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We examine the four-dimensional path integral for Euclidean quantum gravity in the context of the
EPRL-FK spin foam model. The state sum is restricted to certain symmetric configurations which resemble
the geometry of a flat homogeneous and isotropic universe. The vertex structure is specially chosen so that
a basic concept of expansion and contraction of the lattice universe is allowed. We compute the asymptotic
form of the spin foam state sum in the symmetry restricted setting and recover a Regge-type action, as well
as an explicit form of the Hessian matrix, which captures quantum corrections. We investigate the action in
the three cases of vacuum, a cosmological constant, and coupled to dust, and find that in all cases, the
corresponding FLRW dynamics is recovered in the limit of large lattices. While this work demonstrates a
large intersection with computations done in the context of cosmological modeling with Regge calculus, it
is ultimately a setup for treating curved geometries in the renormalization of the EPRL-FK spin foam
model.
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I. MOTIVATION

Spin foam models (SFM) are a promising candidate
for a theory of quantum gravity. Built on a path integral
formulation, they share many features with the conven-
tional state sum models used to define TQFTs [1] and
provide a covariant formulation of loop quantum gravity
(LQG) [2–6]. SFM are defined on a discretization of
spacetime, which can be regarded as an irregular lattice.
Unlike in lattice gauge theory, the lattice does not carry any
geometric information. Rather, its geometry is given by
representation-theoretic data distributed among the d − 1
and d − 2-dimensional substructures. The sum over all data
then realizes a discrete version of the integral over all
metrics.
Four-dimensional models for spin foam quantum gravity

were first introduced by Barrett and Crane [7], for both
Euclidean and Lorentzian signature. Objections were raised
about the incorporation of geometrical degrees of freedom
and the connection to LQG [8], which is why several other
models emerged in the following years [9–12]. Among
these, the model by Engle, Pereira, Livine and Rovelli is
one of the most investigated ones. For the value of the
Barbero-Immirzi paremter γ in the range γ ∈ ð0; 1Þ, the
Riemannian signature version coincides with the model by
Freidel and Krasnov, which is why it is called the EPRL-FK
model. While the EPRL model originally was defined only
on simplicial complexes, an extension has been proposed
in [13], to incorporate arbitrary polyhedral decompositions
of spacetime.

This model has received a lot of attention in recent years,
since it has many desirable properties. Notably, its large-
spin asymptotics is closely connected to discretized general
relativity [14–16], in the simplicial case. Recently, such
connection has been proven to persist when the semi-
classical analysis is extended to consider timelike tetrahe-
dra [17]. However the general case of timelike polyhedra
with timelike faces is still open, which is why in what
follows we will focus on the Euclidean scheme. The EPRL-
FK model has also been used to make contact with the
cosmological subsector of the theory [18,19], as well as
attempts to compute black hole life-times, which might be
connected to observations [20,21].
One of the crucial open questions regarding SFM is that

of the continuum limit. This is in particular coupled to
the problem of renormalization of spin foam models. The
renormalization of background-independent theories is
generally a nontrivial topic. However, in recent years,
there has been a lot of development in this field, in
particular on the notion of renormalization and coarse
graining in spin foam models [22–29]. Here, a strong
connection has been made to the renormalization of tensor
networks [30–34], in the context of finite group models and
quantum groups. Also, it was observed that the notion of
coarse graining is intricately intertwined with the fate of
broken diffeomorphism symmetry and the independence
under change of discretization in the model [35–40]. In the
canonical framework, this manifests itself with the chal-
lenge of constructing an anomaly-free version of the Dirac
hypersurface deformation algebra, the constraint algebra
for canonical GR [41–44].
In general, one major obstacle towards progress, and also

from allowing to use the model to make actual, testable,
predictions, is the complexity of SFM, and in particular of
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the EPRL-FK amplitude. A possible strategy to tackle this
issue consists in restricting state sum to certain symmetric
configurations. On one hand, this approach limits the range
of physical systems that can be described by the model,
on the other hand it greatly simplifies the expressions of the
transition amplitudes. Provided that one can restrict the
analysis to a subset of states which dominate the path
integral, the sum over such domain would tell us something
about the continuum limit of spin foams, expectation values
and renormalization group flow of the model.
In the canonical framework, a similar line of thinking

has been introduced in [45]. In the covariant setting, this
approach has recently been investigated in [46] in the
context of 4d Euclidean EPRL-FK spin foam model. Here
spacetime is described by a hypercuboidal lattice and the
state sum is restricted to coherent intertwiners [47] that in
the large-spin limit resemble a cuboidal geometry. Despite
the drastic reduction of the degrees of freedom the model
presents several interesting features. In particular it has
been shown that in the semiclassical limit the parameters
of the theory tune the restoration of the diffeomorphism
symmetry and provide a classification of the dominant
states in the path integral. Under the imposed restrictions,
such results open the path to a preliminary analysis of the
renormalization properties of spin foams. Recent analysis
based on this reduced model have in fact shown numerical
evidences of a phase transition in the RG flow [48,49].
A first clear limitation of such a model is the absence

of curvature due to vanishing dihedral angles between the
cuboidal blocks. In this paperwe take the next step along this
path by including an elementary form of curvature. In
particular we focus on a discretization in which spacetime
is chopped into hyperfrusta i.e., the four-dimensional
generalization of a truncated regular square pyramid (which
we will, in short, refer to as frustum). The state sum is
restricted to coherent intertwiners that in the large-spin limit
describes the geometry of a frustum. The emergent curvature
is a function of the angle variable that defines the slope of the
frustum itself. This extension of degrees of freedom will
allowus to go beyond the features of the cuboidmodel and to
forward some cosmological considerations.
The use of the hyperfrustum as the fundamental grain of

spacetime is justified by a number of advantages:
(i) A regular hyperfrustum is defined by using just three

spins. Consequently, all the formulas that we obtain
depend on a quite restricted set of variables. This
feature makes the analysis of the model more easy to
manage.

(ii) The geometry of a hyperfrustum allows a simple
and intuitive interpretation as a time-evolving homo-
geneous and isotropic flat space. Therefore we can
use it to model the evolution of a Friedmann
universe. Varying the values of the spins one obtains
hyperfrusta with different shapes representing space-
times with different curvature.

(iii) The hypercuboidal geometry is found from a par-
ticular configuration of the spin variables. In fact a
hyperfrustum is a natural extension of the hyper-
cuboidal geometry. Thus we can use the results in
[46] as a double check on our computations in the
flat spacetime limit.

(iv) This article provides a setup for the extension of the
renormalization computations performed in [48,49].
In fact, the hyperfrustum geometry allows the
inclusion of states with 4d curvature in the analysis.
We will continue along this line of research in a
future work.

The paper is organized as follows: In Sec. II, we briefly
review the four-dimensional Euclidean EPRL-FK model of
quantum gravity. The coherent intertwiners of the theory are
constructed in Sec. III and are used to define the edge- and
vertex-amplitudes. In Sec. IV, we find the complete asymp-
totic formula for the partition function of the model.We also
show that an action appears in the semiclassical limit of the
vertex amplitude, which is the generalization of the Regge
action to a hypercubic lattice. In Sec. V, we complete the
study, by investigating the semiclassical action, and consider
its dynamics on larger lattices. Gluing together many
hyperfrusta, we set up a tessellation of spacetime. On such
a structurewe give a qualitative interpretation of the vacuum
Friedmann equations in terms of pure geometrical variables
(areas, angles, etc.). Finally, in Sec. VI, we study the
effective cosmological dynamics starting from the Regge
action and deriving the equations of motion. We examine
three different cases: the vacuum solution, the Universe in
the presence of a cosmological constant and the coupling
of dust particles. A numerical analysis confirms the con-
vergence of our model to the Friedmann universe as the
discretization gets refined. Eventually, we show that in the
limit of small deficit angles the Regge equations exactly
reduce to the standard Friedmann equations, thus suggesting
that the restriction of the EPRL-FK model to the symmetric
configurations is indeed a viable model for the quantum
cosmological subsector of the SFM.

