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The half-BPS boundary conditions preservingN ¼ ð2; 2Þ andN ¼ ð0; 4Þ supersymmetry in 3dN ¼ 4

supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk
supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations
arise in the vector multiplet BPS boundary condition preserving N ¼ ð0; 4Þ supersymmetry, and Robin-
type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N ¼ ð2; 2Þ
supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of
type IIB string theory.
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I. INTRODUCTION

The boundary conditions for the supersymmetric field
theory preserving a part of supersymmetries of the
original bulk theory provide important new ingredients
and insights to the original system, for example, the
description of branes in string or M theory and in target
space of the field theories, dualities or holography in the
presence boundary conditions, mirror symmetry, and also
the geometric Langlands program. The supersymmetric
(SUSY) boundary conditions have been studied in a
number of contexts such as 2d N ¼ ð2; 2Þ theories [1–3],
4d N ¼ 4 theories [4–7], 3d N ¼ 2 theories [8,9], and
3d N ¼ 4 theories [10] and Bagger-Lambert-Gustavsson
(BLG) and Aharony-Bergman-Jafferis-Maldacena (ABJM)
theories [11–13].
In this paper, we study the half-BPS boundary condi-

tions of 3d N ¼ 4 supersymmetric theories preserving
N ¼ð2;2Þ andN ¼ ð0; 4Þ supersymmetry at the boundary,
which we call A type and B type, respectively. We
explicitly calculate the boundary BPS equations for the
3d N ¼ 4 pure vector multiplet, pure hypermultiplet,
hypermultiplet coupled to the vector multiplet such as
supersymmetric quantum chromodynamics (SQCD), and
also its supersymmetric deformations by Fayet-Iliopoulos
(FI) parameters and mass parameters. For each A- and
B-type boundary condition for the vector multiplet, we
have two sets of boundary conditions, which we call
“electriclike” and “magneticlike”. Interestingly, the half-
BPS boundary conditions preserving N ¼ ð0; 4Þ for the
vector multiplet include a Nahm-like equation. For the
hypermultiplet coupled to a vector multiplet, we see that

certain types of Robin boundary conditions arise. By
studying the BPS equations, we read off the boundary
degrees of freedom arising from the bulk 3d N ¼ 4 vector
multiplet and hypermultiplet. These are discussed in
Sec. II.
In Sec. III, we propose the brane configurations

corresponding to the boundary conditions of 3d N ¼ 4

theories preserving N ¼ ð2; 2Þ and N ¼ ð0; 4Þ super-
symmetry by introducing additional branes to the brane
configuration of Hanany and Witten in the type IIB string
theory [14] realizing 3d N ¼ 4 theories. We give a
remark on the map of the boundary degrees of freedom
from the bulk supermultiplet under S duality of the type
IIB string theory.
In Sec. IV, we summarize our results and discuss future

directions.

II. HALF-BPS BOUNDARY CONDITIONS
IN 3D N = 4 THEORIES

In this section, we consider the (2,2)- or (0,4)-preserving
boundary conditions for a pure vector multiplet, pure
hypermultiplets, and hypermultiplets coupled to a vector
multiplet with FI and mass deformations. We also see the
decomposition of the bulk supermultiplet at the boundary
as supermultiplets of preserved supersymmetries.

A. Vector multiplet

In this subsection, we study the half-BPS boundary
conditions for the 3d N ¼ 4 vector multiplet. The 3d
N ¼ 4 vector multiplet contains a three-dimensional gauge
field Aμ, μ ¼ 0, 1, 2, three real scalar fields ϕi, i ¼ 3, 4, 5,
an auxiliary field F, and a fermionic field λ. They are in
the adjoint representation of the gauge group G and
transform as
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Aμ∶ ð3; 1; 1Þ;
ϕi∶ ð1; 3; 1Þ;
F∶ ð1; 1; 3Þ;
λ∶ ð2; 2; 2Þ ð2:1Þ

under the SOð1; 2Þ × SOð3ÞC × SOð3ÞH. The 3d N ¼ 4
supersymmetric field theories have the R-symmetry group
SOð4ÞR ≅ SUð2ÞC × SUð2ÞH, where the SUð2ÞC [respec-
tively, SUð2ÞH] is the double cover of the SOð3ÞC [respec-
tively, SOð3ÞH].
The 3d N ¼ 4 vector multiplet can be expressed as 3d

N ¼ 2 vector multiplet VðAμ; σ; λ; DÞ and adjoint chiral
multiplet Φðϕ;ψϕ; FϕÞ. Our notations for the 3d N ¼ 2

superspace and supermultiplet are summarized in the
Appendix. The action of the 3d N ¼ 4 vector multiplet
in terms of 3d N ¼ 2 supermultiplets is given by

SN¼4
V ¼ SN¼2

V þ SN¼2
Φ ð2:2Þ

with

SN¼2
V ¼ 1

g23d

Z
d3xd4θTrðΣ2Þ; ð2:3Þ

SN¼2
Φ ¼ −

1

g23d

Z
d3xd4θTrðΦe−2VΦe2VÞ; ð2:4Þ

where Σ is a linear multiplet. In components, they are

SN¼2
V ¼ 1

g23d

Z
d3xTr

�
−
1

4
FμνFμνFμν −

1

2
DμσDμσ

þ 1

2
D2 − iλσμDμλþ iλ½σ; λ�

�
; ð2:5Þ

SN¼2
Φ ¼ 1

g23d

Z
d3xTr½ −DμϕDμϕ − iψσμDμψ þ FϕFϕ

þ ϕ½ϕ; D� −
ffiffiffi
2

p
iψ ½ϕ; λ� þ

ffiffiffi
2

p
iψ ½ϕ; λ�

þ iψ ½ψ ; σ� − ϕ½σ; ½σ;ϕ���; ð2:6Þ

respectively. The actions are invariant under the supersym-
metry transformations

δAμ ¼ iξσμλþ iξσμλ; ð2:7Þ

δσ ¼ ξλ − ξλ; ð2:8Þ

δλ ¼ iξD −
1

2
γμνξFμν − iγμξDμσ; ð2:9Þ

δλ ¼ −iξD −
1

2
γμνξFμν þ iγμξDμσ; ð2:10Þ

δD ¼ −ξσμDμλþ ξσμDμλþ ξ½σ; λ� þ ξ½σ; λ�; ð2:11Þ

for 3d N ¼ 2 vector multiplet V with the Wess-Zumino
gauge, and

δϕ ¼
ffiffiffi
2

p
ξψϕ; ð2:12Þ

δψϕ ¼
ffiffiffi
2

p
iγμξDμϕþ

ffiffiffi
2

p
ξF −

ffiffiffi
2

p
iξ½σ;ϕ�; ð2:13Þ

δF ¼
ffiffiffi
2

p
iξσμDμψϕ þ 2iξ½λ;ϕ� −

ffiffiffi
2

p
iξ½ψϕ; σ�; ð2:14Þ

for the 3d N ¼ 2 adjoint chiral multiplets Φ.
Suppose we have a boundary in the x2 direction, say,

at x2 ¼ 0. Employing the Noether method, we find the
normal component J2 of the supercurrent of the 3d N ¼ 4

vector multiplet in terms of 3d N ¼ 2 language from
the action (2.2) and the supersymmetric transformations
(2.7)–(2.14):

J2 ¼ J2vec þ J2adj

¼ −
1

4
iξ2mnFmnλþ

1

2
iFm2σmλ −

1

2
Dmσσ

m2λþ 1

2
D2σλ

þ 1ffiffiffi
2

p D2ϕψϕ −
1ffiffiffi
2

p Dmϕσ
m2ψϕ

þ 1

2
½ϕ;ϕ�σ2λ − 1ffiffiffi

2
p ½σ;ϕ�σ2ψϕ ð2:15Þ

in the on shell, wherem; n;… ¼ 0, 1 are space-time indices
of the two-dimensional boundary.1

In the presence of a boundary, the translation invariance
is broken, so the supersymmetry is broken, in general.
However, some of the supersymmetry can be preserved at
the boundary by imposing specific boundary conditions,
i.e., the supersymmetric or BPS boundary conditions. The
BPS boundary conditions can be found by demanding that
the normal component of the supercurrent at the boundary
vanishes:

1We can put the supercurrent of the 3d N ¼2 vector and
adjoint chiral multiplet in an SUð2ÞC×SUð2ÞH manifest expres-
sion, which leads to the 3dN ¼4manifest supercurrent for the 3d
N ¼4 vector multiplet. Denoting 3d N ¼ 4 fermions and
scalars by

λαA _A ¼
�

λα −ψα
ϕ

ψα
ϕ λα

�
; ϕA

B ¼
�

σ
ffiffiffi
2

p
ϕffiffiffi

2
p

ϕ −σ

�
; ð2:16Þ

respectively, the normal component of the supercurrent can be
written as

J2vec þ J2adj ¼ J2 ¼ ðJ2ÞαA _A

¼ 1

2
iF01λ

αA _A −
1

2
D2ϕA

Bλ
αB _A þ 1

2
iF2

mðγmÞαβλβA _A

þ 1

4
½ϕA

C;ϕ
C
B�ðγmÞαβλβB _A þ 1

2
Dmϕ

A
Bðγm2ÞαβλβB _A:

ð2:17Þ
Here, A and _A are indices for SUð2ÞC and SUð2ÞH , respectively.
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0 ¼ ξJ2 − ξJ2

¼ −
1

4
iξ2mnFmnðξλÞ þ

1

2
iFm2ðξσmλÞ −

1

2
Dmσðξσm2λÞ þ 1

2
D2σðξλÞ

−
1

4
iξ2mnFmnðξλÞ þ

1

2
iFm2ðξσmλÞ þ

1

2
Dmσðξσm2λÞ − 1

2
D2σðξλÞ

þ 1ffiffiffi
2

p D2ϕðξψϕÞ −
1ffiffiffi
2

p Dmϕðξσm2ψϕÞ þ
1

2
½ϕ;ϕ�ðξσ2λÞ − 1ffiffiffi

2
p ½σ;ϕ�ðξσ2ψϕÞ

−
1ffiffiffi
2

p D2ϕðξψϕÞ þ
1ffiffiffi
2

p Dmϕðξσm2ψϕÞ −
1

2
½ϕ;ϕ�ðξσ2λÞ − 1ffiffiffi

2
p ½σ;ϕ�ðξσ2ψϕÞ; ð2:18Þ

where we impose the boundary condition on fermions such
that the bulk equations of motion are still satisfied.
Although there are various solutions to the supersym-

metric boundary conditions (2.18), in this paper we will
focus on the half-BPS boundary conditions preserving
N ¼ ð2; 2Þ and N ¼ ð0; 4Þ supersymmetry at the boun-
dary, which we call A- and B-type boundary conditions,
respectively [1,8].

