0
(1=2, 8) 11 752 12 848 2176 24 0
(1,4) −4592 5024 832 16 0
(1,6) −13408 22 464 36 786 224 0
(1,8) −33568 88 320 26 176 1760 0
(3=2, 6) −37330 1 12 316 36 786 2998 38
(3=2, 8) −80896 4 91 920 1 96 960 23 616 592

TABLE VIII. Some results for the index −B6 for the 6A
orbifold of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(1=3, 2) −98 40 1 0 0
(1=3, 4) −224 148 12 0 0
(1=3, 6) −546 478 49 0 0
(1=3,8) −1120 1352 186 0 0
(2=3, 4) −512 592 92 0 0
(2=3, 6) −1240 2080 436 8 0
(2=3, 8) −2504 6416 1676 0 0
(1, 6) −2926 7880 2172 116 0
(1, 10) −2450 81 380 32 300 3494 49
(1, 12) −4696 2 34 900 1 04 176 13 856 316

TABLE X. Some results for the index −B6 for the 11A orbifold
of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(2=11, 2) −50 10 0 0 0
(2=11, 4) −100 30 0 0 0
(2=11, 6) −200 82 1 0 0
(4=11, 6) −400 276 18 0 0
(6=11, 6) −800 806 83 0 0
(6=11, 8) −1438 2064 314 2 0
(6=11, 10) −2584 4962 937 16 0
(6=11, 12) −4328 11 132 2558 72 0
(6=11, 22) −34000 3 66 378 1 39 955 12 760 114

TABLE IX. Some results for the index −B6 for the 8A orbifold
of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(1=4, 2) −60 20 0 0 0
(1=4, 4) −120 68 2 0 0
(1=4, 6) −280 196 10 0 0
(1=4, 8) −520 504 40 0 0
(1=2, 6) −560 724 96 0 0
(1=2,8) −1038 1998 352 2 0
(3=4, 6) −1114 2280 450 6 0
(3=4, 8) −2024 6704 1728 56 0
(3=4, 10) −3860 18 256 5564 300 0
(3=4, 12) −6168 46 456 16 296 1192 4

TABLE XI. Some results the index −B6 for the 14A orbifold of
K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(1=7, 2) −18 4 0 0 0
(1=7, 4) −24 10 0 0 0
(1=7, 6) −54 24 0 0 0
(2=7, 6) −72 70 5 0 0
(2=7, 8) −96 156 16 0 0
(3=7, 8) −216 406 65 0 0
(3=7, 10) −412 890 165 2 0
(4=7, 12) −710 4682 1443 58 0
(5=7, 12) −1180 11 512 4156 292 0
(5=7, 14) −1622 24 744 9816 908 5
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Here we have rewritten the twisted elliptic genus given in
terms of Jacobi θ functions given in [28]6 in the standard form
involvingΓ0ð2Þmodular forms.We have also normalized the
twisted elliptic genus so that the low lying coefficients of the
elliptic genus satisfy (2.6).Using the expression (3.2) towrite
down the corresponding Seigel modular forms, we can
extract the low lying coefficients of the putative dyon
degeneracies. These are listed in Table XVI.
From the analysis of [18], for N ¼ 2 orbifolds, the

Fourier coefficients of the putative dyon degeneracies are
expected to be positive when

Q ·P≥0; Q ·P≤2Q2; Q ·P≤P2;

3Q ·P≤2Q2þP2;

Q2; P2; fQ2P2−ðQ ·PÞ2g>0: ð3:21Þ

In Table XVI, the bold face entries indicate the violation of
this conjecture. This indicates either the Siegel modular
forms corresponding to the twisted elliptic genus given in
(3.20) do not capture degeneracies of black holes or one
must redo the analysis in [18] and figure out if the
conditions necessary for black holes to be single centered
needs to be modified for these orbifolds. In either case, this
analysis highlights the nontrivial feature of the modular
forms constructed for all the K3 orbifolds geometric or
formal constructed in this paper.
Let us finally examine the N ¼ 3 torus orbifold given in

[28]. The twisted elliptic genus is given by

Fð0;0Þ ¼ 8

3
Aðτ; zÞ;

Fð0;sÞ ¼ −
1

3
Aðτ; zÞ − 3

4
E3ðτÞBðτ; zÞ; for 1 ≤ s ≤ 2;

Fðr;rkÞ ¼ −
1

3
Aðτ; zÞ þ 1

4
E3

�
τ þ k
3

�
Bðτ; zÞ;

for 1 ≤ r ≤ 2; 1 ≤ k ≤ 2: ð3:22Þ

Going through the procedure of constructing the Siegel
modular form and obtaining the putative dyon degeneracies