II. INTRODUCTION

In this paper we analyze the large-spin structure of the
4d Euclidean EPRL-FK spin foam model with Barbero-
Immirzi parameter γ < 1 [9,10]. The case for γ > 1 is only
marginally more complicated, and we do not expect one
were to find qualitatively different results in that case.
Nonetheless, this is something to be checked eventually.
We define the model on a 2-complex Γ which is the dual
skeleton of our particular discretization of the manifold.
The combinatorics of vertices v, edges e and faces f in Γ is
the same of a hypercubic lattice in which all the vertices are
eight-valent. In particular each vertex v in Γ is dual to a 4d
hyperfrustum, and the eight edges meeting at v are dual to
the eight 3d hexahedra (two cubes and six pyramidal frusta)
which bound the hyperfrustum (see Fig. 1). The faces f of
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the 2-complex are dual to squares or to regular trapezoids,
which in turn form the 2d boundary of cubes and frusta.
The hyperfrustum geometry arises by equipping every

face f with a spin jf and every edge ewith an intertwiner ιe.
A 2-complex colored by such specific labeling describes a
spacetime configuration in the state sum. Varying the
values of the labels in the bulk while keeping fixed the
boundary ones amount to consider different ‘paths’ in
the path integral. The physical information is deduced from
the transition amplitudes between fixed boundary states
which belong to the kinematical Hilbert space of LQG.
There exist many equivalent representations of the

boundary states in the literature (see for example [50])
and each of them may offer a convenient perspective
depending on the kind of problems that one wants to
investigate. The usual approach to spin foam cosmology for
example relies on the holomorphic representation in which
the states have the useful property of being peaked on a
specific points of the phase space [18]. For practical
convenience in this paper we make use of the Livine-
Speziale coherent state representation [47]. The quantum
states are thus described by coherent intertwiners which are
known to have a simple geometrical interpretation in terms
of three-dimensional polyhedra. Here we briefly review
their construction and extension into the four-dimensional
context in which they are used to define the transition
amplitudes of our spin foam model.

A. Coherent states

Given the standard eigenstate basis jj; mi of the angular
momentum, the maximal weight vector with respect to the

ê3 direction is jj; ji for any spin j. On such states the
dispersion of the angular momentum τ3 ¼ i

2
σ3 is mini-

mized and the state becomes a classical polyhedron in the
large-j limit. A state fulfilling such properties is called a
coherent state [51]. Let us take a group element g ∈ SUð2Þ
and the unit vector n⃗ ¼ g ⊳ ê3 defining a direction on the
two-sphere S2. Starting from the maximal weight vector
one finds an infinite set of SU(2) coherent states

jj; n⃗i ¼ g ⊳ jj; ê3i;

for which the angular momentum is minimally spread
around n⃗. Notice that such states are defined up to a U(1)
phase, corresponding to a rotation about the n⃗ direction.
Varying n⃗; one finds an over-complete set spanning the
vector space Vj.
Let us consider a set ofN coherent states jji; n⃗ii such that

they satisfy the closure condition
P

jin⃗i ¼ 0. The basic
idea is to associate such states to N faces of area ji and
outward-pointing normals n⃗i. A coherent polyhedron is
constructed by tensoring them together and imposing the
invariance under rotations by SU(2)-group averaging. The
associated SU(2) coherent intertwiner reads

ι ¼
Z
SUð2Þ

dg g ⊳ ⨂
i
jji; n⃗ii: ð1Þ

and spans the space InvSUð2Þ⨂iVji as the vectors n⃗i vary.
The SU(2) integration guarantees the invariance under the
group action.
The structure just described can be lifted to four

dimensions by a boosting procedure which sends

Φ∶ InvSUð2Þ⨂
i
Vji → InvSpinð4Þ⨂

i
Wi;

with Wi being a suitable larger space. In particular, the
boosting map Φ consists in the joint action of a map βγji for
each spin ji such that

βγji∶ Vji → Wi; ð2Þ

and a projector P

P∶⨂
i
Wi → InvSpinð4Þ⨂

i
Wi:

Given the identification Spinð4Þ≃ SUð2Þ × SUð2Þ we can
write the vector space Wi as

Wi ¼ Vjþi
⊗ Vj−i

; ð3Þ

being jþi and j−i related to ji via the Barbero-Immirzi
parameter γ

FIG. 1. The figure shows the three-dimensional boundary of a
hyperfrustum, obtained by unfolding it into six equal frusta and
two cubes of different size. This is the analogue, one dimension
higher, of the unfolding of a three-dimensional pyramidal frustum
into four trapezoids and two squares.
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j�i ¼ 1

2
j1� γjji: ð4Þ

In the rest of the paper we will focus on the specific case of
Barbero-Immirzi parameter γ < 1. In this case the map (2)
is defined by embedding the space Vj isometrically into the
highest weight space of the Clebsh-Gordan decomposition
of Vjþ ⊗ Vj− , namely Vjþþj−. Thus we can write

Φ ¼ P ∘ ðβγj1 ⊗ � � � ⊗ βγjN Þ;

and the boosted coherent intertwiner reads

Φι ¼
Z

dgþdg−ðgþ ⊗ g−Þ ⊳ ⨂
i
jjþi ; n⃗ii ⊗ jj−i ; n⃗ii: ð5Þ

We also refer to Φι as Spin(4) coherent intertwiner and we
are going to use it to build the transition amplitudes in our
spin foam model.

B. Transition amplitude

The transition amplitude is a function of the boundary
state, which is defined by assigning a Spin(4) coherent
intertwiner Φιn to each node and a spin jl to each link at
the boundary of the 2-complex Γ. The partition function for
the EPRL-FK Euclidean model reads

ZΓ ¼
X
jf ιe

Y
f

Af

Y
e

Ae

Y
v

Av; ð6Þ

where the sum is performed over the bulk spins while Af,
Ae and Av are respectively the face-, edge- and vertex-
amplitudes associated to each element of the 2-complex.
The choice of the face amplitude is not unique and

influences the convergence of the state sum [27,52]. We
choose the following definition depending on a parameter α

Af ≡ ½ð2jþ þ 1Þð2j− þ 1Þ�α: ð7Þ

The edge amplitude, which is also not unique, is here
defined as the normalization of the boosted coherent
intertwiner

Ae ≡ 1

∥ΦιeðjiÞ∥2
:

For γ < 1 it factorizes in terms of the SU(2) coherent
intertwiners as

Ae ¼
1

∥ιeðjþi Þ∥2∥ιeðj−i Þ∥2
: ð8Þ

The vertex amplitude is the most important ingredient
from which we will recover the Regge action in the
semiclassical limit. It is constructed by contracting along

links (i.e., boundary edges) the boosted coherent inter-
twiners at the boundary of each vertex,

Av ≡ trð⨂
e⊃v

ΦιeÞ; ð9Þ

where we use Φιe or ðΦιeÞ† depending whether the edge is
outgoing or ingoing with respect to the vertex v.

III. REDUCED SPIN FOAM MODEL

In our model, the spin network associated to the
boundary of a vertex consists of eight six-valent nodes
(see Fig. 2), reflecting the fact that a hyperfrustum is
bounded by eight hexahedra: two cubes and six regular
pyramidal frusta.
To each node a ¼ 0;…; 7 we assign a boosted coherent

intertwiner Φιa and two SU(2) group elements (g−a , gþa )
which account for the group averaging in (5). Each link ab
is oriented and is labeled by a spin jab. All the links are
automatically endowed with two other spins j−ab and jþab
which are related to jab via the Barbero-Immirzi parameter
γ as in (4). The allowed values for jab are such that j−ab
and jþab are half integers. For consistency we also require
that jab ¼ jba.
The colored spin network just described admits a dual

representation in terms of hexahedra εa which are asso-
ciated to the nodes a. We call n⃗ab ∈ S2 ⊂ R3 the normal-
ized outgoing normal to the face □ab ⊂ εa in the direction
of the neighboring hexahedron εb. The area of□ab is given
by the spin jab. The high degree of symmetry chosen
ensures that a boundary state is defined by using just three
independent values of the spins jab, ∀a; b;¼ 0…7. We call
such values j1, j2, j3 and they correspond to the top, bottom
and side face areas of any one of the boundary pyramidal
frusta represented in Fig. 1. The previous labeling defines

FIG. 2. The figure shows the spin network associated to a
vertex boundary. This is the dual representation of the three-
dimensional boundary in Fig. 1. The three different colors of the
links represent three different values of the spins.
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the boundary state and the geometry in our lattice up to a
phase factor.

