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We study the discretization of three-dimensional gravity with Λ ¼ 0 following the loop quantum gravity
framework. In the process, we realize that different choices of polarization are possible. This allows us to
introduce a new discretization based on the triad as opposed to the connection as in the standard loop
quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity,
namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by
the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of
Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We
show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the
Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the
discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).
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I. INTRODUCTION

Three-dimensional (3d) gravity is a topological theory
that can be exactly quantized [1]. Seen as a toy model
for testing fundamental questions pertinent to four-
dimensional quantum gravity, three-dimensional quantum
gravity is also compelling for finding new approaches to
the physically relevant four-dimensional theory. Three-
dimensional gravity is appeals as well due to several
existing quantum models [1]. For example, loop quantum
gravity (LQG) and the combinatorial quantization formal-
ism come from two different quantization and discretiza-
tion processes.
LQG is a canonical quantization approach of which the

starting point is the first order gravity action, the so-called
Palatini action [2]. In the quantization process, two different
procedures are achieved: the discretization and the quanti-
zation itself. These two strokes are usually done in one, but
let us briefly describe them separately here. Discretization is
done using a graph, embedded in the spatial surface, which
in three dimensions can be chosen dual to a triangulation.
The continuous phase space variables, the connection and
the triad, are respectively smeared along the edges of the
graphs and along the corresponding dual edges. As a result,
the discrete phase space is described in terms of the so-called
holonomy-flux variables, and their Poisson algebra is the
holonomy-flux algebra. The result of the second stroke is the
definition of the quantum states of space, the so-called spin
networks. A key outcome of LQG is the discreteness of the
geometric spatial operators. LQG is nevertheless not a
discrete approximation of gravity. Indeed, one recovers

the continuum picture by taking a projective limit on the
Hilbert spaces [3]. One might wonder how much quantiza-
tion there is in the discretization process. The passage from
the continuum to the discrete allows one to identify the
discrete realization of the continuum symmetries (gauge
symmetry and translational symmetry) with Poisson-Lie
group symmetries given in terms of the classical Drinfeld
double. Upon quantization, this will give rise to quantum
group symmetries given by the Drinfeld double of SUð2Þ. In
this sense, the discretization process identifies the origin of
the quantum group symmetries.
The combinatorial quantization formalism is also a

Hamiltonian quantization approach, which is based on
the Chern-Simons action. The Chern-Simons action
describes three-dimensional gravity but allows degenerate
metrics as additional solutions. As previously mentioned,
the discretization procedure is based on graphs embedded
in the spatial surface. The discretization of the classical
Chern-Simons theory, or the Atiyah-Bott symplectic form
[4], was first identified for (closed) holonomies, giving rise
to the Goldman bracket [5]. The Poisson algebra is not
always well defined if one deals with open holonomies, but
this problem was addressed by Fock and Rosly [6]. They
postulated some Poisson structures for the (open) holon-
omies, which allow one to recover the moduli space with
the right Poisson structure. They did not consider the link
between the continuum variables Poisson bracket and their
Poisson bracket between the holonomies. Later, Alekseev
and Malkin proposed a change of coordinates in the phase
space variables which made apparent nice structures such
as the Drinfeld and Heinsenberg doubles [7]. Then,
Alekseev et al. proposed a direct quantization procedure
of the Fock and Rosly phase space [8,9].
Although both continuum theories are describing grav-

ity, the loop gravity and Chern-Simons theories are difficult
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to compare (nevertheless, see Ref. [10]) at the discrete level
and are written in terms of different mathematical structures
at the quantum level.
In this paper, we want to focus on the discretization step

of both theories and clarify the link between the two
approaches. In the loop gravity context, the discrete theory
is interesting per se as it provides a way to truncate the
theory into some approximation, getting in particular finite-
dimensional Hilbert spaces when the quantization is done.
As in the quantum case, this truncation can be removed by
considering the classical analog of the projective limit. One
might wonder how much quantization there is in the
discretization process. The passage from the continuum
to the discrete allows one to identify the discrete realization
of the continuum symmetries (gauge symmetry and trans-
lational symmetry) with Poisson-Lie group symmetries
given in terms of the classical Drinfeld double. Upon
quantization, this will give rise to quantum group sym-
metries given by the Drinfeld double of SUð2Þ. In this
sense, the discretization process identifies the origin of the
quantum group symmetries.
Starting from the Palatini action for three-dimensional

gravity with a zero cosmological constant, we reproduce
the analysis of Ref. [11], which focused on the four-
dimensional case. Identifying precisely the passage from
the continuum to the discrete reveals that some choice of
polarization is actually made in the standard LQG
approach. We discuss then the consequence of making
other choices of polarization. We obtain three main results:

(i) We show that a different choice of polarization
allows us to define the corresponding phase space
based on the metric (triad) picture. This new discrete
framework where the vanishing of the curvature
around each face of the triangulation is automati-
cally implemented could be of interest to write a
more geometrical formulation of gravity.

(ii) Chern-Simons theory can be viewed as 3d gravity
where no specific choice of polarization is made. We
can also apply our “loopy” discretization scheme to
Chern-Simons theory. The Poisson structure is well
defined for any holonomy, meaning that we have
derived an alternative to the usual Fock and Rosly
regularization, while keeping a clear link with the
continuous Chern-Simons variables.

(iii) This metric kinematical phase space can be shown to
be the dual of the usual LQG holonomy kinematical
phase space through the notion of symplectic dual
pairs. These two dual representations are unified
within the Chern-Simons framework. We illustrate
in particular how different choices of polarization in
the discretized Chern-Simons theory lead to the two
dual discretized gravity pictures.

The scheme of the paper goes as follows. In Sec. II, we
describe the discretization procedure of the gravity phase
space variables and the associated symplectic form

following Ref. [11] for 3d gravity when Λ ¼ 0. We identify
the dual representation of the LQG phase space. In Sec. III,
we propose a new discretization of Chern-Simons theory
following the loop gravity discretization, and we show that
the Goldman brackets are recovered without introducing
any ad hoc regularization of the Poisson brackets. Finally,
in Sec. IV, we show the link between the three different
discrete pictures coming from either the Palatini action or
the Chern-Simons action.

II. 3D LQG AND ITS DUAL COUNTERPART

A. Continuous phase space and constraints

We consider a principal G-bundle overM, a 3d manifold
(with no boundary). We will consider in the following G ¼
SUð2Þ or SUð1; 1Þ. We note ωA ¼ 1

2
ϵABCωBC the connec-

tion and eA the triad, which are both g valued 1-form, with
g ¼ suð2Þ or suð1; 1Þ. The transformation properties are as
follows:

ω → ωþ dζ þ ½ω; ζ� ¼ ωþ dωζ;

e → eþ ½e; ζ� with ζ a g-valued scalar: ð1Þ

The curvature of the connection is the g-valued 2-form
F ¼ dωþ ω ∧ ω. Given the Lie algebra g, with generators
σA, we write its Killing form h; i as a normalized trace,1

hσA; σBi ¼ TrðσAσBÞ ¼ ηAB: ð2Þ

The 3d gravity action with zero cosmological constant is
given by the BF action

Sgravðe;ωÞ ¼ −
Z
M
he ∧ Fi ¼ −

Z
M
eI ∧ FI: ð3Þ

Capital indices are internal space indices, I, J ¼ 1, 2, 3.
The choice of gauge group G determines the signature
of the spacetime under consideration. The equations of
motion implement that the connection should be torsionless
and flat,

dωe ¼ deþ ω ∧ e ¼ 0; dωþ ω ∧ ω ¼ 0: ð4Þ

The BF action is invariant under the gauge transformations
(1) but also the translation

ω→ω; e→ eþdωϕ; with ϕ a g-valued scalar; ð5Þ

thanks to the Bianchi identity dωF ¼ 0.

