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We show how masses for singlet fermions can be generated by interactions with a D-particle model of
space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.)
that such interactions may generate dynamically small masses for charged fermions via the recoils of
D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle
with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice
of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate
forces with the singlet fermions, generating large dynamical masses that may be communicated to light
neutrinos via the seesaw mechanism.
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I. INTRODUCTION AND MOTIVATION

It is widely accepted that neutral singlet particles with no
symmetries to protect them, such as right-handed neutrinos,
will in general have very large masses that might approach
the Planck mass at which quantum-gravitational effects
become important. It has long been argued that quantum-
mechanical effects generate a foamy structure of space-time
on small scales [1], interactions with which might have
observable implications for the propagation of particles [2].
Since foam constitutes a fluctuating background, it is not
obvious whether the conventional rules of quantum field
theory apply [3], and one possibility is that interactions
with the foam might induce Lorentz- [4] and/or CPT-
violating [5,6] dispersion relations for photons [2] and
gravitons [7].
Here we investigate the more conservative possibility

that interactions with space-time foam might contribute to
the large masses expected for neutral singlet particles.
We have long advocated a toy model of space-time foam,

motivated by string theory [8–12], in which the foamy
space-time structures are provided by stringy defects, D-
particles, that interact with matter particles described by
string excitations on branes. These fluctuating D-foam
defects break Poincaré invariance, and their recoil during

the interaction with propagating string states breaks
Lorentz invariance. The nontrivial transfer of momentum
during the interactions of matter strings with D-foam
defects is mediated by the emission of nonlocal intermedi-
ate string states that do not admit a local effective action
description, leading to a violation of Lorentz invariance that
is subject to probes using astrophysical sources. The
ultraviolet completion of this type of foam model is
provided by string/brane theory itself [13].
It was argued in [14] that another observable implication

of D-foam would be the dynamical generation of small
nonperturbative masses for charged fermions. This was the
result of Lorentz-violating higher-derivative terms in the
Maxwell action induced by the interaction of photons with
the D-particles, which in turn are communicated to the
charged sector via the coupling with the electromagnetic
field.1 The effective field theory model upon which this
effect is based, onto which the D-foam/fermion/photon
effective action is mapped at low energies, ignoring the
nonlocal stringy structures of the D-particles, has been
studied in a different context in [15].
It was argued in [14] that the quantum fluctuations of

the D-particle defects in target space lead to a novel
correspondence principle, through which an antisymmetric
tensor background field in phase space, representing the
recoil velocity of the defect during its interaction with
matter, is mapped [16] into a spatial derivative operator
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1Due to charge conservation, a direct coupling of a charged
fermion to the D-foam excitations is forbidden by the electro-
magnetic U(1) gauge symmetry [10].
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along the direction of the recoil. In this way, the resulting
Finsler-type [17] Born-Infeld (FBI) Lagrangian that
describes the low-energy dynamics of open strings on a
brane world in interaction with the D-particles may be
transformed into an effective Lagrangian with Lorentz-
violating higher-order spatial-derivative terms, reproducing
the minimal Lorentz-violating modification of quantum
electrodynamics (QED) considered in [15]. It was further
argued that this model provides a novel way of generating
charged-particle masses dynamically. We should stress that
this model is not of Horava-Lifshitz type [18], in the sense
that there is no anisotropic scaling between time and space
coordinates. The Lorentz violation is manifested through
higher-order spatial-derivative terms that respect rotational
symmetry in three-space, but are suppressed by an effective
mass scale. The presence of this scale and the Lorentz-
violating terms generate dynamically small masses for
charged fermions, for arbitrarily weak gauge fields.
Our link [14] of such a Lagrangian with D-foam, and

ultimately with more general models of quantum-
gravitational foam, constitutes an explicit realization of
the effects of a foam medium in slowing down some
particles via mass generation. In our case, the mass scale
that suppresses the Lorentz-violating terms is expressed in
terms of the string mass scale and fundamental parameters
of the foam such as the variance of its quantum fluctuations.
There are issues associated with a quantum-ordering
ambiguity in our construction, which was argued in [14]
to be resolved by appealing to the important role of the
dynamical mass generation in curing infrared instabilities
in the model. In this way, a selection of the physically
relevant class of quantum orderings could be made,
resulting [14] in the above-mentioned mapping of the
quantum-ordered FBI effective action onto the QED action
of [15] at low energies. Any further ordering ambiguities
within this class of models are absorbed into the quantum
fluctuation parameters of the D-foam, which are regarded
as phenomenological at this stage.
In this paper we extend this model of D-foam and its

interactions with stringy matter to show how they may
generate large masses for neutral singlet fermions such as
right-handed neutrinos via spin-one excitations of the
space-time foam that are analogous to phonons in con-
densed-matter physics. If the singlet fermions are Dirac,
we find that the foam interactions can be described by the
minimal Lorentz-violating effective action of [15], whereas
if the singlet fermions are Majorana, as might be the case
for right-handed neutrinos, they can be described by the
Lorentz-violating low-energy effective action of [19].
The structure of the article is as follows: in Sec. II we

review the mapping of the low-energy dynamics of D-foam
onto an appropriately quantum-ordered Finsler-Born-Infeld
action, which yields the minimal Lorentz-violating QED-
type model of [15,19], following the procedure of [14]. The
novelty in the dynamical generation of masses for neutral

singlet fields, as compared to the charged fermion case
considered in [14], is that the quantum fluctuations of the
D-particles themselves [which are represented by vector
(spin-one) quantum fields] couple directly to the singlet
fields via minimal couplings that resemble the correspond-
ing QED fermion-photon coupling. However, this vector
field is not a photon, nor is it a conventional gauge field
if the singlet fields are Majorana fermions, as is often
assumed in quantum field theory models. We discuss in
Sec. III how this coupling generates a dynamical mass for
the singlet fermions in this model, expressing the obtained
masses in terms of parameters of the D-foam model, such
as the string scale, the density of D-foam excitations and
the variance of the quantum fluctuations. Some phenom-
enological issues related to the sizes of the proposed
masses, and the possibility of their enhancement in some
multibrane-world scenarios, are discussed briefly in
Sec. IV. Our conclusions and an outlook are presented
in Sec. V.

II. A MODEL FOR D-FOAM INTERACTIONS
WITH SINGLET FERMIONS

In this section we discuss an effective field theory model
for the Lorentz-violating vector interactions of a singlet
fermion with quantum-fluctuating D-particles. We demon-
strate that Lorentz-violating Lagrangians of the form
discussed in [15] may arise as (parts of) the low-energy,
weak-field limit of an effective Born-Infeld Lagrangian
describing the propagation of vector bosons Aμ that
describe the quantum fluctuations of the D-particle foam.
We assume for simplicity a uniform lattice of D-particle
defects that puncture a three-dimensional brane world
(D3-brane), through which the singlet fermions propagate.
The vector Aμ is the low-energy mode of open strings
stretched between the D-particle and the D3-brane world
and, like the phonons in condensed-matter physics, it plays
the role of a Goldstone boson. However, it is a vector
boson, as a result of the spontaneous breaking of transla-
tional invariance by fluctuating D-particle defects in the
D-foam vacuum.
As already mentioned, such models have been termed

D-particle foam [8,9,11,12], and have a variety of appli-
cations, ranging from providing microscopic string-
inspired models of Lorentz-violating vacuum refractive
indices [11,12,20] to enhancing the abundance of thermal
dark matter relics, with interesting implications for astro-
particle phenomenology [21].