A. A note on the boundary data

Particular attention needs to be paid in defining the initial
configuration of the vectors n⃗ab at the boundary of a vertex.
In fact this choice influences the semiclassical limit of the
theory. In order to clarify this point let us start from the
definition of the single vertex amplitude. Usually we build
it by forming a closed spin network tensoring together the
eight intertwiners Φιa at the nodes and joining pairwise
the free ends of the links according to the combinatorics
(see Eq. (9) and Fig. 2). In our case the outcome of this
operation depends on the initial choice of the vectors n⃗ab
which are used to define the coherent intertwiners Φιa.
For example, embedding the vertex boundary depicted in
Fig. 1 into a coordinate space and defining the vectors n⃗ab
accordingly to the oriented axes, one finds out that the
asymptotic expression of the vertex amplitude carries a
phase factor. Nonetheless, a change of the boundary data
can set such phase to zero. However, at the level of one
vertex there are no preferred criteria to chose such initial
configuration of the vectors n⃗ab. The situation changes if
one takes into account the symmetry of a larger structure Γ
in which many vertices are glued together to form a regular
hypercubic lattice. For the sake of clarity let us refer to the
example in Fig. 3 in which the two vertices v, v0 ⊂ Γ meet
along an oriented common edge. Here the circles B and B0
surrounding the vertices represent their respective bounda-
ries. The intertwiners are placed at the marked intersection
points to mean that each of them is associated to an edge
e ⊂ Γ and is also an element of a vertex boundary. Let us
notice that the intertwiner sitting at the shared edge can be
‘seen’ as an element of B as well as of B0. In the bra-ket
notation adopted in Fig. 3, it is denoted by jιi or by hιj
depending whether the edge is outgoing or ingoing with
respect to the associated vertex. In a regular lattice the
proper gluing of the vertices is such that, given a fixed node
a ⊂ B, the associated intertwiner Φιa is contracted to the
intertwiner ðΦι07−aÞ† in B0. Such (nonlocal) condition must

be imposed at all the edges in the lattice. We can however
translate this operation in the following (local) constraint on
the boundary data of a single vertex

ðjn⃗abiÞ† ≡ h−n⃗ð7−aÞbj; ∀ a ¼ 4; 5; 6; 7: ð10Þ

In the dual representation, the example in Fig. 3 shows
two hyperfrusta meeting along a shared hexahedron. Such
object lives independently in the boundaries of B and B0
and it must be identified as the unique hexahedron shared
by the two hyperfrusta. In the general case in which the
lattice is regular in all the directions, Eq. (10) ensures the
proper identification of the boundary hexahedra shared by
neighboring hyperfrusta.
With this purpose in mind we can depict the boundary

state starting from representing the first four nodes 0, 1, 2, 3
as in Fig. 4, and then build the remaining nodes 4, 5, 6, 7
(dashed lines) respecting the imposition (10).
Remarkably, once the lattice symmetry is taken into

account by imposing (10) at the local level, the asymptotic
expression of the single vertex amplitude shows no
dependence on the choice of phase for the boundary states.

B. Quantum frustum

The first step towards the definition of the local ampli-
tudes is finding the expressions of the coherent inter-
twiners. The quantum frustum is a coherent intertwiner that
in the large-spin limit describes the geometry of a regular
frustum (see Fig. 5). It depends on three spins j1, j2 and j3
corresponding to its face areas and in the symmetric case
j1 ¼ j2 ¼ j3 ¼ j it reduces to a quantum cube. Thus, this
object furnishes a prototype for the description of all the
intertwiners appearing in our model.
Following the instructions given in the previous

section, and in particular from (1), we can define a quantum
frustum as

FIG. 3. The figure shows the gluing of two eight-valent vertices
v and v0 and their respective boundaries (closed lines). In this
picture the coherent intertwiners are sitting in the intersections
between the boundaries and the edges (straight lines).

FIG. 4. The figure shows a specific configuration of the
boundary of a vertex. The hexahedra drawn using continuous
lines are oriented by relying on the axes ê1; ê2; ê3. The
remaining hexahedra are defined from the first by applying the
condition (10).
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ιj1;j2;j3 ¼
Z

dg g ⊳
�
jj1; ê3i ⊗ jj2;−ê3i ⊗ ⨂

3

l¼0

jj3; r̂li
�
;

ð11Þ

where r̂l ≡ e−i
π
4
lσ3e−i

ϕ
2
σ2 ⊳ ê3 (l ¼ 0, 1, 2, 3) are the four

vectors perpendicular to the side faces of the frustum. It is
possible to express the slope angle ϕ of the frustum in terms
of the face areas (i.e., the spins) as

cosϕ ¼ j2 − j1
4j3

: ð12Þ

Using the invariance of the Haar measure to remove one
group integration and applying the coherent states property
jj; n⃗i ¼ j1=2; n⃗i⊗2j ≡ jn⃗i⊗2j, the norm of the coherent
intertwiner (11) can be put in the form

∥ιj1;j2;j3∥
2 ¼

Z
SUð2Þ

dgeSe½g�; ð13Þ

with

Se ¼ 2j1 lnhê3jgjê3i þ 2j2 lnh−ê3jgj − ê3i

þ 2j3
X3
l¼0

lnhr̂ljgjr̂li: ð14Þ

In the next section, we derive the expression of the edge
amplitudes in the large-spin limit starting from the above
sample description. In terms of the coherent states also the
vertex amplitude takes a simple and compact form. In
particular, for γ < 1 it factorizes as Av ¼ Aþ

v A−
v being

A�
v ¼

Z
SUð2Þ8

dgaeS�½ga�; ð15Þ

and

S�½ga� ¼
j1� γj

2

X
ab⊃a

2jab lnh−n⃗abjg−1a gbjn⃗abi

≡ j1� γj
2

Sv½ga�; ð16Þ

where we are using the general notation introduced at the
beginning of this section to feature the boundary data.

IV. SEMICLASSICAL LIMIT

The semiclassical limit of the probability amplitude
described by a spin foam model corresponds to the large-
spin limit of the partition function (6). For the sake of
simplicity let us redefine all the spins ji → λji so that the
asymptotic limit is obtained by sending λ → ∞. The limit
of the face amplitude is straightforward. From formula (7)
we obtain

Af ⟶
λ→∞ ½λ2j2ð1 − γ2Þ�α: ð17Þ

For edge and vertex amplitudes the task is instead not trivial.
Notice that the norm of the coherent intertwiner (13) and the
vertex amplitude (15) possess a similar form. To find their
large-λ limit we will make use of the so called extended
stationary phase approximation following reference [14].

A. The extended stationary phase approximation

The extended stationary phase method provides a tool to
compute the asymptotic approximation of oscillatory inte-
grals whose phases are smooth complex valued functions S
defined over a closed n-dimensional manifold X and such
that ReS ≤ 0. Let us consider the following scalar function

fðλÞ ¼
Z
X
dxaðxÞeλSðxÞ; ð18Þ

being λ a positive real parameter and aðxÞ a smooth
complex test function. In the extended stationary phase
approximation the asymptotic limit λ → ∞ is dominated by
the points x0 such that ∂xSjx0 ¼ 0 and ReSðx0Þ ¼ 0. These
are the stationary and critical points. The leading term in the
large-λ expansion of (18) is given by

fðλÞ ∼
X
x0

�
aðx0Þ

�
2π

λ

�
n=2 eλSðx0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð−HÞp �
: ð19Þ

The n × n Hessian matrix H is given by the second-order
partial derivative of S and encodes the informations about
the stationary points, which are assumed to be isolated and
nondegenerate i.e., detH ≠ 0.
Summarizing, in order to compute the asymptotic limit

of an oscillatory integral:
(i) we find the critical and stationary points i.e., those

satisfying ReS ¼ 0 and dS ¼ 0.
(ii) we compute the Hessian of S in these points and

calculate its determinant
(iii) we use Eq. (19) to find the leading term of the large-

λ limit.
We are going to use this strategy to compute the large-spin
limit of the functions (13) and (15).

FIG. 5. The figure shows a frustum i.e., a truncated regular
square pyramid.