1In the case of suð2Þ, or suð1; 1Þ, we can choose the
generators to be anti-Hermitian and to satisfy the algebra
½σA; σB� ¼ ϵABCσ

C and the normalized trace to be related to
the two-dimensional trace by TrðAÞ ¼ −2trðAÞ.
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We assume that M ∼R × Σ [with Σ a smooth two-
dimensional (2d) manifold with no boundary] and use the
coordinates ðt; x1; x2Þ for a point inM. We can then proceed
to the Hamiltonian formulation and identify the momentum
variable which is of density weight 1. The natural choice is
given by the dyad of density weight 1,

δSgrav
δ _ωaJ

≡ ~ea ¼ ~ϵabeb: ð6Þ

Lowercase indices are space indices, a, b ¼ 1, 2, and ~ϵab is
the antisymmetric tensor of density weight 1 such that
~ϵ12 ¼ 1. We introduced δ, a variational differential [12]
acting on fields which squares to zero δ2 ¼ 0 and should
not be confused with the space differential d. As such, the
product δAδB means the antisymmetric combination
δ½1Aδ2�B. We do not introduce a wedge notation for this
skew symmetric product, but we have to remember that
the product of two variational forms is anticommuting.
We can then identify the symplectic potential (Liouville
form) ΘLQG

grav ,

ΘLQG
grav ¼ h~eaδωai ¼ h~e · δωi ¼ he ∧ δωi: ð7Þ

Dynamics is given in terms of a pair of constraints
implementing that the spatial parts of the curvature or
the torsion are zero,

FI ¼ ~ϵabFI
ab ¼ 0; TJ ¼ð∂a ~eaJ þ ϵJ

IKωIa ~eaKÞ¼ 0: ð8Þ

Since a lot of attention will be given to the symplectic
potential in the following, let us make some preliminary
comments. The Liouville form we have obtained allows us
to identify the phase space variables and provides the
symplectic form, which in turns provides the Poisson
bracket. However, there are in fact different possible
choices of the Liouville form, equivalent up to boundary
terms. Let us recall the case of the particle. In this case, the
standard Liouville term is pdq with p the momentum
variable and q the configuration variable. This Liouville
term is equivalent up to the boundary term to

−qdp; or also
1

2
ðpdq − qdpÞ: ð9Þ

Any of these Liouville forms leads to the same symplectic
form (up to boundary terms). A similar ambiguity occurs in
the gravity case. However, since some of the phase space
variables should be of density weight 1, we have different
options. The LQG case would consist in considering as the
configuration variable the connection ωa, hence the
Liouville term we introduced earlier in (7). The associated
(nonzero) Poisson brackets would then read

fωI
aðxÞ; ~ebJðyÞg ¼ δabδ

I
Jδ

2ðx − yÞ; x; y ∈ Σ: ð10Þ

Instead, we could consider as a configuration variable the
dyad ea, which would be more in the philosophy of the
ADM formalism. This is in essence the dual picture to
the LQG framework. In this case, the symplectic 2-form
would then read2 (up to boundary terms)

ΩLQG�
grav ¼ hδ ~ωaδeai ¼ hδ ~ω · δei ¼ hδω ∧ δei: ð11Þ

In this case, the momentum variables are given by
~ωIaðxÞ ¼ ~ϵabωI

bðxÞ. The Poisson bracket is then

feJbðxÞ; ~ωIaðyÞg ¼ δIJδ
a
bδ

2ðx − yÞ: ð12Þ

Finally, as we shall argue later, the symplectic 2-form

ΩCS
grav ¼

1

2
ðhδ~e · δωi þ hδ ~ω · δeiÞ

¼ 1

2
ðhδe ∧ δωi þ hδω ∧ δeiÞ ð13Þ

will be related to the symplectic 2-form of Chern-Simons
theory. The next sections will consist in finding a consistent
discretization of these different symplectic 2-forms.
The symmetries of the action given by the gauge trans-

formations (1) or the translations (5) can also be realized in
terms of the Poisson brackets. The momentum maps (that
is, the phase space functions that implement these sym-
metry transformations; see Appendix) are precisely these
constraints. The curvature constraint F implements the
infinitesimal translation, whereas the torsion constraint T
implements the infinitesimal gauge transformation. By
considering the smearing of the torsion and curvature
T ¼ R

ζKTK, F ¼ R
ϕKFK over the fields NK , ΛK , using

the LQG phase space variables, we have that

f~e; T g ¼ −½~e; ζ�; fω;T g ¼ −dωζ; ð14Þ

f~e;Fg ¼ gdωϕ; fω;Fg ¼ 0: ð15Þ

The discretization scheme we will use should implement
that the discretized constraints are the momentum maps
implementing the discretized symmetries.

B. Toward the discretization of the gravity phase space

We intend to construct a discretization of the gravity
symplectic form inspired by previous works on discretizing
gravity in order to get LQG [11]. One first chooses a
triangulation3 Γ� of Σ, and we denote by Γ the graph given
by its one skeleton. In the following, we will denote the
vertices of the triangulation Γ� by v, v0 and the oriented

2Recall thatω and e are 1-forms and that we do an integration by
parts.

3We could more generally choose any cellular decomposition.
We restrict to triangulations for clarity of exposition only.
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edges of Γ� by ~l ¼ ½vv0�. We assume that in each face
½v1v2v3� of the triangulation a center point c has been
chosen, and we denote the duality between centers and
triangles by *: c� ¼ ½v1v2v3�. We connect the centers by
links l ¼ ½cc0�, and the graph made out of the centers and
the links is denoted Γ (see Fig. 1). This graph is dual to the
triangulation graph Γ�, and the duality between links and
edges is written as

l� ¼ ½cc0�� ¼ ½vv0� ¼ ~l if ½vv0� ¼ c�∩c0�: ð16Þ

The duality is between oriented links and oriented
edges. The orientation of the edge is chosen to be obtained
from the orientation of the link by a counterclockwise
rotation (see Fig. 1).
We intend to discretize the phase space variables ðω; ~eÞ

in which ω is the configuration variable or ð ~ω; eÞ in which e
is the configuration variable. There is a priori no recipe on
how the density weight 1 variables should be discretized.
So, instead, we are going to discretize the 1-forms ðω; eÞ
and see at the end that our discretization naturally provides
a discretization of these density weight 1 variables.
We discretize the 1-form variables ðω; eÞ by assuming

that the curvature FðωÞ and torsion T, if any,4 are con-
centrated on the vertices of Γ�. This means that in the
interior of each triangle c� we have dωe ¼ 0 ¼ dωω; that is,
the connection ω is flat and torsionless inside the cell c�.
These equations can be solved easily inside each triangle c�
in terms of a group element gcðxÞ, normalized to gcðcÞ ¼ 1.
This group element represents the holonomy of the flat
connection from the center c to the point x ∈ c� as
illustrated in Fig. 1. The solution for the connection simply
reads for x ∈ c�,

ωðxÞ≡ ðg−1c dgcÞðxÞ: ð17Þ

Given this parametrization of ω, the zero torsion condition
implies that the combination ðgceg−1c ÞðxÞ is closed, hence
exact on c�. Therefore, we introduce the Lie algebra valued
function ycðxÞ on c�, which solves the torsion condition as

eðxÞ≡ ðg−1c dycgcÞðxÞ; x ∈ c�: ð18Þ

The next step is to determine the discretization of the
symplectic form behind the Poisson bracket (10). Let us
consider the variations of ω and e, in each triangle c�, from
their definitions in (17). A key identity that we will
repeatedly use 5is that

δðg−1dgÞ ¼ g−1dðδgg−1Þg: ð19Þ

We also need to extract the variation of the electric field
e ¼ ðg−1dygÞ. In order to do so, we similarly establish that

δðg−1dygÞ ¼ g−1ðdδy þ ½dy; δgg−1�Þg: ð20Þ

Now that we have a simple expression of the fields inside
each triangle c�, we can decompose the full discretized
symplectic structure as a sum Ω ¼ P

cΩc, and Ωc is
defined by

Ωc ¼
Z
c�
Ωgrav ¼

Z
c�
hδω ∧ δei: ð21Þ

From the values of δω and δe in c�, we have

Ωc ¼
Z
c�
hdðδgcg−1c Þ ∧ ðδdyc þ ½dyc; δgcg−1c �Þi

¼
Z
c�
δhdðδgcg−1c Þ ∧ dyci: ð22Þ

The main point is that the integrand is an exact 2-form; it
can therefore be entirely evaluated in terms of its boundary
contribution. Also, we remark that, since y and g enter
asymmetrically, there are two different ways to integrate
this form. In other words, we have

Ωc ¼
Z
∂c�

δhðδgcg−1c Þdyci ð23Þ

¼ −
Z
∂c�

δhdðδgcg−1c Þyci: ð24Þ

These two choices can be seen as the two natural choices of
phase space variables ðω; ~eÞ or ð ~ω; eÞ respectively. Indeed,
the tilde variable in which the ϵ of weight density 1 sits

FIG. 1. Some components of the graphs Γ, Γ� and the
holonomy gcðxÞ. Curvature and torsion sit at the vertices of
Γ�. The face c� and the face c0� share the edge l� ¼ ½vv0�, dual to
the link l ¼ ½cc0�.

4We leave open the possibility that there is some by consid-
ering the dynamics later or if we are introducing particles.

5An explicit derivation reads δðh−1dhÞ ¼ h−1dδhþ δh−1dh ¼
h−1ððdδhÞh−1 − ðδhh−1Þðdhh−1ÞÞh ¼ h−1dðδhh−1Þh.
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indicates what variable will be discretized on the dual of Γ.
It can be the flux ~e, as in the loop polarization, or the
holonomy in what we will call the dual loop polarization.

