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Using target space null reductionof the Polyakovaction,we find a novel covariant action for stringsmoving
in a torsional Newton-Cartan geometry. Sending the string tension to zerowhile rescaling the Newton-Cartan
clock 1-form, so as to keep the string action finite, we obtain a nonrelativistic string moving in a new type of
non-Lorentzian geometry that we call Uð1Þ-Galilean geometry. We apply this to strings on AdS5 × S5 for
which we show that the zero tension limit is realized by the spin matrix theory limits of the AdS/CFT
correspondence. This is closely related to limits of spin chains studied in connection to integrability in
AdS/CFT. The simplest example gives a covariant version of the Landau-Lifshitz sigma-model.
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I. INTRODUCTION

Non-Lorentzian geometry has appeared in recent years in
a wide variety of settings such as non-anti-de Sitter (AdS)
holography [1,2], effective actions of nonrelativistic field
theories including those relevant for the fractional quantum
Hall effect [3–6] and gravity theories with nonrelativistic
local symmetries such as Hořava-Lifshitz gravity and Chern-
Simons gravity theories on nonrelativistic algebras [7–9].
By non-Lorentzian geometry, we mean a manifold that is

locally flat in the sense of a kinematical principle of
relativity that is different from Einstein’s equivalence
principle. Examples are Newton-Cartan and Carrollian
geometries of which the tangent space structure is dictated
by the Bargmann (centrally extended Galilei) and Carroll
(zero speed of light contraction of Poincaré) algebras.
There is considerable literature on nonrelativistic strings;

see e.g. Refs. [10–15]. Of particular relevance for us will be
the nonrelativistic string spectra and associated sigma-
models, such as the Landau-Lifshitz model, observed
before in the AdS/CFT context [12]. Besides the stringy
Newton-Cartan geometry found in Ref. [14], these works
are noncovariant with regard to the world sheet and target
space geometry. A natural question is thus to what extent
non-Lorentzian geometries are important for sigma-models
of nonrelativistic strings.
In this paper, we show that target space null reduction of

the Polyakov action leads to a novel covariant action for the
propagation of nonrelativistic strings in a (torsional)
Newton-Cartan target space. Furthermore, we uncover that
taking a second nonrelativistic limit, that affects both the
target space and the world sheet, leads to a new class of
sigma-models that describes nonrelativistic strings moving

in a novel non-Lorentzian geometry that we refer to as
Uð1Þ-Galilean geometry.
Remarkably, we show that for a string on AdS5 × S5, the

second nonrelativistic limit corresponds to the spin matrix
theory limits of the AdS/CFT correspondence. Spin matrix
theories are quantum mechanical theories that arise as limits
of N ¼ 4 SYM (supersymmetric Yang-Mills) on R × S3

[16].Given a unitarity boundE ≥ J ofN ¼ 4SYM,where J
is a linear combination of commuting angular momenta and
R-charges such that states with E ¼ J are supersymmetric,
one sends E − J and the ’t Hooft coupling λ ¼ 4πgsN to
zero, keeping the ratio ðE − JÞ=λ andN fixed. It is clear from
the relativistic magnon dispersion relation [17] E−J¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λ
πsin

2p
2

p
−1 that a nonrelativistic spectrum is obtained

in this limit. We show that the spin matrix theory (SMT)
limits [16,18] on the string theory side correspond to our
double (target space/world sheet) nonrelativistic limit.
The SMT limits are closely related to limits of strings on

AdS5 × S5 considered in connection with integrability of
the AdS/CFT correspondence, starting with Kruczenski
[12]. The difference is that the Kruczenski limit does not
decouple higher order terms in the string tension. However,
the leading part of the sigma-model is the same as for SMT.
From the SMT or Kruczenski limit, one gets the well-

known Landau-Lifshitz sigma-model in the simplest case.
Other limits give similar sigma-models that also are
classical limits of nearest-neighbor spin chains [19–22].
Using the results of this paper, these sigma-models can be
made covariant, thus providing a new interpretation in
terms of nonrelativistic string theory.