BAHR, KLÖSER, and RABUFFO PHYSICAL REVIEW D 96, 086009 (2017)

086009-6



B. The asymptotic norm of the coherent intertwiner

In order to describe the semiclassical behavior of the
edge-amplitude Ae associated to a quantum frustum we
study the large-spin limit of the norm of the coherent
intertwiner (11). As a first step we look for the critical
points of the action Se in (14). In our case, the manifold
carries the structure of a group and the critical points will be
SUð2Þ group elements. The condition ReSe ¼ 0 that they
have to satisfy can be rephrased in the requirement
jeλSeðx0Þj ¼ 1. Using the general formula for coherent states

jhn⃗jm⃗ij ¼
�
1þ n⃗ · m⃗

2

�
1=2

;

one finds

�
1þ ê3 · ðg ⊳ ê3Þ

2

�
j1
×

�
1þ ð−ê3Þ · ðg ⊳ ð−ê3ÞÞ

2

�
j2

×
Y
l

�
1þ r̂l · ðg ⊳ r̂lÞ

2

�
j3 ¼! 1:

Since the scalar products in the parentheses have real values
in the set ½−1; 1�, the above condition is satisfied only for
g ¼ �1. It is easy to check that in these two points the
function Se vanishes. Let us now assign a set of coordinates
xK , K ¼ 1, 2, 3 to the SU(2) group elements as follows

g → gce
i
2
xKσK ; gc ¼ �1;

being σK the standard Pauli matrices. In these variables xK ,
the Haar measure is normalized as

1

ð4πÞ2
Z
∥x∥<π

d3x

�
sinð∥x∥=2Þ
∥x∥=2

�
2

¼ 1: ð20Þ

This operation allows to perform the partial derivative of
the action Se with respect to the group elements. The first
derivative of Se evaluated in x ¼ 0 reads

∂Se
∂xK

����
x¼0

¼ i

�
j1ê

ðKÞ
3 − j2ê

ðKÞ
3 þ

X
l

j3r̂
ðKÞ
l

�
;

where we have used the coherent states property
hn⃗jσKjn⃗i ¼ n⃗ðKÞ and the expression n⃗ðKÞ indicates the
K-th component of the vector n⃗. The above expression
is always vanishing since it corresponds to the closure
condition. Thus, we deduce that gc ¼ �1 are the critical
and stationary points that dominate the asymptotic limit of
the norm of the coherent intertwiner. The components of
the Hessian matrix evaluated at the gc read

HKL ¼ ∂2Se
∂xL∂xK

����
x¼0

¼ j1 þ j2
2

ðêðKÞ3 êðLÞ3 − δKLÞ þ
X3
l¼0

j3
2
ðr̂ðKÞl r̂ðLÞl − δKLÞ:

From the above matrix elements one can derive the
determinant of the Hessian

detð−HÞ ¼ j3sin2ϕ
2

ðj1 þ j2 þ 2j3ð1þ cos2ϕÞÞ2;

where the slope angle ϕ is given by (12).
Now that we have all the ingredients we can use Eq. (19)

to find the leading term of the norm of the coherent
intertwiner (11) in the large-λ expansion. Inserting the
result into Eq. (8), we finally obtain the asymptotic limit of
the edge amplitude for a quantum frustum

Aj1;j2;j3
e;frustum →

�
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
8π

�
3 j3sin2ϕ
ð4πÞ4

× ðj1 þ j2 þ 2j3ð1þ cos2ϕÞÞ2: ð21Þ

From this equation, we can easily deduce the large-spin
limit of the edge amplitude associated to a quantum cube of
side area j. By setting j1 ¼ j2 ¼ j3 → j we find

Aj
e;cube →

1

16π4

�
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
8π

�
3

j3: ð22Þ

C. Asymptotics of the vertex-amplitude

The factorization of the vertex amplitude Av for γ < 1
allows us to study its semiclassical limit by focusing on the
asymptotic expression of Eq. (15). We will make our
considerations ignoring the � indices and working with
the function Sv defined in (16). The invariance of the Haar
measure dg allows to discard one of the eight integrations
by fixing one of the critical points ga. In particular, we
choose to fix g0 ¼ 1. The first condition that the critical
points have to satisfy is

jeλSvðx0Þj ¼ 1 ⇒ ga ⊳ n⃗ab ¼ −gb ⊳ n⃗ba: ð23Þ

In the geometric picture introduced in the previous section,
this condition corresponds to glue the eight boundary
hexahedra by properly rotating the vectors n⃗ab and n⃗ba
so that in the end they will point in relative opposite
directions ∀a, b. It is straightforward to check that the
action Sv is invariant under ga → −ga. Modulo this sym-
metry, the critical points Eq. (23) has two sets of solutions
which we list in Table I.
The rotation angle θ can be expressed in terms of the

slope angle ϕ of the frustum as
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cos θ ¼ 1

tanϕ
: ð24Þ

Equation (24) poses a consistency condition on the allowed
values of ϕ i.e.,

π

4
≤ ϕ ≤

3π

4
:

Using Eq. (12), it is easy to check that the allowed values of
the spins in our system are

−
1ffiffiffi
2

p ≤
j2 − j1
4j3

≤
1ffiffiffi
2

p ; ð25Þ

which correspond to a restriction of the phase space. The
action in the two sets of critical points listed in Table I reads

SvðΣ1Þ ¼ þ6iðj1 − j2Þ
�
π

2
− θ

�

þ 12ij3

�
π

2
− arccosðcos2θÞ

�
;

SvðΣ2Þ ¼ −6iðj1 − j2Þ
�
π

2
− θ

�

− 12ij3

�
π

2
− arccosðcos2θÞ

�
:

The Hessian is a 21 × 21matrix and is constructed with the
second derivatives of the action (16). Defining the vectors
~nab ≡ ga ⊳ n⃗ab, its components evaluated on the critical
points are

Haa;KL ¼ ∂2Sv
∂xLa∂xKa

����
x¼0

¼
X

ðabÞ⊃a

jab
2

ð−δKL þ ~nðKÞab ~nðLÞab Þ;

Hab;KL ¼ ∂2Sv
∂xLb∂xKa

����
x¼0

¼ jab
2

ðδKL − iϵKLI ~n
ðIÞ
ab − ~nðKÞab ~nðLÞab Þ:

Using a computer algebra program it is possible to
calculate the exact expression of the determinant of the
Hessian matrix D≡ detH, which is a homogeneous
function of the spins. Finally, computing the leading
order (19) for both Aþ

v and A−
v and taking their product

one obtains the leading order of the vertex amplitude Av
in the large-λ limit

Aj1;j2;j3
v →

1

π7ðλ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
Þ21

�
e
ð1þγÞ
2

λSvðΣ1Þffiffiffiffiffiffiffi
−D

p þ e
ð1þγÞ
2

λSvðΣ2Þffiffiffiffiffiffiffiffiffi
−D�p

��
e
ð1−γÞ
2

λSvðΣ1Þffiffiffiffiffiffiffi
−D

p þ e
ð1−γÞ
2

λSvðΣ2Þffiffiffiffiffiffiffiffiffi
−D�p

�

¼ 1

π7ðλ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
Þ21

�
eiλSR

−D
þ e−iλSR

−D� þ 2
cosðλγSRÞffiffiffiffiffiffiffiffiffiffi

DD�p
�
; ð26Þ

D ¼ 16λ21j31j
3
2j

15
3 ð−1þ 2cos2ϕ − iKÞð−2þ cos2ϕþ iKÞ2

�
1þ cos2ϕþ j1 þ j2

2j3

�
3

×

�
1þ 2cos2ϕþ j1 þ j2

2j3
− iK

�
3
�
1þ cos2ϕþ ð1 − cos2ϕÞ j1 þ j2

j3
þ iKð1 − 3cos2ϕÞ

�
3

; ð27Þ

being SR ¼ SRðj1; j2; j3Þ the action

SR ¼ 6ðj1 − j2Þ
�
π

2
− θ

�
þ 12j3

�
π

2
− arccosðcos2θÞ

�
; ð28Þ

and we have defined

K ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cos 2ϕ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

�
j1 − j2
4j3

�
2

s
: ð29Þ

TABLE I. The two sets of critical points which are solutions
of Eq. (23). We will see that the dihedral angles between
the boundary hexahedra are functions of the angle θ in the
exponentials.