C. Loop gravity phase space

We now work with the loop polarization ðω; ~eÞ repre-
sented by the choice (23). Since we have localized the
symplectic structure on the boundary of the triangles, we
can equivalently write the total symplectic structure as a
sum of contribution associated with each link ½cc0� of Γ as

ΩLQG ¼
X
½cc0�∈Γ

Ωcc0 ; ð25Þ

where the contribution from each link l ¼ ½cc0� is given by
contributions from c� and from6 c0�. The edge shared by the
faces c� and c0� is ~l ¼ ½vv0� (see Fig 1),

Ωcc0 ¼ δ

Z
~l
ðhðδgcg−1c Þdyci − hðδgc0g−1c0 Þdyc0 iÞ: ð26Þ

We now look at the matching condition across the edge
½vv0� ¼ ~l. Demanding the continuity of the connection
across the edge implies that

g−1c dgcðxÞ ¼ ωðxÞ ¼ g−1c0 dgc0 ðxÞ; x ∈ ½vv0�: ð27Þ

This condition means that there is a constant group element
hcc0 , see Fig. 2, that relates both frames:

gc0 ðxÞ ¼ hc0cgcðxÞ; x ∈ ½vv0�: ð28Þ

hcc0 represents the holonomy of the flat connection along
the edge ½cc0� of Γ. In the following, we use that h−1cc0 ¼ hc0c.
hcc0 represents the usual group variables of loop gravity, in
which Γ is the support of the spin network.
The frame field eðxÞ is also continuous, and hence we

can relate the frames from different faces. Consider x ∈ ~l;
then, we have

g−1c dycgc ¼ e ¼ g−1c0 dyc0gc0 : ð29Þ

Hence, we deduce that for x∈ ~l we have dyc0 ¼
hcc0−1dychcc0 . This can be integrated out, and we conclude
that there are elements xcc0 ∈ g such that

yc0 ¼ hcc0−1ðyc þ xcc0 Þhcc0 : ð30Þ

xcc0 represents the translational holonomy. In other words,
when going from c to c0, the frame is rotated by hcc0 but also
translated by xcc0. The combination ðhcc0 ; xcc0 Þ represents a

Poincaré transformation that maps the flat chart around c to
the flat chart around c0.
In order to evaluate the symplectic structure Ωcc0 , we

consider the variation of the frame relation (28) and get that

δgc0g−1c0 ¼ h−1cc0 ðδgcg−1c − δhcc0h−1cc0 Þhcc0 : ð31Þ

This together with (30) leads us to the simple expression

Ωcc0 ¼ δhðδhcc0h−1cc0 Þj ~Xc
~l
i; ð32Þ

where we have introduce the flux vector ~X ~l ∈ g based at c
and defined as

~Xc
~l
¼

Z
~l
dyc ¼

Z
~l
ðgceg−1c Þ≡

Z
l
ðgc ~eg−1c Þ: ð33Þ

Such a flux is the natural candidate to encode the discre-
tization of the density weight 1 vector ~ea. The presence of
the 2d Levi-Cività tensor can be traced back to the fact that ~e
is discretized on the dual of l, on which the connection is
discretized through the holonomy hl.
The discretized variables are therefore

ð ~Xc
~l
; hvl ¼ gcvg−1c0vÞ: ð34Þ

We picked the point v in ~l to define hl to emphasize the
symmetry between these variables and the dual LQG
variables (54). In the following, when dealing with the
usual LQG variables, we will drop the upper indices c and v
to avoid cluttered notations.
The symplectic form associated to the link l ¼ ½cc0� then

takes the following shape:

ΩLQG
cc0 ¼ Trððδhlh−1l Þδ ~X ~l þ ðδhlh−1l Þðδhlh−1l Þ ~X ~lÞ: ð35Þ

We have recovered the standard symplectic form associated
to T�G. Extending the construction to all of the edges of Γ,
we can decorate these edges with the phase space T�G. The
fluxes ~X ~l sit at the nodes of Γ but depend on the edges ~l of
the graph Γ�, whereas the holonomies hl decorate the links
l of Γ. This is the definition of the building blocks of the
LQG phase space.
Note that we can invert the symplectic form to recover

the standard Poisson bracket on T�G (see for example
Ref. [13] for the details of the calculations),

f ~XA
~l
; ~XB

~l
g ¼ ϵABC ~XC

~l
; f ~XA

~l
; hlg ¼ σAhl;

fhl; hlg ¼ 0: ð36Þ

It is important to recognize that the data ð ~X ~l ¼ ~X½vv0�; hlÞ
are not free. They do satisfy a discrete version of the
Gauss law. This constraint follows from the continuous
Gauss identity

6Note that the face c0� contributes with a minus sign due to the
opposite orientation.
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J c ≡ ~X½v1v2� þ ~X½v2v3� þ ~X½v3v1� ¼
Z
∂c�

dyc

¼
Z
c�
dðdycÞ ¼

Z
c�
g−1c ðdωeÞgc ¼ 0; ð37Þ

which is essentially the sum over the three boundary edges
of the triangle c� of Γ�.
We see from this formula that J c computes the violation

of the torsion condition in the triangle c�. Since we have
assumed that it vanishes inside each triangle, the sum
vanishes, andwe recover the standard discretizedGauss law.
Since torsion is the momentum map at the infinitesimal

level implementing the infinitesimal gauge transformation
(14), and J c can be seen as the discretization of torsion on
c�, it is natural to expect that J c encodes a local G
transformation at the trivalent vertex c of Γ. As discussed in
Appendix, J c is the momentum map for the three copies of
T�G. Denoting J cðαÞ ¼ αcAJ

A
c , we have

δcα ~X ~l ¼ f ~X ~l;J cðαÞg; δcαhl ¼ fhl;J cðαÞg: ð38Þ
As such, using (36), it implements the transformation δcα
with αc ∈ g at the nodes c of Γ,

δcα ~X ~l ¼ ½αc; ~X ~l�; δcαhl ¼ −αchl: ð39Þ

Following the Marsden-Weinstein theorem [14,15], we
recover the usual kinematical LQG phase space as the
double quotient,

Pkin
LQG ¼ ð×l∈ΓT�

lGÞ==ð×c∈ΓJ cÞ; ð40Þ

where the double quotient denotes the symplectic reduction
by the constraint (37). The decorated graph Γ is the
classical analog of the spin network.
The kinematical observables are functions built from the

fluxes ~X ~l and holonomies hl, such that they are invariant

under the transformations (39). Typically, such observables
are then the Wilson loops Tr

Q
l∈λhl, where λ is a loop in Γ

or the scalar quantities built out from the fluxes. For
example, the (kinematical) observables associated to the
(triangle edge) length, (triangle) angle, (triangle) area,
respectively Lv1v2, θv1 , Av1v2v3 , are given by

L2
v1v2 ¼ j ~X½v1v2�j; cos θv1 ¼

~X½v1v2� · ~X½v1v3�
Lv1v2Lv1v3

;

Av1v2v3 ¼
1

2
j ~X½v1v2� ∧ ~X½v1v3�j: ð41Þ

These observables allow us to reconstruct the triangle
geometry dual to the vertex c; see Fig. 3.
To have the full description of 3d gravity at the discrete

level, we just need to introduce the discretized version of
the flatness constraint (considering the pure gravity case
with no particles). This constraint is discretized by requir-
ing that all the holonomies along the loops λ in Γ are flat,

Gλ ¼
Y
l∈λ

hl ¼ 1: ð42Þ

This set of constraints together with the set of constraints
generated by J c form a first class system of constraints,
just like in the continuum case.
The set of constraints fGλgλloops inΓ also implements

some symmetry transformations. Note, however, that, since
we are dealing with elements in a non-Abelian group, this
constraint can be seen as a non-Abelian momentum map.
We consider therefore the symmetry action, labeled by the
vertex v and βv ¼ βAvσA ∈ suð2Þ, given by

δvβ ~X
B
~l ≡ hG−1

λ f ~XB
~l ;Gλg; βAvσAi;

δvβhl ≡ hG−1
λ fhl;Gλg; βAvσAi: ð43Þ

Let us consider the loop λ ¼ ðc1c2…ci…cnc1Þ surround-
ing a vertex v ∈ Γ�, with initial point c1 and for i ¼ 1;…n.

FIG. 2. The constant holonomy hcc0 connects the frames of the
two different faces. It is the standard LQG holonomy decorating
the spin network Γ.

FIG. 3. The geometry of the triangle c� can be recovered from
the vectors ~Xc

~l
.
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We define li ¼ ½ciciþ1� with ½cncnþ1�≡ ½cnc1�. The infini-
tesimal action δvβ is then explicitly choosing the ordering
Gλ ¼ hln…hl1 ; we have

δvβ ~X ~l1
¼ h−1l1 βvhl1 ; δvβ ~X ~l2

¼ h−1l2 h
−1
l1
βvhl1hl2 ;…;

δvβ ~X ~li
¼ H−1

i βvHi; ð44Þ

where we have defined the partial holonomies Hi ≡
hl1hl2…hli , while the holonomies remain invariant,
δvβhli ¼ 0. We recognize the discretized action of the
translations (5). This transformation seems to depend on
the choice of initial point one starts with. However, the
condition

Q
l∈λhl ¼ 1 means that the different transforma-

tions generated by the different choices of initial point are all
equivalent and related by a redefinition of the gauge
parameter.
A momentum map with value in a non-Abelian group

indicates the presence of a symmetry group (here, the
translations R3) equipped with a nontrivial Poisson struc-
ture, hence a nontrivial Poisson-Lie group. This is reviewed
in Appendix. At the quantum level, this leads to the notion
of the quantum group (here, the Drinfeld double) as a
symmetry group.
The Marsden-Weinstein theorem has been generalized to

the case where the symmetries are Poisson-Lie group
symmetries [15]. Hence, we can consider the symplectic
reduction of the LQG kinematical phase with the symmetry
action, acting at the vertices of the graph Γ� (vertices dual to
the loops λ ∈ Γ).

