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We study the simplest superstring bit model at finite N using the characters of the SUðNÞ group. We
obtain exact, analytic expressions for small N partition functions and Gaussian approximations for them in
the high-temperature limit for all N. We use numerical evidence to identify two temperature regimes where
the partition function has different limiting behaviors. The temperature at which this transition takes place
is identified as the Hagedorn temperature.
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I. INTRODUCTION

The string bit model was first introduced as a micro-
scopic theory of the light-cone quantized relativistic string
[1]. In this model the string is seen as a polymer of more
fundamental units called string bits. To be more specific,
each string bit carries an infinitesimal unit of the þ
component of momentum Pþ ¼ P0þP1ffiffi

2
p of the string. As

for P−, it can be identified as the Hamiltonian of a polymer
of string bits. As the number of bits,M, becomes large with
a fixed Pþ, the excitations of this polymer of bits resemble
those of a string with Pþ ¼ mM, wherem is the unit of Pþ
carried by each bit andM is the bit number operator. These
bits are created from the vacuum state j0i by N × N matrix
creation operators, ϕ̄σ

ρ, that impose aUðNÞ color symmetry.
Studying the large-N expansion [2] of the string bit
dynamics, then, is equivalent to doing string perturbation
theory [3]. Although initially formulated to describe
bosonic strings, this formulation was soon extended to
superstrings [4]. The bit creation operator was made
completely antisymmetric in an additional set of p “spinor”
indices ½u1 � � � up� where p ∈ f0; sg and uq ∈ f1; sg with s
denoting the number of Grassmann world sheet fields in the
emergent superstring. Depending upon the number of
spinor indices it has, a bit can be either bosonic or fermionic
in nature. The superstring bit model that we shall analyze is
the simplest possible one: where s ¼ 1. Recently, it was
realized that the matrix creation operator of superstring bits
need not be a function of transverse coordinates. Instead it
is sufficient to devise another set of two-valued internal
“flavor” degrees of freedom, v1 � � � vd, where vq ∈ f1; 2g
with d denoting the number of transverse dimensions [5]. In
this article we work with spaceless superstring bits: they
have no space dependence. It is important to realize that the
string bits do not even have the longitudinal dimension: that
arises in the string theory limit. For large M, Pþ becomes
effectively a continuous momentum, giving rise to its
conjugate: the longitudinal coordinate.

The (canonical) partition function of a system at a
thermal equilibrium with a heat bath is defined as

ZðβÞ ¼
Z

∞

0

dEgðEÞe−βE ð1Þ

where β is the reciprocal of the product of the Boltzmann
constant and the temperature and gðEÞ is the density of
microstates, i.e. the number of states whose energies lie
between E and Eþ dE. The partition function can also be
regarded as the Laplace transform of the density of states of
the system. Also if the density of states increases exponen-
tially with E, the partition function can be seen to diverge
above a certain temperature (or, equivalently, below a
certain value of β). In statistical mechanics, partition
functions can only be singular in the thermodynamic limit.
In first order phase transitions, it is the first derivative of the
free energy [∝ logðZÞ] that is discontinuous. This disconti-
nuity that occurs at the critical temperature can be attributed
to a latent heat in the system. One way to think about a
diverging partition function is to imagine an infinite latent
heat of the system: it requires adding infinite heat to change
the temperature. Phase transitions usually involve liberation
of more degrees of freedom in the system under consid-
eration. Hagedorn was studying a thermodynamic model of
strongly interacting particles when he found out that for his
model to be consistent, the density of states of the system
must grow exponentially with energy [6]. This suggested
that there is a highest temperature that can be attained by
matter (or more specifically, hadrons). Later, dual reso-
nance models were shown to have such exponential
dependence of the density of states by Fubini and
Veneziano [7]. This dual resonance model has evolved
into what is today known as string theory. In [8] the
Hagedorn transition is seen as liberating the underlying
degrees of freedom in string theory.
This Hagedorn phenomenon was studied in the context

of the superstring bit model in [9]. The superstring bit
model used there has s ¼ 1 and d ¼ 0. This is the simplest
superstring bit model, and there are only two kinds of
creation operators: ðϕ̄Þσρ and ðϕ̄1Þσρ. The former is bosonic*souravraha@ufl.edu
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(Grassmann even) and the latter is fermionic (Grassmann
odd) in nature. Since there are only two kinds of bits, we can
suppress the spinor indices on the operators, and instead use
the symbol a for bosonic bits and b for fermionic bits. Thus,
the only indices that are left are the color indices. The
Hamiltonian used in [9] can be expressed as

H ¼ T0

2mN
tr½ðā2 − ib̄2Þa2 − ðb̄2 − iā2Þb2

þ ðā b̄þb̄ āÞbaþ ðā b̄−b̄ āÞba� ð2Þ
where, T0 denotes the rest tension of the emergent string, “tr”
denotes the trace of the operators over color indices and other
symbols denoting the usual quantities we have already
defined. The bosonic annihilation operators are defined as
aρσ ¼ ðāσρÞ† and these have the following commutation
relation:

½aνμ; āρσ� ¼ δνσδ
ρ
μ: ð3Þ

b̄σρ have a similar definition for annihilation operators, but
they follow anticommutation relation:

fbνμ; b̄ρσg ¼ δνσδ
ρ
μ: ð4Þ

In this paper we have investigated the onset of the
Hagedorn phase transition in our superstring bit model.
One important feature of the energy spectrum of string bits
under H is that, in the large-N limit, the ground state
energies of color singlet states and color adjoint states are
separated by a finite (and, in the limit M → ∞, constant)
gap. However, the energy scale of string excitations is of
Oð1=MÞ [10]. One way of interpreting this is that for the
singlet states, Heff is finite and, relatively speaking, for the
adjoint states, Heff ¼ ∞. In other words, this interaction
gives rise to color confinement: effectively, only the color
singlet states are significant in the appropriate limits. This
means that instead of using the full Hamiltonian and
studying all the states of the system, one may study the
Hagedorn phenomenon in a system in which the only
dynamics is singlet restriction. This is like imposing color
confinement by hand, instead of letting it emerge on its
own. As we shall see, this drastically simplified system is
still rich enough to support a Hagedorn phenomenon.
The thermal perturbation scheme developed in [9] is well

defined for arbitrary large values of temperature, and yet the
density of singlet states at large N [11] suggests a finite
limiting temperature. This suggests that the Hagedorn
phenomenon is an artifact of the large-N limit. In this
paper we study the superstring bit model at finite N with
H ¼ 0 and singlet restrictions in order to understand the
source of the Hagedorn phenomenon at N → ∞. We
present some exact results for low-N partition functions
and approximations in the high-temperature limit. We also
obtain numerical data and analyze them to identify and
establish the difference in the behavior of superstring bits
below and above the Hagedorn temperature.

II. COUNTING OF SINGLETS AT LARGE N

Let us set up the problem that we are studying in this
paper. We have already described the model that we are
studying. We have also explained that we are using H ¼ 0
and restricting ourselves to the singlet sector. As we are
studying the thermal properties of the system, we shall be
working with the canonical partition function for a system
of superstring bits. In terms of light-cone parameters,

P− ¼ H ¼ 0 ⇒ P0 ¼ Pþ þ P−ffiffiffi
2

p

¼ mffiffiffi
2

p|{z}
¼ω

M ¼ ωtrðāaþ b̄bÞ: ð5Þ

Our partition function would then be defined as Z ¼
Tr expð−βP0Þ where “Tr” denotes the thermal trace; i.e.
the trace over all the singlet eigenstates. Since H ∝ T0

[Eq. (2)], the H ¼ 0 limit can also be regarded as the
tensionless limit of the emergent string.

A. Only bosonic bits

Let us derive the large-N partition function when there is
only one bosonic oscillator. For this, a basis element for
color singlets can be written, up to a normalization
constant, as

jsingletibos ¼ trðāÞl1 trðā2Þl2 � � � j0i ¼
�Y∞

r¼1

trðārÞlr
�
j0i

where each l can be any non-negative integer. In fact, there
is a one-to-one correspondence between the set of all such
singlets and the set of sequences (l1, l2, � � �). Then, the
energy of such a state is given by

P0jflrgibos ¼ ω

�X∞
r¼1

rlr

�
jflrgibos

⇒ e−βP
0 jflrgibos ¼

�Y∞
r¼1

e−βωrlr
�
jflrgibos ð6Þ

where ω is defined as in Eq. (5). In the large-N limit all
these states form an orthogonal eigenbasis of the system.
Hence, in that limit, the singlet partition function for pure
bosons is

lim
N→∞

ZbosðβÞ ¼
X

fl1;l2;���g

Y∞
r¼1

e−βωrlr ¼
Y∞
r¼1

1

1 − e−βωr
: ð7Þ

B. Only fermionic bits

For one fermionic oscillator, one has to be careful,
because some of the single trace operators are simply zero.
This is because of the cyclic property of the matrix trace
and the anticommutativity of the b̄s. E.g.
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trðb̄2Þ ¼ −trðb̄2Þ ¼ 0:

In fact, all trace operators with an even number of bits are
zero. Hence, a basis element for fermion singlets looks like

jsingletifer ¼ trðb̄Þk1 trðb̄3Þk3 � � � j0i

¼
�Y∞

r¼1

trðb̄2r−1Þk2r−1
�
j0i

where, each k can take only two values: 0 and 1. Hence, for
the large-N partition function, we have

lim
N→∞

ZferðβÞ ¼
X1

fk1;k3;���g¼0

Y∞
r¼1

e−βωð2r−1Þk2r−1

¼
Y∞
r¼1

f1þ e−βωð2r−1Þg: ð8Þ

C. Supersymmetric case

One may verify that neither Zbos nor Zfer diverges at a
finite temperature. However, in the supersymmetric case, it
can be shown that there is an exponential degeneracy in the
number of singlets [11], and thereby a finite Hagedorn
temperature. Naively, this can be understood as follows:
each bit can be either bosonic or fermionic; hence there are
roughly 2M=M possibilities for a single trace operator ofM
supersymmetric bits (multitrace states are singlets as well).
Of course, some of these combinations do not correspond
to physical states because of the arrangement of anticom-
muting fermionic operators in them. E.g.

trðb̄ā2b̄ā2Þ ¼ trðb̄ b̄ ā2ā2Þ ¼ −trðb̄ā2b̄ā2Þ ¼ 0:

However, in the large-M limit, this does not harm the
exponential degeneracy of eigenstates. In fact, the degen-
eracy of single trace states goes as 2M−1=M for large M
[11–13]. One may calculate an approximation to the
partition function starting from this degeneracy. It turns
out that the exact supersymmetric partition function,

lim
N→∞

ZðβÞ ¼
Y∞
n¼1

1

1 − 2 expf−βωð2n − 1Þg : ð9Þ

A complete derivation of the generalized result and some
interesting subcases will appear in [14]. As is evident from
Eq. (9), Z diverges at expf−βωg ¼ 1=2 (it also diverges at
other, larger values of temperature). Hence, as anticipated,
the supersymmetric case has a Hagedorn temperature at
TH ¼ ω= logð2Þ. We shall come back to this result in
Sec. V.
All the results quoted in this section are applicable in the

large-N limit. In this paper we wish to study finite N
partition functions. Hence, we have to develop a systematic
method of counting the eigenstates (i.e. singlets that are

linearly independent) for this model at finiteN. This is what
we shall do in the next section.

