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We study the time development of strongly coupled N ¼ 4 supersymmetric Yang Mills (SYM) theory
on cosmological Friedmann-Robertson-Walker (FRW) backgrounds via the AdS/CFT correspondence. We
implement the cosmological background as a boundary metric fulfilling the Friedmann equation with a
four-dimensional cosmological constant and a dark radiation term. We analyze the dual bulk solution of the
type IIB supergravity and find that the time dependence of the FRW background strongly influences the
dynamical properties of the SYM theory. We in particular find a phase transition between a confined and a
deconfined phase. We also argue that some cosmological solutions could be related to the inflationary
scenario.
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I. INTRODUCTION

The holographic approach [1–3] to supersymmetric
Yang Mills (SYM) theory can be extended from the theory
on flat Minkowski space-time to the one on curved
boundary background space-times [4–7]. Such an exten-
sion is useful to understand for example the dynamical
properties of the SYM theory on cosmologically develop-
ing four-dimensional (4D) Friedmann-Robertson-Walker
(FRW) type space-times. Indeed, the influence of the
cosmological evolution on several dynamical properties
of the SYM theory such as e.g. the quark-antiquark
potential have been clarified in [4–7]. Since the deconfined
phase of QCD behaves in many ways similar to SYM
theory at finite temperature, these studies yield interesting
information about the behavior of the quark-gluon plasma
in the early universe before big bang nucleosynthesis.
In the holographic approach, the scale factor a0ðtÞ is

undetermined by the bulk equations of motion due to
gravity decoupling from the boundary and the boundary
metric being nondynamical. For the same reason, the
boundary cosmological constant can a priori be any
function of time, λðtÞ. In [5,6], the vacuum state of the
SYM theory has been examined by setting λ ¼ ð _a0=a0Þ2 þ
k=a20 to a constant parameter. This is equivalent to setting
a0ðtÞ to be a solution of the 4D Friedmann equation with a
4D cosmological constant Λ4 ¼ 3λ. It has been found in
particular [5,6] that the ground state of the SYM theory is in
the deconfinement and confinement phases for the positive
and the negative values of λ, respectively.
In [7], this analysis has been extended by including a

new parameter C, the dark radiation constant, into the bulk

solution. This parameter has first been introduced in [8,9]
in the context of brane world models, and its origin has
been discussed in [10,11]. From the holographic viewpoint,
as shown in [7], the bulk solution is related by a large bulk
diffeomorphism to the AdS5-Schwarzschild metric with
Hawking temperature set byC. The bulk diffeomorphism in
particular acts on the boundary metric as a conformal
transformation relating the FRW boundary metric to flat
Minkowski space-time. Its field theory dual therefore
represents a finite temperature SYM state in a FRW
universe. In general, the dynamical properties of the dual
theory are now controlled by the two parameters, λ and C.
In [12], the analysis was extended to time-dependent λðtÞ
by assuming the existence of the matter other than the 4D
cosmological constant Λ4 in the boundary space-time;
however, the time-dependent properties of the SYM state
were not discussed there. It was found [12] that the system
is in the deconfinement phase when C is large enough even
if the boundary cosmological constant λ is negative. Hence
the two parameters C and λ can provide opposite dynamical
effects in the theory, as shown in [12,13].
In this work we extend the analysis to the case where we

can see how the state of the SYM system varies with the
cosmological development of our Universe. Our purpose is
to propose a self-consistent procedure how to do it and to
find the time dependence of the state of the SYM theory.
The procedure is as follows: First, we obtain the energy
momentum tensor of the SYM theory, hTYM

μν i, in the
FRW boundary metric from holographic renormalization
[14–16]. Then by using this tensor, the 4D Einstein
equations [i.e. the Friedmann equation for the at-that-point
arbitrary scale factor a0ðtÞ] with Λ4 and SYM as matter are
solved to obtain the boundary scale factor a0ðtÞ. After that,
the time development of the SYM state is then analyzed by
substituting this a0ðtÞ back into the bulk solution. We
notice that the 4D Einstein equations used here were
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obtained in [17] from a different holographic regularization
procedure by adding a 4D boundary gravitational action.
This formulation may be related also to the designer gravity
approach of [18] to couple two AdS space-times together
such that at the boundary a gravitational theory is induced.
The solutions of a0ðtÞ obtained in this way provide a

“sudden” singularity [19] in the 4D boundary space-time at
the minimum value of the scale factor amin

0 . The boundary
cosmological constant λ is found as a two valued function
of a0 for a0 > amin

0 . The two branches merge at the minimal
value. We then study the solutions for the two cases Λ4 < 0
and Λ4 > 0 separately.
The region of negative λ1 is realized in the case of

Λ4 < 0, where we observe the expected phase transition
between Wilson loop confinement and deconfinement. The
equation of state w ¼ p=ρ, where p and ρ denote the
pressure and energy densities of the SYM fields, is found to
be a useful parameter for this transition. The parameter w,
which varies with time, characterizes the state of the SYM
theory. We found that the critical point of the confinement-
deconfinement transition is at exactly w ¼ −1=3. We
speculate on why this point is critical in terms of the virial
theorem. For Λ4 > 0, on the other hand, inflation behavior
will be found through this analysis, and issues related to
their cosmology are discussed.
As for the second branch of the solutions, which cover a

larger positive region of λ, a simple behavior of the solution
a0ðtÞ is obtained, and the relation to the cosmology is

discussed. In both cases, the value of a0ðtÞð> amin
0 Þ is

bounded from below when the dark radiation C is present.
This implies that we need to take into account quantum
gravitational effects to approach the dynamics in the region
of a0 < amin