1. A-type boundary conditions

For the A-type boundary conditions, the supersymmetric
parameter ξ satisfies the projection condition2

γ2ξ ¼ ξ: ð2:19Þ

To find the bosonic boundary conditions from (2.18), we
choose the fermionic boundary conditions

γ2λ ¼ e2iθλ; γ2ψϕ ¼ e2iθψϕ; ð2:20Þ

where θ ∈ R is a constant parameter. Note that this form of
fermionic boundary condition is compatible with the bulk
equations of motion for fermions λ and ψϕ. From (2.19) and
(2.20), we obtain

ξλ ¼ −e2iθξλ; ξσmλ ¼ e2iθξσmλ;

ξσm2λ ¼ e2iθξσm2λ; ξσ2λ ¼ −e2iθξσ2λ; ð2:21Þ

ξψϕ ¼ −e−2iθξψϕ; ξσmψϕ ¼ e−2iθξσmψϕ;

ξσm2ψϕ ¼ e−2iθξσm2ψϕ; ξσ2ψϕ ¼ −e−2iθξσ2ψϕ:

ð2:22Þ

With the above fermionic boundary conditions and the
above formulas (2.21) and (2.22), one can rewrite the
general supersymmetric boundary conditions (2.18) as

0 ¼ 1

4
iξ2mnFmnðe2iθ − 1ÞðξλÞ − 1

2
iF2mðe2iθ þ 1ÞðξσmλÞ

−
1

2
Dmσðe2iθ − 1Þðξσm2λÞ − 1

2
D2σðe2iθ þ 1ÞðξλÞ

−
1ffiffiffi
2

p ðe−2iθD2ϕþD2ϕÞðξψϕÞ

−
1ffiffiffi
2

p ðe−2iθDmϕ −DmϕÞðξσm2ψϕÞ

−
1

2
½ϕ;ϕ�ðe2iθ þ 1Þðξσ2λÞ

þ 1ffiffiffi
2

p ð½σ;ϕ�e−2iθ − ½σ;ϕ�Þðξσ2ψϕÞ: ð2:23Þ

Without further projection conditions, we can find
supersymmetric bosonic configurations as the nontrivial
solutions to (2.23) when θ ¼ 0 and π

2
.

From now on, we often identify the scalars σ and ϕ;ϕ of
the 3d N ¼ 2 vector and adjoint chiral multiplet with the
scalars ϕi, i ¼ 3, 4, 5, of the 3d N ¼ 4 vector multiplet as

σ ¼ ϕ3;Reϕ ¼ ϕ4; Imϕ ¼ ϕ5: ð2:24Þ

(i) γ2λ ¼ λ and γ2ψϕ ¼ ψϕ (θ ¼ 0).—From (2.23) with
θ ¼ 0, we find the boundary conditions

F2m ¼ 0; ð2:25Þ

D2ϕ
a ¼ 0; ð2:26Þ

Dmϕ
5 ¼ 0; ð2:27Þ

½ϕa;ϕ5� ¼ 0; ð2:28Þ

where a ¼ 3; 4. The two-dimensional gauge field
Am and the two scalar fields ϕa satisfy Neumann-
like boundary conditions (2.25) and (2.26) and so
can fluctuate at the boundary. The condition (2.25)
can be thought as the Dirichlet-like condition for
the scalar field A2. The scalar field ϕ5 satisfies the
Dirichlet-like condition (2.27). In particular, (2.27)

2Since the projection condition (2.19) is written in terms of 3d
N ¼ 2 SUSY parameters, it leads to N ¼ ð1; 1Þ SUSY param-
eters at the boundary. But with the supersymmetry enhancement
to 3d N ¼ 4 in mind, as far as bosonic boundary BPS equations
are concerned, it is okay to work with (2.19) for convenience.
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and (2.28) can be solved by setting ϕ5 ¼ 0. We call
the above set of boundary conditions (2.25)–(2.28)
the electriclike A-type boundary conditions, where
the electriclike field Em ¼ F2m generated by scalar
potential A2 is required to be constant, while the
magneticlike field B ¼ F01 can fluctuate at the
boundary.

(ii) γ2λ ¼ −λ and γ2ψϕ ¼ −ψϕ (θ ¼ π
2
).—In this case,

the boundary conditions read

F01 ¼ 0; ð2:29Þ

D2ϕ
5 ¼ 0; ð2:30Þ

Dmϕ
a ¼ 0; ð2:31Þ

½ϕa;ϕb� ¼ 0; ð2:32Þ

where a; b;… ¼ 3; 4. We obtain the Dirichlet-like
boundary condition for the two-dimensional gauge
field Am and the Neumann-like boundary condition
for the scalar field ϕ5. The third equation (2.31) is
the Dirichlet-like condition on two scalar fields ϕa.
The last constraint (2.32) implies that the two scalar
fields satisfying the Dirichlet-like condition com-
mute with each other. So one possible solution is to
set them zero at the boundary. Meanwhile, as there is
no constraint on Fm2, the scalar field A2 is uncon-
strained and so can fluctuate at the boundary. We
will call the set of boundary conditions (2.29)–(2.32)
magneticlike A-type boundary conditions.

Boundary degree of freedom for the A type from the bulk
vector multiplet
We see that two sets of the A-type boundary conditions,

(2.25)–(2.28) and (2.29)–(2.31), provide decomposition of
the 3d N ¼ 4 vector multiplet VN¼4 under N ¼ ð2; 2Þ
supersymmetry at the boundary. The two-dimensional
gauge field Am and the two real scalar fields ϕa,
a ¼ 3; 4, which form a complex scalar field, are naturally
packaged into a 2d N ¼ ð2; 2Þ vector multiplet Vð2;2Þ or
field strength multiplet Σð2;2Þ. Meanwhile, from two real
scalar fields A2 and ϕ5, one can form a 2d N ¼ ð2; 2Þ
twisted chiral multiplet eΣð2;2Þ, which is charged under the
axial Uð1ÞC R-symmetry group. We let ρ be the dual
photons defined by 1

2
ϵμνρFνρ ¼ ∂μρ for each of the Abelian

factors of the gauge group where A2, which is a surviving
degree of freedom when considering the Dirichlet-like
boundary condition, appears in the left-hand side. Then eρ ¼
ϕ5 þ iρ is charged under Uð1ÞC and becomes a scalar
component of the twisted chiral multiplet. Therefore, 3d
N ¼ 4 vector multiplet VN¼4 can be decomposed into 2d
N ¼ ð2; 2Þ vector multiplet Vð2;2Þ, or a field strength
multiplet, which is a twisted chiral multiplet Σð2;2Þ, and
2d N ¼ ð2; 2Þ twisted chiral multiplet eΣð2;2Þ;

VN¼4 → ðVð2;2Þ; eΣð2;2ÞÞ: ð2:33Þ

The 3d N ¼ 4 supersymmetric parameters consist of
two copies of the 3d N ¼ 2 supersymmetric parameters ξ1
and ξ2. The projection (2.19) admits two right-moving
supersymmetric parameters and two left-moving super-
symmetric parameters.3 Denoting the complex supersym-
metric parameters of 2d N ¼ ð2; 2Þ supersymmetry as

ξþ ≔
1

2
ðξþ1 þ ξþ1 Þ þ

i
2
ðξþ2 þ ξþ2 Þ;

ξ− ≔
1

2i
ðξ−1 − ξ−1 Þ þ

1

2
ðξ−2 − ξ−2 Þ; ð2:35Þ

with ξþ ¼ ðξþÞ� and ξ− ¼ ðξ−Þ� at the boundary, the axial
Uð1ÞA and the vector Uð1ÞV of them may take

SOð1; 1Þ Uð1ÞA Uð1ÞV
ξþ þ − þ
ξ− − þ þ
ξþ þ þ −
ξ− − − −

ð2:36Þ

For the electriclike A-type boundary conditions, which
allow both left-moving and right-moving fermions, we
similarly denote the two-dimensional fermionic fields by

λþ ≔
1

2
ðλþ λÞ þ i

2
ðψϕ þ ψϕÞ;

λ− ≔
1

2i
ðλ − λÞ þ 1

2
ðψϕ − ψϕÞ; ð2:37Þ

with λþ ¼ ðλþÞ† and λ− ¼ ðλ−Þ† at the boundary. Their R
charges would be

SOð1; 1Þ Uð1ÞA Uð1ÞV
λþ þ þ þ
λ− − − þ
λþ þ − −
λ− − þ −

ð2:38Þ

Wewrite a complex scalar field as ϕ ≔ ϕ1þ iϕ2. Given the
notation above, the supersymmetric transformation laws of
the component fields ðAm;ϕ; λþ; λ−; λþ; λ−Þ, which form an
N ¼ ð2; 2Þ vector multiplet, would be [15,16]

3We denote the right-moving fermion by Ψþ and the left-
moving fermion by Ψ−:

γ2Ψþ ¼ Ψþ; γ2Ψ− ¼ −Ψ−: ð2:34Þ
One raises and lowers the spinor indices by the antisymmetric
tensor Ψα ¼ ϵαβΨβ with ϵþ− ¼ 1 so that Ψ− ¼ Ψþ, Ψþ ¼ −Ψ−.
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δA� ¼ iξ�λ� þ iξ�λ�; ð2:39Þ

δϕ ¼ −iξþλ− − iξ−λþ; ð2:40Þ

δλþ ¼ 2∂þϕξ− þ ðiD − v01Þξþ; ð2:41Þ

δλ− ¼ 2∂−ϕξþ þ ðiDþ v01Þξ−; ð2:42Þ

δD ¼ −ξþD−λþ − ξ−Dþλ− þ ξþD−λþ þ ξ−Dþλ−;

ð2:43Þ

where D is an auxiliary field, which is expressed as some
function of ϕ where the detail form of it can be determined
once the detail of coupling to the boundary fields is given.
The magneticlike A-type boundary conditions γ2λ ¼ −λ

and γ2ψϕ ¼ −ψϕ also yield both left-moving and right-
moving fermions. We similarly denote the two-dimensional
fermions by

χþ ≔
1

2i
ðλ − λÞ þ 1

2
ðψϕ − ϕϕÞ;

χ− ≔
1

2
ðλþ λÞ þ i

2
ðψϕ þ ϕϕÞ; ð2:44Þ

and their complex conjugate χþ ¼ ðχþÞ†, χ− ¼ ðχ−Þ†.
They would carry the R charges as

SOð1; 1Þ Uð1ÞA Uð1ÞV
χþ þ þ þ
χ− − − þ
χþ þ − −
χ− − þ −

ð2:45Þ

The twisted chiral multiplet eΣð2;2Þ has the component fields
ðeρ; χþ; χ−; χþ; χ−Þ. The supersymmetry transformation laws
would take the form [15,16]

δeρ ¼ ξþχ− − ξ−χþ; ð2:46Þ

δχþ ¼ 2i∂þeρξ− þGξþ; ð2:47Þ

δχ− ¼ −2i∂−eρξþ þ Gξ−; ð2:48Þ

δG ¼ −2iξþ∂−χþ − 2iξ−∂þχ−; ð2:49Þ

where G is some function of eρ.
2. B-type boundary conditions

Next we consider the B-type conditions where the
projection condition on the supersymmetric parameter ξ is

γ2ξ ¼ −ξ: ð2:50Þ

Here and in the following, we choose a convention that this
gives the right-moving supercharges, which leads to the
chiral N ¼ ð0; 4Þ supersymmetry at the two-dimensional
boundary.4

Applying the ansatz

γ2λ ¼ e2iθλ; γ2ψϕ ¼ e2iθψϕ ð2:51Þ

for the fermionic boundary conditions, which does not
change the equations of motion when θ ¼ 0 or π

2
, we can

find the bosonic boundary conditions. These two boundary
conditions for the fermionic fields determine their chir-
alities at the boundary. When θ ¼ 0 (respectively, θ ¼ π

2
),

the associated two-dimensional fermions are right moving
(respectively, left moving).