A. Features of the D-foam model

The basic idea of the D-foam model is shown in
Fig. 1. A (possibly compactified from higher dimensions)
three-brane world is moving in a higher-dimensional bulk
space, that is punctured by D-particles. Depending on the
string theory considered, the latter can be either pointlike
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D0-branes (as in Type IIA strings) [8,9,11] or
D3-branes wrapped around appropriate three cycles (as
in Type IIB strings [12]). As the brane world and the
D-particles move in the bulk, they may encounter each
other and an observer on the D3-brane sees the D-particle
defects as flashing on and off. In these scenarios, ordinary
matter and radiation are represented by open strings with
their ends attached on the D3-brane.2

Gravitational degrees of freedom and singlet fermions
are allowed to propagate in the bulk [22], in contrast to
Standard Model (SM) fields, which are confined to the
brane. However, when the bulk space is compactified, e.g.,
through periodic boundary conditions imposed on various
brane worlds that populate the bulk, see Fig. 1, these
fermions acquire Kaluza-Klein masses that are suppressed
by the size of the extra bulk dimension. This mechanism
can generate Majorana masses, e.g., for right-handed
neutrinos [22,23] in brane world scenarios. Here we assume
that such a mechanism either is not in operation, because
our singlet fermions are also confined on the brane world,
like the SM excitations, or that the size of the extra
dimensions are sufficiently large that the Kaluza-Klein
generated masses are negligible. In this case, the dominant
source of mass for the singlet fermions may be their
interaction with the foam.
Indeed, there are nontrivial interactions of D-particles

with open strings, provided there is no electric flux along
the open string excitations, i.e., provided that the string
states are electrically neutral.3 This is because the electri-
cally neutral D-particles can “cut” an open string, leading
to the emission of intermediate strings stretched between
the D-particle and the D3 brane [11,20]. If the open string
state carries electric flux, such a cutting procedure is not

allowed, due to charge conservation. As a result of the local
SU(2) gauge symmetry of lepton doublets, this also
precludes light (active) neutrinos from interacting directly
with the foam. However, singlet fermions such as right-
handed neutrinos may interact directly with the D-particles
as can photons and gravitons.
As discussed in [20], the first-quantization picture for the

interaction of an open-string state such as a photon with a
D-particle is provided by a world-sheet σ-model with the
following deformation:

V impulse
recoil velocity part ¼

1

2πα0
XD
i¼1

Z
∂D

dτuiX0ΘðX0Þ∂nXi; ð2:1Þ

where Ms is the string (mass) scale, gs is the string
coupling, and ui is the recoil velocity of the D-particle.
The latter is assumed to be heavy, and ui is the spatial
part of the four-velocity of the D-particle, which is well

D−brane stack

D−brane stack

D3−branes

F−strings

F−strings

D3−branes

D−particles

R2R1

R0

FIG. 1. Schematic representation of the D-particle model of
space-time foam proposed in [9]. There are two stacks of
D8-branes, each attached to an orientifold plane, whose special
reflective properties enable them to provide a natural compacti-
fication of the bulk dimension, and the bulk is punctured by
D0-branes (D-particles). An isolated D-particle cannot exist in
the absence of a D-brane, because of gauge flux conservation.
Standard Model matter is represented by pen strings on the brane
world, whereas gravitons and singlet fermions can propagate in
the bulk. The latter can interact directly with the D-particles in a
topologically nontrivial way, involving cutting and splitting the
open string representing the singlet fermion.2As clarification for the reader, we emphasize that we consider

the set up of [9], which involves D8 branes interacting with
bulk D0-branes, only as a concrete example for the ideas in this
work. We do not consider D0, D3, and D8 branes simultaneously.
Within the context of Type IIA strings and the corresponding low-
energy supergravity theory [9] that we focus on here, we consider
only D8 and D0 branes, viewing our D3 brane world as arising
from compactification of D8 branes. We do not consider details of
such compactifications, as our purpose here is to discuss some
generic features of the (recoil) effects of D-particles on matter
singlet fermions on the brane worlds, and refer to [9] for details of
the dynamics of D0 and D8 branes. Within Type IIA theory,
in which D4 and D6 branes are allowed, D3 brane worlds may
arise as D4 or D6 branes wrapped around appropriate cycles or
compactified in more complicated manifolds, but we assume that
their dynamics is not important for the generic features of the
dynamical mechanism for mass generation for singlet fermions
we discuss here.

3In the case of Type IIB strings, where the D-particles are not
pointlike, there may be interactions between electrically charged
excitations and the D-particles, but the foam effects on such
charged particles are suppressed [12] compared to those on
neutral particles. Therefore, in our discussion below we do not
differentiate between these two cases, except when we discuss
some phenomenological issues in Sec. IV.
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approximated by the ordinary velocity, to leading order for
nonrelativistic, slow-moving, heavy D-particles. The limit
D in the sum in (2.1) denotes the appropriate number of
spatial target-space dimensions, which is D ¼ 3 for a
recoiling D-particle confined on a D3 brane, as is our case
here. The operator ΘεðX0Þ ¼ −i

R
∞
−∞

dω
ωþiε: ε → 0þ, is a

regularized Heaviside world-sheet operator.
The recoil operators satisfy [16,24] a specific type of

conformal algebra, termed a logarithmic conformal algebra
[25]. This algebra is the limiting case of world-sheet
algebras that can still be classified by conformal blocks.
The impulse operator ΘðX0Þ is regularized so that the
logarithmic conformal field theory algebra is respected.4

The conformal algebra is consistent with momentum
conservation during recoil [16,24], which yields the fol-
lowing expression for the recoil velocity ui in terms of
momentum transfer during the scattering:

ui ¼ gs
p1 − p2

Ms
; ð2:2Þ

withMs=gs being the D-particle “mass” andΔp≡ p1 − p2

the momentum transferred to the string state by its
scattering with the D-particle.
We note next that one can write the boundary recoil/

capture operator (2.1) as a total derivative over the bulk
of the world-sheet, by means of the two-dimensional
version of Stokes theorem. Omitting from now on the
explicit summation over repeated i-indices, which is under-
stood to be over the spatial indices of the D3-brane world,
we then write

V impulse
recoil velocity part

¼ 1

2πα0

Z
D
d2zϵαβ∂βð½uiX0�ΘεðX0Þ∂αXiÞ

¼ 1

4πα0

Z
D
d2zð2uiÞϵαβ∂βX0½ΘεðX0Þ þ X0δεðX0Þ�∂αXi;

ð2:3Þ

where δεðX0Þ is an ε-regularized δ-function.
We consider relatively large times after the after the

moment of impulse, X0 ¼ 0, at which the initial open-string
state splits into intermediate open strings as a result of
the topologically nontrivial interactions with the D-particle.
For the phenomenological purposes of this work, the
expression (2.3) is equivalent to a deformation describing
an open string propagating in an antisymmetric Bμν-
background (B-field) corresponding to a constant external
“electric” field in target-space:

T−1Bi0¼−T−1B0i¼ui¼
gsΔpi

Ms
; T¼ 1

2πα0
; ð2:4Þ

where T denotes the (open) string tension, 0 is a temporal
index, and i is a spatial index. The reader should notice here
the phase-space dependence of the background field, which
resembles an “electric” field background but in momentum
space [20], and is therefore of Finsler type [17].
In the above analysis we have ignored a possible angular

momentum operator, which may also arise as a result of
the nontrivial scattering of a photon on a D-particle defect.
At the σ-model level, the latter is also described by a
logarithmic conformal algebra deformation that, for the
three-brane case to which we restrict our attention here,
takes the form:

V impulse
ang momD-part ¼ T−1

Z
∂Σ

uiϵijkXjΘεðX0Þ∂nXk

¼ T−1
Z
Σ
εαβðuiϵijkΘεðX0Þ∂αXj∂βXk

þ uiϵijkXjδεðX0Þ∂αX0∂βXkÞ; ð2:5Þ

where we have again applied the two-dimensional Stokes
theorem, α, β ¼ 1, 2 are world-sheet indices, and ϵαβ is the
world-sheet Levi-Civita tensor, and ϵijk is the antisymmet-
ric symbol in the three spatial dimensions of the brane
world. The logarithmic conformal properties [24] of the
deformation arise from the Xj parts. For the relatively large
times X0 > 0 after the impulse that we consider here, we
may ignore the δ-function terms, and in this case the effects
of the angular momentum deformation in target space are
equivalent to the open string propagating in an antisym-
metric tensor “magnetic-field” type background with spa-
tial components given by