TABLE XII. Some results for the index −B6 for the 15A
orbifold of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(2=15, 2) −8 4 0 0 0
(2=15, 4) −16 8 0 0 0
(2=15, 6) −24 20 0 0 0
(2=5, 8) −120 274 45 0 0
(2=5, 10) −203 578 113 1 0
(4=15, 6) −48 50 4 0 0
(4=15, 8) −80 102 13 0 0
(8=15, 12) −440 2844 898 40 0
(2=3, 12) −638 6818 2498 178 0
(4=5, 18) 8236 1 41 252 73 651 12 124 419

TABLE XIII. Some results for the index −B6 for the 23A
orbifold of K3 for different values of Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(2=23, 2) −8 1 0 0 0
(2=23, 4) −12 3 0 0 0
(2=23, 6) −20 7 1 0 0
(4=23, 6) −30 53 6 0 0
(4=23, 8) −42 91 11 0 0
(6=23, 6) −48 103 23 2 0
(6=23, 8) −66 190 47 4 0
(6=23, 10) −104 312 74 6 0

TABLE XIV. Some results for the index −B6 for the order 4
orbifold whose twining character equals 2B Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(1=2, 2) 320 288 24 0 0
(1=2, 4) 0 512 256 0 0
(1=2, 6) −752 1120 888 48 0
(1=2, 8) 384 3328 2048 384 0
(1,4) 32 4416 2240 32 0
(1,6) −2304 22 464 13 248 224 0
(1,8) 5920 42 944 27 328 5920 64
(3=2, 6) −2008 1 02 380 66 172 9032 28
(3=2, 8) 59 392 3 72 736 2 43 712 59 392 2048

TABLE XV. Some results for the index −B6 for the order 9
orbifold whose twining character equals 3B for different values of
Q2, P2 and Q · P.

ðQ2; P2ÞnQ · P −2 0 1 2 3

(2=9, 2) 0 18 0 0 0
(2=9, 4) 18 27 0 0 0
(2=9, 6) 0 78 21 0 0
(4=9, 4) 42 150 33 0 0
(4=9, 6) 0 270 81 0 0
(4=9, 8) 0 378 162 0 0
(2=3, 6) 0 918 297 0 0
(2=3, 8) 0 2460 1239 93 0

TABLE XVI. Some results for the index −B6 for the order 2
torus orbifold for different values of Q2, P2 and Q · P. The bold
face entries indicate the violation of the positivity conjecture.

ðQ2; P2ÞnQ · P −2 0 1 2

(1, 2) −1152 −224 96 0
(1,6) −13008 −3392 1376 −224
(1,10) −101440 −30336 13 152 −3392
(2, 2) −10380 −1248 1968 −12
(2,4) 39 456 18 240 840 2592
(3,2) −69344 1728 22 528 −224
(2,6) −113344 −10320 −1376 24326See Eqs. (6.1) to (6.4) in [28].
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we obtain the Table XVII for the low lying coefficients.
From the analysis of [18], for N ¼ 3 orbifolds −B6 is
expected to be positive for charges satisfying the constraints

Q · P ≥ 0; Q · P ≤ 3Q2; Q · P ≤ P2;

5Q · P ≤ 6Q2 þ P2; 5Q · P ≤ 3Q2 þ 2P2;

7Q · P ≤ 6Q2 þ 2P2; Q2; P2;

fQ2P2 − ðQ · PÞ2g > 0: ð3:23Þ

However note that there are violations to this expectation in
Table XVII which are indicated by the bold face entries.

IV. CONCLUSIONS

We studied the Siegel modular forms associated with the
twisted elliptic genera that capture the degeneracy of 1=4
BPS states in N ¼ 4 theories obtained by compactifying
type II theory on ðK3 × T2Þ=ZN where ZN acts as a order
N automorphism associated with the conjugacy class of
M24 onK3 together with a 1=N shift on one of the circles of
T2. We show that the dyon partition function satisfied the
required properties expected from black hole physics. In
particular the Fourier coefficients of the 1=4 BPS index are
integers and certain low lying charges are positive in
agreement with the conjecture of [18]. This is a sufficient
condition predicted from the fact that single centered black
holes carry zero angular momentum. The observation that
the dyon partition function associated with the 4A; 6A; 8A
classes satisfies the positivity conjecture along with the
earlier studied cases of pA with p ¼ 2, 3, 5, 7 completes
this analysis for all the CHL models. We also observed that
the positivity conjecture of [18] was satisfied even when the
orbifold as well as construction of the Siegel modular form
were purely formal. This result provides some evidence for
the conjecture that these symmetries which act as in
Mathieu moonshine do exist in actual K3 sigma models7