(i) γ2λ ¼ −λ and γ2ψϕ ¼ −ψϕ (θ ¼ π
2
).—With this

choice of the fermionic boundary condition, it
follows that

ξλ ¼ 0; ξσ2λ ¼ 0; ξψϕ ¼ 0; ξσ2ψϕ ¼ 0;

ð2:52Þ

so the general boundary conditions (2.18) turn into

0 ¼ 1

2
ðiFm2 −DmσÞðξσmλÞ

þ 1

2
ðiFm2þDmσÞðξσmλÞ

−
1ffiffiffi
2

p Dmϕðξσm2ψϕÞ þ
1ffiffiffi
2

p Dmϕðξσm2ψϕÞ:

ð2:53Þ

Therefore, with identification (2.24), we find

F2m ¼ 0; ð2:54Þ

Dmϕ
i ¼ 0: ð2:55Þ

The first condition (2.54) is the Neumann-like
boundary condition for the two-dimensional gauge
field Am, while the second condition (2.55) is the
Dirichlet-like boundary condition for the three scalar
fields ϕi. The condition (2.54) can be rephrased as
the Dirichlet-like boundary conditions for the scalar
field A2. We call this set of boundary conditions
(2.54) and (2.55) the electriclike B-type boundary
conditions.

(ii) γ2λ ¼ λ and γ2ψϕ ¼ ψϕ (θ ¼ 0).—Choosing θ ¼ 0
for the fermionic boundary conditions in (2.51),
we get

4In this convention, the projection condition for the super-
symmetric parameter γ2ξ ¼ ξ preserves N ¼ ð4; 0Þ supersym-
metry at the boundary.
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ξσmλ ¼ 0; ξσm2λ ¼ 0; ξσm2ψϕ ¼ 0:

ð2:56Þ

The generic boundary conditions (2.18) then
reduce to

0 ¼ 1

2
ð−iF01 þD2σ þ ½ϕ;ϕ�ÞðξλÞ

þ 1

2
ð−iF01 −D2σ − ½ϕ;ϕ�ÞðξλÞ

þ 1ffiffiffi
2

p ðD2ϕþ ½σ;ϕ�ÞðξψϕÞ

−
1ffiffiffi
2

p ðD2ϕ − ½σ;ϕ�ÞðξψϕÞ: ð2:57Þ

Thus, with identification (2.24), one finds

F01 ¼ 0; ð2:58Þ

D2ϕ
i−

1

2
iϵijk½ϕj;ϕk� ¼ 0; ð2:59Þ

where ϵijk is the Levi-Civita symbol with ϵ345 ¼ 1.
The first condition (2.58) is the Dirichlet-like con-
dition for the two-dimensional gauge field Am. The
scalar field A2 is unconstrained and can fluctuate at
the boundary. Note that the boundary conditions for
three scalar fields ϕi is not Neumann-like, but rather
they satisfy Nahm-like equations. They originate
from the existence of fluctuating A2 at the boundary
[4]. We will call this set of boundary conditions
(2.58) and (2.59) the magneticlike B-type boundary
conditions.

Boundary degree of freedom for the B type from the bulk
vector multiplet
We can also see the two sets of the B-type conditions

(2.54) and (2.55) and (2.58) and (2.59) provide the
decomposition of the 3d N ¼ 4 vector multiplet under
the preserved N ¼ ð0; 4Þ supersymmetry at the boundary.
We observed that for the electriclike B-type boundary
conditions the two-dimensional gauge field Am can fluc-
tuate and a pair of left-moving fermions transforming as
ð2; 2Þ− survive at the boundary. They are part of the 2d
N ¼ ð0; 4Þ vector multiplet Vð0;4Þ, which also contains an
auxiliary field transforming as ð1; 3Þ0 that originates from
the auxiliary field F in the 3d N ¼ 4 vector multiplet [see
(2.1)]. On the other hand, for the magneticlike B-type
boundary conditions, the scalar fields ϕi and A2 can
fluctuate at the boundary and can be combined into the
two complex scalar fields transforming as ð2; 1Þ0. Also, a
pair of right-moving fermions ð1; 2Þþ survive at the
boundary. Therefore, they form the N ¼ ð0; 4Þ twisted
hypermultiplets ~Hð0;4Þ. Hence, for the B-type conditions,
the 3d N ¼ 4 vector multiplet VN¼4 splits into two parts:

VN¼4 → ðVð0;4Þ; eHð0;4ÞÞ: ð2:60Þ

The projection (2.50) reduces two copies ξ1, ξ2 of 3d
N ¼ 2 supersymmetric parameters to four real left-moving
supersymmetric parameters. We write them as ξA _A, where
the indices A;B;… ¼ 1; 2 transform as a doublet under
SUð2ÞC while the indices _A; _B;… ¼ _1; _2 transform as a
doublet under SUð2ÞH. We denote the four supersymmetric
parameters of 2d N ¼ ð0; 4Þ supersymmetry by

ξ−1_1 ≔ ξ−1; ξ−1_2 ≔ −ξ−2; ξ−2_1 ≔ ξ−2; ξ−2_2 ≔ ξ1:

ð2:61Þ

The electriclike B-type boundary conditions γ2λ ¼ −λ and
γ2ψϕ ¼ −ψϕ lead to left-moving fermions. We take them as
the doublets under the both SUð2ÞC and SUð2ÞH so that

λ−1_1 ≔ λ−; λ−1_2 ≔ −ψ−
ϕ; λ−2_1 ≔ ψ−

ϕ; λ−2_2 ≔ λ−:

ð2:62Þ

Denoting the component fields for the vector multiplet
Vð0;4Þ by ðAm; λ−A

_AÞ, the supersymmetry transformation5

would be

δA− ¼ 2iξ−
A _A
λ−A _A; ð2:66Þ

δλ−A _B ¼ iDA
Cξ

−C _Bþ F01ξ
−A _B; ð2:67Þ

where DA
B would be some function of scalar field eXAY 0

in
the twisted hypermultiplet for generic coupling to boundary
fields. We use the antisymmetric tensor ϵAB and ϵ _A _B with
ϵþ− ¼ ϵ _þ _− ¼ 1 to raise or lower indices A;B;… and
_A; _B;…, respectively.
The magneticlike B-type boundary conditions γ2λ ¼ λ

and γ2ψϕ ¼ ψϕ lead to right-moving fermions. We can take
them as a doublet under the SUð2ÞH and also a doublet
under the additional global symmetry SUð2Þ0F. We write

them as eΨþ _AY 0
:

5From 3d N ¼ 4 supersymmetry transformation with projec-
tion and boundary conditions, we can see

δðA0 − A1Þ ¼ 2iξ−
A _A
λ−A _A; ð2:63Þ

δðA0 þ A1Þ ¼ 0; ð2:64Þ

δλ−A _B ¼ iDA
Cξ

−C _Bþ F01ξ
−A _B; ð2:65Þ

at the boundary. Here, DA
B ¼ 1

2
½eXAY 0

; eXBY 0� with eXAY 0 ¼ ðσ − iA2−ffiffiffi
2

p
ϕ

ffiffiffi
2

p
ϕσ þ iA2Þ, which is a scalar component of a twisted

hypermultiplet, where indices Y 0 ¼ 10; 20 denote the doublet under
SUð2Þ0F global symmetry.
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eΨþ _AY 0 ¼
�
χþ λþ

λþ −χþ

�
; ð2:68Þ

where the indices Y 0 ¼ 10; 20 represent the doublet under
the SUð2Þ0F. The supersymmetry transformations of the

component fields ðeXAY 0
; eΨþA0Y 0Þ, which form a twisted

hypermultiplet, can also be obtained from 3d N ¼ 4
supersymmetry transformation with projection and boun-
dary conditions:

δeXAY 0 ¼ −2ξ−A _Bϵ _B _C
~Ψþ _CY 0

; ð2:69Þ

δeΨþ _AY 0 ¼ −iξ−B _AϵBCð∂0 þ ∂1ÞeXCY 0
; ð2:70Þ

which is the supersymmetry transformation of the N ¼
ð0; 4Þ twisted hypermultiplet where Dirichlet-like condition
A0 ¼ A1 ¼ 0 is incorporated. See also [17,18].

3. Reduction from the extended Bogomol’nyi equation

The BPS equations of the topologically twisted 4d
N ¼ 4 supersymmetric Yang-Mills (SYM) theories on a
4-manifold M4 have been studied in Ref. [19], which read

ðF − ϕ ∧ ϕþ tdAϕÞþ ¼ 0; ð2:71Þ

ðF − ϕ ∧ ϕ − t−1dAϕÞ− ¼ 0; ð2:72Þ

dA⋆ϕ ¼ 0; ð2:73Þ

where A is a four-dimensional anti-Hermitian gauge field
that is a connection on a G bundle E → M4 and ϕ is a
bosonic one-form field valued in an anti-Hermitian matrix
given the adjoint representation of the Lie algebra of G.
dA ¼ dþ ½A; ·� is the covariant exterior derivative, F ¼
dAþ A ∧ A is the field strength, ⋆ is the Hodge star
operator, and t is a real constant parametrizing a family of
topological twisted theories. Especially when t ¼ 1, the set
of equations (2.71)–(2.73) can be written as

F − ϕ ∧ ϕþ ⋆dAϕ ¼ 0; ð2:74Þ

dA⋆ϕ ¼ 0: ð2:75Þ

Equation (2.74) is called the extended Bogomol’nyi
equation in Ref. [19]. It has been argued that the BPS
equations (2.74) together with (2.75) provide a various
family of the BPS equations in lower dimensions by
performing the reduction on a given M4, e.g., on
M4 ¼ C × Σ, where C and Σ are Riemann surfaces
[19,20], and onM4 ¼ M3 ×Rþ, whereM3 is a 3-manifold
and Rþ is a half line [21,22]. Here, we would like to see
our BPS boundary conditions for the 3d N ¼ 4 vector
multiplet in the reduction of the extended Bogomol’nyi
equation.