III. FROM CHARACTERS TO
PARTITION FUNCTIONS

Imposing the singlet restriction on the Fock space of all
physical states is a purely group theoretic exercise. In our
case, the group under consideration is SUðNÞ, the gauge
group of the model. A bit creation operator has two color
indices and transforms under the adjoint action of SUðNÞ.
Given a number of such adjoint operators we shall count the
number of ways in which one may obtain states that
transform trivially under SUðNÞ. This is very similar to
decomposing a direct product of representations into a
direct sum of irreps.
Before proceeding with the supersymmetric case, let us

examine the pure bosonic and pure fermionic cases at finite
N. The partition functions are

ZbosðN; βÞ ¼
YN
r¼1

1

1 − e−βωr
; ð10Þ

ZferðN; βÞ ¼
YN
r¼1

f1þ e−βωð2r−1Þg: ð11Þ

As one can see, these expressions are similar to the N → ∞
ones, except that the product over r has been truncated at
r ¼ N. This is because when N is finite, for L > N, āL is
linearly dependent on the āc’s for c ∈ f1; 2;…; Ng. One
can obtain the exact dependence from the Cayley-Hamilton
theorem, which also gives trace identities for different
powers of any square matrix over a commutative ring. For
the fermionic case, one has to use a generalized version of
the Cayley-Hamilton theorem in order to obtain the cutoff.
However, there is another explanation for the fermionic
result: it is the Poincaré polynomial for SUðNÞ (see, for
example, Chap. VII, Sec. 11 of [15]). The coefficients of
powers of e−βω in this polynomial count the number of
invariants that are linear but completely antisymmetric in
the infinitesimal elements of SUðNÞ.
Now that we have stated the special cases, let us focus on

the task at hand. For this purpose, we shall use group
characters. We shall make use of the orthogonality of
characters of different irreps of a group. More specifically,
the idea is to obtain the representational content of a
physical state by writing down its character. Given this
character, one may extract the multiplicity of an irrep
within it by taking its product with the conjugate of the
character of the said irrep, integrating this over the entire
group and then normalizing the integral:

gRR0 ¼
R
Gf

Q
idθighðfθigÞχ�RðfθigÞχR0 ðfθigÞR

Gf
Q

idθighðfθigÞ
ð12Þ
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where gRR0 denotes the multiplicity of the irrep R in the
reducible representation R0, hðfθigÞ denotes the Haar
measure on the group G and χRðfθigÞ represents the
character of the representation R. All these quantities are
parametrized in terms of fθig; the rotation angles corre-
sponding to the Cartan subalgebra of the group G. This is
very much like using a projection operator to extract out the
subspace of irrep R. Instead of the character for only one
state, one can use a suitable character generating function
and obtain the corresponding multiplicity generating func-
tion. In [16] such a generating function was derived to
obtain multiplicities at arbitrary mass levels of strings.
For SUðNÞ, the Haar measure is given by

Y
1≤i<j≤N

jeiθj − eiθi j2 ¼
Y

1≤i<j≤N
4 sin2

�
θi − θj

2

�
: ð13Þ

Also, the character for a singlet, the irrep we seek, is simply
1. Let us figure out how to write down the character for a
given state. As mentioned earlier, a creation operator, āμν or
b̄μν , transforms in the adjoint representation of SUðNÞ. As
such, its upper and lower indices can be regarded as
transforming in the fundamental and the antifundamental
representations, respectively. The character of an operator
transforming in the fundamental (antifundamental) repre-
sentation is just expfiθkg (expf−iθkg) where θk is the
rotation angle corresponding to it. Hence, the character for
a state āμν j0i or b̄μν j0i is given by expfiðθμ − θνÞg. In doing
this exercise, we have made an oversimplification: the
adjoint irrep is not strictly the direct product of the
fundamental and the antifundamental irreps. We shall
compensate for this error in a moment.
Given a pair of color indices, (i, j), an arbitrary multiplet

can be represented as

ðāijÞlijðb̄ijÞkij j0i

where lij can be any non-negative integer and kij can be
either 0 or 1. From this, one may construct a character
generating function for all states with colors (i, j):

1þ xeiðθi−θjÞ

1 − xeiðθi−θjÞ
¼ ð1þ xeiðθi−θjÞÞð1þ xeiðθi−θjÞ

þ x2e2iðθi−θjÞ þ � � �Þ: ð14Þ
The numerator above counts the contribution from the
fermionic bits while the denominator refers to the con-
tributions coming from the bosonic bits. Hence, the
character generating function of any multiplet of any
number of superstring bits is given by the expression

Y
1≤i;j≤N

1þ xeiðθi−θjÞ

1 − xeiðθi−θjÞ

¼
�
1þ x
1 − x

�
N Y
1≤i<j≤N

1þ x2 þ 2x cosðθi − θjÞ
1þ x2 − 2x cosðθi − θjÞ

: ð15Þ

So far in this derivation we have approximated the adjoint
irrep as a direct product of fundamental and antifunda-
mental irreps. However, this product includes an additional
irrep: theUð1Þ singlet. Equation (15), technically speaking,
gives the UðNÞ character of our model. In order to obtain
the generating function for SUðNÞ we have to remove the
trðāÞ from each āμν and trðb̄Þ from each b̄μν ,�

1þ x
1 − x

�
N−1 Y

1≤i<j≤N

1þ x2 þ 2x cosðθi − θjÞ
1þ x2 − 2x cosðθi − θjÞ

:

The coefficient of xM in the expression above gives the
correct SUðNÞ character of the subspace of states with bit
numberM. If we cast this character generating function into
Eq. (12) we obtain the generating function for multiplicities
of singlet states

X∞
M¼0

gMxM ¼
�
1þ x
1 − x

�
N−1

R
π
−π ð

Q
N
k¼1 dθkÞ

Q
1≤i<j≤N4sin

2ðθi−θj
2
Þ 1þx2þ2x cosðθi−θjÞ
1þx2−2x cosðθi−θjÞR

π
−π ð

Q
N
k¼1 dθkÞ

Q
1≤i<j≤N4sin

2ðθi−θj
2
Þ

ð16Þ

The rhs of this equation has the following properties:
(1) The integrand in the denominator is the x → 0 (low-

temperature) limit of the integrand in the numerator.
It can also be interpreted as the “volume” of the
SUðNÞ group and evaluates to N!ð2πÞN .

(2) The integrand is completely symmetric in the fθkg’s.
(3) It is also periodic in each θk. Hence, the domain of

integration is TN , i.e. the N torus.
(4) The integrand is a function of differences of the θk’s;

in fact it includes all the NC2 differences among the
θk’s. This tells us that the integral is translation
invariant in the θk’s.

(5) The integrand (or rather, the Haar measure) vanishes
if θi ¼ θj for any i ≠ j.

This generating function gives the multiplicities of
singlets at any bit number. In our model, E ¼ ωM since,
H ¼ 0. If we identify x in this function with expf−βωg,
the lhs of Eq. (16) becomes the (canonical) partition
function,

X∞
M¼0

gM expf−βωMg ¼ ZðN; βÞ:
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Thus, all partition functions mentioned so far [Eqs. (7)–
(11)], are just different generating functions of UðNÞ
characters. In order to obtain the corresponding SUðNÞ
characters, one must multiply them with 1−x

1þx. From here
onwards, whenever we mention partition functions we shall
be referring to generating functions of SUðNÞ characters.
Also for simplicity, we shall express Z as a function of
xð¼ βωÞ as opposed to β.

IV. HIGH-TEMPERATURE LIMIT OF Z

The partition functions for some values of N have been
tabulated in Table I and plotted in Fig. 1. BeyondN ¼ 2, the
character integral becomes too involved to be done analyti-
cally by hand. We used a computer to obtain results for
N > 2. Beyond N ¼ 3, it is useful to employ a change of
variables eiθj → zj, in order to turn this integration problem
into a problem of calculating (multidimensional) residues:

ZðN; xÞ ¼ 1

N!

�
1þ x
1 − x

�
N−1X

TN

Res

� Y
1≤i<j≤N

−ðzi − zjÞ2ðxzi þ zjÞðxzj þ ziÞ
ðxzi − zjÞðxzj − ziÞ

Y
1≤k≤N

1

ðzkÞN
�
: ð17Þ

However, even calculating these residues is prohibitively time consuming for N > 6.
We have already identified the x → 0 limit of Eq. (16): it is when the rhs becomes 1 as the numerator becomes equal to

the denominator. Let us now concentrate on the x → 1 (high-temperature) limit,

ZðN; x → 1Þ ¼
�

2

1 − x

�
N−1

R
π
−π

Q
N
k¼1 dθk

Q
1≤i<j≤N4cos

2ðθi−θj
2
Þ

N!ð2πÞN : ð18Þ

As before, evaluating this integral analytically is not
straightforward beyond the first few values of N. The
results for N ¼ 2–5 can be trivially obtained. Beyond
N ¼ 5, one has to use the corresponding multidimensional
residue form

�
2

1 − x

�
N−1 RN

N!

where

RN ¼ Res

�Q
1≤i<j≤Nðzi þ zjÞ2Q

1≤k≤NðzkÞN
�
: ð19Þ

This has only one pole (of order N) enclosed in the domain
of integration; it is at the origin ð0;…; 0Þ. For evaluating
RN , it can also be interpreted as the coefficient of the
term

Q
1≤k≤NðzkÞN−1 in the Taylor-series expansion ofQ

1≤i<j≤Nðzi þ zjÞ2 about the origin of the TN . This term
has every zk raised to the same power (N − 1); conse-
quently, its coefficient is the biggest of all the coefficients in

TABLE I. Partition functions that are known exactly.