Pphys
LQG ¼ PLQG==ð×λ∈ΓGλÞ: ð45Þ

The physical observables, that is, the functions over
copies of T�SUð2Þ invariant under the symmetries spanned
by J c and Gl, have been discussed in Ref. [16].

D. Dual representation of the loop gravity phase space

In the previous section, we have shown how the
continuum symplectic structure reduces to the discrete
loop gravity one. In order to do so, we have chosen the
first decomposition in (23). This is the polarization were
wave functions are functional of the connection. We now
investigate what happens if we choose the second one, that
is, the geometrical polarization where wave functions are
functions of the frame e. In this case, we can write the edge
symplectic structure as7

~Ωcc0 ¼ δ

Z
~l
ðhdðδgc0g−1c0 Þyc0 i − hdðδgcg−1c ÞyciÞ: ð46Þ

This term differs from (26) by a boundary term, which
disappears when we sum over all links. Indeed, we have that

~Ωcc0 ¼ Ωcc0 þ δ

Z
~l
dðhðδgc0g−1c0 Þyc0 i − hðδgcg−1c ÞyciÞ: ð47Þ

Using (30) and (31), we can evaluate it as

~Ωcc0 ¼ δ

Z
~l
hdðδgcg−1c Þxcc0 i: ð48Þ

Using the fact that the edge dual to the link l is given by
~l ¼ ½vv0� and defining gcv ≔ gcðvÞ, we get

~Ωcc0 ¼ δh½ðδgcv0g−1cv0 Þ − ðδgcvg−1cv Þ�xcc0 i: ð49Þ

If one introduces the holonomy from v to v0 inside c,

~hc~l ¼ ~hcvv0 ≡ g−1cv gcv0 ; ð50Þ

we get an equivalent but more familiar expression
dual to (32)

~Ωcc0 ¼ δhδ ~hc~lð ~hc~lÞ−1jXv
li; ð51Þ

where we have defined

Xv
l ≡ ðg−1cv xcc0gcvÞ: ð52Þ

xcc0 is a translational monodromy based at c, and the
connectors gcv map it onto a field based at v. It is important
to note that from the definition we have the relation

Xv
−l ¼ Xv

½c0c� ¼ −ð ~hcvv0 Þ−1Xv
½cc0� ~h

c
vv0 ¼ −ð ~hc~lÞ−1Xv

lð ~hc~lÞ−1:
ð53Þ

To summarize, the variables for the dual LQG formulation
are given by

ðXv
l ≡ ðg−1cv xcc0gcvÞ; ~hc~l ¼ g−1cv gcv0 Þ: ð54Þ

These variables are based at v and can be seen as the dual
picture to the standard LQGvariables given in (34). The dual
fluxes are depending on Γ, whereas the holonomies depend
on the triangulation Γ�.
Our construction provides a candidate for the discretiza-

tion of the density weight 1 variable ~ω,

~hc~l ¼ P exp

�Z
~l
ω

�
≡ P exp

�Z
l
~ω

�
: ð55Þ

Once again the presence of the Levi-Cività tensor implies
that the vector ~ωa is discretized over the dual space of
where the 1-form e is discretized (into xl).

7This evaluation can be compared to (26). Once again, the face
c0� has the opposite orientation, and we have implemented the
minus sign coming from the integration by parts in (23).
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The symplectic structure (51) is again the symplectic
structure of T�G for the pair ðXl; ~h

c
~lÞ but based on the dual

graph Γ� instead of Γ. The associated Poisson bracket is
once again

fXA
l ; X

B
lg ¼ ϵABC XC

l ; fXA
l ; ~h

c
~lg ¼ σA ~h ~l;

f ~hc~l; ~hc~lg ¼ 0: ð56Þ
We emphasize again that the holonomy is depending on the
face c from its definition (50); see Fig 4.
Just like in the standard LQG case, the variables we have

integrated, namely here the holonomies, are not all inde-
pendent. There is still a constraint naturally present due to
the integration around c�,

Gc ≡ ~hcv1v2
~hcv2v3

~hcv3v1 ¼ 1; ð57Þ
where ðv1; v2; v3Þ are the three vertices of the triangle c�.
These constraints are the group analog of the Gauss
constraints (37) but now they express the vanishing of
the curvature inside c�.
Once again, we can expect that the discretization

of the curvature generates a momentum map Gc, with
value in a non-Abelian group, spanning the translations. We
consider therefore the infinitesimal symmetry action,
labeled by the node c dual to the triangle c� ¼ ½v1v2v3�
and βc ∈ R3 ∼ suð2Þ, given by

~δcβXB
l ≡ hG−1

c fXB
l ;Gcg; βAc σAi;

~δcβ ~h
c
~l ≡ hG−1

c f ~hc~l;Gcg; βAc σAi: ð58Þ

This is to compare with the transformations generated by
the LQG discrete flatness constraint (43). Explicitly, these
transformations give, choosing the ordering Gc ¼ ~hc~l1…

~hc~l3

and the orientation as in Fig. 3,

~δcβX
v3
l3

¼ ð ~hc~l3Þ−1βc ~h
c
~l3
; ~δcβX

v2
l2

¼ ð ~hc~l2 ~h
c
~l3
Þ−1βc ~hc~l2 ~h

c
~l3
;

~δcβX
v1
l1

¼ G−1
c βcGc ¼ β

~δcβ ~h
c
~li
¼ 0: ð59Þ

This transformation seems to depend on the choice of vertex
one starts with, and accordingly it looks like one should have
three transformations per center. However, the condition
Gc ¼ ~hc~l1

~hc~l2
~hc~l3 ¼ 1 means that these three transformations

are all equivalent and related by a redefinition of the gauge
parameter βc → ~hc~l1βcð ~h

c
~l1
Þ−1 → ð ~hc~l1 ~h

c
~l2
Þ−1βc ~hc~l1 ~h

c
~l2
.

We define now the phase space of the dual LQG picture
by considering the double quotient,

Pkin
LQG� ¼ ð× ~l∈Γ�T�

~l
GÞ==ð×c∈ΓGcÞ; ð60Þ

where the double quotient denotes the symplectic reduction
by the constraint (57), thanks to the Marsden-Weinstein
theorem generalized to the non-Abelian momentum map
case [14]. Upon quantization, we expect to choose to
construct our kinematical Hilbert space on the functions of
Xl together with the flatness constraint which implements a
translation invariance at the centers of Γ. Hence, we expect
to recover some spin networks based on the translational
group. Our phase space is the classical analog of such a spin
(or “momentum”) network. We note that in the dual picture
we implement at the kinematical level the nontrivial
Poisson-Lie symmetry. Hence, at the quantum level, we
shall expect to deal with representations of a quantum
group (the Drinfeld double).
The kinematical observables invariant under the gauge

transformations (59) are the group elements themselves.
But there exist also some new observables located at the
vertices v.
Let us consider a vertex v0 surrounded by n vertices

ðv1;…; vnÞ ordered counterclockwise, and n centers
ðc1; � � � cnÞ, as in Fig 5. As earlier, we will note λ the loop
around the vertex v. We chose the labels such that

FIG. 4. The constant (Abelian) holonomy xcc0 connects the
frames of the two different faces as a translation. The holonomy
~hcvv0 lives on the face c and connects the vertices of Γ�. We have
now a dual picture of the standard LQG picture, based on Γ�.