It is worthwhile to complete this analysis of this paper for
the remaining 9 conjugacy classes of Table II. The

construction for the twisted elliptic genera corresponding
to these classes would required new ingredients. One
possible direction is to use positivity and integrality of
the low lying coefficients in the associated Siegel modular
form to determine the twisted elliptic genera in the sectors
which form suborbits under SLð2;ZÞ. These conjugacy
classes have more than one suborbit. One can also verify if
the Siegel modular forms constructed from the twisted
elliptic genera for these classes provided in the ancillary
files associated with [24] is in agreement with the positivity
conjecture of [18].
References [26,28,29] have studied more general non-

cyclic twisted twining elliptic genera of K3 than considered
in this paper. It is important to check if the more general
twining elliptic genera considered in these references admit
a 1=4 BPS dyon partition function with integral Fourier
coefficients and obey the positivity constraints as expected
from black hole physics. Recently multiplicative lifts
of more general weak Jacobi forms8 as well as the
Siegel modular forms of Spð2;ZÞ of weight 35 and 12
were studied andwere shown to have properties whichmake
them candidates for partition of black holes [35]. It will be
interesting to check if the Fourier coefficients of these Siegel
modular forms also satisfy the positivity constraints required
from black hole physics. As a preliminary investigation we
observed that two of the torus orbifolds of [28] do not satisfy
the positivity conjecture of [18].
The discovery of the Mathieu moonshine symmetry has

provided useful insights in string compactifications
[36–38] as well as provided new examples where precision
microscopic counting of black holes is possible as seen in
this paper. It is certainly worthwhile to explore the
implication of this symmetry further.
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APPENDIX: LIST OF TWISTED
ELLIPTIC GENERA

In this appendix we provide the list of the twisted elliptic
genera used in this paper.

TABLE XVII. Some results for the index −B6 for the order
3 torus orbifold of K3 for different values of Q2, P2, and Q · P.
The bold face entries indicate the violation of the positivity
conjecture.

ðQ2; P2ÞnQ · P −2 0 1 2

(1,4) −252 −36 45 0
(1,6) 504 216 −9 18
(1,10) −1692 −324 378 −36
(2,2) 0 324 162 0
(2,4) 1458 540 864 54
(3,6) 23 808 55 986 31 332 10 200

7We thank the anonymous referee for pointing this. 8These were Jacobi forms of weight 0 but index > 1.
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1. Conjugacy class 11A

Going through these steps we obtain the following
formula for the twisted elliptic genus for 11A.

Fð0;0Þ ¼¼ 8

11
Aðτ; zÞ;

Fð0;sÞ ¼ 2

33
Aðτ; zÞ − Bðτ; zÞ

�
1

6
E11ðτÞ −

2

5
η2ðτÞη2ð11τÞ

�
;

Fðr;rsÞ ¼ 2

33
Aðτ; zÞ þ Bðτ; zÞ

�
1

66
E11

�
τ þ s
11

�

−
2

55
η2ðτ þ sÞη2

�
τ þ s
11

��
: ðA1Þ

2. Conjugacy class 23A=B

The twining characters for the conjugacy classes 23A
and 23B are identical and was determined in [13–15]. It is
given by

Fð0;0Þ ¼ 8

23
Aðτ;zÞ;

Fð0;1Þ ¼ 1

69
A−B

�
1

12
E23−

1

22
f23;1ðτÞ−

7

22
η2ðτÞη2ð23τÞ

�
:

ðA2Þ

Wecanuse the sameprocedure as discussed for the class11A
in the previous section to determine the twisted elliptic genus
in all the sectors. Essentially we use the transformation law
given in (1.2) to move to twisted elliptic genus in the other
sectors from the (0,1) sector. As discussed in the previous
section we need identities satisfied by the modular forms
E23ðτÞ, η2ðτÞη2ð23τÞ and f23;1ðτÞ to express the expansion in
terms of e−2πi=τ in terms of a the usual q expansion. Note that
all these transform as modular forms under Γ0ð23Þ. The new
form f23;1ðτÞ under Γ0ð23Þ has been constructed in [39,40]
which involves Hecke eigenforms. A closed formula for
f23;1ðτÞ in terms of η functions is provided in the ancillary
files associated with [24]. This is given by

f23;1ðτÞ ¼ 2
η3ðτÞη3ð23τÞ
ηð2τÞηð46τÞ þ 8ηðτÞηð2τÞηð23τÞηð46τÞ

þ 8η2ð2τÞη2ð46τÞ þ 5η2ðτÞη2ð23τÞ: ðA3Þ
It can be seen that from (A3) that the S transformation of
f23;1ðτÞ is given by

f23;1

�
−
1

τ

�
¼ −

τ2

23
f23;1

�
τ

23

�
: ðA4Þ

we obtain the twisted elliptic genus of the conjugacy class
23A. The result is given by

Fð0;kÞðτ; zÞ ¼ 1

23

�
1

3
A − B

�
23

12
E23ðτÞ −

23

22
f23;1ðτÞ −

161

22
η2ðτÞη2ð23τÞ

��
;

Fðr;rkÞðτ; zÞ ¼ 1

23

�
1

3
Aþ B

�
1

12
E23

�
τ þ k
23

�
−

1

22
f23;1

�
τ þ k
23

�
−

7

22
η2ðτ þ kÞη2

�
τ þ k
23

���
: ðA5Þ

3. Conjugacy class 4B

The twisted elliptic genus for this class is given by

Fð0;0Þðτ; zÞ ¼ 2Aðτ; zÞ;