N ZðxÞ
2 ð1 − xþ 2x2Þ=ð1 − xÞ
3 ð1þ xÞð1 − 2xþ 4x2 − 3x3 þ 4x4 þ 2x5 þ 4x7Þ=½ð1 − xÞ2ð1þ xþ x2Þ�
4 ð1þ xÞð1 − 3xþ 6x2 − 7x3 þ 9x4 − 6x5 þ 10x6 − 2x7 þ 12x8 þ 8x9

þ8x10 þ 16x11 þ 8x12 þ 8x13 þ 8x14Þ=½ð1 − xÞ3ð1þ xþ x2Þ�
5 ð1þ xÞ2ð1 − 4xþ 10x2 − 17x3 þ 26x4 − 31x5 þ 40x6 − 36x7 þ 49x8 − 18x9 þ 42x10 þ 52x11 þ 38x12

þ148x13 þ 108x14 þ 240x15 þ 244x16 þ 344x17 þ 376x18 þ 392x19 þ 448x20 þ 352x21 þ 360x22 þ 272x23

þ176x24 þ 144x25 þ 64x26 þ 32x27 þ 16x28Þ=½ð1 − xÞ4ð1þ xþ x2Þð1þ xþ x2 þ x3 þ x4Þ�
6 ð1þ xÞ2ð1 − 4xþ 10x2 − 18x3 þ 30x4 − 41x5 þ 59x6 − 68x7 þ 98x8 − 84x9 þ 140x10 − 41x11 þ 206x12 þ 128x13

þ442x14 þ 572x15 þ 1130x16 þ 1764x17 þ 2824x18 þ 4468x19 þ 6616x20 þ 9712x21 þ 13688x22

þ18656x23 þ 24488x24 þ 31152x25 þ 38016x26 þ 44632x27 þ 50640x28 þ 54792x29 þ 57120x30

þ57056x31 þ 54368x32 þ 49632x33 þ 43232x34 þ 35776x35 þ 28160x36 þ 21088x37 þ 14816x38

þ9824x39 þ 6144x40 þ 3488x41 þ 1856x42 þ 896x43

þ352x44 þ 128x45 þ 32x46Þ=½ð1 − xÞ5ð1þ xþ x2Þ2ð1þ xþ x2 þ x3 þ x4Þ�
..
. ..

.

∞ ð1 − xÞ=½ð1þ xÞQ∞
k¼1ð1 − 2x2k−1Þ�
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the Taylor series. Here too, beyond N > 7 the computation
becomes increasingly time consuming. A list of the
calculated RN values can be found in Table II.

Asymptotic behavior: Steepest descent

Since we do not have a closed form expression for
different coefficients of

Q
1≤i<j≤Nðzi þ zjÞ2, we turned to

its asymptotic analysis. Examining the expression RN we
see that it is clearly greater than 2NðN−1Þ=2, as the latter is the
coefficient of the term

Q
1≤k≤NðzkÞN−1 in the Taylor series

of
Q

1≤i<j≤N2zizj. Similarly, 4NðN−1Þ=2 ¼ 2NðN−1Þ is a
conservative upper bound on RN , as it is the sum of all
coefficients in the expansion of the

Q
1≤i<j≤Nðzi þ zjÞ2.

With these two bounds we can deduce the N dependence of
RN : it goes as expðN2Þ in the leading order. This is an
important feature and we shall refer to this observation
later. Examining Eq. (18), we see that the integrand attains
its maximum value when all the θ’s are equal to each other.
If one fixes the value of, say θ1, to be ψ , the modified
integrand attains a single, isolated global maximum at
θ2 ¼ θ3 ¼ � � � ¼ θN ¼ ψ . While this modification does not
change the value integral (or RN), it allows for a simpler,
more accurate way of approximating it: by the method of
steepest descent.
The method of steepest descent is well known for

approximating integrations with a fixed number of dimen-
sions. In our case, however, the number of dimensions is
not fixed, it is increasing. In fact, N itself is the large

parameter in our case. This is not obvious as the integrand
has an implicit dependence on N.
Let us express the general integrand in Eq. (16) as

exp ff̂ðx; fθkgÞg, where

f̂ðx; fθkgÞ ¼
X

1≤i<j≤N
log

�
4sin2

�
θi − θj

2

�

×
1þ x2 þ 2x cosðθi − θjÞ
1þ x2 − 2x cosðθi − θjÞ

�
: ð20Þ

For large N, one can convert this restricted double sum into
the Cauchy principle value of a double integral. We
introduce an integration variable yi such that yi ¼ i

N ⇒
dyi ¼ Δi

N ¼ 1
N and a nondecreasing function ΘðyÞ for y ∈

ð0; 1� such that ΘðyiÞ ¼ θi. While defining Θ we have
taken advantage of the fact that in f̂ðx; fθkgÞ, the order of
the sequence of the θ’s does not matter. Hence, one can
always redefine the θ’s such that they form a nondecreasing
sequence, thereby allowing us to define a unique function
in the continuum limit. Now, f̂ðx; fθkgÞ can be rewritten as

f̂ðx; fθkgÞ
¼ f̂ðN; xÞ

¼ N2lim
ϵ→0

Z
1

0

Z
y−ϵ

0

log

�
4sin2

�
Θðy0Þ − ΘðyÞ

2

�

×
1þ x2 þ 2x cosðΘðy0Þ − ΘðyÞÞ
1þ x2 − 2x cosðΘðy0Þ − ΘðyÞÞ

�
dy0dy: ð21Þ

As can be seen above, going to the continuum limit
brings out an overall factor of N2, thereby making the
dependence of f̂ðx; fθkgÞ on N explicit. Now that we have
justified applying the method of steepest descent to our
problem, we can see what it yields in the high-temperature
limit. It gives

RN ¼ 2NðN−1Þ

πðN−1Þ=2NN=2−1 ð22Þ

TABLE II. Exact values of RN .