II. STRINGS ON TORSIONAL
NEWTON-CARTAN GEOMETRY

The action of a nonrelativistic particle moving in a
torsional Newton-Cartan (TNC) geometry can be obtained
by null reduction of the action of a relativistic massless
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particle [23–25]. Here, we will do something similar for the
target space null reduction of the Polyakov action for a
relativistic string.
Consider the Polyakov action,

S ¼
Z

d2σL ¼ −
T
2

Z
d2σ

ffiffiffiffiffiffi
−γ

p
γαβgαβ; ð1Þ

with gαβ ¼ ∂αXM∂βXNGMN where GMN is the dþ 2-
dimensional target space metric. Here, ∂α is the derivative
with respect to the world sheet coordinates σα with α ¼ 0, 1,
andT is the string tension.We consider closed strings; hence,
σ1 ∼ σ1 þ 2π. The Virasoro constraints are

gαβ −
1

2
γαβγ

γδgγδ ¼ 0: ð2Þ

Assume that the target space has a null Killing vector ∂u.
The most general metric with this property is

GMNdxMdxN ¼ 2τðdu −mÞ þ hμνdxμdxν; ð3Þ
where μ; ν ¼ 0; 1;…; d, M ¼ ðu; μÞ and τ ¼ τμdxμ,
m ¼ mμdxμ, det hμν ¼ 0. The tensors τμ, mμ and hμν are
independent of u. This decomposition of the line element
admits the following local symmetries,

δτμ ¼ Lξτμ;

δmμ ¼ Lξmμ þ ∂μσ þ λaeaμ;

δhμν ¼ Lξhμν þ τμλaeaν þ τνλaeaμ; ð4Þ

where we defined eaμ via hμν ¼ δabeaμebν with a ¼ 1;…; d.
The transformation with parameter σ is a Uð1Þ gauge
transformation that acts on u as δu ¼ σ. The transformation
with parameter λa is known as a local Galilean or Milne
boost. The Lie derivatives along ξμ correspond to the
infinitesimal dþ 1-dimensional diffeomorphisms. The
fields and transformations (4) are those of TNC geometry
[5–7,26,27] in agreement with the known fact that null
reductions give rise to TNC geometry [23,24,28,29].
So far, we are still describing a relativistic string in a

background with a null isometry. To turn this into a
nonrelativistic string moving in a TNC background, we
need to remove the field Xu from the description. This is
achieved by putting the momentum Pα

u along u,

Pα
u ¼

∂L
∂ð∂αXuÞ ¼ −T

ffiffiffiffiffiffi
−γ

p
γαβτβ; ð5Þ

on shell, i.e. imposing ∂αPα
u ¼ 0, here defining τβ ¼

∂βXμτμ as the pullback of τμ. This requires considering
Pα
u (as opposed to ∂αXu) as an independent variable. We

thus perform the Legendre transformation

L̂ ¼ L − Pα
u∂αXu; ð6Þ

where L̂ is the Lagrangian for the remaining embedding
coordinates Xμ of which the dependence on Pα

u is such that

∂L̂
∂Pα

u
¼ −∂αXu: ð7Þ

Wewill use (5) to solve for γαβ in terms of Pα
u and τα. The

solution to (5) can be written as

ffiffiffiffiffiffi
−γ

p
γαβ ¼ eð−vαvβ þ eαeβÞ; ð8Þ

where we defined e ¼ detðτα; eαÞ ¼ 1
T P

α
uτα and

eα ¼
eαβP

β
u

T
; vα ¼ −

Pα
u

Pγ
uτγ

; eα ¼ −T
eαβτβ
Pγ
uτγ

: ð9Þ

Here, eαβ and eαβ denote Levi-Cività symbols with
e01 ¼ −e01 ¼ 1. Together with τα, the vectors (9) form
an orthonormal system: vατα ¼ −1, vαeα ¼ 0, eατα ¼ 0
and eαeα ¼ 1. We assume that Pα