T−1Bij ¼ −T−1Bji ¼ ϵijkuk: ð2:6Þ

This should be combined with (2.4) in order to provide a
complete description of the averaged interactions of a
photon with the D-foam, in a first-quantized version.
The quantity ui in (2.4), which involves the momentum

transfer, Δpi, can be modeled by a local operator using the
following parametrization [26]:

ui¼gs
Δpi

Ms
¼ gs
Ms

ripi; no sumover i¼1;2;3; ð2:7Þ

where the (dimensionless) variables ri, i ¼ 1, 2, 3, appear-
ing above are related to the fraction of momentum that is
transferred in collision with a D-particle in each spatial
direction i. In the stochastic foam approximation [26] these
parameters are taken as Gaussian normal random variables
with a range −∞ to þ∞ and defining moments

4This can be done by using the world-sheet scale,
ε−2 ≡ ln ðL=aÞ2, with a an ultraviolet scale and L the world-
sheet area, as a regulator [16,24]: ΘεðX0Þ ¼ −i

R
∞
−∞

dω
ω−iε e

iωX0

,
taking the quantity ε → 0þ at the end of the calculations.
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hrii ¼ 0; ð2:8Þ

hrirji ¼ 0; if i ≠ j ð2:9Þ

and

σ2i ¼ hr2i i − hrii2 ¼ hr2i i ≠ 0: ð2:10Þ

We assume that the foam is isotropic, which implies that
ri ¼ r for all i ¼ 1, 2, 3. In this case the variances

hðriÞ2i ¼ σ2; i ¼ 1; 2; 3; ð2:11Þ

are equal in all spatial directions.
However, for full rotational invariance in three space

of the Born-Infeld action (2.15), involving interactions
between the velocity fields ui and the Maxwell tensor Fμν

of the vector field Aμ, one more requirement is necessary.
When considering the application of the above averages to
the recoil velocities, the latter must take the form:

huii ¼ 0; huiuji ¼ δij
σ2g2s
M2

s
pkpk: ð2:12Þ

The averages h� � �i denote both statistical averages over
populations of D-particle defects in the foam, cf. Fig. 1, as
well as target-space quantum fluctuations. The latter can be
induced by considering the summation over world-sheet
genera [16]. This is quite important for our purposes, and
we return later to this issue and its implications.
For the moment, we remark that the stochasticity con-

ditions (2.8) imply the restoration of Lorentz invariance in
the statistical mean, with nontrivial fluctuations described in
the isotropic and three-space rotationally invariant case by
(2.9), (2.11), and (2.12). Hence, although Lorentz invariance
and spatial isotropy is lost locally in individual scatterings
of photons with D-particles, due to the presence of the
recoil velocity of the D-particle, ui, the isotropy of the foam
washes such violations out on average, and isotropy and
rotational invariance are restored.

B. Finsler-Born-Infeld (FBI) effective actions

We turn now to the singlet fermion sector. Unlike the
charged fermions of [14], here, in principle, there are recoil-
induced contributions, since a singlet fermion can interact
directly with the D-brane, causing recoil of the latter. Since
the recoil is described by the antisymmetric tensor field
excitations Bμν in a σ-model framework, string theory gives
specific rules for coupling this background to fermionic
excitations propagating in the bulk. Any bulk world-sheet
action would involve the field strength of Bμν, namely
Hμνρ ¼ ∂ ½μBνρ�, where ½…� denotes total antisymmetriza-
tion of the indices. Such field strength terms are dictated
by an Abelian gauge symmetry Bμν → Bμν þ ∂ ½μΛν� that

characterizes the closed-string sector describing the
gravitational multiplet of the string, to which the antisym-
metric tensor belongs. A minimal string theory coupling
between fermions and the H-field strength would be of
the form [13]:

Z
d4xϵμνρσHνρσψ̄γμγ5ψ ; ð2:13Þ

where ϵμνρσ is the covariant Levi-Civita tensor and γ5ψ ¼ ψ
for right-handed fermions ψ . In principle, a nonzeroH field
strength could arise in our model from inhomogeneous
foam situations, in which the variance (2.11) would depend
on space-time. In the approximation of a homogeneous
foam that is appropriate in the current epoch of our
Universe that is of interest in the present article, we can
neglect any such dependence on the variances (2.12), and
thus set to zero couplings of the form (2.13).
We recall that the recoil velocity ui refers to components

of the bulk D-particle velocity parallel to the brane worlds.
There are also components of the velocity perpendicular
to the brane worlds. These generate forces between D-
particles and brane worlds that they cross, due to funda-
mental strings created in such processes, as discussed in
detail in [27] and used in [9]. Such strings are sources of
Neveu-Schwarz flux three-forms on the three-brane with
world-volume field strengths H0

μνρ; μ; ν; ρ ¼ 0;…3 [where
the prime indicates that they are distinct from the corre-
sponding recoil fields appearing in (2.13)]. As demon-
strated in [9], these processes make contributions to the
vacuum energy on the brane, which are assumed to be
suppressed by opposite-sign contributions to the vacuum
energy density due to other bulk D-particles that lie more
than a few string lengths away from the brane world, or
other vacuum energy contributions on the brane due to
quantum field excitations. Despite the fact that the singlet
fermions are allowed to propagate in the bulk, once they
are on the brane world, as we consider here, they couple
to H0

μνρ via terms of the form (2.13). Such couplings can
be integrated out exactly in a (3þ 1)-dimensional path
integral of the brane world effective action. The corre-
sponding kinetic terms of the H0 field on the brane are (to
lowest order in derivatives) [13]:

R
d4x

ffiffiffiffiffiffi−gp 1
12
H0

μνρH0μνρ.
Integrating out exactly the H-terms in the brane world
path integral yields repulsive four-fermion interactions of
the type

Z
d4x

ffiffiffiffiffiffi
−g

p 3

16
κ2J5μJ5μ; J5μ ¼ ψ̄γμγ5ψ ;

in standard normalizations [28], with κ2 the four-
dimensional gravitational coupling. Such interaction terms
(as well as those derived by integrating out the higher-
derivative H-dependent terms that appear in an effective
field theory obtained in the low-energy limit of strings [13])
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are therefore suppressed by the gravitational coupling.
Therefore we may ignore them for our purpose here,
which is to discuss the dynamical mass generated by the
vector coupling ~gV , which we assume to be hierarchically
stronger.5

There will also be quantum fluctuations of the
D-particles that are independent of their interactions with
stringy matter (fermions or photons) and hence of the
consequent recoil of the D-particle. Following the example
of phonons in solids, which describes the quantum vibra-
tional modes of the lattice ions, we represent the quantum
fluctuations of the D-particles by vector Abelian fields,Aμ,
which are represented in string language by open strings
with their ends attached to the D-particle. Being themselves
D-branes, D3-particles can emit such open strings, which
thus propagate in the bulk space between two D-particles in
the foam. If the D-particles are confined to a single brane
world, the field strength of the vector Aμ, which represents
the intensity of the low-energy wave emitted by the
quantum-fluctuating D-particle, is confined on the brane
world, otherwise it propagates in the higher-dimensional
bulk. In both cases the open string, whose low-energy
vibrational modes contain Aμ, has Neumann boundary
conditions over the entire available space. This picture is
equivalent to the solid-state picture of phonons, which,
though they owe their existence to vibrations of lattice ions,
are not confined to the position of the ion but travel through
the entire lattice, interacting with the propagating electrons.
The field Aμ plays the role of a massless Goldstone

boson, which is of vector nature as a consequence of the
spontaneous breaking of translational invariance by the
presence of the D-particles in the D-foam vacuum [8]. In
Lorentz-violating field theories, with spontaneous breaking
of Lorentz symmetry, the emergence of massless vector
Goldstone bosons has been noted in the past, and attempts
have been made to identify the photon with such a vector
Goldstone boson [29].
We must stress that the vector fields Aμ should not

be confused with ordinary photons Aμ, as discussed
in [14], which are gauge fields of the electromagnetic
U(1) symmetry in the SM. However, in a similar way
to phonons interacting with electrons in a solid, the vector
fieldsAμ interact with singlet fermions, and are represented
in string language by open strings stretching between the
D-particle and the D3-brane world. As in the photon-
D-particle interaction case discussed above, the recoil of
the D-particle during its interaction with the singlet fermion
is represented by an antisymmetric tensor field, whereas the
quantum vibrations of the D-particle lattice are represented

by the vector field Aμ that lives in the entire bulk space. In
addition, there is an explicit coupling ~gV of the field Aμ to
the fermion current, similar to the photon-fermion current
of charged fermions in QED. From the point of view of the
underlying D-brane theory and the associated low-energy
type-IIA supergravity action [8], the vector field Aμ admits
an interpretation as a bulk gauge field, withAμ, μ ¼ 0;…3

its (3þ 1)-dimensional brane world space-time compo-
nents. It should be noted that from a string/brane theory
point of view, there is no simple non-Abelian enhancement
of this gauge field, so its Abelian nature is dictated by the
underlying microscopic theory.
We have seen that in homogeneous foam situations the

only coupling of the singlet fermion would be through the
vector (bulk gauge) field Aμ:

Sψ ¼
Z

d4xψ̄γμiDμψ ; Dμ ¼ ∂μ þ i~gVAμ; ð2:14Þ

where we repeat that Aμ is not the photon but the vector
field representing the quantum fluctuations of the D-
particles, which was absent in the charged fermion case.
We recall that in the charged-fermion case of [14] there was
also no direct coupling of the charged fermion to the recoil
terms, but for a different reason. There, such couplings
were identically zero because of the properties of the
D-foam, according to which the latter is transparent to
charged-fermion fields, because of charge conservation.
This argument is strictly speaking valid only for Type IIA
string theory D-foam, in which the D-particles are point-
like. For Type IIB string theory D-foam models, on the
other hand, D-particles are compactified D3-branes, and
as such there are nontrivial, but much more suppressed,
fermion-foam couplings [12]. Hence, also in that case the
lowest-order (weak-field) effective action term in the
fermion sector is given by the QED-like fermion-vector
coupling (2.14), where however the photon field of QED is
replaced by the vector (bulk gauge) field Aμ.
The effective target-space action on the D3-brane world,

where the quantum fluctuating D-particle meets the open-
string singlet fermion state, is described by the following
Born-Infeld Lagrangian [30,31] augmented with the inter-
action of the fermion current with the vector (bulk gauge)
field Aμ:

SBI ¼
T2

gs

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðgþ T−1ðBþ FÞÞ

q

þ
Z

d4x~gVAμψ̄γ
μψ þ

Z
d4xψ̄i=∂ψ ; ð2:15Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor of
the vector field Aμ, and the fermion field ψ represents a
massless Majorana spinor, and the coupling ~gV is discussed
below. We remark at this stage that, if photons were to be

5We note for completeness that the four-fermion terms may
lead to (positive) vacuum energy contributions of de Sitter type if
there is condensation of the corresponding terms involving the
chiral fermions. However, Majorana fermions do not lead to such
condensates.
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considered, then an additional term involving the Maxwell
field strength for the ordinary photons would be present
in the argument of the square root of the first term of the
action (2.15).
The Lagrangian (2.15) depends on both space-time

coordinates and the momentum transfer, and hence cannot
be expressed as an ordinary local term in an effective action
framework. Nevertheless, as was argued in [14], in the
approximation (2.7), in which the D-foam background is
treated stochastically, the construction of a low-energy
local effective action for the fields Aμ and Ψ becomes
possible, and that action resembles the Lorentz-violating
theory appearing in [15].
Let us now return to the effective action (2.15). Defining

the generalized field F μν ≡ Fμν þ Bμν, we make use of the
fact [32] that in four Minkowski space-time dimensions
the determinant det4 ðηþ T−1FÞ has special properties that
allow the following representation of the Born-Infeld action
(we work from now on in units where the string tension
is T ¼ 1)6:

SBI ¼
1

gs

Z
d4xðI2 þ I4ð1þOðF 2ÞÞÞ þ const

I2 ¼
1

4
F μνF μν;

I4 ¼ −
1

8

�
F μνF νρF ρλF λμ −

1

4
ðF μνF μνÞ2

�
: ð2:16Þ

In the weak vector field approximation of interest to us here
we can ignore terms of order higher than quadratic in the
vector field and the (small) recoil velocity ui field. This is a
consistent approximation for relatively heavy D-particles,
whose recoil is suppressed by their mass. We also take a
quantum average over stochastic fluctuations of the B-field,
using (2.12), and keep terms quadratic in the vector (A) or
(averaged) recoil (hui) fields, including mixed terms of
order A2hu2i.

C. Target-space quantization of the FBI action

The summation over world-sheet genera leads to target-
space quantization of the Finsler background B0i (2.4), as
discussed in detail in [16]. The properties of the D-particle
recoil vertex operator as a (logarithmic) conformal field
theory in a σ-model approach [24] lead, upon summation
over world-sheet topologies, to quantum uncertainty rela-
tions between the recoil velocities and the collective
coordinates describing the initial position of the D-particle,

which correspond to those of canonically quantized col-
lective momentum and position operators for the D-particle
in target space. It was therefore argued in [16] that, via
(2.7), the summation over world-sheet genera elevates
the recoil velocity fields ui into quantum-fluctuating
momentum operators in target space7:

Bi0 ¼ ui ⇒ B̂i0 ¼ ûi ¼ −igs
ri
Ms

ℏ
∂
∂Xi ≡ −igs

ri
Ms

ℏ∇i;

ðno sum over i ¼ 1; 2; 3Þ:
Bij ¼ ϵijkuk ⇒ B̂ij ¼ ϵijkûk: ð2:17Þ

Consequently, the uncertainty relations ½Xi; t� ∼ ui of the
classical recoil background [20] are also elevated to
quantum operator relations.8

There is an important aspect of the correspondence
(2.17) that we use in the following. This correspondence
was derived from the σ-model approach to recoil [24], in
which one is forced to use time fields X0 with the Euclidean
signature in order to guarantee the convergence of the
world-sheet path integrals. This leads us to extend the
correspondence (2.17) to include [14]:

Bi0 ⇒ B̂i0 ¼ g00E gikE B̂k0 ¼ þB̂i0; ð2:18Þ

where the subscript E indicates the Euclidean signature. We
revert to the Minkowski signature by analytic continuation
only at the end of our computations, after replacing the
background B fields with appropriate operators.
In this correspondence (2.17), (2.18), the statistical

fluctuations in the foam are implemented by averaging
statistically the momentum transfer variable r (h� � �i) over
the population of quantum-fluctuating D-particles, using
the relations (2.12) for the case of isotropic foam, leading
to the correspondence:

huii ¼ 0;

huiuji ¼ δij
σ2g2s
M2

s
pkpk ⇒ −ℏ2

σ2g2s
M2

s
δijΔ;

Δ≡ ∇⃗ · ∇⃗: ð2:19Þ

Via this prescription for first quantization, the effective
action (2.16) is mapped onto a particularly simple local
effective action, as we now show.

6We remind the reader that the indices are raised and lowered
with respect to the background metric g, which we assumed to be
Minkowski η. In a general situation, where the metric g is not
trivial, the pure foam contributions proportional to various
powers of u2i contribute to (dark) vacuum energy [9,11], and
can be constrained by cosmological considerations, for instance.
We ignore such terms in our discussion here.

7The effects of the summation over genera on the fluctuations
of the background fields ui have been expressed in closed form
only in the bosonic string case. Although closed expressions have
not been derived in the world-sheet supersymmetric case [33], we
expect our arguments on the correspondence principle (2.17) to
characterize all types of string models.