N RN

2 2
3 10
4 152
5 7736
6 1 37 5952
7 8 77 901 648

0.2 0.4 0.6 0.8 1.0
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FIG. 1. Temperature dependence of known partition functions.
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FIG. 2. Different estimates of RN at infinite temperature. The
exact values for N > 7 were obtained from [18].
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which is a more stringent upper bound than 2NðN−1Þ. A
detailed derivation of this result may be found in the
Appendix. All these approximations have been plotted
against known exact values in Fig. 2.
Another useful way of expressing f̂ðN; xÞ is

f̂ðN; xÞ ¼ N2lim
δ→0

Z
2π

0

Z
Θ−δ

0

log

�
4sin2

�
Θ0 − Θ

2

�

×
1þ x2 þ 2x cosðΘ0 − ΘÞ
1þ x2 − 2x cosðΘ0 − ΘÞ

�
ρðΘ0ÞdΘ0ρðΘÞdΘ

ð23Þ
where we have introduced a normalized density function
ρðΘÞ such that dy ¼ ρðΘÞdΘ and

R
2π
0 ρðΘÞdΘ ¼ 1. Now,

the global maxima of f̂ðx; fθkgÞ contribute most to the
Gaussian approximation. Hence, the density function
of the global maxima is of particular interest while doing
the integral. The stationarity condition for f̂ðx; fθkgÞ, for
k ∈ f1; 2;…; Ng:X
l≠k

cot

�
θk − θl

2

�
−

4xð1þ x2Þ sinðθk − θlÞ
1þ x4 − 2x2 cosf2ðθk − θlÞg

¼ 0:

ð24Þ
If fψkg is a global maximum, then the density function
ρðΨÞ must be a solution of

⨏Ψ½max�
−Ψ½max�

�
cot

�
Ψ0 − Ψ

2

�
−

4xð1þ x2Þ sinðΨ0 − ΨÞ
1þ x4 − 2x2 cosf2ðΨ0 − ΨÞg

�
× ρðΨÞdΨ ¼ 0 ð25Þ
where ⨏ denotes the principal value of the integral and the
limits are such that ρð�Ψ½max�Þ ¼ 0 and Ψ½max� ≤ π. This
technique follows from [17] where the authors study the
Hermitian matrix model. They used this technique to obtain
an analytic expression for the density function of the
eigenvalues in the presence of quartic and cubic inter-
actions. We shall come back to these density functions later
in the article.

V. INTERMEDIATE TEMPERATURES
AT FINITE N

As we have already mentioned, the large-N energy
spectrum for superstring singlet states predicts a divergence
in Z at x ¼ 1=2. In order to trace the roots of this
phenomena to finite N partition functions, one has to
compare the temperature dependence (or, x dependence) of
ZðN; xÞ below and above x ¼ 1=2. At finiteN, the partition
function is smooth over the entire temperature range
(Fig. 1). This observation is confirmed by the exact analytic
expressions obtained for the first few N values (Table I).
Instead of studying temperature dependence of the partition
functions, one can fix x (or, equivalently, temperature) and
analyze the values of ZðN; xÞ as a sequence in N. If the

method of characters is correct then this sequence must
culminate in the appropriate N → ∞ value (which is
known). In other words, at any temperature below x ¼
1=2 this sequence must approach the value limN→∞ZðxÞ.
And above x ¼ 1=2 this sequence must diverge. This is the
aim of our study: to establish the existence of a low-
temperature regime, where logðZÞ has a limit point and a
high-temperature regime, where it does not have a
limit point.
Having defined our goal, we set out to evaluate logðZÞ

analytically for finite values of N. However, as already
mentioned before, that exercise is time consuming on our
computer for N > 5. Thereafter, encouraged by the success
of the steepest descent method, we attempted to extend it
beyond x ¼ 1. However, at general x, there are multiple
global maxima and the Hessian matrix develops a com-
plicated dependence on x. Both these factors prevent an
analytic Gaussian approximation of the integral at hand.
Numerically, the Monte Carlo method is the only hope for
achieving an acceptable degree of precision and accuracy
for this multidimensional integral. However, beyond
N ¼ 7, even the Monte Carlo method is no longer robust.
Numerical methods are not feasible for evaluating the
Gaussian approximations either: beyond the first few values
of N, calculating the Hessian matrix is not simple even
numerically.
Thereafter, we chose to concentrate on the global

maxima, and extract as much information as we could,
rather than continue pushing for the higher order fluctua-
tions. As we shall show in the following plots and para-
graphs, we were able to obtain evidence of the contrasting
behavior of the partition function at different temperatures.
Here is a description of our numerical study:
(1) We defined the following function:

~fðN; x; fθkgÞ ¼ f̂ðx; fθkgÞ þ ðN − 1Þ log
�
1þ x
1 − x

�
:

ð26Þ

We performed a global maximization routine on
~fðN; x; fθkgÞ. Since ~fðN; x; fθkgÞ is translation
invariant in the θ’s, we were able to simplify
this exercise slightly by fixing θ1 to 0. This
reduced the search space from ð−π; πÞN to
ð−π; πÞN−1. This maximization was repeated for a
set of (N, x) pairs, namely, for N ∈ f9; 13;…; 101g
and x ∈ f0; 1=40;…; 39=40g.

(2) We obtained the coordinates f ~ψkgN;x and the value
~f½max�
N;x of the global maximum for each ðN; xÞ. The

f ~ψkgN;x were sorted, and thereafter, shifted, to obtain
a nondecreasing sequence fψkgN;x that is centered at
0. The maximum values were redefined to obtain

f½max�
N;x ¼ ~f½max�

N;x − ~f½max�
N;0 :
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These f½max�
N;x resemble the function logZðN; xÞ more

closely, e.g. f½max�
N;0 ¼ 0 ¼ logðZðN; 0ÞÞ for all values

ofN.We discuss the corrections to this approximation
in the Appendix. Figure 3 shows the temperature
dependence of f½max� for some values of N.