Σ1 Σ2

g1 expði θ
2
σ1Þ expð−i θ

2
σ1Þ

g2 expði θ
2
σ2Þ expð−i θ

2
σ2Þ

g3 expði θ
2
σ3Þ expð−i θ

2
σ3Þ

g4 expði π−θ
2
σ3Þ expð−i π−θ

2
σ3Þ

g5 expði π−θ
2
σ2Þ expð−i π−θ

2
σ2Þ

g6 expði π−θ
2
σ1Þ expð−i π−θ

2
σ1Þ

g7 1 1
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Notice that the expression under the square root is always
positive for the allowed values (25) of the spins, thereforeK
is a real function with values in the set [0, 1]. In particular
K ¼ 1 corresponds to the flat cuboid case while K ¼ 0

corresponds to a degenerate frustum with ϕ ¼ π
4
; 3π
4
. The

full expression (27) of the determinant D ¼ Dðj1; j2; j3Þ is
relative to the first set Σ1 of critical points. The solution for
the second set of critical points Σ2 is simply given by its
complex conjugate which corresponds to send K → −K.
The action (28) can be interpreted as the Regge action

describing the dynamics of the classical model. Let us
observe that it has indeed the form

SR ¼
X
h

ahϵh;

beingah the area of the hingeh (i.e., a two-dimensional face)
and ϵh ¼ π

2
− Θh the contribution of the analyzed vertex

to the deficit angle at the hinge. The 24 dihedral angles
0 < Θab < π can be computed by performing the scalar
product between all the couples Na,Nb ∈ R4 of outward
pointing normals to the boundary hexahedra εa and εb (see
Appendix). We find six dihedral anglesΘ ¼ θ associated to
hexahedra which meet along j1 faces, six dihedral angles
Θ0 ¼ π − θ associated to hexahedra meeting along j2 faces
and twelve dihedral anglesΘ00 ¼ arccosðcos2θÞ correspond-
ing to boundary frusta meeting along j3 faces.
Let us also notice that both the determinant function (27)

and the Regge action (28) are invariant under exchange
j1 ↔ j2. In the light of the physical interpretation which we
propose in the next section, a consequence of this sym-
metry is that the full transition amplitude does not dis-
tinguish between space expansions or contractions at the
same rate.
Finally, we can absorb the expressions (17), (21) and (22)

of Af and Ae in the vertex amplitude (26) in order to write
the generating functional (6) in terms of a dressed vertex
amplitude Âv. Since every edge e is bounded by two
vertices, we split the contribution of the corresponding edge
amplitude by assigning to each vertex sitting at the extremes
of e the square root ofAe. In the same fashion, since a face
is shared by four vertices (corresponding to the fact that
four hyperfrusta meet in a two-dimensional trapezoid), we
multiply each vertex amplitude with the fourth root of Af.
Summarizing, for a generic vertex v, we have

Âv ≡
Y
f⊃v

A1=4
f

Y
e⊃v

A1=2
e Av; ð30Þ

and the generating functional takes the compact form

ZΓ ¼
X
jf;ιe

Y
v

Âv: ð31Þ

This concludes the semiclassical analysis of the
EPRL-FK spin foam model in the reduced state sum

approximation. Starting from the above asymptotic for-
mula for the generating functional, one can perform a
study of the renormalization properties of the model as
well as analyze the restoration of the diffeomorphisms
invariance by gauging the parameters of the theory. A
preliminary numerical analysis shows that, in the limit in
which the spin variables are fixed to reproduce a hyper-
cuboidal lattice, our results are consistent with the one
obtained in [46]. We leave the investigation of these
topics for a future research.
In the second part of this paper we are going to complete

the analysis of the classical properties of the model by
focusing on the (Regge-type) action obtained in (28). We
will see how the restricted set of geometrical configurations
considered carries enough information to reproduce the
standard cosmological dynamics of a flat FLRWuniverse in
the limit of fine discretization of the lattice as well as in the
small deficit angles limit.

V. MODELING COSMOLOGY

The action (28) encodes the classical properties of the
system. It is the generalization of theRegge action to the case
of hyperfrusta, instead of triangulations, where the areas
(instead of edge lengths) are the free variables. Nonetheless,
we will refer to (28) as “Regge action” in what follows, and
show that, in the limit of large lattices, classical cosmology is
obtained. To this end, we investigate the dynamics of the
spin variables described by the equations of motion, which
we are going to derive in the next section. In this paper, we
consider a spacetimemanifoldM ∼ T3 × ½0; 1� given by the
product of the three-torus and a closed interval. In particular,
we define homogeneous and locally isotropic states on T3

and let them evolve. Such states are represented by a Daisy
graph (see Fig. 6 on the left) in which the node is dual to a
cube and all the links are labeled by the same spin value. A
similar construction has been studied in the context of spin
foam cosmology where the transition amplitudes between
holomorphic coherent states are calculated [19]. The dressed

FIG. 6. The figure on the left shows a Daisy graph which
corresponds to the spin network graph associated to a boundary
cube. On the right we represent a hyperfrustum as the time
evolution of its spacelike boundary cubes Σi and Σf.

TOWARDS A COSMOLOGICAL SUBSECTOR OF SPIN FOAM … PHYSICAL REVIEW D 96, 086009 (2017)

086009-9



vertex amplitude defined in the previous section can be
interpreted as the transition probability between two space-
like hypersurfaces Σi and Σf at different time steps ti and tf
as it is shown in Fig. 6 on the right. In particular, we regard
the two cubes at the boundary of a hyperfrustum as isotropic
and homogeneous spacelike hypersurfaces. The evolution
occurs in the bulk region bounded by the six boundary
frusta, which in our setup are timelike hypersurfaces. The
characteristic size of space at a fixed time is then encoded by
the spin values associated to the cube faces. The peculiar
choice of reducing the state sum to hyperfrusta makes
possible the variation in size of the boundary cubes at
successive time steps. Thus, froman intuitive perspective the
model allows a basic concept of expansion and contraction
of a flat space.
In order to describe the classical dynamics of the space

slices let us consider the chain in Fig. 7 obtained by gluing
together a series of hyperfrusta Fn and representing the time
evolution of their boundary cubes cn having areas jn. At
each step the evolution occurs in the bulk region bounded by
the six boundary frusta fn with bottom faces jn, top faces
jnþ1 and side faces of area kn. Let us observe that such
construction resembles a so-called CW skeleton (Collins-
Williams), which is a discrete structure specifically designed
to approximate a FLRW universe in the context of Regge
calculus [53,54].1 The Cauchy surfaces of a CW skeleton are
discretized by regular polytopes (in our case cubes) and, as in
the FLRW approximation, they are identical to each other
apart from an overall scaling factor. This analogy allows us
to interpret the spin jn associated to the n-th cube as a
discrete surrogate of the scale factor at a fixed time.
Therefore, we define the scale factor at the n-th step as

an ≡
ffiffiffiffiffi
jn

p
: ð32Þ

Let us also define the time step of the evolution between the
cubes cn and cnþ1 to be the distance between their centers or,
equivalently, the height Hn of Fn i.e.,

tnþ1 − tn ≡Hn:

Let θn be the dihedral angle between cn and fn and let hn be
the height of fn. From the results of the last section and using
arguments of classical geometry, one can show that their
values in terms of the spins are

θn ¼ arccosðcotϕnÞ;

hn ¼
2knffiffiffiffiffiffiffiffiffi

jnþ1

p þ ffiffiffiffiffi
jn

p sinϕn; ð33Þ

being ϕn the slope angle of the frustum fn such that (in
analogy with (12)

cosϕn ¼
jnþ1 − jn

4kn
:

In terms of these variables we find the expression for
the n-th time step

Hn ¼ hn sin θn ¼
2knffiffiffiffiffiffiffiffiffi

jnþ1

p þ ffiffiffiffiffi
jn

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjnþ1 − jnÞ2
8k2n

s
: ð34Þ

Before proceeding to the explicit computation of the
equations of motion, let us find out how the vacuum
Friedmann equations look like in the reduced model under
study by performing a qualitative analysis. From the above
definitions we can compute the discrete time derivative of
the scale factor as a function of the spin variables

_an ¼
anþ1 − an
tnþ1 − tn

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2ϕn − 1

p :

Using the first equation in (33), it is easy to check that, in
terms of the dihedral angle θn between cn and fn, the
expression above reads

_an ¼ 2 cot θn: ð35Þ

The first vacuum Friedman equation _an ¼ 0would then tell
us that locally the classical evolution happens for ϕn ¼ π

2

i.e., on a hypercubic lattice in which all the dihedral angles
are θn ¼ π

2
. Since at each square in the lattice the

FIG. 7. The figure shows a chain obtained by gluing together many hyperfrusta. In particular, the n-th node in the chain represents the
‘past’ cube cn in the boundary of the hyperfrustum Fn. The (nþ 1)-th cube cnþ1 is the ‘future’ cube in the boundary of Fn. The line
connecting these two cubes is associated to the remaining six boundary frusta fn.