Fð0;1Þðτ; zÞ ¼ Fð0;3Þðτ; zÞ ¼ 1

4

�
4A
3

− B

�
−
1

3
E2ðτÞ þ 2E4ðτÞ

��
;

Fð1;sÞðτ; zÞ ¼ Fð3;3sÞ ¼ 1

4

�
4A
3

þ B

�
−
1

6
E2

�
τ þ s
2

�
þ 1

2
E4

�
τ þ s
4

���
;

Fð2;1Þðτ; zÞ ¼ Fð2;3Þ ¼ 1

4

�
4A
3

−
B
3
ð5E2ðτÞ − 6E4ðτÞ

�
;

Fð0;2Þðτ; zÞ ¼ 1

4

�
8A
3

−
4B
3
E2ðτÞ

�
;

Fð2;2sÞðτ; zÞ ¼ 1

4

�
8A
3

þ 2B
3
E2

�
τ þ s
2

��
: ðA6Þ
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4. Conjugacy class 6A

The twisted elliptic genus for 6A are given by

Fð0;0Þ ¼ 4

3
A; Fð0;1Þ ¼ Fð0;5Þ; Fð0;2Þ ¼ Fð0;4Þ;

Fð0;1Þ ¼ 1

6

�
2A
3

− B

�
−
1

6
E2ðτÞ −

1

2
E3ðτÞ þ

5

2
E6ðτÞ

��
;

Fð0;2Þ ¼ 1

6

�
2A −

3

2
BE3ðτÞ

�
;

Fð0;3Þ ¼ 1

6

�
8A
3

−
4

3
BE2ðτÞ

�
: ðA7Þ

Fð1;kÞ ¼ Fð5;5kÞ ¼ 1

6

�
2A
3

þ B

�
−

1

12
E2

�
τ þ k
2

�

−
1

6
E3

�
τ þ k
3

�
þ 5

12
E6

�
τ þ k
6

���
; ðA8Þ

Fð2;2kþ1Þ ¼ A
9
þ B
36

�
E3

�
τ þ 2þ k

3

�

þ E2ðτÞ − E2

�
τ þ kþ 2

3

��
;

Fð4;4kþ1Þ ¼ A
9
þ B
36

�
E3

�
τ þ 1þ k

3

�

þ E2ðτÞ − E2

�
τ þ kþ 1

3

��
;

Fð3;1Þ ¼ Fð3;5Þ ¼ A
9
−

B
12

E3ðτÞ −
B
72

E2

�
τ þ 1

2

�

þ B
8
E2

�
3τ þ 1

2

�
;

Fð3;2Þ ¼ Fð3;4Þ ¼ A
9
−

B
12

E3ðτÞ −
B
72

E2

�
τ

2

�

þ B
8
E2

�
3τ

2

�
; ðA9Þ

Fð2r;2rkÞ ¼ 1

6

�
2Aþ 1

2
BE3

�
τ þ k
3

��
;

Fð3;3kÞ ¼ 1

6

�
8A
3

þ 2

3
BE2

�
τ þ k
2

��
: ðA10Þ

The low lying coefficients of the 6A twisted elliptic
genus is given by

cð0;sÞð�1Þ ¼ 1

3
; s ¼ 0; � � � 5;

X5
s¼0

cð0;sÞð�1Þ ¼ 2: ðA11Þ

and

X5
s¼0

cð0;sÞð0Þ ¼ 4: ðA12Þ

Therefore the number of (1,1) forms is 4. This agrees with
[10] which studies the orbifold of K3 dual to the N ¼ 6
CHL compactification. We therefore identify the compac-
tification of type II on ðK3 × T2Þ=Z6 where Z6 is the 6A
automorphism to be dual to the N ¼ 4 heterotic CHL
compactification. The full elliptic genus of K3 orbifolded
by the 6A automorphism. is given by

XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 8Aðτ; zÞ: ðA13Þ

Thus the result of the 6A orbifold of K3 is K3 itself.

5. Conjugacy class 8A

Fð0;0Þðτ; zÞ ¼ Aðτ; zÞ;
Fð0;1Þ ¼ Fð0;3Þ ¼ Fð0;5Þ ¼ Fð0;7Þ;

¼ 1

8

�
2A
3

− B

�
−
1

2
E4ðτÞ þ

7

3
E8ðτÞ

��
: ðA14Þ

Fðr;rkÞðτ;zÞ¼1

8

�
2A
3
þB
8

�
−E4

�
τþk
4

�
þ7

3
E8

�
τþk
8

���
:

ðA15Þ

where r ¼ 1, 3, 5, 7.