We consider the equations on a 4-manifold M4 ¼ Rþ×
M3. We express the gauge field as A ¼ A0dx0þ eA, and the
one-form as ϕ ¼ ϕ0dx0þ eϕ, where x0 is the coordinate on
the half line Rþ. Taking the x0 independent parts from
(2.74) and (2.75), one obtains the BPS equations on M3:

eF − eϕ ∧ eϕ ¼ ⋆ðd ~Aϕ0 − ½A0; eϕ�Þ; ð2:76Þ

deAA0 þ ½ϕ0; eϕ� ¼ ⋆deAeϕ; ð2:77Þ

d�eAeϕþ ½A0;ϕ0� ¼ 0; ð2:78Þ

where the exterior derivative deA, the Hodge operator ⋆, and
d�eA ¼ ⋆deA⋆ are defined on the 3-manifold M3. We further

take M3 ¼ Rþ × C and write eA ¼ A2dx2þ Azdzþ Azdz,eϕ¼ϕ2dx2þϕzdzþϕzdz, where Rþ is the half line x2 ≥ 0
and z and z are the local complex coordinates on the
Riemann surface C. By squaring (2.76)–(2.78) and inte-
grating by parts, one finds that A0 ¼ ϕ2 ¼ 0. Let us denote
the metric on 3-manifold M3 by ds2 ¼ ðdx2Þ2þ 2jdzj2 and
choose a gauge in which A2 ¼ 0. Then (2.76)–(2.78) are
now simplified to [19]

Fzz̄ − ½ϕz;ϕz̄� ¼ i∂2ϕ0; ð2:79Þ

∂2Az ¼ −iDzϕ0; ð2:80Þ

i½ϕ0;ϕz� ¼ ∂2ϕz; ð2:81Þ

Dzϕz ¼ 0: ð2:82Þ

As a 4-manifold is now a product space M4 ¼ Rþ×
Rþ × C, the topological twisting is not performed on the
4-manifold but on the two-dimensional surface C. When
C ¼ R2, which we will consider, the above configuration
on a 3-manifold M3 ¼ Rþ × C with a boundary at x2 ¼ 0
may admit maximally four supercharges. Regarding boun-
dary conditions, given a field, it is reasonable to expect that
there is either a normal derivative or tangential derivative of
it but not both in the (BPS) boundary conditions or
equations that the boundary fields should satisfy. So by
picking sets of equations among (2.79)–(2.82)—more
precisely, one in (2.79) or (2.80) and one in (2.81) or
(2.82)—and by taking terms in equations to be separately
zero, we may be able to find four consistent sets of BPS
boundary conditions we are interested in. Meanwhile, we
note that (2.79) and (2.80) have terms relevant to the
Dirichlet-like and Neumann-like boundary conditions for
the two-dimensional gauge fields Az and Az, respectively,
whereas (2.81) and (2.82) contain the Neumann-like and
Dirichlet-like boundary conditions for the one-form fields
ϕz and ϕz, respectively.
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In order to see our boundary conditions in the reduced
extended Bogomol’nyi equations (2.79)–(2.82), we take
C ¼ R2 where the one-form fields ϕz and ϕz reduce to the
scalar fields, and we set

∂z ¼
1ffiffiffi
2

p ð∂ 0̂ − i∂ 1̂Þ; ∂ z̄ ¼
1ffiffiffi
2

p ð∂ 0̂ þ i∂ 1̂Þ; ð2:83Þ

Az ¼
1ffiffiffi
2

p ðA0̂ − iA1̂Þ; Az̄ ¼
1ffiffiffi
2

p ðA0̂ þ iA1̂Þ; ð2:84Þ

ϕ0 ¼ ϕ5; ϕz ¼
1ffiffiffi
2

p ðϕ3− iϕ4Þ; ϕz̄ ¼
1ffiffiffi
2

p ðϕ3þ iϕ4Þ;

ð2:85Þ

where m; n ¼ 0̂; 1̂ are space-time indices on R2 while
i; j;… ¼ 3, 4, 5 and a; b;… ¼ 3, 4 label the scalar fields.
(Ai) From (2.80) and (2.81).—By taking both of the lhs
and the rhs of all the equations to be separately zero, we
have

F2m ¼ 0; Dmϕ
5 ¼ 0; D2ϕ

a ¼ 0; ½ϕ5;ϕa� ¼ 0;

ð2:86Þ

and one can identify them with the electriclike A-type
conditions (2.25)–(2.28).
(Aii) From (2.79) and (2.82).—We can obtain

F0̂ 1̂ ¼ 0; D2ϕ
5 ¼ 0; ½ϕa;ϕb� ¼ 0; Dmϕ

a ¼ 0

ð2:87Þ

by setting every term in (2.79) to be zero. These are the
magneticlike A-type conditions (2.29)–(2.32).
(Bi) From (2.80) and (2.82).—Similarly, by taking both the
lhs and the rhs in (2.80) to be separately zero, we get

F2m ¼ 0; Dmϕ
i ¼ 0: ð2:88Þ

This set of equations are the electriclike B-type conditions
(2.54) and (2.55).
(Bii) From (2.79) and (2.81).—We can obtain

Fmn ¼ 0; D2ϕ
iþ ϵijk½ϕj;ϕk� ¼ 0 ð2:89Þ

by taking terms in (2.79) to be zero after arrangement,
where we have restored the gauge fixed value A2 ¼ 0.
Taking into account that ϕi’s are anti-Hermitian here,
we see that both equations are the magneticlike B-type
conditions (2.58) and (2.59).6

B. Hypermultiplets

The 3d N ¼ 4 hypermultiplets contain complex scalar
fields q and fermionic fields ψ transforming as

q∶ ð1; 1; 2Þ;
ψ∶ ð2; 2; 1Þ ð2:90Þ

under the SOð1; 2Þ × SUð2ÞC × SUð2ÞH.
Also, the 3d N ¼ 4 hypermultiplets in representation

R of the gauge group can be expressed as a combination
of the two 3d N ¼ 2 chiral multiplets Qðq;ψ ; FqÞ andeQðeq; eψ ; FeqÞ transforming in conjugate representations R

and R̄ of the gauge group. The action of the 3d N ¼ 4

hypermultiplets coupled to 3d N ¼ 4 vector multiplet is
given by

S ¼ SN¼2
K þ SN¼2

W ; ð2:91Þ

where

SN¼2
K ¼ −

Z
d3xd4θðQe−2VQþ eQe−2VeQÞ ð2:92Þ

is the kinetic terms and

SN¼2
W ¼ −

ffiffiffi
2

p
i
Z

d3xd2θðeQΦQÞ þ c:c: ð2:93Þ

is the superpotential terms and c.c. stands for the complex
conjugate.
In terms of the component fields, the action (2.92) can be

expressed as

SN¼2
K ¼

Z
d3x½−DμqDμq − iψσμDμψ þ FqFq − iψσψ

−
ffiffiffi
2

p
iψ λ q −

ffiffiffi
2

p
iqλψ − qDq − qσ2q

−DμeqDμeq − ieψσμDμeψ þ FeqFeq þ ieψσeψ
þ

ffiffiffi
2

p
ieq λ eψ þ

ffiffiffi
2

p
ieψλeqþ eqDeq − eqσ2eq�; ð2:94Þ

where σ ¼ σaTa
R, D ¼ DaTa

R, and λ ¼ λaTa
R; λ ¼ λaTa

R, and
the action (2.93) as

SN¼2
W ¼

Z
d3x½−

ffiffiffi
2

p
iðFeqϕqþ eqFϕqþ eqϕFqÞ

þ i
ffiffiffi
2

p
ðeψψϕqþ eqψϕψ þ eψϕψÞ� þ c:c:; ð2:95Þ

where the covariant derivatives are defined by

Dμq ¼ ∂μq − iAμq; Dμq ¼ ∂μqþ iqAμ;

Dμeq ¼ ∂μeqþ ieqAμ; Dμeq ¼ ∂μeq − iAμeq: ð2:96Þ
6Equation (2.59) can be recovered from (2.89) via A2 → −iA2

and ϕj → − 1
2
iϕj.
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The action (2.91) is invariant under the supersymmetry
transformations

δq ¼
ffiffiffi
2

p
ξψ ; ð2:97Þ

δeq ¼
ffiffiffi
2

p
ξeψ ; ð2:98Þ

δψ ¼
ffiffiffi
2

p
iγμξDμqþ

ffiffiffi
2

p
ξFq −

ffiffiffi
2

p
iξσq; ð2:99Þ

δeψ ¼
ffiffiffi
2

p
iγμξDμeqþ

ffiffiffi
2

p
ξFeq þ ffiffiffi

2
p

iξσeq; ð2:100Þ

δFq ¼
ffiffiffi
2

p
iξσμDμψ þ 2iðξ λÞqþ

ffiffiffi
2

p
iðξψÞσ; ð2:101Þ

δFeq ¼ ffiffiffi
2

p
iξσμDμeψ − 2iðξ λÞeq −

ffiffiffi
2

p
iðξ eψÞσ ð2:102Þ

for the 3d N ¼ 2 chiral multiplets Q and eQ as well
as the supersymmetry transformations (2.7)–(2.11) and
(2.12)–(2.14), respectively, for the vector multiplet V
and the adjoint chiral multiplet Φ. From the action
(2.92) and the supersymmetric transformation laws, we
obtain a supercurrent of the 3d N ¼ 4 hypermultiplets:

Jμ ¼ −
ffiffiffi
2

p
Dμqψ − qγμλqþ

ffiffiffi
2

p
Dνqγμνψ −

ffiffiffi
2

p
qσγμψ

−
ffiffiffi
2

p eψDμeqþ eqγμλeqþ ffiffiffi
2

p
γμνeψDνeqþ

ffiffiffi
2

p
γμeψσeq

− 2γμðqϕ eψ þqψϕeqþ ψ ϕeqÞ: ð2:103Þ

Using the 3d N ¼ 2 notation, we get the supersymmetric
boundary conditions for the 3d N ¼ 4 hypermultiplets:

0 ¼ −
ffiffiffi
2

p
D2qðξψÞ −

ffiffiffi
2

p
ðξeψÞD2eq − qðξγ2λÞqþ eqðξγ2λÞeq

þ
ffiffiffi
2

p
Dνqðξγ2νψÞ þ

ffiffiffi
2

p
ðξγ2νeψÞDνeq −

ffiffiffi
2

p
qσðξγ2ψÞ þ

ffiffiffi
2

p
ðξγ2eψÞσeq

þ 2qϕðξγ2eψÞ þ 2qðξγ2ψϕÞeqþ 2ðξγ2ψÞϕeqþ ffiffiffi
2

p
ðξ ψÞD2qþ

ffiffiffi
2

p
D2eqðξ eψÞ þ qðξγ2λÞq − eqðξγ2λÞeq

−
ffiffiffi
2

p
ðξγ2νψÞDνq −

ffiffiffi
2

p
Dνeqðξγ2νeψÞ þ ffiffiffi

2
p

ðξγ2ψÞσq −
ffiffiffi
2

p eqσðξγ2eψÞ − 2ðξγ2eψÞϕq − 2eqðξγ2ψϕÞq − 2eqϕðξγ2ψÞ:
ð2:104Þ

One can generalize the boundary conditions and their
solutions by introducing additional boundary degrees of
freedom. Also, it would be intriguing to explore the space
of the solutions for the given information. We defer these to
later work. In this paper, we focus on the investigation of
basic half-BPS boundary conditions for the hypermultip-
lets. As in the previous discussion on the vector multiplet,
we examine the half-BPS boundary conditions of the A and
B types for the pure hypermultiplets in this subsection and
discuss the coupled hypermultiplets in next subsection.