FIG. 5. We construct an observable associated to a vertex v0.
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c�a ¼ ½v0vavaþ1�, with vnþ1 ¼ v1. For simplicity, we denote
X½v0va�� ≡ Xa, and we notice that all the Xa sit at the vertex
v0. Let us consider the triangles sharing the edges ½v0v1�;
see Fig 5. The flux X1 gets gauge transformed from the face
c�0 and c�1. Note, however, that from the perspective of the
face c�1, X1 has an opposite orientation. Hence, we should
have in mind (53),

~δβc0X
v0
1 ¼ βc0 ;

~δβc1X
v0
1 ¼ −βc1 : ð61Þ

Repeating the process for each edge ½v0va�, we see that we
can construct a kinematical observable (which commutes
with Gc),

J v0 ¼
X
a

Xv0
a ; ð62Þ

which computes at the discrete level the integral of the
torsion

R
D dωe around a disk D centered at v0. This is the

Abelian holonomy around v0.
Let us note αv ¼ αvAσ

A. J vðαvÞ≡ αvA
P

l∈λX
A
l is an

Abelian momentum map which generates the following
gauge transformations:

~δvαXB
l ¼ fXB

l ;J vðαvÞg ¼ ½αv; XB
l �;

~δvα ~h
c
~l ¼ f ~hc~l;J vðαvÞg ¼ −αv ~h

c
~l: ð63Þ

The dynamics of the dual formulation of LQG will be
given by the constraint J v ¼ 0. By construction, Gc and
J v form a first class system (in fact, they commute
strongly, unlike the standard LQG case where they com-
mute weakly).
The physical phase space of the dual LQG formulation is

obtained by considering the symplectic reduction of the
dual LQG kinematical phase by the symmetry action
generated by J v, acting at the vertices of the graph Γ�,

Pphys
LQG� ¼ PLQG�==ð×v∈Γ�J vÞ: ð64Þ

III. NEW DISCRETIZATION OF
CHERN-SIMONS THEORY

To summarize the previous section, we have seen that we
have two descriptions of the gravity phase space, one based
on the connection picture and the other based on a triad
(metric) picture. We would like to see if we can strengthen
the relations between the two pictures, by unifying them.
For this, we can expect that the Chern-Simons approach
might provide the key to this unification. Indeed, in the
Chern-Simons approach to gravity, the connection and
the triad are put at the same level and unified through the
Chern-Simons connection.
We have seen that the dual loop gravity picture can be

seen as a different choice of polarization, having the triad as

the configuration variable instead of the connection as in
loop gravity. Another “choice” of polarization is to just
remove the difference between configuration and momen-
tum variables and work with these variables altogether.
This is what the Chern-Simons connection does by unify-
ing the triad and the connection. It provides a choice of
coordinates on the gravity phase space agnostic in terms of
what we call momentum or configuration.
We can therefore discretize the Chern-Simons theory in

much the same way we proceeded for gravity. This will
allow us to simplify the relation between the (dual) loopy
picture and Chern-Simons. As such, we will provide a
discretization of Chern-Simons which will keep clear the
link between the continuum picture and the discrete picture
(which is not the case for the Fock-Rosly formalism [6]).Our
discretization scheme is also free of the issues that arise in a
naive discretization (for example, the Poisson bracket
between holonomies sharing an initial point would diverge).
To show that our discretization is consistent, wewill prove

that we can recover the Goldman bracket 6. The discretiza-
tion will be done for any group, and in the next section, we
will focus on the Poincaré/Euclidian group cases to connect
with gravity with zero cosmological constant.

A. Chern-Simons theory

We consider a principal G-bundle overM, a 3d manifold
(without any boundary). We noteA its connection which is
a Lie G-valued 1-form. We note h; i or ημν the invariant
form. The gauge transformation properties and the curva-
ture tensor are the standard ones:

A → Aþ dAξ;

F ¼ dAþA ∧ A;F → Fþ ½F; ξ� with

ξ a Lie G-valued scalar: ð65Þ

The Chern-Simons action is given by

SðAÞ ¼
Z

1

2
hA ∧ dAi þ 1

3
hA ∧ ½A ∧ A�i: ð66Þ

The equations of motion implement that the connection A
is flat,

F ¼ 0: ð67Þ

Let us assume now thatM ∼R × Σ (with Σ a smooth 2d
manifold with no boundary) and use the coordinates
ðt; x1; x2Þ for a point in M. We can then proceed to the
Hamiltonian formulation. We identify the momentum
variables to be the connection with density weight 1,

δSCS
δ _Aaμ

≡ ~Aaμ ¼ 1

2
~ϵabAμ

b: ð68Þ
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Lowercase indices of the beginning of the alphabet are
space indices, a, b ¼ 1, 2, while greek indices are internal
indices. The symplectic 2-form is then

ΩCS ¼ hδ ~A · δAi ¼ 1

2
hδA ∧ δAi; ð69Þ

while the dynamics is given in terms of the constraint

~ϵabFμ
ab ¼ 0: ð70Þ

The canonical Poisson bracket is obtained by inverting the
symplectic form given by ΩCS ¼ δΘCS,

fAμaðxÞ; ~AνbðyÞg ¼ δabδ
μ
νδ2ðx − yÞ; x; y ∈ Σ: ð71Þ

We note that AμaðxÞ and ~AνbðyÞ are dual to each other.
Hence, upon discretization, we expect that the analog of
(71) should be given in terms of holonomies living on
dual edges.
Later on, we will also use the following notation for the

Poisson bracket8:

fAð1ÞðxÞ; ~Að2ÞðyÞg¼ δ2ðx−yÞTμ ⊗Tμ; x;y∈Σ: ð72Þ

A direct calculation shows that the smeared curvature is
the momentum map implementing the infinitesimal gauge
transformations (65). For example,�

A;
Z

ξνFν

�
¼ gdAξ; ð73Þ

where ξμ is the scalar field with a value in LieG. The
physical phase space is therefore given by the quotient of
the (infinite-dimensional) space of a flat connection on Σ
with the (infinite-dimensional) group of gauge transforma-
tions, the action of which is given by (65). This is the so-
called moduli space of flat connections, which happens to
be finite dimensional [4,6].
Since the flatness constraint is actually the same as the

moment map, the Poisson structure on moduli space is
induced by the quotient, through the Marsden-Weinstein
theorem (adapted to deal with infinite-dimensional spaces).
It is actually more convenient to construct the moduli

space of flat connections using discretized variables, i.e.
holonomies. Fock and Rosly proposed such a construction
[6]. Here, we want to propose a new approach which will
make the link with gravity more transparent.

B. Chern-Simons discretized 2-form

The new discretization of the Chern-Simons connection
wewant to propose follows the same line as the onewe used

earlier for gravity. In particular, since we do not
know how to discretize the density weight 1 variables, we
discretize the variables A and expect the discretization to
provide us the natural candidates for their discretization. The
discussion in this section is done for any Lie algebra LieG.
We consider the triangulation Γ�, on which vertices v sit

any curvature for the connections A. Given a face c� ∈ Γ�,
we consider the G holonomiesHc from the center c in c� to
any other point x in c�. We have then

AðxÞ ¼ ðH−1
c dHcÞðxÞ: ð74Þ

To build the discretized symplectic form, we will use that

δA ¼ δðH−1
c dHcÞ ¼ H−1

c dðδHcH−1
c ÞHc: ð75Þ

The smeared version of ΩCS on the face c� is then

ΩCS
c ¼ 1

2

Z
c�
hdðδHcH−1

c Þ ∧ dðδHcH−1
c Þi: ð76Þ

Note that, unlike the gravity case (23), there is a symmetry
between the two holonomy contributions.
Repeating the same steps as in Sec. II C, introducing

Hcc0 ¼ HcðxÞHc0 ðxÞ−1 for x ∈ c∩c0 and Hcv ≔ HcðvÞ and
~Hc
vv0 ¼ H−1

cvHcv0 we obtain the discretized symplectic
2-form for the link l ¼ ½cc0�,

ΩCS
cc0 ¼

1

2
hHcvðδ ~Hc

vv0 ð ~Hc
vv0 Þ−1ÞH−1

cv ðδHcc0H−1
cc0 Þi: ð77Þ

The holonomies Hcv are the connectors mapping the fields
from v to c. One can see the holonomies discretized on ~l as
the natural discretization of the density weight 1 variables
~A. The Levi-Cività tensor accounts for the discretization on
the dual of l,

~Hc
~l
¼ P exp

�Z
~l
A
�
≡ P exp

�Z
l

~A
�
: ð78Þ

For a given link l ¼ ½cc0� and its dual ~l ¼ ½vv0�, we
build the phase space out of two copies of the group G as a
manifold equipped with ΩCS

cc0 as a 2-form. To have a phase
space, we need this 2-form to be closed, i.e. δΩCS

cc0 ¼ 0,
which is clearly not the case, due to the presence of the
connectorsHcv. In Sec. IV C, we are going to see that if G is
the Euclidian/Poincaré group then ΩCS

cc0 is indeed symplec-
tic up to boundary terms, so that Ωdiscretized

CS ¼ P
lΩl is

symplectic. We leave the study of other groups such as
SLð2;CÞ, relevant for gravity with a nonzero-cosmological
constant, for later studies.
We note that as in the LQG or dual LQG case all the

variables are not independent. Due to the integration
around c�, the Chern-Simons holonomy around the face
c� is just the identity

8We use the standard notation Að1Þ ¼ AμTμ ⊗ 1 and Að2Þ ¼
1 ⊗ AμTμ and similarly for ~A. Tμ are the generators of LieG.
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Hc ¼ ~Hc
v1v2

~Hc
v2v3

~Hc
v3v1 ¼ 1: ð79Þ

This is just the statement that there is no torsion or
curvature on the face c�; said otherwise, the Chern-
Simons connection is flat on this face.
Given a graph Γ, with each edge, we associate two copies

of G, Pl ¼ ðGl;G ~lÞ. When ΩCS
l is symplectic (up to

boundary terms), we can then define the kinematical phase
space of the discretized Chern-Simons connections on Γ by

Pkin
CS ≡ ×l∈ΓPl==ð×c∈ΓHcÞ; with Ωdiscrete

CS ¼
X
l

ΩCS
l :

ð80Þ

The physical phase space, i.e. the moduli space, is
obtained by performing the further symplectic reduction
with respect to the constraintHv which encodes the flatness
constraint (where there are no particles) around the vertices
v of Γ�. We leave this for further studies.