Fð2;1Þ ¼ Fð6;3Þ ¼ Fð2;5Þ ¼ Fð6;7Þ;

¼ 1

8

�
2A
3

þ B
3

�
−E2ð2τÞ þ

3

2
E4

�
2τ þ 1

4

���
;

Fð2;3Þ ¼ Fð6;5Þ ¼ Fð2;7Þ ¼ Fð6;1Þ;

¼ 1

8

�
2A
3

þ B
3

�
−E2ð2τÞ þ

3

2
E4

�
2τ þ 3

4

���
: ðA16Þ

Fð0;2Þ ¼ Fð0;6Þ ¼ 1

8

�
4A
3

− B

�
−
1

3
E2ðτÞ þ 2E4ðτÞ

��
;

Fð0;4Þ ¼ 1

8

�
8A
3

−
4B
3
E2ðτÞ

�
;

Fð2;2sÞ ¼ Fð6;6sÞ ¼ 1

8

�
4A
3

þ B

�
−
1

6
E2

�
τ þ s
2

�

þ 1

2
E4

�
τ þ s
4

���
;

Fð4;4sÞ ¼ 1

8

�
8A
3

þ 2B
3
E2

�
τ þ s
2

��
;

Fð4;2Þ ¼ Fð4;6Þ ¼ 1

8

�
4A
3

−
B
3
ð3E2ðτÞ − 4E2ð2τÞ

�
;

Fð4;2kþ1Þ ¼ 1

8

�
2A
3

þ B

�
4

3
E2ð4τÞ −

2

3
E2ð2τÞ −

1

2
E4ðτÞ

��
:

ðA17Þ
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Finally the low lying coefficients of this orbifold satisfy

cð0;sÞð�1Þ ¼ 1

4
; s ¼ 0; � � � 7;

X7
s¼0

cð0;sÞð�1Þ ¼ 2: ðA18Þ

and

X7
s¼0

cð0;sÞð0Þ ¼ 2: ðA19Þ

The above equation implies that the number of (1,1) forms
is 2 which agrees with the K3 orbifold dual to the N ¼ 8
CHL compactification [10]. The full elliptic genus of K3
orbifolded by the 8A automorphism. is given by

XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 8Aðτ; zÞ ðA20Þ

Thus the elliptic genus of the 8A orbifold of K3 is K3 itself.

6. Conjugacy class 14A

Fð0;1Þðτ; zÞ ¼ Fð0;3Þ ¼ Fð0;5Þ ¼ Fð0;9Þ ¼ Fð0;11Þ ¼ Fð0;13Þ;

¼ 1

14

�
A
3
− B

�
−

1

36
E2ðτÞ −

7

12
E7ðτÞ þ

91

36
E14ðτÞ −

14

3
ηðτÞηð2τÞηð7τÞηð14τÞ

��
; ðA21Þ

Fðr;rkÞ ¼ 1

14

�
A
3
þ B

�
−

1

72
E2

�
τ þ k
2

�
−

1

12
E7

�
τ þ k
7

�
þ 13

72
E14

�
τ þ k
14

�
−
1

3
ηðτ þ kÞη

�
τ þ k
2

�
η

�
τ þ k
7

�
η

�
τ þ k
14

���
;

ðA22Þ

where r ¼ 1,3,5,9,11,13 and rk is Mod 14.
The even twisted sectors with odd twining characters can be found by similar manipulations as discussed in detail for the

case of the 11A conjugacy class. This leads to the following equalities.

Fð2;13Þ ¼ Fð12;1Þ ¼ Fð6;11Þ ¼ Fð8;3Þ ¼ Fð4;5Þ ¼ Fð10;9Þ:

ðA23Þ

Combining all these results into a single formula we obtain

Fð2r;2rkþ7Þ ¼ 1

14

�
A
3
þ B

�
−
1

6
E2ðτÞ −

1

12
E7

�
τ þ k
7

�
þ 1

3
E7

�
2τ þ 2k

7

�
−
2

3
ηðτ þ kÞηð2τ þ 2kÞη

�
τ þ k
7

�
η

�
2τ þ 2k

7

���
;

ðA24Þ

where k runs from 0 to 6 and except 3 and r from 1 to 6. Next the following sectors are given by

Fð7;2kþ1Þ ¼ 1

14

�
A
3
þ B

�
−

7

12
E7ðτÞ þ

49

72
E2

�
7τ þ 1

2

�
−

1

72
E2

�
τ þ 1

2

�

þ 7

3
eiπ11=12ηðτÞηð7τÞη

�
τ þ 1

2

�
η

�
7τ þ 1

2

���
;

Fð7;2kÞ ¼ 1

14

�
A
3
þ B

�
−

7

12
E7ðτÞ þ

49

72
E2

�
7τ

2

�
−

1

72
E2

�
τ

2

�
þ 7

3
ηðτÞηð7τÞη

�
τ

2

�
η

�
7τ

2

���
: ðA25Þ

Finally the sectors belonging to the 2A and 7A suborbits are given by
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Fð0;0Þ ¼ 4