1A similar construction is investigated in [55,56] to model the
flat FLRW and the Kasner solutions of general relativity.
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contribution to the deficit angle is given by four hyper-
cuboids, then the sum of the angles vanishes at all the
hinges, which corresponds to flat space. The second
derivative of the scale factor is easily derivable and reads

än ¼ −
2

sin2θn

�
θn − θnþ1

tnþ1 − tn

�
: ð36Þ

Since 1=2 ≤ sin θn ≤ 1 is constrained by the consistency
condition (25) and is not vanishing, we deduce that the
acceleration of the scale factor vanishes only when the
dihedral angle does not vary with the time flow i.e.,
θn ¼ θnþ1. Therefore, at the scale defined by the building
blocks, the vacuum Friedman equations än ¼ _an ¼ 0 are
fulfilled only in the case of a flat reduced universe with
vanishing deficit angles at the hinges. Let us note that in
general an accelerated expansion (contraction) of the
Universe would be described by a growth (decrease) of
the dihedral angles at successive steps. The next step in our
analysis is the explicit derivation of the equations of
motion. In fact, we want to verify that the expected results
are obtained without imposing the Friedmann equations
a priori as we just did.

VI. DYNAMICS OF THE MODEL

We are now going to study the classical dynamics of the
discrete model by deriving the equations of motion for the
action (28) in three cases: pure gravity, in presence of a
cosmological constant and in the case of dust matter
coupling. It is known that, given a generic triangulation,
difficulties may arise in the context of Regge calculus when
considering two-dimensional areas as independent varia-
bles instead of the edge lengths [57]. In particular, the
information given by the areas of a four-dimensional
polyhedron is in general not enough to unambiguously
reconstruct its geometry. For example, although a four-
simplex has the same number of edge lengths and faces,
one can construct two four-simplices with the same
triangular areas but different edge lengths. The situation
gets worse in the case of many four-dimensional blocks
glued together. Another ambiguity is in the interpretation of
the Regge equations where, for instance, the vanishing of
the deficit angles (seen as functions of the areas) does not
necessarily imply flatness. Various solutions to these issues
have been studied in the literature [58–60], and extensions
of the so-called area Regge calculus have been proposed
[61]. These concerns, however, are not necessary in the
context of our model where the spins are a priori con-
strained into a rigid symmetric configuration. In fact, the
number of spins required to reconstruct the geometry of a
regular hyperfrustum is equal to the number of independent
edge lengths. Further, this result holds for arbitrary num-
bers of hyperfrusta glued together. As a consequence, one
can freely invert the relationship between length and spin
variables without affecting the accuracy of the geometrical

description. Finally, as we will see, the equations of motion
derived are equal to the standard Regge calculus ones. The
following analysis is inspired by a collection of works on
cosmological models with Regge calculus [53–56,62–65].

A. Flat vacuum FLRW universe

Let us refer once again to the chain model in Fig. 7.
The full Regge action is given by a sum of terms of the
form (28) for each hyperfrustum Fn

SRðfjng;fkngÞ¼
X
n

SR;nðjn;jnþ1;knÞ

¼
X
n

�
3

2
ðjn− jnþ1ÞδðjÞn þ3knδ

ðkÞ
n

�
; ð37Þ

being the deficit angles

δðkÞn ¼ 2π − 4 arccosðcos2θnÞ;
δðjÞn ¼ 2π − 4θn; ð38Þ

and

cos θn ¼
jnþ1 − jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16k2n − ðjnþ1 − jnÞ2
p : ð39Þ

Deriving the Regge action with respect to the spins kn and
jn and setting the result equal to zero gives the equations of
motion which solve the classical dynamics of the discrete
model2 A direct calculation shows that the contribution of
the derivatives of the dihedral angles sum up to zero. Thus,
a posteriori, one does not need to derive the deficit angles
in the Regge action in order to obtain the equations of
motion. This can be regarded as the analogue of the Schläfli
identity [66]. The Regge equations of motion for the spins
kn and jn are then

∂SR
∂kn ¼ 3δðkÞn ¼ 0;

∂SR
∂jn ¼ 3

2
ðδðjÞn − δðjÞn−1Þ ¼ 0: ð40Þ

Let us notice that these equations correspond, respectively,
to the vanishing of (35) and (36). Indeed, the first equation
of motion implies the vanishing of the dihedral angle θn,
while the second equation tells us that the dihedral angle
remains constant at successive time steps i.e., θn ¼ θnþ1.
Therefore, as is illustrated in the previous section, the

2Such procedure is regarded as a global variation since the six
spins jn of cn, as well as the twelve spins kn of the frusta fn, are
first constrained to form a regular hyperfrustum and then they are
all derived at once. A local variation would instead consider each
spin separately and impose the constraints at the end. For more
details see [54].
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equations of motion (40) can be interpreted as a discrete
version of the vacuum Friedmann equations.
Let mn be the length of a “strut” of the nth frustum (i.e.,

the diagonal edge of its trapezoidal faces) and ln the edge
length of the nth cube. One can show that the first equation
in (40) is equivalent to the one obtained by deriving the
Regge action with respect to the strut length, apart from an
overall nonvanishing factor. Explicitly,

∂SR
∂mn

¼ ∂kn
∂mn

∂SR
∂kn ¼ 0: ð41Þ

It has been noted that such an equation can be interpreted as
the analogue of the Hamiltonian constraint of the ADM
formalism [54]. In the same way, the equation of motion for
the variable ln is linked to the evolution equation of ADM
formalism, and it can be written as

∂SR
∂ln ¼ ∂jn

∂ln
∂SR
∂jn þ ∂kn

∂ln
∂SR
∂kn þ ∂kn−1

∂ln
∂SR
∂kn−1 ¼ 0: ð42Þ

This coincides with the equation of motion for the spin jn
only when it is evaluated on the solution of the equations
of motion for the variables kn and kn−1. We will still refer
to ∂SR=∂kn ¼ 0 as the Hamiltonian constraint and to
∂SR=∂jn ¼ 0 as the evolution equation. Such observations
will be valid also in the next subsections where we study the
Friedmann universe in the presence of a cosmological
constant and coupled to dust particles.
In order to remove any doubt about the connection

between the Regge equations of motion (40) and the
vacuum Friedmann equations, let us pass to the continuum
time limit. From the time step formula (34), we get

k2n ¼
ð ffiffiffiffiffiffiffiffiffi

jnþ1

p þ ffiffiffiffiffi
jn

p Þ2
4

H2
n þ

ðjnþ1 − jnÞ2
8

: ð43Þ

Substituting this expression into the dihedral angle (39),
one can write the Regge Eq. (40) in terms of the spins jn’s
and the time steps Hn’s. Let us now perform the following
replacement in the equations of motion,

Hn;Hn−1 → dt;

jn → jðtÞ;

jnþ1 → jðtÞ þ j0dtþ 1

2
j00dt2 þOðdt3Þ;

jn−1 → jðtÞ − j0dtþ 1

2
j00dt2 þOðdt3Þ; ð44Þ

and find the continuum time limit by sending dt → 0. Note
that we have imposed that the time step Hn is constant in
this limit ∀n. This corresponds to a gauge fixing choice and
it is justified by the fact that the equations of motion (40) do
not impose constraints on the allowed values of kn and Hn.
At the leading order in dt the Regge equations read

3

�
2π − 4 arccos

j02

16jþ j02

�
¼ 0;

12
1ffiffi
j

p 2jj00 − j02

16jþ j02
¼ 0: ð45Þ

Deriving the Hamiltonian constraint (first equation) one
can easily check that it is a first integral of the evolution
equation (second equation). Let us note that we are still
working in Euclidean signature. To argue a solution which
is comparable to the standard Friedmann cosmology we
need to perform a Wick rotation t → it. This results in the
replacements j00 → −j00 and j02 → −j02. One can check that
the vacuum solutions remain unchanged. However, this step
will be fundamental when investigating the coupling to
cosmological constant and to dust particles. We stress the
fact that the Wick rotation is effective only because we
are working on the classical action (37). Thus there is no
statement of relation between the Euclidean and the
Lorentzian EPRL models nor among the semiclassical limit
of their amplitudes.
The solutions of the Hamiltonian constraint and the

evolution equation are readily derived:

j0 ¼ 0; j00 ¼ j02

2j
: ð46Þ

In the interpretation given in the previous section in
which the scale factor is a ¼ ffiffi

j
p

, the Regge equations
correspond to

a02

a2
¼ 0;

a00

a
¼ 0; ð47Þ

which are the standard vacuum Friedmann equations for a
flat universe.