C. Recovering the Goldman bracket

We consider the G holonomies H ≡Hcc0Hc0c, ~H ≡
~Hv0v ~Hvv0 intersecting at p, as sketched in Fig. 6.
The Goldman bracket is a Poisson bracket between

closed holonomies, the value of which is given in terms of
the Casimir of LieG 6,

fHð1Þ; ~Hð2Þg ¼ ~Hð2Þ
v0pH

ð1Þ
cpC ~Hð2Þ

pv0H
ð1Þ
pc ; ð81Þ

where C ¼ 2Tμ ⊗ Tμ is the Casimir of LieG.
Explicitly, this Poisson bracket can be calculated from

the Poisson brackets (72) by considering the contributions
of the graph intersecting at p,

fHð1Þ; ~Hð2Þg ¼ ~Hð2Þ
v0vfHð1Þ

cc0 ; ~H
ð2Þ
vv0gHð1Þ

c0c; ð82Þ

and the use of (72) gives

fHð1Þ
cc0 ; ~H

ð2Þ
vv0g ¼ Hð1Þ

cp ~Hð2Þ
vpCH

ð1Þ
pc0

~Hð2Þ
pv0 ; ð83Þ

to obtain (81).
The discretized symplectic 2-form we have obtained in

(77) sits at c, so it is actually convenient to transport the
bracket (83) from p to c to be able to compare them. This is
done by taking advantage of the invariance of the Casimir
under the adjoint action

C ¼ Hpc ⊗ HpcCðHpc ⊗ HpcÞ−1: ð84Þ

These connectors Hpc transport then the right-hand side of
(83) to c,

fHð1Þ
cc0 ; H

ð2Þ
vv0 g ¼ Hð1Þ

cpH
ð2Þ
vpH

ð1Þ
pcH

ð2Þ
pcCðHð1Þ

cpH
ð2Þ
cpH

ð1Þ
pc0H

ð2Þ
pv0 Þ

¼ Hð2Þ
vc CH

ð1Þ
cc0H

ð2Þ
cv0 : ð85Þ

Let us now reconsider the discretized Chern-Simons
symplectic 2-form we have obtained,

ΩCS
cc0 ¼

1

2
hHcvðδ ~Hc

vv0 ð ~Hc
vv0 Þ−1ÞH−1

cv ðδHcc0H−1
cc0 Þi; ð86Þ

which can be rewritten as

ΩCS
cc0 ¼

1

2
hðHcv ⊳ ~θRÞ ∧ θRi: ð87Þ

~θR and θR are the right-invariant 1-form on respectively G ~l
and Gl. Their duals are the respective right-invariant vector
fields ~χR and χR. We have indeed with H ∈ G

χ · fðHÞ ¼ d
dt

ðfðet·THÞÞjt¼0; χ ·H ¼ TμH;

hθμ; χνi ¼ δνμ: ð88Þ

The dual of H ⊳ θR is H−1 ⊳ χR. The 2-form ΩCS
cc0 is

therefore readily invertible, and the associated Poisson
bracket (which satisfies the Jacobi identity if and only if
ΩCS

cc0 is closed) is given by

fHð1Þ
cc0 ; ~H

ð2Þ
vv0 g ¼ 2TμHcc0 ⊗ H−1

cv TμHcv
~Hvv0

¼ Hð2Þ
vc CH

ð1Þ
cc0H

ð2Þ
cv0 ; ð89Þ

which is exactly the bracket calculated in (85). Note that the
Poisson bracket we have obtained in (89) does not obviously
satisfy the Jacobi identity, due again to the presence of the
connectors Hcv.
Our discretized symplectic 2-form allows one to there-

fore recover the Goldman bracket. Unlike the standard

FIG. 6. The holonomies H, ~H intersect at p.

DISCRETIZATION OF 3D GRAVITY IN DIFFERENT … PHYSICAL REVIEW D 96, 086017 (2017)

086017-11



calculation using (72), our Poisson bracket between hol-
onomies is defined for any type of holonomies.9

In our formalism, we have recovered a Poisson bracket
given in terms of the Casimir parallel transported which can
be seen as a symmetric r-matrix [17]. Hence, we have
recovered such an r-matrix by a discretization of the
continuum theory. This is to be compared with the Fock-
Rosly formalism [6] where such a structure is put by hand.
Furthermore, in their framework, the r-matrix contains a
nontrivial antisymmetric component which is essential for
their construction.
Finally, we emphasize again that our derivation can be

extended directly for any LieG.

IV. CHERN-SIMONS THEORY AND GRAVITY

In Sec. II, we constructed two kinematical phase spaces.
The first one is parametrized by ðhl; ~X ~lÞ ∈ T�G and is
associated with each link l of Γ. The variables are subject to
the Gauss constraints at each node J c ¼ 0 where J c ∈
~G ∼ g� is in the translational component of T�G (i.e. the
momentum component). Some gauge-invariant observ-
ables, theWilson loops, are then generated by the curvature
along Γ:

Q
l∈Γhl ∈ G.

The second one is parametrized by ð ~h ~l; XlÞ ∈ T�G
associated with each edge ~l of Γ� and subject to the dual
Gauss constraint (i.e. a flatness constraint) at each vertex
Gc ¼ 1 where Gc ∈ G is in the group component of T�G.
Some gauge-invariant observables are then generated by the
torsion along Γ:J v ∈ ~G. This apparent duality can be made
more precise, through the notion of symplectic dual pairs.
Definition 1. A symplectic dual pair between two

Poisson manifolds ðX1; f; g1Þ and ðX2; f; g2Þ is a corre-
spondence symplectic manifold ðY; f; gYÞ such that, given
the Poisson maps ι1 and ι2,

Y

ι1↙ ↘ι2

X1 X2;

ð90Þ

we have for any f ∈ CðX1Þ and h ∈ CðX2Þ

fι�1f; ι�2hgY ¼ 0: ð91Þ

Such precise notion of duality will be useful when
considering the quantum versions of our different formu-
lations. The notion of duality then translates into the notion
of Morita equivalence, which allows one to relate the
different representations obtained upon quantization [18].
In our context, the correspondance symplectic manifold

is the phase space generated by the discretized Poincaré

connections. To show the symplectic duality, we are going
to show that the symplectic structure on the discretized
Poincaré connections phase space can be expressed in
terms of the each of the symplectic structures of the two
LQG phase spaces,

ΩCS
discrete ¼

1

2
ðΩLQG þΩLQG� Þ: ð92Þ

This is the discrete analog of the symmetric choice in (13).

A. Gravity and Chern-Simons theory

The gravity action can be related to the Chern-Simons
action by a symplectic transformation. Since we are
interested in gravity with a zero cosmological constant,
we shall consider a Chern-Simons theory built on the
Euclidian group or the Poincaré group. The Poincaré (or
Euclidian) Lie algebra LieG generated by Tμ ¼ ðJA; PBÞ,
A;B ¼ 1, 2, 3, with brackets,

½JA; JB� ¼ ϵABCJC; ½JA; PB� ¼ ϵABCPC;

½PA; PB� ¼ 0; and J†A ¼ −JA; P†
A ¼ PA: ð93Þ

The indices are raised with the metric ηAB, the Minkowski
or Eucldian metric, according to the choice of spacetime
signature. A convenient parametrization of LieG is given
by setting [19]

PA ¼ θJA; with θ2 ¼ 0: ð94Þ

θ can be seen as a Grassmanian number, which plays a role
similar to the imaginary number i. Following Ref. [19],
given two real numbers a and b, we have

ðaþ θbÞ ¼ a − θb: ð95Þ

The pairing between the generators (see Ref. [20] for a
discussion on the most general pairing one can consider) is
the Killing form of LieG,

hPA; JBi ¼ hJA; PBi ¼ ηAB ¼ −2
Z

dθtrðJAPBÞ; ð96Þ

where ηAB is the Minkowski (respectively Euclidian)
metric if we deal with a Lorentzian (respectively
Euclidian) spacetime.
To obtain the gravity variables from the Chern-Simons

ones, we introduce a pair of connections A�,

A� ≡ JIωI � PIeI;

~Aa
� ≡ ~ϵbaðJIωI

b � PIeIbÞ ¼ JI ~ωIa � PI ~eIa: ð97Þ

Note that these connections are not independent since we
have that A†

þ ¼ −A− and similarly for ~A�.