8The correspondence (2.17) also leads to master equations that
can be used to study the induced decoherence of quantum matter
propagating in a quantum-fluctuating D-foam background [26].
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D. A minimal Lorentz-violating QED-like action

After implementing the correspondences (2.17), (2.18),
we obtain the following vector-field-dependent terms in an
action of Finsler-Born-Infeld (FBI) type:

SBI ∋ 1

gs

Z
d4x∶

�
1

4
Fμν

�
1þ b

16
B̂αβB̂

αβ

�
Fμν

þ a
64

FμνB̂
μνB̂αβFαβ −

1

8
FμνB̂

νρB̂ρβFβμ

�
∶þ � � � ;

ð2:20Þ

where the… in (2.20) represent terms of higher order in the
fields B and F, and the symbol :…: denotes an appropriate
quantum operator ordering, in which the ordering constants
a, b obey [14]

aþ b ¼ 2: ð2:21Þ

Terms involving odd powers of the operators B̂μν, vanish in
our stochastic Gaussian background (2.19), and so may be
ignored. Terms in which the operators B̂0i or B̂ij lie on the
far left-hand-side of the integrand in (2.20) have also been
dropped, as they correspond to total spatial derivative terms
that do not contribute, under the conventional assumption
that the fields decay suitably at spatial infinity on the
brane world.
Using as an intermediate step a target-space time with

the Euclidean signature when making the correspondence
(2.19), as discussed above [see (2.18)], some straightfor-
ward algebra using (2.21) reduces (2.20) to [14]

SBI ∋ 1

gs

Z
d4x

�
1

4
Fμν

�
1þ 1

4

�
1−

b
2

�
g2sσ2

M2
s
Δ
�
Fμν

�
þ � � � ;

ð2:22Þ

where the … represent terms of higher order in derivatives
and the Maxwell tensor Fμν, and Δ is the 3-space

Laplacian, Δ≡∇i∇i ¼ ∇⃗ · ∇⃗.
Whereas the recovery of the FBI action is trivial in the

classical limit, quantum ordering ambiguities are an issue.
Usually, the quantum ordering of operators is specified by
requiring that the effective Lagrangian be Hermitian, which
is not an issue here because of the stochasticity of the
foamy background (2.19). In principle, is selected by the
correct quantum ordering is selected by the full underlying
theory of quantum gravity, but this is still elusive, so we
proceed phenomenologically. As discussed in detail in [14],
the choice b ¼ 2 would eliminate Lorentz-violating terms,
but a solution that leads to dynamical mass generation is
preferred, in order to avoid infrared (IR) divergences and
the associated instabilities. Assuming that the full quantum

gravity theory should act as an IR regulator, one must select
an ordering with b ≠ 2.
Any ordering with b < 2 would lead to terms that affect

the pole structure of the vector propagator in three-space,
as the bare propagator of the vector boson Aμ stemming
from (2.22) has the following form [apart from gauge-
fixing terms that we do not write explicitly here, see the
discussion below (3.1) and above (3.9)] [15]:

Dbare
μν ðω; p⃗Þ ¼ −

i
1 − p2=M2

�
ημν

−ω2 þ p2
−

pμpν

ð−ω2 þ p2Þ2
�
;

M2 ≡ 4M2
s

ð1 − b=2Þg2sσ2
> 0: ð2:23Þ

The effective action in Fourier space would therefore no
longer be unitary at momenta above the scale M. This is
exactly what could happen [11,20] if the classical recoil
velocity (2.2) were to exceed the speed of light in vacuo,
which is unphysical. The low-energy effective action is
completely consistent in a classical background, and
the mass scale M defines the range of validity of the
low-energy local effective action.
In extending our prescription beyond such a classical

effective field theory, we look for a choice of quantum
ordering that allows the action to be extended beyond the
classical limit, so as to describe some aspects of space-time
foam for larger momenta. This would provide a partial
ultraviolet (UV) completion of the low-energy theory as far
as dynamical mass generation is concerned.9 Dynamical
mass generation is, however, an IR phenomenon and the
detailed UV structure of the theory should not affect it.
This is, for instance, what happens with the Landau pole of
QED, whose presence does not affect dynamical mass
generation.10 However, our case is different as the effective
theory breaks down above a momentum scale where the
effective Lagrangian is no longer unitary, because of a
change in the sign of the photon propagator. A study of
dynamical generation in such a case would need to cut the
momentum integrals in the Schwinger-Dyson equations
off above the scale M. This would be different from the
consistent Schwinger-Dyson treatment in [15], which
required the cancellation of potential UV divergences,
implying implicitly a suitable extension of the model
beyond any UV cut-off.
Fortunately, it is possible to avoid such a UV cut-off with

a suitable choice of quantum ordering. A minimal class
of such orderings, which yield a unitary photon propagator
(2.23) in three space dimensions, is that in which the
ordering parameter b is in the range:

9We note that other aspects of the foam, such as vacuum
refraction-induced photon delays, cannot be described within the
framework of local effective field theories, see [11,20].

10There is support for this from lattice calculations but, as far
as we are aware, no rigorous proof exists as yet [34,35].
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b > 2: ð2:24Þ

After a formal analytic continuation back to Minkowski
space-time, the action (2.22) takes the same form (3.1) as in
[15], with the mass scale

M ¼ Ms

gs
ffiffiffiffiffi
~σ2

p ; ~σ2 ≡ σ2
1

4

����1 − b
2

����: ð2:25Þ

Any residual ordering ambiguity can be absorbed along
with the fluctuations of the foam into a small phenom-
enological parameter in our first-quantized approach.
The remaining ambiguities should be removed when
a full, second-quantized quantum gravity model for
D-foam fluctuations is developed.11 After such a suit-
able choice of quantum ordering the effective action
exhibits maximal suppression of the Lorentz-violating
effects and cures IR instabilities through dynamical
mass generation.
As already mentioned above and emphasized in

[11,20], the phenomenon of induced vacuum refraction for
photons cannot be captured by this local effective action.
The time delays of photons that are induced by their
topologically nontrivial interactions with the D-foam are
expected to scale linearly with the photon energy, and thus
are suppressed by just a single power of the string mass
scale, are purely stringy effects, associated with time-space
uncertainties [11,12,20,31] and generated by intermediate
(nonlocal) string states stretched between the D3 branes
and the D-particles. This is to be contrasted with the
modifications due to the foam in the local string effective
action (2.22) or (2.15), which are quadratically suppressed
by the string scale (2.25), as a result of the stochasticity
assumption (2.19).
We now discuss dynamical mass generation for the

singlet fermions as a consequence of the dynamics
described by the local effective action (2.15).

III. DYNAMICAL MASS GENERATION
FOR SINGLET FERMIONS

In Ref. [15], dynamical mass generation for fermions
has been studied in the context of a (3þ 1)-dimensional
QED-like field theory with higher-order spatial derivatives
in the photon sector that violated four-dimensional Lorentz
symmetry but preserved spatial rotations, and a standard
form for the fermion sector. This Lorentz-violating model is
not of the Lifshitz type [18], in the sense that there is
isotropic scaling between time and space coordinates, but

there is a mass scale that suppresses the Lorentz-violating
spatial-derivative terms, as we now describe.

A. Review of a minimal Lorentz-violating
QED-like model

The Lorentz-violating Lagrangian considered in [15] is
[here the description is adapted so that the U(1) gauge field
Aμ of that work is replaced by the bulk recoil gauge field
Aμ, anf the corresponding electron charge e by the vector
coupling ~gV]:

L ¼ −
1

4
Fμν

�
1 −

Δ
M2

�
Fμν −

ξ

2
∂μAμ

�
1 −

Δ
M2

�
∂νAν

þ iψ̄=Dψ ; ð3:1Þ

where ξ is a covariant gauge-fixing parameter, Dμ ≡ ∂μ þ
i~gVAμ and Δ≡ ∂i∂i ¼ ∂⃗ · ∂⃗, and in our convention the
metric is (−1; 1; 1; 1).
For a discussion of the relevance of gauge-fixing terms

for the dynamically generated mass and the associated
ambiguities, as artifacts of the truncation of the Schwinger-
Dyson equations to one loop, we refer the reader to [14].
In what follows, we use the ξ ¼ 0 gauge to construct
the low-energy interactions of singlet fermions ψ with
quantum-fluctuating D-foam in Sec. II D, [cf. (2.22) and
(2.14)]. In writing (3.1) we have restricted ourselves to the
singlet fermions ψ . If the approach is extended to include
nonsinglet fermions ψ 0

i in the theory, additional world-
volume gauge fields should be added in the Born-Infeld
kinetic terms, and in the covariant derivatives acting on
those fermions.
There were no higher-order spatial derivatives for the

fermions in [15], so as to avoid nonrenormalizable cou-
plings in the theory of the form