7
A: ðA26Þ

Fð0;2kÞ ¼ 1

14

�
A −

7

4
BE7ðτÞ

�
k runs from 1 to 6;

Fð2r;2rkÞ ¼ 1

14

�
Aþ 1

4
BE7

�
τ þ k
7

��
; k runs from 0 to 6: ðA27Þ

Fð0;7Þ ¼ 1

14

�
8

3
A −

4

3
BE2ðτÞ

�
;

Fð7;7kÞ ¼ 1

14

�
8

3
Aþ 2

3
BE2

�
τ þ k
2

��
k runs from 0 to 1: ðA28Þ

7. Conjugacy class 15A

Fð0;1Þðτ; zÞ ¼ Fð0;2Þ ¼ Fð0;4Þ ¼ Fð0;7Þ ¼ Fð0;8Þ ¼ Fð0;11Þ ¼ Fð0;13Þ ¼ Fð0;14Þ;

¼ 1

15

�
A
3
− B

�
−

1

16
E3ðτÞ −

5

24
E5ðτÞ þ

35

16
E15ðτÞ −

15

4
ηðτÞηð3τÞηð5τÞηð15τÞ

��
: ðA29Þ

Fðr;rkÞ ¼ 1

15

�
A
3
þ B

�
−

1

48
E3

�
τ þ k
3

�
−

1

24
E5

�
τ þ k
5

�
þ 7

48
E15

�
τ þ k
15

�
−
1

4
ηðτ þ kÞη

�
τ þ k
3

�
η

�
τ þ k
5

�
η

�
τ þ k
15

���
;

ðA30Þ

where r ¼ 1,2,4,7,8,11,13,14 and rk is mod 15. The sectors belonging to the 5A and 3A sub-orbits are given by

Fð0;0Þ ¼ 8

15
A: ðA31Þ

Fð0;3kÞ ¼ 1

15

�
4

3
A −

5

3
BE5ðτÞ

�
k runs from 1 to 4;

Fð3r;3rkÞ ¼ 1

15

�
4

3
Aþ 1

3
BE5

�
τ þ k
5

��
; k runs from 0 to 4: ðA32Þ

Fð0;5kÞ ¼ 1

15

�
2A −

3

2
BE3ðτÞ

�
;

Fð5r;5rkÞ ¼ 1

15

�
2Aþ 1

2
BE3

�
τ þ k
3

��
k runs from 0 to 2: ðA33Þ

Finally the remaining sectors are given by

Fð3r;5þ3rkÞ ¼ 1

15

�
A
3
þ B

�
−
1

4
E3ðτÞ −

1

24
E5

�
τ þ k
5

�
þ 3

8
E5

�
3τ þ 3k

5

�
−
3

4
ηðτ þ kÞηð3τ þ 3kÞη

�
τ þ k
5

�
η

�
3τ þ 3k

5

���
;

Fð3r;10þ3rkÞ ¼ 1

15

�
A
3
þ B

�
−
1

4
E3ðτÞ −

1

24
E5

�
τ þ k
5

�
þ 3

8
E5

�
3τ þ 3k

5

�

−
3

4
e−

2πi
5 ηðτ þ kÞηð3τ þ 3kÞη

�
τ þ k
5

�
η

�
3τ þ 3k

5

���
; ðA34Þ

where k runs from 0 to 4 and s ¼ 1 to 4.
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Fð5r;3sþ5rkÞ ¼ 1

15

�
A
3
þ B

�
5

24
E5ðτÞ þ

1

12
E3

�
τ þ k
3

�
−

5

24
E5

�
τ þ k
3

�
þ 5

4
ηðτ þ kÞηð5τ þ 5kÞη

�
τ þ k
3

�
η

�
5τ þ 5k

3

���
;

ðA35Þ

where k runs from 0 to 2 and s ¼ 1 to 2.
The low lying coefficients of the twisted elliptic genus in conjugacy classes 14A as well as 15A satisfy

cð0;sÞð�1Þ ¼ 2

N
;

XN−1

s¼0

cð0;sÞð�1Þ ¼ 2;

XN−1

s¼0

cð0;Þð0Þ ¼ 0;
XN−1

r;s¼0

Fðr;sÞðτ; zÞ ¼ 8Aðτ; zÞ ðA36Þ

[1] R. Dijkgraaf, E. P. Verlinde, and H. L. Verlinde, Counting
dyons in N ¼ 4 string theory, Nucl. Phys. B484, 543 (1997).

[2] G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt,
Asymptotic degeneracy of dyonic N ¼ 4 string states and
black hole entropy, J. High Energy Phys. 12 (2004) 075.

[3] D. P. Jatkar and A. Sen, Dyon spectrum in CHL models,
J. High Energy Phys. 04 (2006) 018.

[4] J. R. David and A. Sen, CHL Dyons and statistical entropy
function from D1-D5 system, J. High Energy Phys. 11
(2006) 072.