0 since the curvature diverges at amin
0 . In this

region, an approach from quantum cosmology in the mini-
superspace would be available to resolve the dynamical
properties of the system.
The outline of this paper is as follows: In the next

section, a bulkM5 × S5 space-time is given as a solution of
ten-dimensional (10D) type IIB supergravity, and previous
results for the dual of SYM theory in the FRW space-time
are reviewed. In Sec. III, the procedure to obtain the
cosmological time development of the SYM theory by
self-consistently calculating a0ðtÞ is laid out in detail, and
the solutions which cross the (de)confinement transition
point are studied. Other kinds of solutions and their relation
to the inflationary scenario are discussed in Sec. IV. The
solutions, which cover a large λ region, are given in Sec. V,
and the relation to the cosmology is discussed. The
summary and discussions are given in Sec. VI.

II. HOLOGRAPHY OF SYM THEORY
IN A FRW METRIC

We start with ten-dimensional type IIB supergravity
retaining the dilaton Φ, axion χ, as well as the self-dual
five form field strength Fð5Þ,

S ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p �
R10 −

1

2
ð∂ΦÞ2 þ 1

2
e2Φð∂χÞ2 − 1

4 × 5!
F2
ð5Þ

�
: ð2:1Þ

All other fields are set to zero, and χ is Wick rotated to the
Euclidean domain [20]. We are going to use the Freund-
Rubin ansatz for Fð5Þ, Fμ1���μ5 ¼ −

ffiffiffiffiffiffi
Λ5

p
=2ϵμ1���μ5 [21,22] to

reduce to the five noncompact dimensions. The equations
of motion of the above theory are then solved by an Ansatz
for the 10D metric as M5 × S5,

ds210 ¼ gMNdxMdxN þ gijdxidxj ¼ gMNdxMdxN þ R2dΩ2
5:

The five sphere radius R is defined via 1=R ¼ ffiffiffiffiffiffi
Λ5

p
=2.

The holographic dual to the large N SYM gauge theory
embedded in 4D space-time with dark energy (i.e. boun-
dary cosmological constant) and dark radiation is then
given by the following form of the metric:

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ þ

R2

r2
dr2 þ R2dΩ2

5; ð2:2Þ

where

γijðxÞ ¼ δijγ
2ðxÞ; γðxÞ ¼ 1

.�
1þ k

r̄2

4r̄02

�
; r̄2 ¼

X3
i¼1

ðxiÞ2; ð2:3Þ

and k ¼ �1, or 0. The arbitrary scale parameter r̄0 of three space is set hereafter as r̄0 ¼ 1. The solution obtained from
10D supergravity of type IIB theory [7,12,23] is

1The reader should not confuse λ with Λ4. Their exact difference and relation is discussed in Sec. III.
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Ā ¼
��

1 −
λ

4μ2

�
R
r

�
2
�

2

þ ~c0

�
R
r

�
4
�

1=2
; ð2:4Þ

n̄ ¼
ð1 − λ

4μ2
ðRrÞ2Þð1 −

λþa0
_a0
_λ

4μ2
ðRrÞ2Þ − ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − λ
4μ2

ðRrÞ2Þ2 þ ~c0ðRrÞ4
q ; ð2:5Þ

where

�
_a0
a0

�
2

þ k
a20

¼ λðtÞ; ð2:6Þ

and

~c0 ¼ C=ð4μ2a40Þ: ð2:7Þ

Some comments are in order:
(i) The parameter C was first introduced as the “dark

radiation” term in the context of the brane world
model [8,9]. It has been reinterpreted as the projec-
tion of the five-dimensional (5D) Weyl term
in [10,11].

(ii) From the holographic viewpoint, it has been made
clear in [7] that C parametrizes the radiation energy
and pressure (the energy-momentum tensor) of the
SYM fields induced from the holographic bulk
geometry. In the following, we will use this fact.

(iii) λðtÞ is a function of a0ðtÞ defined via the Friedmann
equation (2.6). Since a0ðtÞ cannot be determined by
the equations of motion of the 10D bulk gravity, λðtÞ
can be set to an arbitrary function of t. For any λðtÞ
and C, the above solution satisfies the 10D gravity
equations of motion given by (2.1).

In general, we can analyze how the physical quantities of
the SYM theory varies with time only after the t depend-
ence of a0ðtÞ has been specified. Before attempting to do
so, we briefly review the results of the previous analyses
where the time dependence of a0ðtÞ was assumed to be
adiabatically slow.

A. Phase diagram for λ= const

The dynamical properties of the theory can be studied
under the assumption that a0ðtÞ varies very slowly com-
pared to the time scale of the dynamics of the SYM theory
[7].2 Since there is no equation to determine a0ðtÞ in
solving the 5D Einstein equations, there is no constraint on
the time dependence of a0ðtÞ. The parameters appearing in
the bulk configuration (λ and b0) can be chosen arbitrarily.
In the case of time-independent a0ðtÞ, the factors Ā and n̄

of the above solution can be written as

Ā ¼
��

1þ
�
r0
r

�
2
�

2

þ
�
b0
r

�
4
�

1=2
; ð2:8Þ

n̄ ¼ ð1þ ðr0r Þ2Þ2 − ðb0r Þ4
Ā

; ð2:9Þ

r0 ¼
ffiffiffiffiffi
jλj

p
R2=2; b0 ¼ R~c1=40 : ð2:10Þ

In this case, the dynamical properties of the dual 4D SYM
theory on the boundary are controlled by the parameters
λ and C, or equivalently by r0 and b0. In the following we
summarize the results:

(i) C ¼ 0 and finite λ: In this case, it has been found
that the SYM theory is in the confined (deconfined)
phase for negative (positive) λ [5,6].