(3) We used f½max�
N;x to extract the dependence of

logðZðN; xÞÞ to leading order in N. We did this
by fitting this data set onto a model function:

FðN;xÞ¼ c1ðxÞN2þc2ðxÞN logðNÞ
þc3ðxÞNþc4ðxÞ logðNÞþc5ðxÞ: ð27Þ

The form of FðN; xÞ was decided by examining
Eq. (16). The presence of the restricted double sum
[Eq. (21)] and the leading order behavior of RN
imply an N2 dependence of FðN; xÞ, the presence of
N! leads to the remainingN-dependent terms and the
constant term is there to capture pure temperature
dependence of f½max�

N;x . We studied how these coef-
ficients change with x (or, temperature). Figure 4
shows the temperature dependence of c1.

(4) For each (N, x), we used fψkgN;x to numerically
approximate the density function of the global

maxima, ρðΨÞ [Eq. (23)]. For l ∈ f1;…; N − 1g,
we obtained

fρlgN;x ¼
1

N − 1

1

fψ lþ1 − ψ lgN;x
ð28Þ

where the 1=ðN − 1Þ is for normalization of the
distribution.

Error estimates
~fðN; x; fθkgÞ has multiple maxima of different orders in

the search space ð−π; πÞN−1. Locating a maximum is not as
difficult as is ensuring that it is also a global maximum. We
examined four different optimization methods and picked
the best one for obtaining our final data set. A (nonlinear)
least-squares fit of FðN; xÞwas obtained for the data set. Of
the 40 fits, 38 had an adjusted R2 value of 1 while two of
them had 0.98 and 0.90, respectively.

VI. RESULTS AND CONCLUSIONS

In Fig. 3 we make an important observation: for x < 1=2,
logðZÞ is independent of N at leading order. The N
dependence sets in only for x > 1=2. For x > 1=2, the
curves are concave upwards and diverge at x ¼ 1. Also, as
N gets larger, the curve gets steeper. At N → ∞, the curve
is infinitely steep at x ¼ 1=2, and we see the Hagedorn
phenomenon.
The most important result of this paper is Fig. 4. This

plot shows the dependence of the leading order coefficient
in Eq. (27) on temperature. c1 is negligible below x ¼ 1=2.
In fact, all the coefficients of N-dependent terms, i.e. c1, c2,
c3 and c4 are negligible below x ¼ 1=2. We can actually
confirm that there is no N2 term in the expansion of logðZÞ
[14]. Above x ¼ 1=2, c1 is positive and increases mono-
tonically with x (or, temperature). However, it does not
keep increasing indefinitely. From Eq. (22), we expect
limx→1c1 ¼ logð2Þ ≈ 0.69. We confirmed this limiting
behavior by conducting a subsequent search with a finer
grid near x ¼ 1.
Figure 4 clearly demarcates the two temperature regimes

we proposed in the previous section. At lower temperatures
logðZÞ has no diverging terms in N. Hence, at N → ∞, it
has a limit point. Above x ¼ 1=2, the leading order terms
diverge as N → ∞. It is this difference in behavior that
manifests as the Hagedorn phenomenon as N → ∞.
However, this difference is present only in the leading
order in N. As has been shown earlier, the finite N partition
function taken in its entirety is smooth over x ∈ ð0; 1Þ.
There is no indication of any discontinuity or nondiffer-
entiability at x ¼ 1=2. Its only divergence is at infinite
temperature.
The N2 dependence of logZ is related to the underlying

degrees of freedom in the superstring bit system. It signals
the liberation of the superstring bits from their singlet,

0.2 0.4 0.6 0.8
x

0.1

0.2

0.3

0.4

0.5

0.6
c1

FIG. 4. The coefficient of N2 in logZ switches on at x ¼ 1=2.
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FIG. 3. Dependence of f½max� on temperature.

SOURAV RAHA PHYSICAL REVIEW D 96, 086006 (2017)

086006-8



polymeric states. In other words, there is deconfinement in
this model at x ¼ 1=2. The Hagedorn phenomenon thus has
an interpretation as a phase transition between polymeric,
color singlet states and monomeric, color adjoint states.
And in this interpretation, c1ðxÞ plays the role of the order
parameter. In order to obtain the form of c1ðxÞ analytically,
it is necessary to find the density of the global maxima,
fψkgN;x, for x > 1=2.
Speaking of fψkgN;x, this phase transition can also be

detected by examining the distribution of the coordinates of
the global maxima. In Fig. 5 we have plotted the temper-
ature dependence of such distributions for N ¼ 45. These
plots show a remarkable difference in the distribution of
fψkgN;x at different values of temperature. At low temper-
atures, the integrand is maximized by those regions in the
domain where the fψkgN;x are uniformly distributed in
ð−π; πÞ. It is as if the fψkgN;x are repelling each other. This
uniform distribution of the coordinates is seen for all
x < 1=2. For x ≥ 1=2, two things happen: the range of
the distribution shrinks and the density peaks at its median.
With increasing temperatures, the fψkgN;x begin to attract
each other, until at x ¼ 1, their distribution becomes a delta
function. At infinite temperature, the integrand is maxi-
mized by those regions where the coordinates have the
same value. This change in distribution of fψkgN;x can be
rationalized by noting that f̂ð0; fθkgÞ is a function of terms
like sin2ðθi−θj

2
Þ and f̂ðx → 1; fθkgÞ contains terms like

cos2ðθi−θj
2
Þ. However, it is interesting that this transition

of the distribution does not begin until x ¼ 1=2. One can

construct the normalized density function from the
fψkgN;x. Figure 6 shows these density plots at different
temperatures for N ¼ 45. Again, till x ¼ 1=2, the density
function is a constant, with ρ ≈ 1=ð2πÞ. Above x ¼ 1=2,
there exists a Ψ½max� < π such that ρð�Ψ½max�Þ ¼ 0

[Eq. (25)]. Such a cutoff for the density function has been
featured in previous studies of matrix models, e.g. the
Hermitian matrix model [17].
The change in the distribution of fψkg in our superstring

bit model bears a resemblance to the well-known phase
transition in the unitary matrix model [19]. While the latter

x 0 x 0.250 x 0.500

x 0.650 x 0.800 x 0.975

FIG. 5. Distribution of the coordinates of the global maxima for N ¼ 45.