B. Flat Λ-FLRW universe

The action SR ¼ SRðfjng; fkng;ΛÞ in presence of a
cosmological constant term Λ > 0 is

SR ¼
X
n

�
3

2
ðjn − jnþ1ÞδðjÞn þ 3knδ

ðkÞ
n − ΛVn

�
; ð48Þ

being Vn the four-dimensional volume of the nth hyper-
frustum. We can express it in terms of the spins as (see
Appendix)

Vn ¼
knðjn þ jnþ1Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ðjnþ1 − jnÞ2
8k2n

s
: ð49Þ

The new Regge equations are
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∂SR
∂kn ¼ 3δðkÞn − Λ

∂Vn

∂kn ¼ 0;

∂SR
∂jn ¼ 3

2
ðδðjÞn − δðjÞn−1Þ − Λ

�∂Vn

∂jn þ ∂Vn−1

∂jn
�

¼ 0: ð50Þ

Performing the continuum time limit as we did in the
vacuum case, one can find the Hamiltonian constraint and
the evolution equation for a flat Λ-FLRW universe. After a
Wick rotation t → it, j00 → −j00, j02 → −j02 they read

2π − 4 arccos
j02

j02 − 16j
¼ Λ

3
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

j02

8j

s
;

2jj00 − j02

j02 − 16j
¼ Λ

12
j

�
1 −

j02

16j
−
j00

8

�
: ð51Þ

As in the vacuum case, the Hamiltonian constraint (first
equation) is the first integral of the evolution equation
(second equation). Thus, we can use it to study the evolution
of the model. Notice that the Hamiltonian constraint is only
defined for

j02

8j
≤ 1; ð52Þ

which imposes a condition on themaximal rate of expansion
of the space surfaces. Let us define theWick-rotated dihedral
angle associated to the timelike hinges

ΘW ≡ arccos
j02

j02 − 16j
: ð53Þ

When evaluated in the range (52) this is a function with
real values

π

2
≤ ΘW ≤ π; −1 ≤ cosΘW ≤ 0: ð54Þ

From (53) we find

j02 ¼ −16j
cosΘW

1 − cosΘW
: ð55Þ

Using the above definitions the Hamiltonian constraint
becomes

j2 ¼ 9

Λ2

1 − cosΘW

1þ cosΘW
ð2π − 4ΘWÞ2: ð56Þ

Expressing the volume of the Universe as U ¼ j3=2, we
can find the equation describing its time evolution,

dU
dt

¼ 3

2
j
1
2j0 ¼ 6j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cosΘW

1 − cosΘW

s

¼ −
18

Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cosΘW

1þ cosΘW

s
ð2π − 4ΘWÞ; ð57Þ

where we have used Eqs. (53) and (55). Let us notice that
also the square root of Eq. (56) is involved in the above
derivation. Since it can assume both positive and negative
values, one must carefully select the signs according to the
angle range (54) in order to get a positive value of j.
The volume and its time variation form a set of para-

metric equations which can be solved using numerical
methods.
Note that the use of a rigid hyperfrustum is not well suited

to capture the degrees of freedom of a constantly curved
spacetime such as in the case of a Friedmann universe in
presence of a cosmological constant. Thus, in order to get a
better approximation of the Friedmann dynamics one needs
to refine the lattice discretization by describing the evolution
of a larger number of cubes tessellating each Cauchy
surface3 as in Fig. 8. In the case we want to describe the
evolution of N3 identical cubes, the Hamiltonian constraint
does not vary since the number of cubes factorizes in the
action (48) and the continuum time limit procedure is not
affected by the coarse graining. What changes is instead
(modulo rescaling) the volume of the Universe:

U → N3U: ð58Þ

In Fig. 9, we plot the time derivative of the volume (for
some positive value ofΛ) against the volume of theUniverse
itself for different numbers of cubes tessellating a Cauchy
surface. The results are compared to the analytic ones
obtained from the Friedmann equations of a flat universe
with cosmological constant i.e.,

Uanalytic ¼ a3 ¼ e
ffiffiffiffiffi
3Λ

p
t;

dUanalytic

dt
¼

ffiffiffiffiffiffi
3Λ

p
e

ffiffiffiffiffi
3Λ

p
t: ð59Þ

In many models which make use of the CW formalism
the Cauchy surfaces analyzed are three-spheres triangulated

FIG. 8. The figure shows some coarse graining steps of
a 3-Torus.

3Actually, one can also consider the use of constantly curved
building blocks to discretize spacetime as in [37,67].
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by using regular tetrahedra. Therefore the Universe exam-
ined is a closed one. However, a three-sphere can be
triangulated by using only 5, 16 or 600 regular tetrahedra
(see for example [68]), thus there exists a geometric
constraint which prevents from approaching the analytic
limit at will. The advantage of the model studied in this
article is that a flat 3-torus can be tessellated by an
arbitrarily high number of cubes and there is no theoretical
limit to the refinement steps that one can take to show the
convergence to the analytic results.
Another way to solve the Hamiltonian constraint is by

studying the limit in which the deficit angle at the hinges is
small, corresponding to a slow (measured in Planck times)
expansion or contraction of the Universe. In fact, only in this
regime the discrete lattice of Regge calculus approximates
the continuous smoothmanifold of general relativity [69]. In
our case, such limit is made explicit by the requirement

ΘW ¼ π

2
þ η; jηj ≪ 1: ð60Þ

Intuitively this condition indicates that the boundary frusta
fn in Fig. 7 present a small deviation from a cuboidal
geometry. Substituting the above expression into Eq. (55)
and taking the limit η → 0 we find at the leading order of η
and j02, that

η ¼ j02

16j
: ð61Þ

Let us come back to the Hamiltonian constraint (56) and
substitute the angle (61). We get

j2 ¼ 9

Λ2
ð−4ηÞ2 ¼ 9

Λ2
16

�
j02

16j

�
2

ð62Þ

Finally, from the definition of the scale factor a ¼ ffiffi
j

p
we

obtain the first Friedmann equation for a flat Λ-FLRW
universe

a02 ¼ Λ
3
a2: ð63Þ

The second Friedmann equation is simply given by the time
derivative of the first and reads

a00 ¼ Λ
3
a: ð64Þ

Let us note that this is consistent with the fact that the
evolution equation is the derivative of the Hamiltonian
constraint in (51). In fact, one can check that the second
Friedmann equation can also be derived from the evolution
equation using the same arguments just presented.

C. Flat FLRW universe with dust

Let us place a test particle of massM at the center of each
cube cn in the chain 7. Classically, the motion of a point
particle in a gravitational field is found by applying the
variational principle to the following action

SM ¼ −M
Z

ds; ð65Þ

being ds the line element.We define the discrete analogue of
the line element as the length sn of the trajectory joining the
centers of the cubes cn and cnþ1. In fact the choice of placing
the test particle at the center of the cubes guarantees that it is
comoving and travels along geodesics [62]. Thus, in our
case, the discrete line element is given by the time step (34)
i.e., sn ¼ Hn (remember that we are working in Euclidean

FIG. 9. Flat universe with cosmological constant Λ ¼ 0.5, as approximated by the hyperfrustal evolution with N3 cubes.
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signature). More general settings have been studied on a
simplicial discretization of a closed universe. For example,
in [62] it has been shown that the Hamiltonian constraint
depends on the particle position inside the tetrahedra.
In order to describe a universe in which more than one

dust particle is present, one can refine the lattice as in Fig. 8
and distribute N3 particles, each of mass M=N3, over the
initial cubes, such that one particle sits at the center of each
cube. The full action SR ¼ SRðfjng; fkng;MÞ becomes

SR ¼ N3

8π

X
n

�
3

2
ðjn − jnþ1ÞδðjÞn þ 3knδ

ðkÞ
n

�
−M

X
n

Hn;

ð66Þ

where we have rehabilitated the factor 1=8π in front
of the Regge action4 and we are working in Plank units
c ¼ G ¼ 1. The new Regge equations are

∂SR
∂kn ¼ 3N3

8π
δðkÞn −M

∂Hn

∂kn ¼ 0;

∂SR
∂jn ¼ 3N3

16π
ðδðjÞn − δðjÞn−1Þ −M

�∂Hn

∂jn þ ∂Hn−1

∂jn
�

¼ 0: ð67Þ

Performing the continuum time limit and the Wick rotation
we get the Hamiltonian constraint and the evolution
equation

2π − 4 arccos
j02

j02 − 16j
¼ 8πM

3N3

1ffiffi
j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

j02

8j

s
;

2jj00 − j02

j02 − 16j
¼ −

πM
3N3

1ffiffi
j

p
�
1−

j02

4j
þ j00

4

�
: ð68Þ

Once again, it is easy to check that the second equation is
the time derivative of the first. Substituting Eq. (55) in
the Hamiltonian constraint and applying the Wick rotation,
one gets

j ¼
�
8πM
3N3

�
2 1þ cosΘW

1 − cosΘW

1

ð2π − 4ΘWÞ2
; ð69Þ

where the Wick-rotated angleΘW is given in (53). From the
above equation, we can write the set of parametric equations
describing the volume of the Universe and its time variation

U ¼ N3j
3
2;

dU
dt

¼ 6N3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cosΘW

1 − cosΘW

s
: ð70Þ

The Friedmann equations describing the evolution of the
scale factor aðtÞ in a flat space and in presence of dust are

_a2

a2
¼ 8π

3
ρ;

ä
a
¼ −

4π

3
ρ;

being ρ ¼ M=a
3
2 the density of the Universe. Using the same

arguments thatwe applied in the cosmological constant case,
one can check that the above equations can in fact be
obtained as the small deficit angle limit of the Hamiltonian
constraint and the evolution equation. Their solution is

FIG. 10. Evolution of flat universe filled with dust of mass M, with space approximated by N3 cubes.