(ii) Finite C and λ ¼ 0: In this case, the 5D metric is
reduced to the AdS5-Schwarzschild form, in which
Cð> 0Þ represents the black hole mass. Then, from
the holographic viewpoint, C corresponds to the
thermal radiation of the SYM fields at a finite
temperature [7]. So the system is in the deconfined
phase.

(iii) From the above two cases, we can suppose that the
two parameters, C and λð< 0Þ, compete with each
other; namely C > 0 favors deconfinement and
λ < 0 favors confinement. In fact, we found the
phase transition at a point where these two opposite
effects are balanced [7,12,23,24]. The critical line is
given by b0 ¼ r0, where b0 and r0 are defined in
terms ofC and λ by (2.10) above. The phase diagram
of the SYM theory in the FRW space-time is given
in Fig. 1.

(iv) In the deconfinement phase or in the region b0 ≥ r0,
the temperature T is given as the Hawking temper-
ature of the 5D metric. Then T decreases with

Confinement

a

b

Deconfinement

0.0 0.2 0.4 0.6 0.8 1.0
b00.0

0.2

0.4

0.6

0.8

1.0
r0

FIG. 1. Line (a) shows the critical line r0 ¼ b0 separating the
quark confinement phase from the deconfinement phase for the
case of constant a0ðtÞ. Curve (b) represents the running a0ðtÞ case
obtained in this work. It obeys the formula r0 ¼ ð1þ _λa0

λ _a0
Þ−1=4b0

which is explained below.

2We should notice that the solution, a0 ¼ 1=
ffiffiffiffiffijλjp ¼ const is

actually found for negative constant λ and k ¼ −1. This is
considered as an extremal case of the slowly varying a0ðtÞ.
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increasing r0 up to the transition temperature (Tc) to
the confinement phase. It is given as Tc ¼ 0, which
corresponds to the critical line r0 ¼ b0 in Fig. 1.

(v) For positive λ, the theory is always in the deconfined
and chiral symmetric phase.

B. The case of time-dependent λ

The case of a general time independent a0ðtÞ and λðtÞ is
treated in the following. As shown below, we solve the 4D
Einstein equations to obtain the time dependence of a0ðtÞ
and λðtÞ by using the 4D energy-momentum tensor of the
SYM theory which is obtained by holographic renormal-
ization. Then the phase transition line given by (a) in Fig. 1
is replaced by (b), which obeys the following formula:

r0 ¼
�
1þ

_λa0
λ _a0

�−1=4
b0: ð2:11Þ

The derivation and the details of this result are given below.

III. COSMOLOGICAL TIME DEVELOPMENT
OF SYM SYSTEM

A. Holographic cosmology

As explained above, the scale factor a0ðtÞ cannot be
determined by the bulk equations of motion. It is obtained
instead as a solution of 4D cosmological equations, where
the 4D gravity couples to the various kinds of matter
present. Here we obtain the scale factor by solving the 4D
Einstein equations which couple to the holographic SYM
theory. In the equations, we use the energy-momentum
tensor of the SYM theory, hTSYM

μν i, which is obtained
holographically. Using the a0ðtÞ obtained in this way,
we can analyze the time development of the state of the
SYM theory.
In our model, the matter part of the 4D cosmology is

dominated by the SYM fields. The action to be solved is
given as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ24
ðR4 − 2Λ4Þ

�
þ SeffSYM; ð3:1Þ

where κ24 ¼ 8πG4 and Λ4 denote the 4D gravitational
constant and cosmological constant, respectively.
Furthermore, the matter part SeffSYM is to be understood as
an effective action which is obtained by integrating out all
quantum fluctuations of the SYM fields under the FRW
metric,

ds2ð4Þ ¼ −dt2 þ a0ðtÞ2γijdxidxj: ð3:2Þ

The factor a0ðtÞ is obtained by solving the following
Einstein equation:

Gμν ¼ Rμν −
1

2
Rgμν þ Λ4gμν ¼ κ24hTYM

μν i; ð3:3Þ

where

hTYM
μν i ¼ 2ffiffiffiffiffiffi−gp δSeffSYM

δgμν
ð3:4Þ

represents the energy-momentum tensor of SYM fields. It
includes all quantum corrections of the interacting SYM
fields in the background (3.2). As we mentioned in the
introduction, Eq. (3.3) has been obtained from the holo-
graphic regularization procedure with a boundary condition
different from the usual Dirichlet condition by adding an
appropriate boundary 4D gravitational action in [17].
The strategy of our holographic approach is given as

follows:
1. First, hTYM

μν i is calculated by holographic renorm-
alization.

2. Then a0ðtÞ is obtained by solving Eq. (3.3) for the
metric (3.2).

3. Then we examine the time development of the state
of the SYM theory based on the holographic
principle by using (2.2)–(2.7).