1

Mn−1 ψ̄ðiD⃗ · γ⃗Þnψ n ≥ 2; ð3:2Þ

and such terms are absent in the framework we introduced
in the previous section. Standard (3þ 1)-dimensional QED
in a covariant gauge is recovered in the limit M → ∞, and
this scale characterizes the energies at which Lorentz-
violating effects become important. It may be the Planck
scale, or not, depending on the microscopic origin of
Lorentz violation.
The Lorentz-violating terms in (3.2) play a dual role, as

discussed in [15]:
(i) First, they introduce a mass scale, M, that is needed

for generating a fermion mass. Our case corresponds
to that of [15] with ξ ¼ 0, the vector coupling ~gV
replacing the electron charge e and the scaleM given
by (2.25). That is, the corresponding singlet fermion
mass, induced by the interactions with the D-foam,
is in our case:

11It is interesting to note that for the unique value b ¼ 10,
~σ2 ¼ σ2, so that the scale M of the Lorentz-violating terms in the
action (2.22) is identical to that at which the foam-averaged recoil
velocity equals the speed of light in vacuo [11,20]. In this case a
unique quantum gravity scale would enter the model in different
guises.
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mdyn ¼ M exp

�
−

2π

ð4þ ðξ − 1ÞÞαV

�����
ξ¼0

¼ M exp

�
−

2π

3αV

�
; ð3:3Þ

where αV ¼ ~g2V=4π is the fine structure constant of
our model.12

(ii) Secondly, the higher-derivative Lorentz-violating
terms provide an effective regularization of the
theory, leading to finite gap equations [15]. We
emphasize, in order to avoid confusion, that the scale
M appearing in this approach does not regulate the
theory (3.1), as it regularizes loops with an internal
photon line only. Rather, M is a parameter of the
model upon which depend physical quantities such
as the dynamically generated mass. As we have seen
in Sec. II, in our stringy quantum-gravity model that
is described by the Lagrangian (3.1) in the low-
energy field-theoretical limit, this scale is express-
ible in terms of fundamental parameters of the
underlying string theory, see (2.25).

The following bare A-gauge field propagator was
derived from the Lagrangian (3.1) in [15]:

Dbare
μν ðω; p⃗Þ ¼ −

i
1þ p2=M2

�
ημν

−ω2 þ p2

þ ðξ − 1Þ pμpν

ð−ω2 þ p2Þ2
�
; ð3:4Þ

where p0 ¼ ω and p2 ¼ p⃗ · p⃗. Note that, since the pole
structure is not affected by the Lorentz-violating terms,
the A-field remains massless in this minimally Lorentz-
violating model [15]. The dynamical mass (3.3) was
derived from the following Schwinger-Dyson equation
for the fermion propagator (see, e.g., [37]):

S−1 − S−1bare ¼
Z

DμνðeγμÞSΓν; ð3:5Þ

where Γν, and S, andDμν are the dressed vertex, the dressed
fermion propagator, and the dressed photon propagator,

respectively. The equation (3.5) gives an exact self-
consistent relation between dressed n-point functions,
and thus is nonperturbative. As a consequence, the
would-be divergences are not absorbed by redefinition of
the bare parameters in the theory, but the equation is
regularized by the scaleM, which thereby acquires physical
significance.
The Schwinger-Dyson equation (3.5) was solved in [15]

using the ladder approximation. In this approximation one
ignores corrections to the vertex function, which would
have led to a system of coupled Schwinger-Dyson equa-
tions that would complicate matters significantly. This
approximation is known not to be gauge invariant [37],
a problem that is generic in off-shell field-theoretical
quantities that appear at intermediate stages in calculations
of physical on-shell quantities. There are some gauges,
termed nonlocal gauges, in which this bare approximation
to the vertex is argued to be an exact Ansatz [34]. In our
discussion below we restrict our analysis to one loop and
pick out the gauge-independent part of the dynamically
generated mass in a QED-like theory. In this spirit, loop
corrections to the photon propagator fermion wave-func-
tion renormalization were neglected in [15], and only the
corrections to the electron self-energy were kept.
With our approximations, the dressed fermion propaga-

tor can be expressed as

Sðω; p⃗Þ ¼ i
pμγ

μ −mdyn

pμpμ þm2
dyn

; ð3:6Þ

where mdyn is the fermion dynamical mass, and the
Schwinger-Dyson equation (3.5), which involves a
convergent integral thanks to the M-dependent Lorentz-
violating terms, becomes (for ξ ¼ 0)

mdyn ¼
αV
π2

Z
dωp2dp

1þ p2=M2

3mdyn

ð−ω2 þ p2Þð−ω2 þ p2 þm2
dynÞ

:

ð3:7Þ

This equation has the obvious solution mdyn ¼ 0, but we
are interested in a potential second solution, which satisfies
the following gap equation that is obtained after integration
over the frequency ω:

π

3αV
¼

Z
∞

0

xdx
1þ μ2x2

�
1 −

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
�
; ð3:8Þ

where μ≡mdyn=M is the dimensionless dynamical mass,
which we assume to be small. Both of the terms in
parentheses in (3.8) are divergent, but these divergences
cancel when combined. As explained in [15], after some
approximations valid in the limit μ ≪ 1, the nontrivial
dynamical fermion mass (3.3) arises as a consistent solution
of the equation (3.8). The physical solution of the

12There is an analogy with the magnetic catalysis phenomenon
of standard QED [34,36], according to which a sufficiently strong
magnetic field catalyzes the dynamical generation of a fermion
mass for arbitrarily weak QED couplings. This is an example of
Lorentz violation, with the Lorentz symmetry breaking being
provided by the direction of the background magnetic field.
However, there is an important difference in the magnetic
catalysis case from our model (and that of [15]). In the magnetic
catalysis case, the magnetic field breaks three-dimensional rota-
tional symmetry and induces an effective dimensional reduction
to two dimensions, as a result of the (1þ 1)-dimensional form of
the fermion propagator in the lowest Landau level, which is
dominant in the strong magnetic field case. Such a phenomenon
does not occur here.
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Schwinger-Dyson equation (3.5) is that with the dynamical
massmdyn ≠ 0, as it avoids IR instabilities. It is worth noting
that the expression (3.3) formdyn is not analytic in αV , and so
can only be found in a nonperturbative approach, such as the
Schwinger-Dyson equation used in [15].
Before proceeding, we comment on the ξ-dependence

of the dynamical mass (3.3). It is an artifact of the one-
loop truncation, as we have already mentioned. Indeed, as
argued in [14], when one resums appropriate (gauge-
invariant) subsets of Feynman graphs, e.g., using the “pinch
technique” that guarantees unitarity [38], there are extra
contributions to the dynamical mass, which imply that the
gauge-independent physical part of the dynamical mass
corresponds to the mass (3.3), except in the ξ ¼ 1 Feynman
gauge, in which all longitudinal parts of theA-gauge-boson
propagator vanish. The order of magnitude of the mass in
such a case,

mdynjξ¼1 ¼ M exp

�
−

π

2αV

�
; ð3:9Þ

remains the same as in (3.3). For our purposes here, we
shall adopt this former result in the ξ ¼ 0 gauge, since the
low-energy string-inspired effective action was constructed
in that gauge, as already mentioned. That said, however, we
remark that it would be interesting to devise nonperturba-
tive techniques in string theory, e.g., an appropriate version
of brane holography, for a nonperturbative computation of
the physical dynamical mass.
To recapitulate, in our case, the physical mass of the

singlet fermion generated dynamically by its interactions
with the foam is:

mdyn ¼ M exp

�
−

2π

3αV

�
;

αV ¼ ~g2V
4π

; M ¼ Ms

gs
ffiffiffiffiffi
~σ2

p ; ~σ2 ≡ σ2
1

4

����1 − b
2

����; b ≠ 2:

ð3:10Þ
The magnitude of the coupling ~gV depends on the string
model, and we treat it here as a phenomenological
parameter whose estimation we leave to future work.
Any ξ-gauge dependence between (3.9) and (3.3) can be
absorbed formally in its definition, for our purposes,
without affecting our order of magnitude estimates.