1. A-type boundary condition

Weare interested inA-typeboundaryconditions forbosonic
fields given by γ2ξ ¼ ξ and fermionic boundary conditions

γ2ψ ¼ e2iφψ ; γ2λ ¼ e2iθλ; γ2ψϕ ¼ e2iθψϕ;

ð2:105Þ

whereφ; θ ∈ R are constant phase parameters.Here and in the
following, we consider the case e2iφ ¼ −e2iθ, i.e.,

θ − φ ¼ π

2
þ πZ; ð2:106Þ

but for the A-type condition the case e2iφ ¼ e2iθ provides
equivalent results to the ones obtained from (2.106).
From (2.21) and (2.22), the generic boundary conditions

(2.104) for the hypermultiplets become7

0 ¼ e−iφ½−
ffiffiffi
2

p
ðeiφD2 · qþ e−iφD2 · qÞðξψÞ −

ffiffiffi
2

p
ðeiφD2 · eqþ e−iφD2 · eqÞðξeψÞ

þ
ffiffiffi
2

p
ðeiφDm · q − e−iφDm · qÞðξγ2mψÞ þ

ffiffiffi
2

p
ðeiφDm · eq − e−iφDm · eqÞðξγ2meψÞ

−
ffiffiffi
2

p
ðeiφσ · qþ e−iφσ · qÞðξγ2ψÞ þ

ffiffiffi
2

p
ðeiφσ · eqþ e−iφσ · eqÞðξγ2eψÞ

þ 2ðe−iφϕ · qþ e−iφϕ · qÞðξeψÞ þ 2ðeiφϕ · eqþ e−iφϕ · eqÞðξψÞ�
þ e−iθ½−ðqqe−iθþ qqeiθÞðξλÞ þ ðeqeq e−iθþ eqeq eiθÞðξλÞ þ 2ðqeq eiθþ qeqe−iθÞðξψϕÞ�; ð2:107Þ

7To see the general form of the supersymmetric boundary conditions of the coupled hypermultiplets, we obtained the condition
(2.107) by using the componentwise projection condition (2.105) given fixed all the gauge and global symmetry indices. Given the data
of preserved gauge and global symmetries at the boundary, a large family of the boundary conditions can be constructed from the results
below by restoring the form of representation.
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where the dot · indicates the gauge and global symmetry
action on the hypermultiplets. Also, the generators for
gauge group are implicit between the products of two
scalars, e.g., qTa

Rq.
We would like to find the solutions to the half-BPS

boundary conditions of the pure hypermultiplet for φ ¼ 0
and φ ¼ π

2
.8

(i) γ2ψ ¼ ψ (when φ ¼ 0).—In the case with φ ¼ 0, we
find from (2.107) the following bosonic boundary
conditions for the hypermultiplets:

∂2ðReqÞ ¼ 0; ∂2ðReeqÞ ¼ 0; ð2:108Þ

∂mðImqÞ ¼ 0; ∂mðImeqÞ ¼ 0: ð2:109Þ

(ii) γ2ψ ¼ −ψ (when φ ¼ π
2
).—For the other A-type

boundary conditions with the fermionic boundary
conditions φ ¼ π

2
, the bosonic boundary conditions

for the hypermultiplets read

∂mðReqÞ ¼ 0; ∂mðReeqÞ ¼ 0; ð2:110Þ

∂2ðImqÞ ¼ 0; ∂2ðImeqÞ ¼ 0: ð2:111Þ

Boundary degree of freedom for the A type from the pure
bulk hypermultiplet
The A-type conditions provide decomposition of the

3d N ¼ 4 hypermultiplets into the boundary super-
multiplets in such a way that (Req, Reeq) fluctuate at
the boundary and (Imq, Imeq) satisfy Dirichlet boundary
conditions, or the other way around. Each of them forms

the 2d N ¼ ð2; 2Þ chiral multiplets Φð2;2Þ
I and Φð2;2Þ

II
whose lowest components are the complex scalar fields,
which consists of ðReq;ReðeqÞÞ and ðImq; ImðeqÞÞ,
respectively;

HN¼4 → ðΦð2;2Þ
I ;Φð2;2Þ

II Þ: ð2:112Þ

The A-type boundary conditions γ2ψ ¼ ψ give both left-
moving and right-moving fermions. We may denote the
two-dimensional fermions by

ψþ ≔
1

2
ðψ þ ψÞ þ i

2
ðeψ þ eψÞ;

ψ− ≔
1

2i
ðψ − ψÞ þ 1

2
ðeψ − eψϕÞ; ð2:113Þ

and their complex conjugate ψþ ¼ ðψþÞ† and ψ− ¼ ðψ−Þ†.
They would carry the R charges as

SOð1; 1Þ Uð1ÞA Uð1ÞV
ψþ þ þ −
ψ− − − −
ψþ þ − þ
ψ− − þ þ

ð2:114Þ

We also denote a two-dimensional complex scalar field by
φ ≔ Reqþ iReeq. The supersymmetry transformations of
component fields ðφ;ψþ;ψ−;ψþ;ψ−Þ, which form the

chiral multiplet Φð2;2Þ
I , would be given by

δφ ¼ ξþψ− − ξ−ψþ; ð2:115Þ

δψþ ¼ 2i∂þφξ− þ Fξþ; ð2:116Þ

δψ− ¼ −2i∂−φξþ þ Fξ−; ð2:117Þ

δF ¼ −2iξþ∂−ψþ − 2iξ−∂þψ−; ð2:118Þ

where F is an auxiliary field and (2.35) is used. One can
similarly realize the supersymmetric transformation laws of

the other chiral superfield Φð2;2Þ
II .

2. B-type boundary conditions

The B-type conditions are characterized by the chiral
projection (2.50) on the supersymmetric parameter. We can
find the bosonic boundary conditions by considering the
fermionic boundary conditions

γ2ψ ¼ e2iφψ ; γ2λ ¼ e2iθλ; γ2ψϕ ¼ e2iθψϕ

ð2:119Þ

with ðφ; θÞ ¼ ð0; π
2
Þ and ðπ

2
; 0Þ. When ðφ; θÞ ¼ ð0; π

2
Þ, i.e.,

γ2ψ ¼ ψ , γ2λ ¼ −λ, and γ2ψϕ ¼ −ψϕ, by using the for-
mulas (2.52) for λ and ψϕ and (2.56) for ψ and eψ , we obtain
0 ¼ −

ffiffiffi
2

p
ðD2 · qþ σ · qÞðξψÞ −

ffiffiffi
2

p
ðD2 · eq − σ · eqÞðξeψÞ

þ 2ϕ · qðξeψÞ þ 2eq · ϕðξψÞ: ð2:120Þ

Similarly, when ðφ; θÞ ¼ ðπ
2
; 0Þ, i.e., γ2ψ ¼ −ψ , γ2λ ¼ λ,

and γ2ψϕ ¼ ψϕ, the boundary condition becomes

0 ¼
ffiffiffi
2

p
Dm · qðξγmψÞ þ

ffiffiffi
2

p
Dm · eqðξγmeψÞ

− ðjqj2− jeqj2ÞðξλÞ þ 2qeqðξψϕÞ: ð2:121Þ

The chiralities of the fermionic fields at the boundary from
the bulk 3d N ¼ 4 hypermultiplet are determined by the
phase factor φ ∈ R. For φ ¼ 0 (respectively, φ ¼ π

2
), the

right-moving (respectively, left-moving) fermions survive
at the two-dimensional boundary.

8The half-BPS boundary conditions preservingN ¼ ð2; 2Þ for
hypermultiplet were also obtained in Ref. [23].
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(i) γ2ψ ¼ ψ (when φ ¼ 0).—This boundary condition
admits the right-moving fermions with φ ¼ 0 in the
hypermultiplets. For pure hypermultiplet, we turn
off fields from the vector multiplet, so the condition
(2.120) leads to the Neumann boundary conditions
for the hypermultiplet scalars q and eq:

∂2q ¼ 0; ∂2eq ¼ 0: ð2:122Þ

(ii) γ2ψ ¼ −ψ (when φ ¼ π
2
).—In this case, the fermions

in the hypermultiplet at the boundary are left
moving. For the hypermultiplets without gauge
coupling, (2.121) can be solved by requiring the
Dirichlet boundary conditions for the hypermultiplet
scalars q and eq:

∂mq ¼ 0; ∂meq ¼ 0: ð2:123Þ

Therefore, the bosonic degrees of freedom in the 3d
N ¼ 4 hypermultiplets cannot survive at the boun-
dary, while the left-moving fermions are free to
fluctuate at the boundary.