B. Boundary cosmology

The independent equations of (3.3) are

λ≡
�
_a0
a0

�
2

þ k
a20

¼ Λ4

3
þ κ24

3
hTYM

00 i; ð3:5Þ

2
ä0
a0

þ
�
_a0
a0

�
2

þ k
a20

¼ Λ4 − κ24hTYM
ii i: ð3:6Þ

The first Eq. (3.5) represents the tt component of (3.3), and
it is called the Friedmann equation. From the above two
equations, we obtain the following continuity equation:

_ρþ 3Hðρþ pÞ ¼ 0; H ¼ _a0=a0; ð3:7Þ

where TYM
μν is supposed to be written by ρ and p as

hTYM
μν i ¼ diagðρ; pg0ijÞ: ð3:8Þ

The form of TYM
μν is given as follows [12,14–16]:

ρ ¼ 3α

�
~c0
R4

þ λ2

16

�
; ð3:9Þ

p ¼ α

�
~c0
R4

− 3
λ2

16

�
1þ 2_λ

3λ

a0
_a0

��
; α ¼ 4R3

16πGð5Þ
N

:

ð3:10Þ
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It is easy to see that Eq. (3.7) is satisfied by the above ρ
and p.
We notice that solving Eqs. (3.5) and (3.6) is equivalent

to solving Eqs. (3.5) and (3.7). On the other hand, Eq. (3.7)
is satisfied for the above hTYM

μν i as mentioned above. So,
our task to do here is to solve the Friedman equation (3.5)
to obtain a0ðtÞ, and the equation to be solved is written as

λ ¼ Λ4

3
þ κ24

3
hTSYM

00 i ¼ Λ4

3
þ ~α2ð ~b04 þ λ2Þ; ð3:11Þ

where

~α2 ¼ κ24
16

α ¼ κ24N
2

32π2
; ~b0 ¼

2

R2
b0: ð3:12Þ

Equation (3.11) is then solved first with respect to λ as
follows3:

λ ¼ λ� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4~α2ðΛ4=3þ ~α2 ~b0

4Þ
q

2~α2
: ð3:13Þ

In the following, we solve the above equations for λ ¼ λ−
and λ ¼ λþ separately. The solutions a0ðtÞ of the two
equations can be connected at a singular point a0 ¼ amin

0 ,
which is given below. We now discuss the two solution
branches separately.

IV. THE λ= λ− SOLUTION

A. The case of Λ4 < 0

In this section we study the state of the SYM theory in
the region of λ < 0, which is realized for Λ4 < 0. This
parameter region is of particular interest since a phase
transition is expected there. The case ofΛ4 > 0 is studied in
the next section.
The case of λ < 0 is realized for the solution λ ¼ λ− with

negative Λ4ð¼ −jΛ4jÞ. In this case, the boundary
Friedmann equation to be solved is

�
_a0
a0

�
2

þ k
a20

¼ λ−¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4~α2jΛ4j=3−4~α4 ~b0

4
q

2~α2
: ð4:1Þ

Here λ− is the corresponding solution of (3.13), and
~b0
4 ¼ 4C

R2a4
0

. Here we specialized to the case of negative

spatial curvature, k ¼ −1, which is necessary to cover the
region of negative λ. The solution for the scale factor a0ðtÞ
from (4.1) requires the value of λ to be in the range

1 −
ffiffiffiffiffiffi
~Λ4

q
2~α2

≤ λ ≤
1

2~α2
; ~Λ4 ¼ 1þ 4~α2jΛ4j=3: ð4:2Þ

Negative λ is hence found for

jΛ4j=3 > ~α2 ~b0
4: ð4:3Þ

On the other hand, in the range

jΛ4j=3 < ~α2 ~b0
4 ≤

1

4~α2
þ jΛ4j=3; ð4:4Þ

we find positive λ. The right-hand side of the inequality
(4.4) denotes the condition for the reality of λ−, and it
provides the minimum of the allowed a0. It is given as

amin
0 ¼ ~α

�
16C

R2 ~Λ4

�
1=4

: ð4:5Þ

This point is called “sudden singularity” [19] since the
scalar curvature diverges at this point due to the fact that
ä0 ¼ ∞ at this point as shown below.
Note that the left-hand inequality of (4.4) gives an upper

constraint on a0, but this is not the maximum value of a0
possible by the Friedmann equation. Such a value is rather
given by (4.8) below.

1. Solving the boundary Friedmann equation

First, we rewrite Eq. (4.1) in the following form:

1

2
_a20 þ V−ða0Þ ¼ 0; ð4:6Þ

V−ða0Þ ¼
k
2
−
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~α2jΛ4j=3 − 4~α4 ~b0

4
q

4~α2
a20: ð4:7Þ

The value of the solution a0 is restricted from below by
amin
0 as given by (4.5). The upper bound, denoted amax

0 , is
given as the turning point, where _a0 ¼ 0 or V−ðamax

0 Þ ¼ 0.
From (4.6) and (4.7), we obtain the upper bound to be

amax
0 ¼

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4jΛ4j ~α2ð1þ 4C=R2Þ=3

p
2jΛ4j=3

�1=2

: ð4:8Þ

We see that V−ða0Þ > 0 for a0 > amax
0 , and hence there is

no real solution for a0 > amax
0 .