B. Application to singlet fermions

If the singlet fermions are right-handed neutrinos,
we expect them to be Majorana. Dynamical mass gener-
ation for such neutrinos [whose left-handed counterparts
belong to SU(2) doublets of the SM] in the above minimal
Lorentz-violating framework has been discussed in detail
in [19], whose results we borrow for our problem here.
As discussed in [19], the relevant low-energy Lorentz-
violating Lagrangian is:

L ¼ −
1

4
Fμν

�
1 −

Δ
M2

�
Fμν þ N̄ði=∂ − ~gV=AÞ

1

2
ð1þ γ5ÞN

þ ν̄ði=∂ − e2=AÞ
1

2
ð1 − γ5Þν; ð3:11Þ

where we have concentrated on the interactions of the
neutrinos with the foam, ignoring the SU(2) weak inter-
actions of νL for brevity and concreteness. The notations
in (3.11) are the following: the Majorana right-handed
neutrinos are given by νR ≡ 1

2
ð1þ γ5ÞN and the left-

handed neutrinos of the SM sector, belonging to SU(2)
doublets with the ordinary charged leptons, by νL ¼
1
2
ð1 − γ5Þν, where N and ν are four component nonchiral

Majorana spinors, with zero bare mass, and for simplicity
we restrict ourselves to one generation only for now,
commenting later on realistic models with three genera-
tions. The coupling e2 is either zero (in pointlike
D-foam models [8,11]) or strongly suppressed compared
to ~gV (for Type IIB string D-foam models [12]), by factors
that depend on the geometrical characteristics of the foam.
As an example, we consider the Type IIB model of [12],

in which our world is viewed as a D7 brane with four
dimensions compactified, and the “D-particles” of the foam
are represented by compactified D3 branes wrapped around
three cycles. Assuming that there is one D-particle per
three-volume VA3, and denoting the radius of the fourth
space dimension of the D7 brane transverse to the D3 brane
by R0, this suppression factor is given by

η≡ e22
~g2V

¼ ð1.55lsÞ4nð3ÞD

R0 ; ð3:12Þ

where nð3ÞD ¼ V−1
A3 is the D-particle-foam density in three-

space. In the model of [12], the values VA3 ∼ ð10lsÞ3
and R0 ∼ 338ls were shown to be consistent with phe-
nomenology, but different values are possible in other
models. An order of magnitude estimate of ~gV can be given
in that model by noticing [12] that the gauge coupling g37
describing interactions of particles on the D7 brane
(including singlet fermions) with D-particles (compactified
D3 branes) is

g−237 ¼ Vg−27 ; ð3:13Þ
where V ≡ VA3R0 is the volume of the extra four spatial
dimensions of D7 branes transverse to the D3 branes, and
the coupling g27 ∝ gs, where gs is the string coupling. The
coupling g37 (3.13) is identified with the ~gV coupling in
case of singlet fermion excitations, so we have

~gV ∝ g1=2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3ÞD R0−1

q
F ðs; t; α0Þ; ð3:14Þ

where s and t are appropriate s- or t-channel Mandelstam
variables inmomentum space andF ðs; t; α0Þ is amomentum-
dependent form factor associated with string amplitudes
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describing the scattering of such singlet fermionic exci-
tations off D-particles in the model, including string-loop
corrections that are suppressed by powers of gs which
“renormalizes” the coupling ~gV . This form factor is
difficult to compute exactly, given that the target-space
action of D-branes is not fully known. For slowly moving
excitations with momenta that are small compared to the
string mass scale, Ms ¼ 1=

ffiffiffiffi
α0

p
¼ 1=ls, for which a

field-theoretical approximation is adequate, the form
factor is well approximated by unity. However, for higher
momenta, and over a wide range of energies, stringy
effects of order α0 become comparable to field-theoretical
contributions, as can be seen by rough estimates of form
factors in concrete models by applying T-duality argu-
ments, which map the complicated nonperturbative
D-brane/string amplitudes into perturbative string-string
scattering amplitudes [39]. It is apparent from this
discussion that precise estimates of ~gV depend on the
microphysical model, in addition to being proportional to
the density of the D-particles in the foam.
Following the detailed discussion in [19], we may regard

the initially massless ν and N as a Majorana doublet νM ¼
ðν; NÞ that satisfies the Majorana condition νM ¼ ðνMÞc,
with c denoting the usual charge conjugation operation, and
couples to the vector fields. It was shown in [19] by solving
the corresponding system of coupled Schwinger-Dyson
equations for the fermions ν and N that, in the single gauge
field toy models of relevance here, the only solution for
dynamical fermion mass generation is one in which the
mass eigenvalues m1, m2 are

m1 ¼ λ− ¼ 0 m2 ¼ λþ ¼ M exp

�
−8π2

3~g2V

�
; ð3:15Þ

upon fixing the gauge parameter ζ ¼ ξ − 1 of [19] to
ζ ¼ −1. The massm1 can be identified with the left-handed
Majorana massML ¼ 0, and m2 [which is identical tomdyn

in (3.10)] is identified with the heavy right-handed
Majorana mass MR.
There is no nontrivial Dirac mass μ in the dynamical

solution, as explained in [19], but a Dirac mass term can be
generated through the usual Yukawa coupling with the
Higgs field. The (weak) foam coupling ~gV ≪ 1 and the
Yukawa coupling to the Higgs field in this scenario can be
chosen in such a way that the right-handed neutrino
Majorana mass (3.10) is much heavier than the Higgs-
generated Dirac mass, leading naturally to a light active
neutrino in the SM sector, as in a conventional seesaw
model. In the realistic case of more than one flavor of right-
handed neutrino, e.g., three flavors to match the number of
active neutrinos as in the νMSM model [40], one can
arrange the active neutrino mass hierarchy by appropriate
choice of the Yukawa couplings, even if there is a
degeneracy of right-handed Majorana masses (3.10), as
in models where there is a universal geometric coupling ~gV .

In other models, ~gV may be species dependent, which could
lead to a mass hierarchy between the right-handed neutrino
Majorana masses.
Before closing this section we remark that it is possible

to improve the ladder approximation so as to replace the
bare coupling ~gV in (3.10), (3.15) by a running one. This
would modify the mass (3.10), but such an improved
analysis would not affect significantly the order of magni-
tude of the nonperturbatively generated mass (3.10).13

However, a geometric enhancement of the dynamical mass
in multibrane-world scenarios à la Randall-Sundrum [41]
was discussed in [14], and is reviewed in the next section.

IV. GEOMETRICAL ENHANCEMENT OF
DYNAMICAL FERMION MASSES IN
MULTIBRANE-WORLD SCENARIOS

We now present a geometric mechanism that enhances
the dynamical fermion mass (3.10) by a suitable embedding
of the model in a higher-dimensional setup involving
brane worlds in a Randall and Sundrum (RS) warped bulk
geometry [41]. It was suggested in [41] that a large
hierarchy between the Planck mass and the TeV scale
could arise in brane-world scenarios in which our world is a
negative-tension brane located at a distance rcπ from a
hidden-sector brane embedded in a five-dimensional bulk.
As in RS, we assume that the five-dimensional metric is a

solution of Einstein’s equations in an anti-de Sitter bulk
space with a warp factor of the form

ds2 ¼ e−σðzÞημνdxμdxν þ dz2; ð4:1Þ

where z is the bulk (fifth) dimension, and the xμ are
coordinates in our four-dimensional space-time. Because
of the warp factor e−σðzÞ in the metric (4.1), a field on our
brane world of mass m0 with a canonically normalized
kinetic term has a physical mass of the form

mphys ¼ m0e−σðziÞ; ð4:2Þ

where zi denotes the location of our brane world along the
bulk dimension. If m0 has a (natural) magnitude around the
(reduced) four-dimensional Planck mass 2 × 1018 GeV,
(4.2) may generate a large hierarchy between the Planck
scale and the particle massesmphys in our world, depending
on the size of the exponent σðziÞ in the warp factor. In an
RS scenario containing just two branes with opposite