Boundary degree of freedom for the B type from the pure
bulk hypermultiplet
We saw that there are two types of B-type conditions for

the 3d N ¼ 4 hypermultiplets. For boundary condition
(i) with φ ¼ 0, the full set of four bosonic fields as well as
the right-moving fermions ð2; 1Þþ can fluctuate at the
boundary. They are packaged into the 2d N ¼ ð0; 4Þ
hypermultiplets Hð0;4Þ. On the other hand, for the second
condition (ii) with φ ¼ π

2
, the left-moving fermions ð1; 1Þ−

can fluctuate, but all the bosonic degrees of freedom satisfy
the Dirichlet condition at the boundary. The fluctuating
degrees of freedom can be packaged into the N ¼ ð0; 4Þ
Fermi multiplets Λð0;4Þ. Therefore, we have the decom-
position

HN¼4 → ðHð0;4Þ;Λð0;4ÞÞ: ð2:124Þ

The B-type boundary conditions γ2ψ ¼ ψ lead to right-
moving fermions. We write them as ΨþAY, where the
indices Y ¼ 1, 2 represent the doublet under the additional
SUð2ÞF global symmetry:

Ψþ11 ≔ eψ ; Ψþ12 ≔ ψ ; Ψþ21 ≔ ψ ; Ψþ22 ≔ −eψ :
ð2:125Þ

Also, we denote the scalar component by

X _11 ≔ q; X _12 ≔ −eq; X _21 ≔ eq; X _22 ≔ q;

ð2:126Þ

which transforms as a doublet under the SUð2ÞH
and a doublet under the SUð2ÞF. The supersymmetry

transformation of component fields ðX _AY;ΨþAYÞ, which
forms a hypermultiplet Hð0;4Þ, can be obtained from 3d
N ¼ 4 supersymmetry transformation with projection and
boundary conditions:

δX _AY ¼ −
ffiffiffi
2

p
ξ−B _AϵBCΨþCY; ð2:127Þ

δΨþAY ¼ ξþA _Bϵ _B _Cð∂0 þ ∂1ÞX _CY; ð2:128Þ

which is a supersymmetry transformation of the N ¼
ð0; 4Þ hypermultiplet.
Another B-type boundary condition γ2ψ ¼ −ψ leads to

four real left-moving fermions, which are singlet under the
R symmetry. These fermionic fields form a Fermi multiplet
Λð0;4Þ. We can take them as two complex fermions, which
we denote as

ζ−1 ¼ ψ ; ζ−2 ¼ eψ ; ð2:129Þ

where Hermitian conjugates are ζ̄−1 ¼ ψ and ζ̄−2 ¼ eψ ,
respectively. Then, the supersymmetry transformation of
these fields can be obtained, and they are

δζ−1 ¼ −
ffiffiffi
2

p
iξ−A _AϵABϵ _A _B

eXB10X _B; ð2:130Þ

δζ−2 ¼ −
ffiffiffi
2

p
iξ−A _AϵABϵ _A _B

eXB20X _B: ð2:131Þ

These can be organized into

δΘ−Y 0Y ¼ −
ffiffiffi
2

p
iξ−A _AϵABϵ _A _B

eXBY 0
X _BY; ð2:132Þ

where ΘY 0Y ¼
�
ζ−
1

ζ−
2

ζ̄−
2

ζ̄−
1

�
, which is a supersymmetry trans-

formation of the Fermi multiplet. When considering a
generic interaction with boundary fields, the supersym-
metry transformation would take a form

δζ−a ¼ −
ffiffiffi
2

p
iξ−

A _A
CA _A
a ; ð2:133Þ

where ζ−a; a ¼ 1, 2, 3, 4, denotes ζ−1, ζ
−
2, ζ̄

−
1, and ζ̄

−
1 and C

A _A
a

are some function of X _AY and eXAY 0
. See also [17,18].

C. Gauge coupling and SUSY deformations

We now discuss the half-BPS boundary conditions
for the vector multiplets and the hypermultiplets in the
3d N ¼ 4 supersymmetric gauge theories with the super-
symmetric deformation by FI parameters and mass
parameters.

1. FI and mass deformations

The 3d N ¼ 4 gauge theories can be deformed by
FI terms and mass terms while keeping supersymmetry.
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We consider the effects of the supersymmetric deforma-
tions on the half-BPS boundary conditions.
If the 3d N ¼ 4 supersymmetric gauge theories

involve the Uð1Þ factors of the gauge group, they can be
deformed in a supersymmetric way by introducing the
baptized Fermi (BF) coupling of the topological currents
for the Uð1Þ factors to a background Abelian N ¼ 4
twisted vector multiplet ðVr;ΦrÞ [24,25]:

SFI ¼
Z

d3xd4θTr0ðΣVrÞ

þ i
2

Z
d3xd2θTr0ðΦΦrÞ þ c:c:; ð2:134Þ

where Vr ¼ irθ̄θ and Φr ¼ ϕr with r ∈ R, ϕr ∈ C. The
trace Tr0 takes only the Uð1Þ factors of the gauge group.
Here rî ¼ ðr;ReðϕrÞ; ImðϕrÞÞ, î ¼ 7, 8, 9, forms a triplet
under the SUð2ÞH. In terms of the component fields, we can
express the action (2.134) as

SFI ¼
Z

d3x

�
−
1

2
rDþ i

2
ϕrFϕ −

i
2
ϕrFϕ

�
; ð2:135Þ

where r is a real FI parameter and ϕr a complex FI
parameter. The conserved supercurrent is

Jμr ¼ 1

2
rðγμλÞ þ

ffiffiffi
2

p

2
ϕrðγμψϕÞ: ð2:136Þ

One can also deform the 3d N ¼ 4 supersymmetric
gauge theories in a supersymmetric way by introducing
mass terms for the hypermultiplets. It can be achieved by
coupling Q and eQ to a background Abelian N ¼ 4 vector
multiplet ðVM;ΦMÞ:

SM ¼ −
Z

d3xd4θðQe−2VMQþ eQe2VMeQÞ

þ
ffiffiffi
2

p
i
Z

d3xd2θðeQΦMQÞ þ c:c:; ð2:137Þ

where VM ¼ iMθ̄θ, ΦM ¼ ϕM, M ∈ R is real mass, and
ϕM ∈ C is complex mass parameters. Here ðM;ReðϕMÞ;
ImðϕMÞÞ forms a triplet under the SUð2ÞC. In the compo-
nent fields, the action (2.137) can be expressed as

SM ¼
Z

d3x½−M2ðjqj2þ jeqj2Þ − iMðψψ − eψ eψÞ
− ð2FqFq − 2FeqFeqÞ þ ffiffiffi

2
p

iϕMðFeqqþ FqeqÞ
− iϕMeψψ þ

ffiffiffi
2

p
iϕMðFeqqþ FqeqÞ þ iϕMeψ ψ �:

ð2:138Þ

The conserved supercurrent is

JμM ¼ −
ffiffiffi
2

p
Mqγμψ þ

ffiffiffi
2

p
Meqγμeψ

þ 2ϕMqγμeψ þ 2ϕMeqγμψ : ð2:139Þ

The supercurrents (2.136) and (2.139) provide addi-
tional contributions to the supercurrents we obtained in
previous sections and modify the supersymmetric boundary
conditions.

2. Coupled hypermultiplets

We consider the half-BPS boundary conditions for the
coupled hypermultiplet with FI and mass parameters turned
on. Because of the coupling, the half-BPS boundary
conditions for the hypermultiplets depends on the choice
of the half-BPS boundary conditions for the vector multi-
plet discussed in Sec. II A with condition (2.106). This
provides a large class of the half-BPS boundary conditions
specified by the preserved gauge and flavor symmetries at
the boundary. Here we want to find the general structure of
deformed boundary conditions for the hypermultiplets due
to gauge coupling, FI parameters, and mass parameters.

A-type boundary conditions.—
(i) γ2ψ ¼ ψ , γ2λ ¼ −λ, and γ2ψϕ ¼ −ψϕ (when φ ¼ 0,

θ ¼ π
2
).—For the A-type conditions with

ðφ; θÞ ¼ ð0; π
2
Þ, we find from (2.107) the generic

half of the supersymmetric boundary conditions for
the hypermultiplets:

D2 · ðReqÞ ¼
ffiffiffi
2

p
Re½ðϕþ ϕMÞ · eq�;

D2 · ðReeqÞ ¼ ffiffiffi
2

p
Re½ðϕþ ϕMÞ · q�; ð2:140Þ

Dm · ðImqÞ ¼ 0; Dm · ðImeqÞ ¼ 0; ð2:141Þ

ðσ þMÞ · ðReqÞ ¼ 0; ðσ þMÞ · ðReeqÞ ¼ 0;

ð2:142Þ

ImðeqqÞ ¼ ImðϕrÞ: ð2:143Þ

The conditions (2.140) say that the real parts of the
complex scalar fields q and eq can fluctuate while
satisfying the Robin-type boundary conditions,
which specify a linear combination of the fields
and the normal components of their derivatives at
the boundary. The conditions (2.141) imply that the
imaginary parts of q and eq are subject to the
Dirichlet-like boundary conditions.

The other set (2.142) and (2.143) are algebraic
constraints which are responsible for the gauge
coupling. The precise forms of the boundary con-
ditions and the possible solutions depend on the
detail of the 3d N ¼ 4 vector multiplet and hyper-
multiplets, but these equations can be regarded as the
basic building blocks of boundary conditions.
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The real parts of q and eq, which are fluctuating
degrees of freedom at the boundary, satisfy con-
ditions (2.142). As a coupled vector multiplet
satisfies the magneticlike A-type boundary condi-
tions when θ ¼ π=2, the two vector multiplet scalars
Reϕ and σ obey the Dirichlet boundary conditions
(2.31). Thus, the constraints (2.142) can be solved
by setting σ to specific fixed values at the boundary.
The last condition (2.143) does not involve any

bosonic fields in the vector multiplet, but it appears
due to the gauge coupling and FI deformations as it
is induced from the fermionic bilinear form involv-
ing ψϕ. It is an imaginary part of the complex
moment map μC with fields restricted at the
boundary.

(ii) γ2ψ ¼ −ψ , γ2λ ¼ λ, and γ2ψϕ ¼ ψϕ (when φ ¼ π
2
,

θ ¼ 0).—The A-type conditions with ðφ; θÞ ¼
ðπ
2
; 0Þ are

D2 · ðImqÞ ¼
ffiffiffi
2

p
Im½ðϕþ ϕMÞ · eq�;

D2 · ðImeqÞ ¼ ffiffiffi
2

p
Im½ðϕþ ϕMÞ · q�; ð2:144Þ

Dm · ðReqÞ ¼ 0; Dm · ðReeqÞ ¼ 0; ð2:145Þ

ðσ þMÞ · ðImqÞ ¼ 0; ðσ þMÞ · ðImeqÞ ¼ 0;

ð2:146Þ

ReðeqqÞ ¼ ReðϕrÞ; jqj2− jeqj2 ¼ r: ð2:147Þ

In this case, the real parts of q and eq satisfy
Dirichlet-like boundary conditions (2.145), and
the imaginary parts of q and eq can fluctuate while
satisfying the Robin-type boundary conditions
(2.144). Again, the remaining algebraic constraints
(2.146) and (2.147) arise from the coupling of the 3d
N ¼ 4 hypermultiplets to the vector multiplet.
For θ ¼ 0, the vector multiplet is subject to the

electric A-type boundary conditions, where only the
vector multiplet scalar Imϕ satisfies the Dirichlet-
like boundary condition (2.72) and other scalars
satisfy the Neumann-like boundary condition (2.26).
As σ can fluctuate at the boundary, the constraint
(2.146) are the conditions for the coupling of the
hypermultiplet scalar fields q and eq and the vector
multiplet scalar σ in a supersymmetric way when
considering a boundary superpotential.
Two conditions in (2.147) are the constraints

on the bulk hypermultiplets due to the gauge
coupling and FI deformations, which are a real part
of the complex moment map μC and the real moment
map μR, respectively, with fields restricted at the
boundary.