4In the previous cases the factor 1=8π does not contribute to
the dynamics since it factorizes in the action.
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aðtÞ ¼ ð6πMÞ13t23; ð71Þ
thus the analytic expression for the volume of the Universe
and its time variation are

Uanalytic ¼ a3 ¼ 6πMt2;
dUanalytic

dt
¼ 12πMt:

For some value of the mass M we can plot the numerical
result (69), (70) to find that the model converges quite
rapidly to the analytic curve (see Fig. 10).

VII. SUMMARY AND CONCLUSIONS

In the first part of this article we investigate the semi-
classical structure of the Euclidean EPRL-FK model of
quantum gravity. We work on a hypercubic lattice in which
all the vertices are dual to a 4d truncated pyramid with
cubic bases (hyperfrustum). Furthermore we restrict the
state sum by considering only coherent intertwiners which
in the large-spin limit reproduce the geometry of a 3d
pyramidal frustum. The reduced state sum allows us to
compute explicitly the asymptotic formula of the vertex
amplitude. We show that the final expression contains the
correct Regge action describing the classical properties of
our model. Starting from the expression (31) one can
perform a numerical analysis of the semiclassical features
of the model. This result opens a path to study the
renormalization of a symmetry reduced model of quantum
gravity. Further developments are possible in studying the
diffeomorphisms symmetry which is usually broken by the
discretization of the spacetime manifold. In fact, knowing
the full analytic expression of the partition function and
gauging the parameters in the theory one can look for
configurations in which this symmetry is restored. Such
perspectives can potentially shed a new light on a sector of
the EPRL model which is still vastly unexplored. This
research line has been originally paved by a series of works
on hypercuboidal geometry and nontrivial results have been
found in the case of flat spacetime [46,48,49]. This article is
the first step further in this direction. Future analysis may
take into account more general settings which enlarge the
number of degrees of freedom in the path integral broaden
the set of allowed geometrical configurations. In particular,
in the purely flat case only α, as set in the face amplitude, is
a running coupling constant, while the inclusion of hyper-
frusta also offers Newton’s constant and/or the Barbero-
Immirzi parameter as nontrivial coupling. This will make
the renormalization computation much more general. We
postpone the study of these aspects for future research.
In the second part of the article, taking inspiration from a

series of works on cosmological modeling with Regge
calculus [53–56,62–65], we have completed the study of
our model by focusing on its classical description. We have
first shown that the discretization of spacetime in terms of
hyperfrusta have a clear classical interpretation. In fact, a
hyperfrustum can be pictured as the time evolution of its

boundary cubes, each of them tessellating a flat Cauchy
surface. The regular geometry of the cubes and their even
distribution on the lattice reproduce an isotropic and homo-
geneous space. Moreover, the change in size of the cubes in
the boundary of a hyperfrustum mimic an expansion of the
Universe. These facts enable us to compare the dynamics of
our model to the FLRWone.We do it in three different cases:
In the vacuum, in presence of a cosmological constant and by
coupling dust particles to the lattice. The simplicity of our
model allows us to consider the spins as the main variables
instead of the edge lengths which are usually adopted in
Regge calculus. Notably, the results do not change and an
analogue of the Schläfli identity is proved to be satisfied.
Indeed, with a numerical analysis of the Regge equations
(for the spins), we show that in the continuum time limit the
evolution of the model universe resembles the one predicted
by the standard Friedmann dynamics in the case of fine
discretization of the manifold. Furthermore, for small deficit
angles this resemblance becomes exact and we find the
Friedmann equations as the limit of the Regge equations.
A crucial open question is, of course, in what way this

model can be used to perform actual quantum cosmological
computations. Apart from the signature issues, the first
quantum correction of this model comes from the Hessian
matrix. This matrix is, in general, complex, such that its
phase would give quantum corrections to the Regge action,
while its modulus provides the path integral measure. It
would be quite interesting to see whether these corrections
have a classical limit which can be interpreted as higher
order terms in the Einstein-Hilbert action. To probe the
deep quantum regime in order to derive e.g. statements
about singularity avoidance, however, one would have to
depart from the large-j asymptotics, and consider the full
amplitude in the regime of small spins. We will return to
these issues in future publications.
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APPENDIX: HYPERFRUSTUM GEOMETRY

Here we derive some geometric properties of the hyper-
frustum. Although all the formulas that we are going to
derive can be found by assigning a set of four-dimensional
coordinates to the elements in the boundary of the hyper-
frustum, we will propose different solutions which do not
require this labeling.

1. Dihedral angles

The dihedral angles Θab between the couples of hexa-
hedra in the boundary of a hyperfrustum (as depicted in
Fig. 4) can be found from the critical points in table I using
the following formula (see [14])
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cosΘab ¼ Na · Nb

¼ χab
2

tr½gaðΣ1ÞgaðΣ2Þ−1gbðΣ2ÞgbðΣ1Þ−1�; ðA1Þ

being Na and Nb the four-dimensional outward-pointing
normals to the hexahedra a and b and

χab ¼

8>>>>><
>>>>>:

1 if a; b ∈ ½0; 3�
1 if a; b ∈ ½4; 7�

−1 if a ∈ ½0; 3� ∧ b ∈ ½4; 7�
−1 if a ∈ ½4; 7� ∧ b ∈ ½0; 3�

Notice that this prefactor is necessary since imposing the
condition (10) we have chosen outward-pointing normals to
describe the hexahedra a ¼ 0, 1, 2, 3 and inward-pointing
normals to describe the hexahedra a ¼ 4, 5, 6, 7.We find six
dihedral angles Θ ¼ θ associated to hexahedra which meet
along the faces of the cube 0, six dihedral anglesΘ0 ¼ π − θ
associated to hexahedra meeting along the faces of the
cube 7 and twelve dihedral angles Θ00 ¼ arccosðcos2 θÞ

corresponding to boundary frusta meeting along their side
faces. These angles are the four-dimensional analogue of the
one represented in Fig. 11 on the left.

2. Volume of a hyperfustum

For the following analysis we refer to Fig. 7. The volume
Vn of the hyperfrustum Fn that appears in Eq. (49) can be
computed as the difference of the volumes of two four-
dimensional pyramids with base cubes cn and cnþ1. A
comparison with the three-dimensional representation in
Fig. 11 on the right may be helpful to get an intuitive
understanding. The volume of the four-dimensional pyra-
mids with base cubes cn and cnþ1 are

Vp;n ¼
1

4
Hp;nj

3=2
n ; Vp;nþ1 ¼

1

4
Hp;nþ1j

3=2
nþ1: ðA2Þ

being Hp;n and Hp;nþ1 the heights of the pyramids. These
have to be determined in order to ensure that the ‘slope’ of
the hyperpiramidal sides is the same as for the hyper-
frustum. Their values are

Hp;n ¼
1

2

ffiffiffiffiffi
jn

p
tan θn; Hp;nþ1 ¼

1

2

ffiffiffiffiffiffiffiffiffi
jnþ1

p
tan θn; ðA3Þ

and they are constrained so that their difference gives
the height of the hyperfrustum (34). Finally, the four-
dimensional volume of the hyperfrustum is given by

Vn ¼ Vp;n − Vp;nþ1 ¼
1

8
ðj2n − j2nþ1Þ tan θn: ðA4Þ

Using Eq. (39) for the angle θn, one can easily find the
expression (49) of the volume of the hyperfrustum in terms
of the spin variables.
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