3 2 1 1 2 3
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FIG. 6. Normalized density function of the ψ ’s at different
temperatures for N ¼ 45.
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has a coupling constant g, the parameter in our model is x,
or the temperature. Still, there is a similarity in the trans-
formation of the density functions: from low to high
temperature in superstring bit model and from small to
large coupling in the unitary matrix model. Recently, it was
pointed out to us that Aharony et al.1 obtained similar
results for free UðNÞ Yang-Mills theory with adjoint matter
on S3 ×R [12]. Both Sundborg [13] and Aharony [12] have
obtained similar supersymmetric partition functions in the
limit of large N. However, unlike in these models, an exact
analytic expression of the high-temperature density func-
tion still evades us.
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APPENDIX: GAUSSIAN APPROXIMATION
AT INFINITE TEMPERATURE

Let us Taylor expand f̂ from Eq. (20) in fθkg’s about a
global maximum at fψkg:

f̂ðx; fθkgÞ ¼ f̂ðx; fψkgÞ þ
1

2

X
r;s

ðθr − ψ rÞ
d2

dθrdθs
f̂ðx; fψkgÞðθs − ψ sÞ þ � � � ðA1Þ

⇒
Z

π

−π
exp f̂ðx; fθkgÞ

Y
1≤l≤N

dθl ≈ J ðN; xÞ exp ff̂ðx; fψkgÞg
Z

∞

−∞
exp

�
1

2

X
r;s

ðθr − ψ rÞ
d2f̂ðx; fψkgÞ

dθrdθs
ðθs − ψ sÞ

� Y
1≤l≤N

dθl

¼ J ðN; xÞ exp ff̂ðx; fψkgÞg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN
detðHÞ

s
ðA2Þ

where J ðN; xÞ is the number of global maxima in
ð−π; πÞN and

Hrs ¼ −
d2

dθrdθs
f̂ðx; fψkgÞ:

As the integrand is translation invariant in the θ’s, J ðN; xÞ
is ∞. As we shall see later, the correct approximation
involves applying the steepest descent after removing the
zero mode integral. Once the zero mode is removed,
J ðN; xÞ is the number of global maxima in ð−π; πÞN−1.
J ðN; xÞ in general has a factor of ðN − 1Þ! coming from
the symmetry of the integrand in the θ’s.
At infinite temperature (x ¼ 1) there is only one global

maximum: ψ1 ¼ ψ2 ¼ � � � ¼ ψN . Hence, J ðN; 1Þ ¼ 1 and
from Eq. (18)

ZðN; 1Þ ≈
�

2

1 − x

�
N−1 2NðN−1Þ

N!ð2πÞN

×
Z

∞

−∞
exp

�
−
1

2

X
r;s

Nδrs − 1

2|fflfflfflfflffl{zfflfflfflfflffl}
¼Hrs

θrθs

�YN
k¼1

dθk:

ðA3Þ
Here we can see that the formula for the Gaussian

integral yields∞. This is because we blindly replaced every
one-dimensional integration

R
π
−π dθi � � � with

R∞
−∞ dθi � � �

when we took the Gaussian approximation. Hence, instead
of obtaining a factor of 2π from the zero mode, we get ∞.
The correct formula is

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN−1

detðH0Þ

s

where H0
rs ¼ Hrs ∀ fr; sg ∈ f1; 2;…; N − 1g. H0 is the

ðN − 1Þ × ðN − 1Þ matrix one gets after truncating the
Nth row and Nth column of H. Evaluating detðH0Þ we
get NN−2

2N−1 . Putting everything back into the earlier equation
we get

Z ≈
�

2

1 − x

�
N−1 2NðN−1Þ

N!ð2πÞN 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N−1ð2πÞN−1

NN−2

s

¼
�

2

1 − x

�
N−1 1

N!

2NðN−1Þ

πðN−1Þ=2NN=2−1 : ðA4Þ

We can compare this to Eq. (18) to infer

RN ¼
X
Γ
Res

�Q
1≤i<j≤Nðzi þ zjÞ2Q

1≤k≤NðzkÞN
�
≈

2NðN−1Þ

πðN−1Þ=2NN=2−1 :

ðA5Þ

While searching through mathematics literature, we
came to know that RN as defined above, also counts the
number of Eulerian digraphs with N nodes [18]. Also, the
author lists exact values of RN till N ¼ 16, some of which
we have used in Fig. 2. A follow up on our search revealed
that the asymptotic expression in Eq. (A5) has already been
computed in [20]. It turns out that multiplying our Gaussian
result with an extra factor of e−1=4 is a more accurate
approximation in leading order.

1Sundborg [13] had, in turn, already derived most of the
results of [12] for N ¼ 4 SYM theory on S3.
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