B-type boundary conditions.—
(i) γ2ψ ¼ ψ , γ2λ ¼ −λ, and γ2ψϕ ¼ −ψϕ (when φ ¼ 0

and θ ¼ π
2
).—As the full R symmetry SUð2ÞC ×

SUð2ÞH is maintained for the B-type conditions, a
pair of fermionic fields ψ and ēψ may form the
supermultiplet. For ðφ; θÞ ¼ ð0; π

2
Þ, we obtain, from

(2.120), (2.136), and (2.139),

D2 · qþ ðϕiþMiÞ · q ¼ 0;

D2 · eq − ðϕiþMiÞ · eq ¼ 0; ð2:148Þ

where we have defined the triplet ϕi ¼
ðσ;Reϕ; ImϕÞ and Mi ¼ ðM;ReϕM; ImϕMÞ of the
SUð2ÞC. The bosonic degrees of freedom q and eq
can fluctuate at the boundary while satisfying
Robin-type boundary conditions (2.148). In this
case, the vector multiplet obeys the electric B-type
conditions that admit the Dirichlet-like boundary
condition (2.54) for all the vector multiplet scalars.
Also, the detail forms of boundary conditions
depend on the specific data of the theories; however,
(2.148) can be viewed as the basic building blocks
for the boundary conditions.

(ii) γ2ψ ¼ −ψ , γ2λ ¼ λ, and γ2ψϕ ¼ ψϕ (when φ ¼ π
2

and θ ¼ 0).—From (2.121), (2.136), and (2.139),
the general B-type conditions with ðφ; θÞ ¼ ðπ

2
; 0Þ

read

Dm · q ¼ 0; Dm · eq ¼ 0; ð2:149Þ

jqj2− jeqj2 ¼ r; qeq ¼ ϕr: ð2:150Þ

Similarly as before, the algebraic conditions (2.150)
come from the gauge coupling and FI deformation.

3. BPS boundary conditions and 3d N = 4 vacua

The classical moduli space of the 3d N ¼ 4 super-
symmetric gauge theory on R1;2 is determined by the set of
equations

½ϕi;ϕj� ¼ 0; ð2:151Þ

ðϕiþMiÞ · ðq;eqÞ ¼ 0; ð2:152Þ

μîþ rî ¼ 0; ð2:153Þ

where the dot · implies the action of the gauge and flavor
symmetry group on the hypermultiplet scalars ðq;eqÞ. Here
μî are the three hyper-Kähler moment maps for the action of
the gauge symmetry group on the hypermultiplets. They
split into the real and complex moment maps μR and μC
[10]. They are, respectively, associated to the Kähler form
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ω ¼
X
I

ðdqI ∧ dqIþ deqI ∧ deqIÞ ð2:154Þ

and the holomorphic symplectic form

Ω ¼
X
I

ðdqI ∧ deqIÞ ð2:155Þ

and given by

μR ¼ jqj2− jeqj2; ð2:156Þ

μC ¼ qeq: ð2:157Þ

We remark that the half-BPS boundary conditions detect
the set of the defining equations (2.151)–(2.153) of the
vacua. We have encountered Eq. (2.151) in the vector
multiplet boundary conditions (2.32) and (2.59) where
fields are restricted at the boundary, which can be expected
as it characterizes the Coulomb branch. The second set of
equations (2.152) specifies the coupling between the vector
multiplet scalars and the hypermultiplet scalars. We have
met these equations with fields restricted on the boundary
in the boundary conditions constraining the fluctuation of
hypermultiplet scalars. As (2.152) suggests, these condi-
tions can be shifted by turning on the mass parameters
σ → σ þM;ϕ → ϕþ ϕM. We also saw that the moment
maps (2.153) with FI parameters appear as algebraic
constraints for the scalar component of hypermultiplets
at the boundary.

III. BRANE CONSTRUCTION

In this section, we propose the brane configurations in
the type IIB string theory corresponding to the half-BPS
boundary conditions of the 3d N ¼ 4 supersymmetric
theories discussed in Sec. II. We also study the map
between boundary supermultiplets arising from 3d bulk
supermultiplets for simplest examples by considering S
duality of the type IIB theory.

A. Type IIB configuration

We consider the brane realization of 3d N ¼ 4 theories
in the type IIB string theory on R1;9 [14]. Let QL
(respectively, QR) be the supercharge generated by the
left- (respectively, right-) moving world-sheet degrees of
freedom which satisfies the chirality condition of the type
IIB string theory:

Γ0123456789QL ¼ QL; Γ0123456789QR ¼ QR: ð3:1Þ

We consider D3-branes supported on ðx0; x1; x2; x6Þ and
bounded along the x6 direction by two NS5-branes sup-
ported on ðx0; x1; x2; x3; x4; x5Þ or by two D5-branes sup-
ported on ðx0; x1; x2; x7; x8; x9Þ:

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
NS5 ∘ ∘ ∘ ∘ ∘ ∘ − − − −
D5 ∘ ∘ ∘ − − − − ∘ ∘ ∘

ð3:2Þ

where ∘ denotes the directions in which branes are
supported whereas − stands for the directions at which
branes are located. The brane configuration (3.2) preserves
linear combination of supercharges ϵLQL þ ϵRQR with

Γ012345ϵL ¼ ϵL; Γ012345ϵR ¼ −ϵR ð3:3Þ

and

Γ012789ϵR ¼ ϵL; ð3:4Þ

Γ0126ϵR ¼ ϵL: ð3:5Þ

Here, the first condition (3.3) is the projection condition on
spinors ϵL and ϵR imposed by the NS5-branes, while (3.4)
and (3.5) are the conditions by the D5-branes and the D3-
branes, respectively. From (3.3)–(3.5), we can find two
nontrivial conditions on the spinors. So there remain eight
supercharges.
As D3-branes are bounded in the x6 direction, the

low-energy effective theory of world volume of D3-branes
is described by 3d N ¼ 4 supersymmetric theories
after decoupling the gravity. The above brane configura-
tion breaks the Lorentz symmetry group SOð1; 9Þ into
SOð1; 2Þ012 × SOð3Þ345 × SOð3Þ789, where SOð1; 2Þ is
Lorentz symmetry and the double covers of SOð3Þ345 ×
SOð3Þ789 give SUð2ÞC × SUð2ÞH ≅ SOð4ÞR R symmetry
of 3d N ¼ 4 theories.

B. D3-NS5 branes

Let us first consider the case where the N coincident
D3-branes are stretched between the two parallel NS5-
branes. The low-energy effective theory is the 3d N ¼ 4
UðNÞ pure SYM theory [14]. The three-dimensional

coupling constant g23d is classically given by 1
g2
3d
¼Δx6ðNS5Þ

g2
4d

,

where Δx6ðNS5Þ is the interval of the stretched D3-branes
along x6 and g24d is the gauge coupling of 4d N ¼ 4 SYM
theory. The bosonic massless modes of the world-volume
theory of D3-branes are the fluctuations of the D3-branes in
transverse directions x3, x4, and x5 and three-dimensional
gauge fields. The UðNÞ gauge symmetry has a nontrivial
center Uð1Þ, which parametrizes the motion of the
center of mass of the N D3-branes. The FI parameters
fr;ReðϕrÞ; ImðϕrÞg are described by the relative positions
of two NS5-branes along x7, x8, and x9.
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1. A-type boundary conditions

The half-BPS boundary conditions for the pure 3d
N ¼ 4 vector multiplet discussed in Sec. II A can be
realized in the D3-NS5 brane system by introducing
additional branes. We call such additional branes the
NS50-brane and D50-brane where they are supported on
ðx0; x1; x3; x4; x6; x9Þ and ðx0; x1; x5; x6; x7; x8Þ, respectively.
They are located at x2 ¼ 0 and D3-branes are extended in
the half space x2 ≥ 0:

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
NS5 ∘ ∘ ∘ ∘ ∘ ∘ − − − −
NS50 ∘ ∘ − ∘ ∘ − ∘ − − ∘
D50 ∘ ∘ − − − ∘ ∘ ∘ ∘ −

ð3:6Þ

Therefore, the additional 5-branes provide the two-
dimensional boundary at x2 ¼ 0 in the effective 3d
N ¼ 4 SYM theories (see Fig. 1). Also, the original
SOð1; 2Þ × SOð3Þ345 × SOð3Þ789 symmetry is broken to
SOð1; 1Þ × SOð2Þ34 × SOð2Þ78.
The NS50-brane and D50-brane provide additional

projection conditions, respectively,

Γ013469ϵL ¼ ϵL; Γ013469ϵR ¼ −ϵR; ð3:7Þ

Γ015678ϵR ¼ ϵL: ð3:8Þ

From the conditions (3.3), (3.5), (3.8), and (3.7), there are
three nontrivial projection conditions, so four supercharges
are preserved in the brane configuration (3.6). In order to
see the chirality of the two-dimensional supersymmetry, we
note the conditions

Γ26ϵL ¼ −Γ59ϵL; Γ26ϵR ¼ −Γ59ϵR ð3:9Þ
from the above brane configurations. Since the four-
dimensional world volume of the D3-branes is finite along
x6 and the effective field theory is three-dimensional,

we may treat Γ6 essentially proportional to the identity
matrix. Here Γ2 plays the role of the two-dimensional
chirality matrix for the two-dimensional boundary of the
three-dimensional field theory, while Γ5 (respectively, Γ9)
is the chirality matrix for the SOð2Þ34 [respectively,
SOð2Þ78]. Let ð�;�;�Þ be the representation under the
SOð1; 1Þ × SOð2Þ34 × SOð2Þ78, where � denote the two-
dimensional chiralities. Suppose that chiral supersymmetry
is preserved at the two-dimensional boundary, say, the
right-moving ðþ; ·; ·Þ supersymmetry. As the SOð2Þ34
charge and the SOð2Þ78 charge are constrained via (3.9),
we would have only two supercharges with ðþ;þ;−Þ and
ðþ;−;þÞ if we choose a positive multiplicative constant
for Γ6, which we treated as the identity matrix. However,
since we have four supercharges in the brane setup (3.6),
this implies that there should also be left-moving super-
symmetry. Therefore, the additional NS50- and D50-branes
preserve the nonchiral N ¼ ð2; 2Þ supersymmetry where
SOð2Þ34 × SOð2Þ78 ≅ Uð1Þaxial × Uð1Þvector are axial and
vector R symmetry of the 2d N ¼ ð2; 2Þ supersymmetry.