uτα ≠ 0.
The action associated with L̂ can be written as

Ŝ ¼
Z

d2σL̂ ¼ −
T
2

Z
d2σeð−vαvβ þ eαeβÞh̄αβ; ð10Þ

where h̄αβ ¼ ∂αXμ∂βXνh̄μν with h̄μν ¼ hμν − τμmν − τνmμ.
Further, mα and hαβ are the pullbacks of mμ and hμν. From
(7), we obtain

mα −
1

2
ταðeγeδ þ vδvγÞhγδ þ eαvγeδhγδ ¼ ∂αXu; ð11Þ

which is equivalent to the Virasoro constraints (2) for a
string in the background with a null isometry (3). This
follows from contracting (2) with all combinations of eα

and vα. Furthermore, from (7), it follows that

∂α
∂L̂
∂Pβ

u
− ∂β

∂L̂
∂Pα

u
¼ 0; ð12Þ

which is independent of Xu.
We are now going to put Pα

u on shell, i.e. impose
∂αPα

u ¼ 0, which is equivalent to setting ∂αeβ−∂βeα¼0.
We will write Pα

u ¼ Teαβeβ where locally eβ ¼ ∂βη and
substitute this into the action Ŝ. This leads to the following
Lagrangian for Xμ and η:

L̂ ¼ T

�
−eαβmα∂βηþ

eαα
0
eββ

0 ð∂α0η∂β0η − τα0τβ0 Þ
2eγγ

0
τγ∂γ0η

hαβ

�
:

ð13Þ

The equation of motion of η gives the constraint (12). The
action (13) is invariant under world sheet diffeomorphisms
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δXμ ¼ ξα∂αXμ and δη ¼ ξα∂αη generated by ξα, as well as
under all local symmetries of the target space TNC geometry
that are generated by σ and λa in (4). There can also be global
symmetries generated by Kμ for those ξμ ¼ Kμ in (4) for
which 0 ¼ δτμ ¼ δmμ ¼ δhμν.
Assume that the target space clock 1-form τ is closed.Write

this as τμ ¼ ∂μX0.We can then choose the gauge σ0 ¼ 2πT
P X0

and η ¼ P
2πT σ

1 with P ¼ R
2π
0 P0

udσ1 the conserved total
momentum. In this gauge, the action (13) on a flat TNC
background withmμ ¼ 0, τμ ¼ δ0μ and hμν ¼ δabδ

a
μδ

b
ν repro-

duces the standard nonrelativistic string action which has
1þ 1-dimensional world sheet Poincaré symmetry [30]. This
latter action was also studied in Ref. [14]. However, the
coupling to the target space geometry in Ref. [14] involves a
doubling of the fields τμ andmμ which we do not see here. It
would be interesting to understand this difference.

III. NONRELATIVISTIC SIGMA-MODELS
FROM SCALING LIMIT

Wewill take a limit of Ŝ inwhich the tensionT goes to zero.
In order to keep the action finite, we compensate T → 0 by
rescaling the coupling to τμ. We can always write τμ ¼
N∂μF þ βμ with vμβμ ¼ vμhμν ¼ 0 and vμτμ ¼ −1. If we
rescaleF ¼ c2 ~F, T ¼ ~T=c, η ¼ c~η and send c to infinity, we
obtain

~S ¼ − ~T
Z

d2σ

�
eαβmα∂β ~ηþ

eαα
0
eββ

0
~τα0 ~τβ0

2eγγ
0
~τγ∂γ0 ~η

hαβ

�
; ð14Þ

where ~τα ¼ ∂αXμ~τμ with ~τμ ¼ N∂μ
~F.