[5] D. Shih, A. Strominger, and X. Yin, Recounting dyons in
N ¼ 4 string theory, J. High Energy Phys. 10 (2006) 087.

[6] S. Chaudhuri, G. Hockney, and J. D. Lykken, Maximally
Supersymmetric String Theories inD < 10, Phys. Rev. Lett.
75, 2264 (1995).

[7] J. R. David, D. P. Jatkar, and A. Sen, Product representation
of Dyon partition function in CHL models, J. High Energy
Phys. 06 (2006) 064.

[8] A. Dabholkar and S. Nampuri, Spectrum of dyons and black
holes in CHL orbifolds using Borcherds lift, J. High Energy
Phys. 11 (2007) 077.

[9] V. V. Nikulin, Finite automorphism groups of Kähler K3
surfaces, Trans. Moscow Math. Soc. 38, 71 (1979).

[10] S. Chaudhuri and D. A. Lowe, Type IIA heterotic duals with
maximal supersymmetry, Nucl. Phys. B459, 113 (1996).

[11] P. S. Aspinwall, Some relationships between dualities in
string theory, Nucl. Phys. B, Proc. Suppl. 46, 30 (1996).

[12] T. Eguchi, H. Ooguri, and Y. Tachikawa, Notes on the K3
surface and the Mathieu group M24, Exp. Math. 20, 91
(2011).

[13] M. C. Cheng, K3 surfaces, N ¼ 4 dyons, and the Mathieu
group M24, Commun. Num. Theor. Phys. 4, 623 (2010).

[14] T. Eguchi and K. Hikami, Note on twisted elliptic genus of
K3 surface, Phys. Lett. B 694, 446 (2011).

[15] M. R. Gaberdiel, S. Hohenegger, and R. Volpato, Mathieu
twining characters for K3, J. High Energy Phys. 09 (2010)
058.

[16] A. Sen, Black hole entropy function, attractors and precision
counting of microstates, Gen. Relativ. Gravit. 40, 2249
(2008).

[17] A. Dabholkar and S. Nampuri, Quantum black holes, Lect.
Notes Phys. 851, 165 (2012).

[18] A. Sen, How do black holes predict the sign of the fourier
coefficients of siegel modular forms?, Gen. Relativ. Gravit.
43, 2171 (2011).

[19] M. R. Gaberdiel, S. Hohenegger, and R. Volpato, Sym-
metries of K3 sigma models, Commun. Num. Theor. Phys.
6, 1 (2012).

[20] G. Hoehn and G. Mason, The 290 fixed-point sublattices of
the Leech lattice, Journal of algebra 448, 618 (2016).

[21] J. F. R. Duncan and S. Mack-Crane, Derived equivalences of
K3 surfaces and twined elliptic genera, Res. Math. Sci. 3, 1
(2016).

[22] T. Gannon, Much ado about Mathieu, Adv. Math. 301, 322
(2016).

[23] M. C. N. Cheng, F. Ferrari, S. M. Harrison, and N. M.
Paquette, Landau-Ginzburg orbifolds and symmetries of
K3 CFTs, J. High Energy Phys. 01 (2017) 046.

[24] M. R. Gaberdiel, D. Persson, H. Ronellenfitsch, and R.
Volpato, Generalized mathieu moonshine, Commun. Num.
Theor Phys. 7, 145 (2013).

[25] M. R. Gaberdiel, A. Taormina, R. Volpato, andK.Wendland,
A K3 sigma model with Z8

2:M20 symmetry, J. High Energy
Phys. 02 (2014) 022.

[26] D. Persson and R. Volpato, Second quantized mathieu
moonshine, Commun. Num. Theor. Phys. 8 (2014) 403.

[27] J. R. David, D. P. Jatkar, and A. Sen, Dyon spectrum in
generic N ¼ 4 supersymmetric Z(N) orbifolds, J. High
Energy Phys. 01 (2007) 016.

[28] N. M. Paquette, R. Volpato, and M. Zimet, No more walls!
A tale of modularity, symmetry, and wall crossing for 1=4
BPS dyons, J. High Energy Phys. 05 (2017) 047.

[29] D. Persson and R. Volpato, Fricke S-duality in CHL models,
J. High Energy Phys. 12 (2015) 156.

[30] K. Bringmann and S. Murthy, On the positivity of black hole
degeneracies in string theory, Commun. Num. Theor Phys.
7, 15 (2013).

[31] S. Govindarajan and K. Gopala Krishna, BKM Lie super-
algebras from dyon spectra in Z(N) CHL orbifolds for
composite N, J. High Energy Phys. 05 (2010) 014.