9The Poisson bracket of holonomies sharing some initial/final
point is not defined if using (72). Our discretization scheme
regularized this issue.
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We are now interested in recovering the symplectic
2-forms related to gravity. First, we note that

ΩCS
� ¼ 1

2
hδA� ∧ δA�i ¼ � 1

2
ðhδe ∧ δωi þ hδω ∧ δeiÞ

¼ �hδe ∧ δωi; ð98Þ

so that the symmetric expression in terms of the gravity
variables comes indeed from the Chern-Simons symplectic
form as alluded to in (13). Conversely, we have also

ΩLQG
grav ¼ hδe ∧ δωi ¼ 1

4
hδðAþ −A−Þ ∧ δðAþ þA−Þi

¼ 1

2
ðΩCSþ −ΩCS

− Þ: ð99Þ

Finally, we can relate the gravity action to the Chern-
simons action. Using the Killing form based on the
Casimir JI ⊗PIþPI ⊗ JI for the Chern-Simons actions,
we have

Sgrav ¼
1

2
ðSCSðAþÞ − SCSðA−ÞÞ: ð100Þ

B. Relating both Chern-Simons and
gravity discretized variables

As mentioned earlier, we are interested in the specific
case where LieG ¼ isoð3Þ or isoð2; 1Þ, that is the
gravity case with Λ ¼ 0. First, we split the Poincaré
holonomy Hc ¼ tchc into the translational and rotational
parts, respectively tc and hc. The Chern-Simons con-
nection can also be expressed in terms of the gravity
variables,

H−1
c dHc ¼ h−1c ðt−1c dtcÞhc þ h−1c dhc

¼ h−1c ðēKPKÞhc þ ω̄KJK

¼ A ¼ eKPK þ ωKJK: ð101Þ

By construction, tc is an element of R3, so ē is a R3-
connection. Furthermore, there is only an action of
suð2Þ on R3 and no back-action. Therefore, we can
identify the connection components term by term,

ω̄ ¼ ω; h−1c ēhc ¼ e: ð102Þ

Bearing in mind the discretization of gravity of Sec. II B,
it is natural to identify the discretized Chern-Simons
components (hc, tc) with the discretized gravity ones
ðgc; ycÞ in (18),

ω̄ ¼ ω ⇒ hc ↔ gc: ð103Þ

Taking advantage of the Grassmannian parameter θ
which gets the exponential linearized (since θ2 ¼ 0),
we have

Hc ¼ tcgc ¼ eθ
R

x

c
dycgc ¼ ð1þ θycÞgc; with

yc ¼
Z

x

c
dyc: ð104Þ

We can recover the different fluxes we have introduced
when considering the gravity discretization,

t−1cv tcv0 ¼ 1þ θ

�Z
v

c
dyc −

Z
v0

c
dyc

�
¼ 1þ θ ~Xvv0

tcðhcc0t−1c0 h−1cc0 Þ ¼ 1þ θ

�Z
x

c
dyc − hcc0

�Z
x

c0
dyc

�
h−1cc0

�
¼ 1þ θðyc − hcc0yc0h−1cc0 Þ ¼ 1 − θxcc0 ;

ð105Þ
where we used first (33) and then (30).
We can then go further and relate the holonomies

entering into the Chern-Simons symplectic form to the
(dual) LQG ones. Bearing in mind (50) and (104), we have

~Hvv0 ¼ H−1
cvHcv0 ¼ g−1cv ðt−1cv tcv0 Þgcvg−1cv gcv0

¼ g−1cv ðtvv0 Þgcv ~hvv0 ¼ g−1cv ð1þ θ ~Xc
vv0 Þgcv ~hvv0

≡ ~Lvv0
~hvv0 : ð106Þ

In a similar manner, bearing in mind (28), (104) and (52),

Hcc0 ¼ HcH−1
c0 ¼ tcgcg−1c0 t

−1
c0 ¼ ðtcðhcc0t−1c0 h−1cc0 ÞÞhcc0

¼ ð1þ θxcc0 Þhcc0
≡ Lcc0hcc0 : ð107Þ

Having identified the relationship between the Chern-
Simons and gravity discretized variables, it is interesting to
see how the Chern-Simons kinematical flatness constraint
(80) appears from the gravity perspective. A simple
calculation shows that it is equivalent to the “kinematical”
constraints we have obtained for the LQG and dual LQG
variables,

~Hc
v1v2

~Hc
v2v3

~Hc
v3v1 ¼ 1 ⇔ ~Xv1v2 þ ~Xv2v3 þ ~Xv3v1 ¼ 0;

~hv1v2
~hv2v3

~hv3v1 ¼ 1: ð108Þ

C. Relating the discretized symplectic 2-forms

We would like to recover the discretized analog of (13).
To this aim, it will be useful to redo the full analysis of
Sec. III B, while keeping track of the link between the
Chern-Simons and gravity discrete variables.

DISCRETIZATION OF 3D GRAVITY IN DIFFERENT … PHYSICAL REVIEW D 96, 086017 (2017)

086017-13



We start with the Chern-Simons discretized symplectic
form on a face c�,

ΩCS
c� ¼ 1

2

Z
c�
hdðδHcH−1

c Þ ∧ dðδHcH−1
c Þi; ð109Þ

and perform part of the integration to consider only the
integration on the boundary ∂c� of the face,

ΩCS
c� ¼ 1

2

Z
∂c�

hðδHcH−1
c ÞdðδHcH−1

c Þi: ð110Þ

We recall that the gravity symplectic form is related to the
Chern-Simons symplectic form as given in (98). So, we can
check now how the discretization affects this, by recovering
(23) or (24) from (110). We have that

δHcH−1
c ¼ δtct−1c þ tcðδgcg−1c Þt−1c

¼ δgcg−1c þ θðδyc þ ½yc; δgcg−1c �Þ: ð111Þ

Plugging this back into (110), and restricting ∂c� to the
edge ~l, we have

ΩCS
c ¼ 1

2

Z
~l
hðδHcH−1

c ÞdðδHcH−1
c Þi

¼ −
Z
~l
hdðδgcg−1c Þðδyc þ ½yc; δgcg−1c �Þi

þ 1

2
½hðδgcg−1c Þðδyc þ ½yc; δgcg−1c �Þi�v0v

¼ −
Z
~l
δhdðδgcg−1c Þyci

þ 1

2
½hðδgcg−1c Þðδyc þ ½yc; δgcg−1c �Þi�v0v

¼ Ωc þ boundary terms: ð112Þ

We have recognized in the first term the analog of the
discretized symplectic form (24), now restricted to the edge
~l, whereas the second contribution is a boundary term.
Summing up over all of ∂c�, this boundary term gives 0.
Since we have managed to recover Ωc, we can recover

either ΩLQG
cc0 or ΩLQG�

cc0 when considering the contributions
from the faces c� and c0�, according to where we put the
integration, either on δgcg−1c or yc. Hence, we have that for
the pair of faces c� and c0�

ΩCS
cc0 ¼

1

2
ðΩLQG

cc0 þ ΩLQG�
cc0 Þ þ boundary terms: ð113Þ

When considering the full graph Γ, we have then

ΩCS
discrete ¼

1

2
ðΩLQG þΩLQG� Þ: ð114Þ

V. OUTLOOK

Three-dimensional gravity is a nice laboratory to explore
some aspects of quantum gravity that could be relevant for
four-dimensional gravity. Its connectionwithChern-Simons
theory also offers rich links with other theories such as the
Wess-Zumino model or conformal theory [1].
In this paper, we had a fresh look at the discretization of

the 3d gravity with zero cosmological constant, as done in
the standard LQG framework. Keeping track of how the
continuum variables are related to the discrete variables
allowed us to uncover a new discretization, based on the
metric variable (triad). This new framework can be seen as a
different choice of polarization, hence in a sense as a dual
view of the standard LQG approach. Although the quanti-
zation of the model is still to be done, it could be related to
the recent work of Dittrich and Geiller [21,22]. In the dual
polarization, we see now the flatness constraint as the
kinematical constraint, whereas the torsionless constraint
will become the dynamical constraint. In this sense, this is a
dual picture, where both constraints are exchanged. Hence,
in terms of a spinfoam model, we expect to have a model
dual to the Ponzano-Regge model. This is a work in
progress.
This fresh look highlighted the fact that nontrivial

symmetries are at play, even in the Λ ¼ 0 case. These
nontrivial Poisson-Lie group symmetries will lead to quan-
tumgroup symmetries upon quantization of the theory. Such
quantum group symmetries were already identified from
different quantized approaches [23–25], but this time, we
identified them at the classical level.
Since the phase space T�SUð2Þ is at the root of LQG

both in three and four dimensions, it is likely that our
construction, based on the metric formalism, should be
generalizable to the four-dimensional (4d) picture. Note,
however, that the 3d case is easier than the 4d case, since
we essentially deal with graphs (Γ and Γ�) dual to each
other. In four dimensions, we would have to deal with
graphs dual to 2-complexes, which could make the
discretization of the holonomy harder. We leave this
interesting issue for later.
We have used our discretization approach to Chern-