The resulting action ~S has world sheet diffeomorphism
invariance δXμ ¼ ξα∂αXμ and δ~η ¼ ξα∂α ~η. Assuming
~τμ ¼ ∂μX0 ¼ δ0μ, we can choose the gauge σ0 ¼ 4π2 ~T2

P2 X0

and ~η ¼ P
2π ~T

σ1, obtaining

~S ¼ −
P
2π

Z
d2σ

�
mμ∂0Xμ þ 1

2
hμν∂1Xμ∂1Xν

�
: ð15Þ

This is a nonrelativistic world sheet theory containing only
first order time derivatives. The equation of motion of ~η
gives the constraint

∂0m1 − ∂1m0 þ
1

2
∂1h11 ¼ 0: ð16Þ

The action (14) is invariant under local transformations
that act on ~τμ, mμ and hμν ¼ δabeaμebν as

δ~τμ ¼ 0; δmμ ¼ ∂μσ; δhμν ¼ 2~τðμeaνÞ ~λa: ð17Þ
These transformations plus target space diffeomorphsims
follow from (4) if we set λa ¼ ~λa=c2, τμ ¼ c2~τμ þ βμ and

send c to infinity. The action ~S has a global symmetry
generated by Kμ if the Lie derivatives along Kμ of ~τμ, mμ

and hμν vanish up to the transformations (17).

TNC geometry can be obtained by gauging the Bargmann
algebra [7,14]. The transformations (4) follow from the
Bargmann algebra fH;Pa; Jab; Ga; Ng with a ¼ 1;…; d
of which the nonzero commutators are ½H;Ga� ¼ Pa
and ½Pa;Gb� ¼ δabN where we left out the nonzero com-
mutators with Jab. The TNC fields can be assembled in
the connection Aμ ¼ Hτμ þ Paeaμ þ Nmμ þ � � �, where we
left out the connections associated with Galilean boosts Ga
and rotations Jab. If we consider the transformation δAμ ¼
LξAμ þ ∂μΣþ ½Aμ;Σ�, where ξμ generates diffeomor-
phisms and where Σ ¼ Nσ þGaλ

a þ 1
2
Jabλab, we obtain

all transformations of the TNC fields τμ, mμ and hμν ¼
δabeaμebν in (4). If we rescaleH ¼ c2 ~H andGa ¼ c−2 ~Ga and
send c to infinity, we find the Galilei algebraGal direct sum
with a Uð1Þ generated by N, where Gal is the Bargmann
algebra with N removed. In a similar way, the local trans-
formations of ~τμ, mμ and hμν ¼ δabeaμebν can be obtained by
gauging Gal ⊕ Uð1Þ where ~τμ is the connection associated
with ~H, eaμ is the connection associated withPa andmμ is the
connection associated with N. The resulting geometry is
what we call Uð1Þ-Galilean geometry.
Interestingly, applying the same limit to the case of a

massless relativistic particle leads to an action proportional
to

R
dλmμ

dXμ

dλ , so that a particle on a Uð1Þ-Galilean
geometry has no dynamics. We have thus found a geometry
that is more naturally probed by strings than by particles.

IV. LIMITS OF STRINGS ON AdS5 × S5

We apply now the above scaling limit c → ∞ to the case
of strings on AdS5 × S5. As we shall see, the SMT limits
introduced in Ref. [16] are realizations of the scaling limit.
Consider type IIB strings on AdS5 × S5 in the global patch
with radius R ¼ ð4πgsNÞ1=4ls and five-form flux N where
gs is the string coupling and ls the string length. Introduce
now the following six commuting charges, namely the
energy E, the angular momenta S1 and S2 on the S3 in AdS5
and the angular momenta J1, J2 and J3 on S5. The unitarity
bounds of N ¼ 4 are dual to BPS (Bogomol’nyi-
Prasad-Sommerfield) bounds E ≥ J where J is a linear
combination of the five angular momenta. Specifically, one
has the five BPS bounds E ≥ J with J ¼ J1 þ J2,
J ¼ J1 þ J2 þ J3, J ¼ S1 þ J1 þ J2, J ¼ S1 þ S2 þ J1
or J ¼ S1 þ S2 þ J1 þ J2 þ J3. For a given BPS bound
E ≥ J, the SMT limits of N ¼ 4 SYM are dual to limits of
type IIB strings on AdS5 × S5 with E − J and gs going to
zero with ðE − JÞ=gs and N kept fixed. The effective string
tension in AdS5 × S5 is

T ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πgsN

p
; ð18Þ

which goes to zero in the SMT limits.
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Four of the bounds do not involve all of the five angular
momenta. Let n denote the number of angular momenta not
included in the bound. In the SMT limit, the 2n directions—
here called external directions—that realize the rotation
planes for these n angular momenta have a confining
potential with effective mass proportional to 1=gs, and hence
these directions are forced to sit at the minimum of the
potential. This gives an effective reduction of the number of
spatial dimensions after the limit.
One can show that AdS5 × S5 admits a coordinate

system u, xμ, yI where μ ¼ 0; 1; 2;…; d, d ¼ 8 − 2n,
and I ¼ 1; 2;…; 2n, with the properties that i) yI are the
2n external directions that are confined to be at yI ¼ 0 in
the limit, ii) ∂u and ∂x0 are Killing vector fields with i∂x0 ¼
E − J and iii) the metric of AdS5 × S5 can be put in the
form (3) when setting yI ¼ 0, with τμ,mμ and hμν such that
τ0 ¼ 1 and m0 ¼ h00 ¼ h0i ¼ 0 for i ¼ 1; 2; ::; d.
The scaling limit introduced above corresponds to the

SMT limit if one identifies c−2 ¼ 4πgsN. Following this,
one rescales x0 ¼ c2 ~x0 such that the rescaled energy i∂ ~x0 ¼
ðE − JÞ=ð4πgsNÞ is kept fixed in the limit. The rescaled
tension is ~T ¼ cT ¼ 1

2π. After the scaling limit, we get the
action (14). With the gauge choice σ0 ¼ 1

P2 X0 (with X0 ¼
~x0 on the world sheet) and ~η ¼ Pσ1, this becomes (15).
We conclude that the SMT limit applied on type IIB strings

on AdS5 × S5 realizes the scaling limit c → ∞ introduced
above and therefore corresponds to a nonrelativistic limit
both on the target space as well as on the world sheet. After
the limit, the target space is a dþ 1-dimensional Uð1Þ-
Galilean geometry, and the world sheet theory is a non-
relativistic two-dimensional theory. Note that the action (15)
is large if P is large, and one can thus take a classical limit of
the action, even if the SMT/scaling limit involves sending the
effective tensionT to zero [18]. SeeRef. [18] for a discussion
of quantum effects in such limits.

V. EXAMPLES

For the simplest example, consider the SMT/scaling
limit toward the BPS bound E ≥ J ¼ J1 þ J2. Write the
metric of AdS5 × S5 as

gMNdxMdxN ¼ cos2ψ ½2τðdu −mÞ þ hμνdxμdxν�

− ðsinh2ρþ sin2ψÞ
�
dx0 −

1

2
du

�
2

þ dρ2 þ sinh2ρdΩ2
3 þ dψ2 þ sin2ψdα2;

ð19Þ

with d ¼ 2 since n ¼ 3, τ ¼ dx0 − 2m and

m ¼ −
cos θ
2

dϕ;

hμνdxμdxν ¼
1

4
ðdθ2 þ sin2θdϕ2Þ: ð20Þ

Note that the radius is set to 1 and instead included in the
tension (18). The six external directions have a potential
proportional to ðsinh2 ρþ sin2 ψÞ=gs that confines them to
the point ρ ¼ ψ ¼ 0 [18]. The SMT limit leads then to the
2þ 1-dimensional Uð1Þ-Galilean geometry given by ~τ ¼
d~x0 and Eq. (20). The nonrelativistic sigma-model (15) is
the Landau-Lifshitz model with P ¼ J. Thus, we get a new
interpretation of the Landau-Lifshitz model as a non-
relativistic string theory of the form (14) with a Uð1Þ-
Galilean target space geometry.
SMT becomes a nearest-neighbor spin chain for N ¼ ∞,