DYON DEGENERACIES FROM MATHIEU MOONSHINE SYMMETRY PHYSICAL REVIEW D 96, 086020 (2017)

086020-19

https://doi.org/10.1016/S0550-3213(96)00640-2
https://doi.org/10.1088/1126-6708/2004/12/075
https://doi.org/10.1088/1126-6708/2006/04/018
https://doi.org/10.1088/1126-6708/2006/11/072
https://doi.org/10.1088/1126-6708/2006/11/072
https://doi.org/10.1088/1126-6708/2006/10/087
https://doi.org/10.1103/PhysRevLett.75.2264
https://doi.org/10.1103/PhysRevLett.75.2264
https://doi.org/10.1088/1126-6708/2006/06/064
https://doi.org/10.1088/1126-6708/2006/06/064
https://doi.org/10.1088/1126-6708/2007/11/077
https://doi.org/10.1088/1126-6708/2007/11/077
https://doi.org/10.1016/0550-3213(95)00589-7
https://doi.org/10.1016/0920-5632(96)00004-7
https://doi.org/10.1080/10586458.2011.544585
https://doi.org/10.1080/10586458.2011.544585
https://doi.org/10.4310/CNTP.2010.v4.n4.a2
https://doi.org/10.1016/j.physletb.2010.10.017
https://doi.org/10.1007/JHEP09(2010)058
https://doi.org/10.1007/JHEP09(2010)058
https://doi.org/10.1007/s10714-008-0626-4
https://doi.org/10.1007/s10714-008-0626-4
https://doi.org/10.1007/978-3-642-25947-0
https://doi.org/10.1007/978-3-642-25947-0
https://doi.org/10.1007/s10714-011-1175-9
https://doi.org/10.1007/s10714-011-1175-9
https://doi.org/10.4310/CNTP.2012.v6.n1.a1
https://doi.org/10.4310/CNTP.2012.v6.n1.a1
https://doi.org/10.1016/j.jalgebra.2015.08.028
https://doi.org/10.1186/s40687-015-0050-9
https://doi.org/10.1186/s40687-015-0050-9
https://doi.org/10.1016/j.aim.2016.06.014
https://doi.org/10.1016/j.aim.2016.06.014
https://doi.org/10.1007/JHEP01(2017)046
https://doi.org/10.4310/CNTP.2013.v7.n1.a5
https://doi.org/10.4310/CNTP.2013.v7.n1.a5
https://doi.org/10.1007/JHEP02(2014)022
https://doi.org/10.1007/JHEP02(2014)022
https://doi.org/10.4310/CNTP.2014.v8.n3.a2
https://doi.org/10.1088/1126-6708/2007/01/016
https://doi.org/10.1088/1126-6708/2007/01/016
https://doi.org/10.1007/JHEP05(2017)047
https://doi.org/10.1007/JHEP12(2015)156
https://doi.org/10.4310/CNTP.2013.v7.n1.a2
https://doi.org/10.4310/CNTP.2013.v7.n1.a2
https://doi.org/10.1007/JHEP05(2010)014


[32] A. Sen, Walls of marginal stability and dyon spectrum in
N ¼ 4 supersymmetric string theories, J. High Energy Phys.
05 (2007) 039.

[33] A. Dabholkar, D. Gaiotto, and S. Nampuri, Comments on
the spectrum of CHL dyons, J. High Energy Phys. 01 (2008)
023.

[34] G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt,
Black hole partition functions and duality, J. High Energy
Phys. 03 (2006) 074.

[35] A. Belin, A. Castro, J. Gomes, and C. A. Keller, Siegel
modular forms and black hole entropy, J. High Energy Phys.
04 (2017) 057.

[36] M. C. N. Cheng, X. Dong, J. F. R. Duncan, J. A. Harvey, S.
Kachru, and T.Wrase, Mathieu moonshine andN ¼ 2 string
compactifications, J. High Energy Phys. 09 (2013) 030.

[37] S. Datta, J. R. David, and D. Lust, Heterotic string on the
CHL orbifold of K3, J. High Energy Phys. 02 (2016) 056.

[38] A. Chattopadhyaya and J. R. David, N ¼ 2 heterotic string
compactifications on orbifolds of K3 × T2, J. High Energy
Phys. 01 (2017) 037.

[39] C. Itzykson et al., From Number Theory to Physics
(Springer, New York, 1992), Chap. 4 by Don Zagier.

[40] http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
23/2/1/.

ARADHITA CHATTOPADHYAYA and JUSTIN R. DAVID PHYSICAL REVIEW D 96, 086020 (2017)

086020-20

https://doi.org/10.1088/1126-6708/2007/05/039
https://doi.org/10.1088/1126-6708/2007/05/039
https://doi.org/10.1088/1126-6708/2008/01/023
https://doi.org/10.1088/1126-6708/2008/01/023
https://doi.org/10.1088/1126-6708/2006/03/074
https://doi.org/10.1088/1126-6708/2006/03/074
https://doi.org/10.1007/JHEP04(2017)057
https://doi.org/10.1007/JHEP04(2017)057
https://doi.org/10.1007/JHEP09(2013)030
https://doi.org/10.1007/JHEP02(2016)056
https://doi.org/10.1007/JHEP01(2017)037
https://doi.org/10.1007/JHEP01(2017)037
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/