Simons theory as well. This provided a new scheme
which allowed us to recover the Goldman bracket, while
keeping a clear link with the continuum variables, unlike
the Fock-Rosly formalism. Since we used the same
discretizing scheme as for the gravity one, the link
between the gravity and the Chern-Simons variables is
very clear. Note that this link between the Fock-Rosly
formalism and gravity was discussed in Refs. [10,26].
Our new approach to Chern-Simons should be studied
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further. For example, one should check whether we
recover the right spaces (Heisenberg or Drinfeld doubles)
[7,8] when dealing with a punctured space (i.e. particles)
or if handles are present. Due to the transparent link with
gravity, it would also be interesting to explore how,
when introducing boundaries, we can connect the Wess-
Zumino model or the conformal theory field theory to
loop (quantum) gravity.
Finally, we hope also that our approach should shed

some light on why we deal with quantum group
structures when the cosmological constant is not zero.
As we mentioned already, quantum group structures
already appear when Λ ¼ 0, but from the LQG perspec-
tive, there have been many discussions on why we have
to deal with a quantum group such as SUqð2Þ (in the
Euclidian case) when Λ < 0 [27–29]. Our present work
showed that the choice of polarization matters, and it is
likely that such a quantum group will appear when a
different polarization than the usual one is chosen. This
is a work in progress.
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APPENDIX: MOMENTUM MAPS AND
SYMMETRIES

In this Appendix, we review the key notions of sym-
plectic geometry that are relevant for our results. There are
two different ways to discuss the notion of symmetries
when dealing with symplectic (or more generally Poisson)
geometry. In this Appendix, we would like to review the
different approaches.
The first one, more mathematically inclined, consists in

defining the action ⊳ of a group G on the symplectic
manifold M. To this aim, it is necessary to equip G with a
Poisson structure (which cannot be symplectic by con-
struction) compatible with the group product (so that the
action is transitive). Hence, G must be a Poisson-Lie group
[15,17]. We demand then that

g⊳ ff1;f2gM ¼fg⊳ f1;g⊳ f2gG×M
¼fg⊳ f1;g⊳ f2gGþfg⊳ f1;g⊳ f2gM;

f1;f2 ∈ CðMÞ: ðA1Þ

In physical language, this is stating that a symmetry action
on the Poisson bracket of two observables must be the same

as the Poisson bracket of the symmetry transformed
observables.
If the Poisson bracket on G is trivial, i.e. 0, as it often is

in standard physics, the only relevant contribution is
coming from M. However, we can put nontrivial Poisson
bracket structures on G and get new realizations of
symmetries which are not accessible if setting the
Poisson bracket on G to be zero.
For example, consider the phase spaceM¼C2 ∋ zi; i¼ 1,

2, equipped with the following symplectic structure [30],

fz1; z2gM ¼ i
β
z1z2; fz1; z̄2gM ¼ i

β
z1z̄2; ðA2Þ

fz1; z̄1gM ¼ −i
�
1 −

2

β
ðz1z̄1Þ

�
;

fz2; z̄2gM ¼ −i
�
1 −

2

β
ðz1z̄1 þ z2z̄2Þ

�
; ðA3Þ

where β is a deformation parameter and all other brackets
are zero. These Poisson brackets are not covariant
under the transformations of SUð2Þ ∋ g ¼ ðαγ̄ −γ̄

ᾱ Þ with
det g ¼ 1, unless there is a nontrivial Poisson structure
on SUð2Þ,

fα; ᾱg ¼ −
2i
β
γγ̄; fα; γg ¼ i

β
αγ;

fα; γ̄g ¼ i
β
αγ̄; fγ; γ̄g ¼ 0: ðA4Þ

As such, symmetries with nontrivial Poisson bracket can
be seen as “hidden symmetries.”
The second one, more commonly found in physics,

consists in representing the infinitesimal symmetry trans-
formations using a function on M (with a value in a space
we are going to determine shortly) and the Poisson bracket
on M. This function will be called a momentum map since,
for example, it is well known that when dealing with M
being a cotangent bundle the momentum coordinates
generate the infinitesimal transformations on configuration
space.
However, these are not the only symmetry transforma-

tions one might be interested in. For example, we could be
interested in the infinitesimal transformations generated by
the configuration space (provided it has a group structure)
on momentum space, or it might happen that the phase
space M is not of the cotangent type, so that we need to
have in hand a formalism that accounts for these general
situations.
Let us note g and g�, the Lie algebra ofG and its dual, the

Lie algebra of the group G�. We have also ea, eb their
respective basis, and χ the vector field on M implementing
the infinitesimal transformation spanned by the Lie algebra
element x ∈ g,
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χ · f ¼ d
dt

ðetx ⊳ fÞjt¼0: ðA5Þ

We define the momentum map P which will implement the
infinitesimal transformation using the Poisson bracket on
M [14,31],

P∶ M → G�ξ → g�ðξÞ ¼ e−QðξÞ such that χ · f

¼ hg−1� ff; g�gM; xi; f ∈ CðMÞ;
ðA6Þ

where g−1� is the inverse of the group element in G� and h; i
is the bilinear form between g and g�. QðξÞ is a g�-valued
function which is called the charge generating the Poisson-
Lie group action. Note that in this definition, χ is a right-
invariant vector; a similar definition would hold for the
left-invariant one.
We can connect this definition to the more abstract

definition of the notion of symmetry action (A1). By
considering the infinitesimal version of (A1), bearing in
mind that the infinitesimal version of the Poisson bracket
on G is given by the structure constant Cbc

a of g�, we get
that

ea · ff1; f2gM ¼ Cbc
a ðeb · f1Þðec · f2Þ þ fea · f1; f2gM

þ ff1; ea · f2gM: ðA7Þ

On the other hand, using the definition of the symmetry
action involving the momentum map, we recover the same
expression,

χ · ff1; f2g − fχ · f1; f2g − ff1; χ · f2g
¼ hg−1� fff1; f2g; g�g − fg−1� ff1; g�g; f2g
− ff1; g−1� ff2; g�gg; Xi

¼ h½g−1� ff1; g�g; g−1� ff2; g�g�; Xi; ðA8Þ

where we used the Jacobi identity and the last term provides
the contribution Cbc

a accounting for the nontrivial Poisson
structure on G�.
Let us illustrate this construction when we deal with

M ¼ T�G ∼ G ⊳< g� [or example G ¼ SUð2Þ], with
coordinates ðX; gÞ in the left trivialization. In this case,
G� ∼ g� ∼ R3 is an Abelian group. We use the Poisson
bracket

fXi;Xjg¼ ϵkijXk; fXi;gg¼ Jig; fg;gg¼ 0: ðA9Þ

We note therefore that G has a trivial Poisson structure,
whereas G� ∼ g� is equipped with a nontrivial one, speci-
fied by the Lie algebra structure constants ϵkij of g.
Since we have two groups, G and G�, we can construct

two types of momentum maps: the standard one J , with

value in G� ∼ g� and a may be less usual one G with value
in G. The former one will implement the infinitesimal
rotations on configuration space, while the latter one will
implement the infinitesimal translations (since G is non-
Abelian, there will be a difference between left and right)
on G�.
We define then (we recall we use the left trivialization of

T�G and we note respectively Pi and Jj the generators of
the Lie algebras R3 and g, such that hPi; Jji ¼ δij)

J ∶T�G → g� ∼G� ∼R3 G∶T�G → G

ðX; gÞ → g�ðXÞ ¼ e−X
iPi ðX; gÞ → g: ðA10Þ

The infinitesimal transformations they implement are
respectively (βi ∈ R3)

χiJ · Xj ¼ hg−1� fXj; g�g; Jii ¼ ϵijkXk;

χiJ · g ¼ hg−1� fg; g�g; Jii ¼ −Jig ðA11Þ

βiχ
i
G · X

j ¼ hg−1fXj; gg; βiPii ¼ g ⊳ βi;

βiχ
i
G · g ¼ hg−1fg; gg; βiPii ¼ 0; ðA12Þ

where g ⊳ βi denotes the coadjoint action10 of g on the
vector βi.
A phase space based on the manifold M ¼ G� ⋈ G is

called the Heisenberg double [15,17,32]. The cotangent
bundle T�SUð2Þ ∼ SUð2Þ ⊳< R3 is a simple example of
such a structure. The general Poisson-Lie symmetry of the
Heisenberg double is given by the Drinfeld double
D ¼ G� ⋈ G, which acts by left or right translation on
M. As we discussed in our simple example, due to the
symmetry between G and G�, we can build momentum
maps with value in G or G�. The general momentum map
associated to the Drinfeld double has value in D� ∼D.
In our construction, we are interested in putting together

many copies of the same Heisenberg double M and
considering some global symmetry transformations. The
momentum map is then extended using the group product
[14]. First, let us recall that the Poisson structure on
CðM×nÞ ∼ CðMÞ⊗n is given by the sum of the Poisson
bracket on each of the individual components CðMÞ. If G
acts onM×n, then we define the associated momentum map
and the global infinitesimal (right) action by

Ptot∶ M×n → G�

ðξ1;…ξnÞ → g�ðξ1Þ…g�ðξnÞ
¼ g�totsuch thatχtot · f ¼ hg−1�totff; g�totgM×n ; xi; ðA13Þ

with f ∈ CðM×nÞ.

10Hence if G ¼ SUð2Þ, β ¼ βiJi, then g ⊳ β ¼ g−1βg.
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