Here, starting from a0 ¼ amin
0 , we solve (4.1) numeri-

cally for appropriate values of Λ4 and C to see the
characteristic properties of a0ðtÞ. A typical solution is
shown in Fig. 2.
We should notice here that, at t ¼ 0, _a0ðtÞ is finite, but

ä0ðtÞ ¼ ∞. This point is called a sudden singularity. At this
point, the scalar curvature is divergent as seen from the
curve (c), which represents ä0ðtÞ, in Fig. 2. Our Friedmann

3We notice here

�
_a0
a0

�
2

þ k
a20

¼ λ:
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equation breaks down near this point, where higher order
curvature terms and other quantum gravity effects would
become important. We will further discuss this issue in
future work.
Concentrating on the region a0 > amin

0 , the following
points are observed from the solution of (4.1):

(i) It is well known that the solution a0ðtÞ is given by a
periodic function for constant, negative λ and C ¼ 0.
In the present case of C ≠ 0, we find only one
turning point at a0 ¼ amax

0 as seen from Fig. 2.
Namely a0 starts from amin

0 and arrives at this turning
point, then it comes back to the starting point. After
that, a0 cannot return to the amax

0 since _a0 < 0 there
when it comes back.

(ii) In our analysis, a0 is restricted in the range

amin
0 < a0ðtÞ ≤ amax

0 : ð4:9Þ
However, the solution does not oscillate between
amin
0 and amax

0 since the point of amin
0 is not a turning

point but a singular point.

2. Deconfinement transition in the SYM theory

Using the solution of a0ðtÞ given above, the time
dependence of the parameters b0 and r0 is shown in the

left of Fig. 3. We find their crossing point where the
confinement-deconfinement phase transition occurs for the
case of constant a0. In the present case, as explained below,
the transition point is given by the zero point of the curve
(c) in the same figure, and it deviates slightly from the point
b0 ¼ r0 in the adiabatic approximation.
The transition point is determined here as follows.
1. For each solution a0ðtÞ, we search for the horizon as

a zero of n̄ðr; tÞ, which is given by Eq. (2.5), as a
function of r.

2. When a zero can (cannot) be found, we can say that
the phase of the state of the SYM theory is in the
deconfinement (confinement) phase.

3. Any point in time where the so-found horizon
disappears is a transition point from deconfinement
to the confinement phase, and vice versa.

4. Performing the above procedure for different param-
eters with the same initial condition, we find a
critical curve in the b0 − r0 plane. It is shown
in Fig. 1.

In step 1 of the above procedure, the zero of the numerator
of n̄ðr; tÞ in Eq. (2.5) is found by rewriting it as the
quadratic equation in terms of x≡ R2=r2 > 0, whose
solutions are given by

x� ¼ na þ nb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðna þ nbÞ2 − 4ðnanb − ncÞ

p
2ðnanb − ncÞ

: ð4:10Þ

Here

na ¼
λR2

4
; nb ¼

λþ _λ a0
_a0

4
R2; nc ¼ ~c0: ð4:11Þ

Then we search for a positive solution of x�, which we
interpret as a horizon of the 5D metric (2.2).
At the beginning, or at small a0, a horizon can be

observed at large r (small x−). In other words, the SYM
system is in a very hot plasma phase. Then, we expect that
the horizon approaches r ¼ 0 with growing a0 and dis-
appears at the transition point. We find that this transition is
realized at the point of
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FIG. 3. Left: Time dependence of (a) r0, (b) b0, and (c) nanb − nc. Right: Time dependence of (a) 10=x−, (b) 102=xþ, and
(c) 102 × ðnanb − ncÞ for λ−, where Λ4=3 ¼ −1, C ¼ 0.03, and R ¼ 1.
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FIG. 2. Solution of (a) a0ðtÞ, (b) _a0ðtÞ, and (c) ä0ðtÞ for λ−,
where Λ4=3 ¼ −1, C ¼ 0.03, and R ¼ 1.
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nanb − nc ¼ 0 ⇔ r0 ¼
�
1þ

_λa0
λ _a0

�−1=4
b0; ð4:12Þ

where the second equation follows from (2.11). An
example is shown in the right-hand side of Fig. 3, where
the transition point is found at t ∼ 0.12. Then the values of
b0 and r0 are found from the solution shown on the left-
hand side of that figure. We notice that this point shows a
definite shift from the point of b0 ¼ r0. In summary, we
find the critical curve (b) in the b0 − r0 plane as shown
in Fig. 1.

3. Tension of the qq̄ potential

Note that the above transition point is also reproduced
from the potential between the quark and antiquark. In the
confinement phase, a finite tension (τqq̄) for the linear
quark-antiquark potential appears in the confinement
phase. The tension τqq̄ is given by [7]

τqq̄ ¼
nsðr�Þ
2πα0

; nsðrÞ ¼
�
r
R

�
2

n̄ Ā; ð4:13Þ

where r� denotes the minimum point of nsðrÞ. A typical
result for ns is shown in Fig. 4. From this figure, we can see
that the transition point coincides with the one given above
by observing the disappearance of the horizon.

Equation of state parameter w.—The two critical lines (a)
and (b) in Fig. 1 are qualitatively different. This difference

is reduced to the correction factor, ð1þ _λa0
λ _a0
Þ−1=4, which

appears in the case of time-dependent scale factor a0ðtÞ. On
the other hand, if we find a quantity which characterizes the
critical point by its special value even in the case of a time-
dependent a0ðtÞ, we can use this quantity as an order

parameter for the state of the system. Such a well-behaved
quantity is the ratio wð¼ p=ρÞ of the pressure p and energy
density ρ. This is called an equation of state parameter. At
the critical point of the confinement-deconfinement tran-
sition, we find

w ¼ −
1

3
: ð4:14Þ

This is seen analytically by using (3.9), (3.10), and (4.12).
Note that the relation (4.14) is satisfied at the critical point
independently of the various parameters entering the
solution. Furthermore, the relation (4.14) also holds for
the case of constant a0 at the critical point r0 ¼ b0. The
latter point has not been discussed in the literature on the
topic before.
In the present model, after the phase transition to the

confinement phase the system remains at T ¼ 0. However,
the state of the SYM theory continues to change with time
since other quantities such as ρ and p and hence also w
change. This fact implies that the dynamical properties of
the system might be better characterized by w in the present
case rather than by the temperature T. We should introduce
a new form of thermodynamics with a newly defined
temperature to understand the dynamics in this region.
Such an idea would be realized by introducing the
entanglement temperature which has been discussed in
[25]. In this article, we do not discuss this point further. It is
opened here.