13The only case where such an analysis enhances significantly
the dynamical mass compared to the ladder approximation is
magnetic catalysis [34] in the presence of an external magnetic
field. However, the reason why the dynamical mass is less
suppressed in the improved approximation is the effective
dimensional reduction to two dimensions induced by the mag-
netic field. There is no such a reduction in our Lorentz-violating
case, since the singlet fermions are not charged.
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tensions, our world is identified with the negative tension
brane located at zi ¼ rcπ with σ ¼ −kjzj; k > 0, and the
desired hierarchy is obtained for krcπ ≃Oð50Þ. The expo-
nent σðziÞ is positive in the RS model, so the exponential
factor can only decrease the mass with respect to m0.
A more complex scenario was proposed in [42], involv-

ing many brane worlds and higher-order curvature terms of
Gauss-Bonnet type in the bulk:

S ¼ S5 þ S4; ð4:3Þ

where S5:

S5¼
Z
d5x

ffiffiffiffiffiffi
−g

p �
−R−

4

3
ð∇μΦÞ2þfðΦÞðR2−4R2

μνþR2
μνρσÞ

þξðzÞeζΦþc2fðΦÞð∇μΦÞ4þ���
�
; ð4:4Þ

where ΦðzÞ is the dilaton field and the … denote other
contractions of the four-derivative dilaton terms that are not
relevant, since they can be removed by appropriate field
redefinitions that leave perturbative string amplitudes
invariant. In this case there the bulk Einstein equations
have exact solutions in which our world can be identified
with a positive-tension brane and, moreover, for the
exponent in the warp factor to take negative values,
σðziÞ < 0, which is more important for our purposes as
it introduces an inverse RS hierarchy.
The action (4.3), (4.4) is compatible with closed-string

amplitude computations in five-dimensional space-times,
as needed because we assume closed-string propagation in
the bulk. In the stringy case one has [42]

fðΦÞ ¼ λeθΦ; λ ¼ α0=8g2s > 0;

c2 ¼
16

9

D − 4

D − 2
; ζ ¼ −θ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðD − 2Þp ; ð4:5Þ

where α0 ¼ 1=M2
s is the Regge slope,Ms is the string mass

scale, gs is the string coupling and the number of space-
time dimensions is D ¼ 5.
The four-dimensional part S4 of the action (4.3) is

given by

S4 ¼
X
i

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

p
eωΦvðziÞ; ð4:6Þ

where

gμνð4Þ ¼
�
gμν; μ; ν < 5

0; otherwise

�
; ð4:7Þ

and the sum over i extends over D-branes located at points
z ¼ zi along the fifth dimension. Embedding the model
(3.1) in such a scenario, we identify (3.1) with the effective
four-dimensional field-theory Lagrangian that describes the
low-energy dynamics of open strings (representing pho-
tons) with their ends attached to our physical world-brane.
The analysis of [42], to which we refer the interested

reader for details, has demonstrated that assuming a warped
five-dimensional geometry of the form (4.1) there is an
exact multibrane solution for the actions (4.3), (4.4),
and (4.6) that is depicted in Fig. 2, which involves bulk
singularities restricting dynamically the available bulk
space. In the bulk regions adjacent to the bulk singularities:
z ∼ zs the warp factor has a logarithmic solution:

’

1 20

(z)σ

Logarithmic
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dilaton

Randall− Sundrum solution with constant 

dilaton

III III IV

(+) (+)

D D
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D2
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(−) (−)

FIG. 2. Left panel: A multibrane scenario in which our world is represented by a positive-tension brane at z ¼ z2, accompanied by
branes of alternating-sign tensions on the left, which shield a bulk naked singularity that may be thought of as a limiting (singular) case
of a negative tension brane. The bulk dimension extends to infinity to the right of the brane world. Right panel: A multibrane scenario in
which our world is represented by a positive tension brane at z ¼ 0, surrounded on both sides by branes with alternating-sign tensions
that shield two symmetrically positioned bulk naked singularities.
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σðzÞ ¼ σ2 þ σ1 log jz − zsj; ð4:8Þ

while in the other segments of the bulk space the various
brane worlds induce linear solutions

σðzÞ ¼ σ0 þ kz; ð4:9Þ

with the parameter k alternating in sign between adjacent
segments of the bulk space, as indicated in Fig. 2. A
consistent scenario is obtained by matching the various
solutions on each brane.
The detailed analysis of [42] derived solutions of

the low-energy gravitational bulk equations with mass
hierarchies of the form:

mphys ¼ m0ekð2z1−z2Þ; k ¼
ffiffiffi
2

3

r
gsMs > 0; ð4:10Þ

where z2 is the location of our world (z2 ¼ 0 in the
symmetric scenario shown in the right panel of Fig. 2).
The bulk string scale, Ms, is in general an arbitrary scale
in string theory that may be very different from the
four-dimensional Planck scale MP. In this scenario, how-
ever, MP may not be very different from Ms, e.g., it can
be of order [42] MP ∼Ms=

ffiffiffiffi
gs

p
. We stress again that,

in these scenarios, our physical world is a positive-
tension brane.
Clearly it is possible in such a setup to have inverse RS

hierarchies, by arranging appropriately the positions of
the various branes. For instance, we may have z2 < 2z1.
Identifying m0 in (4.10) with our dynamically generated
gauge-invariant mass (3.10), the physical mass in our brane
world would be:

mdyn ¼ M exp

�
−

2π

3αV
þ

ffiffiffi
2

3

r
gsMsjz2 − 2z1j

�
: ð4:11Þ

Singlet fermion masses of the desired phenomenological
magnitude can be obtained by arranging appropriately the
distance jz2 − 2z1j in the arrangements shown in Fig. 2.14

As an indication, if we assume that g2s=4π ¼ 1=20, a
value that is typical in string phenomenology, then the
singlet fermion mass due to foam alone would be of order

mdyn ¼ Me−
2π
3αV ¼ 10−6.37=nDM: ð4:12Þ

If nD ¼ Oð1Þ per Planck volume and the mass scale M
appearing in (4.11), (4.12) isOð1019Þ GeV, the value of the
singlet fermion mass is

mdyn ¼ Oð1013Þ GeV: ð4:13Þ

This is typical of the masses of singlet right-handed
neutrinos that are postulated in seesaw models of light
neutrino masses.15

V. CONCLUSIONS AND OUTLOOK

We have discussed in this paper the possible role of
D-foam in generating dynamically masses for singlet
fermions. An obvious application is to right-handed
neutrinos that then—via a seesaw mechanism—are
responsible for generating the small masses of the active
neutrinos in the SM. As discussed at the end of
the previous section, this possibility is well within the
range of uncertainty in the dynamical singlet fermion
mass. We note that in this approach Lorentz invariance is
violated at the foamy level, but this Lorentz violation is
hidden in the effective low-energy field theory, so the
phenomenology of neutrino physics at accessible energies
resembles that in a conventional seesaw model.
There is considerable flexibility in the magnitude

of the singlet fermion mass, which is suppressed hier-
archically by the coupling αV whose value is poorly
constrained, but may be enhanced hierarchically by
geometrical effects in a multibrane-world scenario, as
discussed in the previous section. As commented above,
we leave to future work the estimation of αV in specific
models.
Before closing we recall that the role of D-foam in

the dynamical generation of charged fermions was
discussed in [14] in a spirit similar to that presented
here. However, there are some important differences.
In the charged-fermion case, the role of the coupling
~gV was played by the electrical charge of the fermion,
which implied that, for realistic cases, the foam-induced
dynamical mass was very much suppressed. However,
the dynamical vector field Aμ discussed here in the
singlet neutral fermion case does not couple to a charged
fermion, because of charge conservation, and there is no
such suppression.
As discussed in the previous section, in addition to

the coupling αV to the dynamical vector field Aμ, the
singlet fermion mass may be enhanced geometrically
in a multibrane-world scenario. This is a possibility
also in the charged-fermion case, but realistic masses
could be obtained for only one species in that case: the
diversity of the masses of the quarks and leptons of the
SM could not be obtained via the foam mechanism.
On the other hand, this possibility is open in the case
of singlet fermions, via appropriate choices of the
couplings ~gV and the geometrical factors, which are
species dependent.

14In the case of the symmetric arrangement in the right panel of
Fig. 2, our brane world is located at z2 ¼ 0.

15It is also in the range postulated for the inflaton in a wide
range of models of cosmological inflation, so in a supersym-
metric extension of our scenario the inflaton could also be
identified with the superpartner of the singlet fermion.
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