which is the ferromagnetic Heisenberg spin chain with
SUð2Þ symmetry for J ¼ J1 þ J2. In a long-wave length
approximation with large J, this is described by the
Landau-Lifshitz model hence matching the SMT/scaling
limit on the string theory side.
The connection between the emerging sigma-models

from spin chains and limits of strings on AdS5 × S5 was
first pointed out in Ref. [12] by Kruczenski and later
studied for other sectors in Refs. [19–22]. These cases can
all be interpreted in the framework of this paper as well.
However, the Kruczenski limit does not correspond to our
scaling limit since it does not take the tension (18) to zero.
Instead, it takes J ¼ J1 þ J2 to infinity keeping T2=J fixed
[19], and hence it includes terms of higher orders in T2=J
in contrast with the SMT limit. Moreover, one is in different
regimes on the gauge theory and string theory sides.
Another example is the limit toward theBPSboundE≥J¼

S1þS2þJ1þJ2þJ3. Write the metric of AdS5×S5 as

gMNdxMdxN ¼ −cosh2ρdt2 þ dρ2 þ sinh2ρdΩ2
3 þ dΩ2

5;

dΩ2
2kþ1 ¼ ðdΣkÞ2 þ ðdχk þ AkÞ2; ð21Þ

where E ¼ i∂t, S1 þ S2 ¼ −i∂χ1 , J1 þ J2 þ J3 ¼ −i∂χ2 ,
ðdΣkÞ2 is the Fubini-Study metric on CPk and Ak is a one-
form on CPk, k ¼ 1, 2. Using t ¼ v − 1

2
u, χ1 ¼ v − 1

2
uþ w

and χ2 ¼ vþ 1
2
u, the metric is of the form (3) for d ¼ 8 with

m ¼ −sinh2ρðdwþ A1Þ − A2;

hμνdxμdxν ¼ dρ2 þ 1

4
sinh2ð2ρÞðdwþ A1Þ2

þ sinh2ρdΣ2
1 þ dΣ2

2; ð22Þ
and τ ¼ dx0 þ 1

2
mþ A2. Taking the scaling limit gives now

the 8þ 1-dimensional Uð1Þ-Galilean geometry defined by
~τ ¼ d~x0 and (22) with sigma-model given by (14) and (15).
This limit is of particular interest since it corresponds to the
highest possible dimension of the target space and the largest
global symmetry groupSUð1; 2j3Þ of the correspondingSMT
and spin chain.

VI. DISCUSSION

The results of this paper open up a wide scope of
directions. It would be worthwhile to understand better
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the nature of the Uð1Þ-Galilean target space geometry.
Another important problem is to consider the quantum
theory of the nonrelativistic string actions (13) and (14) that
we have found, including beta-functions and the dynamical
role played by the target space dimension (for which we
naturally get dþ 1 ¼ 3, 5, 9 in the case of the limits on
AdS5 × S5). In particular, since dynamical NC (Newton-
Cartan) geometry is related to Hořava-Lifshitz gravity [7,9],
it would be interesting to see if the couplings to the target
space objects τμ,mμ, hμν in (13) and ~τμ,mμ, hμν in (14) have
to obey certain consistency conditions that can be interpreted
as the equations of motion of a nonrelativistic gravity. For
SMT, this could in turn be interesting since one should then
be able to see the emergence ofUð1Þ-Galilean geometry and
its associated gravitational dynamics from a quantum theory.
Important generalizations and extensions of our results

are i) the effect of adding the NSNS B-field to the limits,

which could be useful to understand if there is a notion of
T-duality and if there is a relation with the formulation of
nonrelativistic closed strings in Refs. [10,11]; ii) the
inclusion of fermions, and corresponding supersymmetric
versions of the nonrelativistic sigma-models; and iii) a
systematic study of higher derivative corrections to the
sigma-models. Moreover, by applying similar limits to the
DBI (Dirac-Born-Infeld) D-brane action (see also
Ref. [31]), it seems very likely that higher-dimensional
nonrelativistic world volume theories should exist.
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