Relating the critical point w ¼ −1=3 to screening via the
virial theorem.—When a0ðtÞ varies with time, for small a0
or for high density, we find w > −1=3 and a horizon is
seen. As a0 increases and the horizon approaches r ¼ 0 and
disappears for w < −1=3 in the large a0 region, what has
happened at the critical point, w ¼ −1=3?
For C ¼ 0, there is no radiation and only the negative

boundary cosmological constant Λ4 exists. This case has
been examined in [6], where it was found that the SYM
theory is in the confinement phase with the linear quark
potential. In the case of C > 0, the above vacuum state is
excited to a finite temperature state filled with SYM
radiation, i.e. gluons.
These excited gluons can be observed as the thermal

radiation in the deconfinement phase where the screening
effect for the confinement force is overwhelming. Here we
replace the strength of the screening effect by a force with
the following form of potential:

Vscreen ¼ aLα; ð4:15Þ

where a and α are some constants and L denotes the
distance between the gluons (or between the quark and
antiquark). This force would be repulsive.
Considering the virial theorem for the thermal gluon

system one obtains
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FIG. 4. Time dependence of nsðr; tÞ for Λ4=3 ¼ −1, C ¼ 0.03,
and R ¼ 1.
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hKi ¼ α

2
hVi; ð4:16Þ

where K and V denote the kinetic and potential energy for
the gluons, respectively. The vacuum expectation values are
to be understood quantum mechanically. The equation of
state is related to these vacuum expectation values,

w ¼ hKi − hVi
hKi þ hVi ¼

α − 2

αþ 2
: ð4:17Þ

From this, we find α ¼ 1 for w ¼ −1=3. The system is in
the confinement phase for α < 1. This implies that, in the
region of w < −1=3, the confining potential (V ¼ τL [6])
overwhelms the screening (or thermal) effect at large L. As
a result, the system should be in the confinement phase for
w < −1=3, which is consistent with the disappearance of
the horizon.
It should be noticed that this is true when the system is in

the confinement phase for C ¼ 0. When the system is in the
deconfinement phase for C ¼ 0, the system remains in a
deconfinement phase even if w < −1=3.

Behavior of energy density ρ and pressure p.—It is
necessary to investigate the time dependence of the
physical quantities near the transition point. We show
the energy density ρ, the pressure p, and the parameter
w, in Fig. 5 in the case under consideration. Unexpectedly,
we do not find any sign of a phase transition in these
quantities themselves since they all change very smoothly
with time.

B. The case of Λ4 > 0

For Λ4 > 0, λ− is positive at any time in the region
a0 > amin

0 . In this case, the Friedmann equation to be
solved is

�
_a0
a0

�
2

þ k
a20

¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4~α2Λ4=3 − 4~α4 ~b0

4
q

2~α2
: ð4:18Þ

Although this equation has a solution for k ¼ −1;þ1, and
0, it is discussed here for the case of negative spatial
curvature k ¼ −1, in order to compare the case of
negative Λ4 in Sec. IVA.
The solution for the scale factor a0ðtÞ of (4.18) requires

the value of λ to vary in the range

1 −
ffiffiffiffiffiffiffiffi
~Λ4−

q
2~α2

≤ λ ≤
1

2~α2
; ~Λ4−

¼ 1 − 4~α2Λ4=3: ð4:19Þ

In this way we ensure that λ is positive. The minimum value
of a0 is given by

amin
0 ¼ ~α

�
16C

R2 ~Λ4−

�
1=4

: ð4:20Þ

1. Features of the typical solution of (4.18)

The characteristic features of the solution of (4.18) can be
read from the typical numerical solution given in Fig. 6.
The equation has been solved by the initial condition
a0ð0Þ ¼ amin

0 , as in the case of negativeΛ4 discussed before.
(i) The scale a0 increases monotonically with almost

constant velocity _a0. However, ä0ðtÞ changes its sign
at t ¼ t1, so the expansion of the Universe changes
from decelerating to accelerating at t ¼ t1. This
implies that the dominant source of the expansion
changes from the radiation to the positive dark
energy at this time.

(ii) The value of w is interesting at the turning point. We
find it as

wðt1Þ ¼
1

3
: ð4:21Þ

This relation is again independent of the parameters
of the theory as seen at the phase transition point
above. The meaning of this fact will be discussed in
future work.
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FIG. 5. Time dependence of (a) ρ, (b) p, and (c) w ¼ p=ρ for
λ−, where Λ4=3 ¼ −1, C ¼ 0.03, and R ¼ 1.
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FIG. 6. Solution of (a) a0ðtÞ=10, (b) _a0ðtÞ, (c) ä0ðtÞ, and
(d) ðw − 1=3Þ for λ−, where Λ4=3 ¼ 5 × 10−2=ð4α2Þ, C ¼ 0.03,
and R ¼ 1.

GHOROKU, MEYER, and TOYODA PHYSICAL REVIEW D 96, 086011 (2017)

086011-8



2. Emergence of a second horizon at w = − 1=3

Next, we examine what happens at w ¼ −1=3. In the
present case of positive Λ4, λ− is positive at any point of
a0ðtÞ. As a result, the horizon represented by x− exists and
does not disappear at any time, as seen by curve (b) in
Fig. 7. In other words, the theory is in the deconfinement
phase at any time although the temperature decreases with
increasing a0. In this sense, there is no phase transition to
the confinement phase.
On the other hand, we observe that w decreases from a

large positive value and crosses −1=3 at a given time, and
then decreases further and approaches −1 for t → ∞. It is
interesting to see what happens in the present case after w
crosses w ¼ −1=3. Our observation is summarized as
follows:

1. There is no confinement-deconfinement phase tran-
sition at this point as mentioned above. This is
because of the fact that the theory for C ¼ 0 and
w ¼ −1 is in the deconfinement phase, as shown for
the λ > 0 case. So the system should be continuing
in the deconfinement phase even if the state is in the
region −1=3 > wð> −1Þ.

2. The horizon (x−) observed for w > −1=3 smoothly
varies as a horizon with positive value. On the other

hand, when w crosses w ¼ −1=3, the value of xþ
changes its sign to positive. This implies that the
second horizon, xþ, appears for w > −1=3. Then we
could say that in the holographic sense, two theories
are explicitly described by the dual 5D geometry for
−1 < w < −1=3. Two boundaries for each horizon
exist in this case, so we will find two 4D field
theories on those boundaries. A similar case has
been discussed in [26]. However, the two CFTs
would be noninteracting since they are not causal
due to the two horizons between the boundaries [27].
A similar situation has been found and discussed in
the case of negative λ [23]. We will further discuss
this point in a future work.

3. Instanton solution for k = + 1

Up to here, we have examined the case of Lorentzian
time, and we find one turning point for the case of Λ4 < 0.
For Λ4 > 0, we can find a Euclidean time solution with two
turning points for k ¼ 1. Barvinsky, Kamenshchik, and
Nesterev [28] have used this solution to construct a new
hilltop inflation scenario. In this sense, this type of solution
is very interesting, and we will discuss this solution in the
future.

V. THE SOLUTION BRANCH λ= λ+

In this section we discuss the positive sign solution in
(3.13). At the point of amin

0 , λ− takes its maximum value 1
2~α2

.
The value of λ larger than this maximum of λ− is realized by
λþ. So the solution of the equation solved here covers the
side of larger λ compared to the case of λ ¼ λ−.
In the case discussed in this section, λþ is always

positive, so we can solve the Friedmann equation again
for any value of the spatial curvature k, k ¼ 0, 1, −1. In all
cases, a0 grows exponentially with the t at enough large t,
where λ is positive and almost constant as shown in Fig. 8.
The typical solution is shown in the left panel of Fig. 8. In
this case, there is no turning point, so the Universe
continues to expand exponentially forever.
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FIG. 7. Solution of (a) 10=xþ, (b) 10=x−, and (c) wþ 1=3 for
λ−, where Λ4=3 ¼ 0.5=ð4α2Þ, C ¼ 0.03, and R ¼ 1.
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FIG. 8. Left: Time dependence of (a) a0ðtÞ, (b) _a0ðtÞ, and (c) ä0ðtÞ for λþ, where Λ4=3 ¼ −1, C ¼ 0.03, and R ¼ 1. Right: Time
dependence of (a) λþ, (b) ln a0ðtÞ, and (c) w ¼ p=ρ.
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Some important observations in this case concerning the
equation of state parameter w are summarized in the
following:

(i) First, we observe that w increases from −∞ to −1
with increasing time. The state is restricted to the
region of w < −1, which is usually called the
phantom state since the kinetic energy is negative.
The physical interpretation of this situation is an
open problem which we leave to future work.

(ii) Since the state in this case is restricted to w < −1,
the equation of state parameter does not arrive at
w ¼ −1=3. As a result, the number of the horizons
does not change as time evolves. We observe two
horizons at any time t, as shown in Fig. 9.

About the connectedness of λ− and λ + at a0 = amin
0

As pointed out above, the solutions λ ¼ λ− and λ ¼ λþ of
(3.13) are connected at the sudden singularity, namely at
the point of a0 ¼ amin

0 . The scalar curvature is divergent at
this point. So it is not easy to connect the two solutions due
to the singularity. As for this problem, there is an interesting
approach proposed by Awad [19] connected to an infla-
tionary scenario; however, we postpone the discussion of
this issue to a future work.

VI. SUMMARY AND DISCUSSION

In AdS/CFT, boundary gravity decouples from the bulk,
and the boundary metric becomes nondynamical. Hence,
the time-dependent scale factor a0ðtÞ in a FRW space-time
on the boundary cannot be determined self-consistently
from the equations of motion of the bulk gravity theory,
which in our case is a truncation of 10D supergravity. On
the other hand, the bulk solution induces energy and
momentum sourcing gravity on the boundary via the usual
AdS/CFT dictionary for the metric. For example, a finite
temperature state in the bulk (an AdS-Schwarzschild black
hole), will induce a radiation energy density and a
corresponding pressure on the boundary. Hence, in order

to obtain a self-consistent holographic cosmological evo-
lution, we need to impose the dynamics of the scale factor
a0ðtÞ by hand.
In this work we proposed a way to do so by imposing the

Friedmann equations for the boundary metric which relate
energy density and pressures of the dual field theory to the
time development of the CFT by giving a solution for the
scale factor a0ðtÞ. We hence solved the 4D boundary
Einstein equations coupled to the SYM theory energy-
momentum tensor hTμνi and to a boundary cosmological
constant Λ4. The energy-momentum tensor hTμνi itself is
obtained from the holographic renormalization procedure
in the 5D reduction of type IIB 10D supergravity. By using
the a0ðtÞ solved in this way we were able to find a time-
dependent 5D gravitational background, which consis-
tently describes the time dependence of the state of
N ¼ 4 SYM theory in the FRW space-time via the
AdS/CFT correspondence. The solution is characterized
by two free parameters, Λ4 and C, the 4D cosmological
constant and the dark radiation constant of the SYM fields.
These two parameters control the dynamical properties of
the SYM theory.
We then proceeded to analyze the phase structure of the

SYM theory for different cases of these parameters. Our
general finding is that negative Λ4 < 0 drives the theory to
a Wilson loop confinement phase. On the other hand, the
dark radiation C counteracts this tendency by the screening
of the confinement force. Hence these competing effects
lead to a confinement-deconfinement transition. The same
phenomenon had been observed for the case of slowly
varying a0 already in [7–12,24].
We find that the solution for a0ðtÞ has two branches,

λ ¼ λ− and λ ¼ λþ. These two branches arise from solving
a quadratic equation for λ.4 Both solutions have a minimum
amin
0 of the scale factor a0ðtÞ, and both branches λ� meet at

this point. This point turns out to be singular since the
acceleration ä ¼ ∞ diverges. At this point, the classical
Friedmann equation breaks down, and quantum gravita-
tional effects have to be taken into account to resolve the
singularity, which is beyond the scope of this work.
The first branch λ ¼ λ− itself separates into two cases

depending on the sign of Λ4. For negative Λ4, the region of
negative values of λ− is covered. The Friedmann equation is
then solved for hyperbolic (k ¼ −1) three-dimensional
spatial topology, and we find that the solution a0ðtÞ
increases with time and arrives at a maximum turning
point with _a0 ¼ 0 and amax

0 . After that, a0 turns back to the
singular point amin

0 . An important phenomenon in this case
is that, before arriving at amax

0 , we find a phase transition of
the SYM theory from the (Wilson loop) deconfinement to
the confinement phase at a critical time t ¼ tc. This
transition happens exactly when the horizon zero in gtt,
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FIG. 9. Solution of (a) xþ, (b) x−, and (c) 10ðnanb − ncÞ for λþ
and k ¼ −1, where Λ4=3 ¼ −1=ð4α2Þ, C ¼ 0.03, and R ¼ 1.

4We should notice here that λ� is not Λ4 but it is given by Λ4

and the dark radiation as shown above.
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which is present in the deconfinement phase at small
a0ðt < tcÞ, disappears. We have observed that at this
transition point, the value of the ratio w ¼ p=ρ of the
pressure to the energy density is exactly −1=3. This value is
in particular independent of the two free parameters of the
theory C and Λ4. The meaning of this value w ¼ −1=3 has
been discussed from the viewpoint of the virial equilibrium.
We would like to stress that the energy-momentum tensor
components ρ and p (and hence also w) vary smoothly
across the transition, which hence only shows in the Wilson
loop potential.
In the case of Λ4 > 0, λ is always positive, and we can

solve the Friedmann equation for any value of the spatial
curvature k, namely for k ¼ −1, þ1, and 0. In order to
compare with the case of Λ4 < 0, we have first examined
the case of negative curvature, k ¼ −1. In this case, the
solution a0 increases monotonically and has no turning
point. It furthermore has the following properties: First, the
acceleration äðtÞ changes its sign from positive to negative
at an appropriate time. While we find that w ¼ þ1=3 is
realized at this changing point independently of the
parameters, its physical interpretation is an open question
here. On the other hand, we find no phase transition at the
point of w ¼ −1=3 since the horizon zero in gtt remains
present for all regions of a0ðtÞ. Third, we noticed that a
second horizon appears for w < −1=3, an interesting
observation whose meaning we plan to investigate in a
future work. Finally, for k ¼ þ1 we found a Euclidean
solution with two turning points. This solution has been
used in [28] as an instanton solution to drive an inflation
scenario. In our case such solutions exist for special values
of the parameters, Λ4 and C. We postpone the discussion

about this kind of solution related to the inflation scenario
and the quantum cosmology.
For the second branch, λ ¼ λþ, the solution a0 increases

monotonically with time in all cases and never has a turning
point. At large enough a0, it expands exponentially as
expected since λþ is positive and grows a0ðtÞ. The value of
w increases monotonically from −∞ to −1, so w < −1 at
any a0. So the matter is in a phantom phase. We always find
two horizons in this case.
Of course, the time dependence of the solutions a0

obtained here depends on the 4D gravity model on the
boundary as well as on the 5D bulk theory and the chosen
solution therein. In the present case, it is constructed by the
Einstein-Hilbert action with a cosmological constant Λ4

and SYM theory. In general, other matter fields might be
included, or the 4D Einstein equations could be modified.
For example, higher order curvature terms may be needed
near the sudden singularity to resolve it. In this sense, some
parts of the above results will be model dependent, but the
chosen model, an otherwise conformal ground state in the
bulk with only the temperature turned on and the prudent
choice of the standard two-derivative Einstein-Hilbert
action coupled minimally to energy and momentum as
well as a cosmological constant on the boundary is the
simplest reasonable choice. Also, the results obtained here
will remain as a useful clue when we perform the analysis
of more complicated models.
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