(i) NS50-brane.—The D3-branes ending on the
NS50-brane can fluctuate along x3, x4, and the
two-dimensional gauge field Am can fluctuate at
the boundary. On the other hand, the NS50-brane
gives a Dirichlet boundary condition for A2 and also
for ϕ5 as it is localized at x5. These boundary
conditions are consistent with the electriclike
A-type boundary conditions (2.25)–(2.28):

F2m ¼ 0 ðNeumann-likeÞ;
D2ϕ

a ¼ 0 ðNeumann-likeÞ;
Dmϕ

5 ¼ 0 ðDirichlet-likeÞ: ð3:10Þ
(ii) D50-brane.—As the x3 and x4 position of the D3-

branes are fixed by the D50-brane but the motion of
the D3-brane along x5 is unconstrained, ϕ3 and ϕ4

satisfy the Dirichlet-like condition but ϕ5 would
satisfy the Neumann-like condition. The boundary
condition for the two-dimensional gauge field Am
imposed by the D50-brane is the Dirichlet-like
boundary condition. Therefore, inserting D50-brane
would give

F01 ¼ 0 ðDirichlet-likeÞ;
D2ϕ

5 ¼ 0 ðNeumann-likeÞ;
Dmϕ

a ¼ 0 ðDirichlet-likeÞ: ð3:11Þ
In addition, the attached D50-brane can leave A2

unconstrained. This is consistent with the field
theoretic analysis in Sec. II A.

2. B-type boundary conditions

There are other additional 5-branes which can pre-
serve N ¼ ð0; 4Þ supersymmetry at the two-dimensional

FIG. 1. D3-NS5 system with a NS50-brane or D50-brane. The
NS50- (D50-) brane provides the electriclike (magneticlike) A-
type boundary conditions for the vector multiplet where the 2d
N ¼ ð2; 2Þ vector multiplet (twisted chiral multiplet) can fluc-
tuate at the boundary.
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boundary of the 3d effective theories. We consider the
NS500-brane with world volume ðx0; x1; x6; x7; x8; x9Þ or the
D500-brane with world volume ðx0; x1; x3; x4; x5; x6Þ located
at x2 ¼ 0, where D3-branes are extended on the half-space
x2 ≥ 0 (see Fig. 2);

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
NS5 ∘ ∘ ∘ ∘ ∘ ∘ − − − −
NS500 ∘ ∘ − − − − ∘ ∘ ∘ ∘
D500 ∘ ∘ − ∘ ∘ ∘ ∘ − − −

ð3:12Þ

These additional NS500 and D500 give constraints,
respectively,

Γ016789ϵL ¼ ϵL; Γ016789ϵR ¼ −ϵR ð3:13Þ

Γ013456ϵR ¼ ϵL: ð3:14Þ

From the conditions (3.13), (3.14), (3.3), and (3.5), we have
three nontrivial projection conditions, so there are four
supercharges in the brane system (3.12). Also, the set of
conditions leads to

Γ01ϵL ¼ ϵL; Γ01ϵR ¼ ϵR; ð3:15Þ

which implies that we have chiral N ¼ ð0; 4Þ supersym-
metry at the two-dimensional boundary.
The inclusion of these additional 5-branes does not break

the symmetry SOð3Þ345×SOð3Þ789 ≅ SUð2ÞC×SUð2ÞH ≅
SOð4ÞR, which is the R symmetry of 2d N ¼ ð0; 4Þ
supersymmetry. Under the SOð1; 1Þ × SUð2ÞC × SUð2ÞH,
the preserved right-moving supercharges transform
as ð2; 2Þþ.

(i) NS500-brane.—The NS500-brane fixes the motion of
the D3-branes in x3, x4, and x5, so three scalar fields
ϕi obey the Dirichlet-like boundary conditions. On
the other hand, the two-dimensional gauge field Am

can fluctuate at the boundary, and A2 satisfy the
Dirichlet-like condition. Therefore, the NS500-brane
imposes the boundary conditions

F2m ¼ 0 ðNeumann-likeÞ;
Dmϕ

i ¼ 0 ðDirichlet-likeÞ; ð3:16Þ

which are consistent with NS500-like B-type boun-
dary conditions (2.54) and (2.55).

(ii) D500-brane.—Since the D500-brane is extended along
x3, x4, and x5, the three scalar fields ϕi are free to
move at the boundary. They transform as (3;1) under
SOð3Þ345 × SOð3Þ789. Meanwhile, the two-dimen-
sional gauge field Am satisfies the Dirichlet con-
dition, because it is tangent to the D500-brane, but the
scalar field A2 can fluctuate at the boundary. Thus,
for a single D3-brane, the D500-brane would give the
boundary conditions

F01 ¼ 0 ðDirichlet-likeÞ;
D2ϕ

i ¼ 0 ðNeumann-likeÞ: ð3:17Þ

However, considering the field theory result dis-
cussed in Sec. II A, we expect that the above
boundary condition is generalized to

F01 ¼ 0 ðDirichlet-likeÞ;

D2ϕ
i−

1

2
iϵijk½ϕj;ϕk� ¼ 0 ðNahm-likeÞ: ð3:18Þ

That is, we expect that D3-NS5-D500 realize the
magneticlike B-type boundary conditions, which are
described by (3.18) including the Nahm-like equa-
tion. This is reminiscent of the appearance of the
Nahm equation in half-BPS boundary conditions of
4d N ¼ 4 theories discussed in Ref. [4], where the
nontrivial boundary conditions for a multiple stack
of D3-branes provided by a D5-brane are described
by the Nahm equation due to the existence of the
fluctuating scalar fields A2.

C. D3-D5 branes

Next, we consider the N D3-branes suspended between
the two parallel D5-branes. In the low-energy limit, the
world-volume theory of the D3-branes is a theory of N
massless 3d N ¼ 4 hypermultiplets [14]. The bosonic
massless modes in the theories are the fluctuations of
the D3-branes in transverse positions x7, x8, and x9, which
we will denote by X7̂, X8̂, and X9̂, respectively, and the
scalar field A6. They combine into two complex scalar
fields transforming as (1,2) under SUð2ÞC × SUð2ÞH. The
mass parameters fM;ϕMg are given by the relative position
of the D5-branes along fx3; x4; x5g.

FIG. 2. D3-NS5 system with a NS500-brane or D500-brane. The
NS500- (D500-)brane provides the electriclike (magneticlike)
B-type boundary conditions for the vector multiplet where the
2d N ¼ ð0; 4Þ vector multiplet (twisted hypermultiplet) can
fluctuate at the boundary.
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1. A-type boundary conditions

As discussed in Sec. III B, we can realize the two-
dimensional nonchiral N ¼ ð2; 2Þ supersymmetry by the
introduction of the NS50- or D50-branes

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
D5 ∘ ∘ ∘ − − − − ∘ ∘ ∘
NS50 ∘ ∘ − ∘ ∘ − ∘ − − ∘
D50 ∘ ∘ − − − ∘ ∘ ∘ ∘ −

ð3:19Þ

as in the configuration (3.6) (see Fig. 3).
Under the space-time symmetry SOð1; 1Þ × SOð2Þ34×

SOð2Þ78 ≅ SOð1; 1Þ ×Uð1ÞC ×Uð1ÞH, the three scalar
fields Xî, î ¼ 7, 8, 9, are divided into the two scalar
fields Xâ, â ¼ 7, 8, and the scalar field X9̂. As SUð2ÞH is
broken to Uð1ÞH, these scalar fields are charged under the
vector R symmetry of 2d N ¼ ð2; 2Þ theories.

(i) NS50-brane.—As the D3-branes can move along x9

in the presence of NS50, the scalar field X9̂, which
describes the position of the D3-branes along x9, can
fluctuate at the boundary. In addition, the massless
modes of the scalar field A6 can also fluctuate as the
NS50-brane is extended along x6. Thus, the addi-
tional NS50-brane keeps the half of the bosonic
degrees of freedom of the 3d N ¼ 4 hypermultiplet
at the boundary:

∂mX7̂ ¼ 0; ∂mX8̂ ¼ 0 ðDirichlet-likeÞ;
∂2X9̂ ¼ 0; ∂2A6 ¼ 0 ðNeumann-likeÞ:

ð3:20Þ
Let q ¼ X7̂þ iA6 and eq ¼ X8̂þ iX9̂ be two complex
scalar fields. Then we have

∂mðReqÞ ¼ 0; ∂mðReeqÞ ¼ 0 ðDirichlet-likeÞ;
∂2ðImqÞ ¼ 0; ∂2ðImeqÞ ¼ 0 ðNeumann-likeÞ:

ð3:21Þ

(ii) D50-brane.—As D3-branes can move along x7 and x8

directions, scalar fields X7̂ and X8̂ corresponding to
directions x7 and x8 can fluctuate at the boundary. On
the other hand, the scalar field X9̂ corresponding to
x9 cannot fluctuate at the boundary. Also, the
massless modes associated to A6 cannot fluctuate
at the boundary, since D50 is extended along x6.
Similarly to the case with the NS50-brane, the half of
the bosonic degrees of freedom of the 3d N ¼ 4
hypermultiplet can survive at the boundary. There-
fore, we have

∂2X7̂ ¼ 0; ∂2X8̂ ¼ 0 ðNeumann-likeÞ;
∂mX9̂ ¼ 0; ∂mA6 ¼ 0 ðDirichlet-likeÞ:

ð3:22Þ

Again, in terms of q and eq we have

∂2ðReqÞ ¼ 0; ∂2ðReeqÞ ¼ 0 ðNeumann-likeÞ;
∂mðImqÞ ¼ 0; ∂mðImeqÞ ¼ 0 ðDirichlet-likeÞ:

ð3:23Þ

2. B-type boundary conditions

Following the arguments for the D3-NS5 brane system,
N ¼ ð0; 4Þ supersymmetry can be preserved at the boun-
dary by adding the NS500- or D500-branes at x2 ¼ 0 to the
D3-D5 brane configuration where D3-branes are extended
along x2 ≥ 0 (see Fig. 4) as

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
D5 ∘ ∘ ∘ − − − − ∘ ∘ ∘
NS500 ∘ ∘ − − − − ∘ ∘ ∘ ∘
D500 ∘ ∘ − ∘ ∘ ∘ ∘ − − −

ð3:24Þ

FIG. 4. D3-D5 system with a NS500-brane or D500-brane. The
NS500- (D500-)brane provides the B-type boundary conditions for
the pure hypermultiplet where the 2d N ¼ ð0; 4Þ hypermultiplet
[N ¼ ð0; 4Þ Fermi multiplet] can fluctuate at the boundary.

FIG. 3. D3-D5 system with a NS50-brane or D50-brane. The
NS50 and D50-brane provide the A-type boundary conditions for
the pure hypermultiplet where 2d N ¼ ð2; 2Þ chiral multiplets
can fluctuate at the boundary.
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The brane configuration (3.24) preserves R symmetry
SOð4ÞR ¼ SUð2ÞC × SUð2ÞH ≅ SOð3Þ345 × SOð3Þ789 of
3d N ¼ 4 theories, and the three scalar fields Xî transform
as a triplet under SOð3Þ789.

(i) NS500-brane.—Since the NS500-brane is supported on
the x6, x7, x8, and x9 directions, scalar field A6 and
three scalar fields Xî can fluctuate at the boundary.
The NS500-brane would lead to the Neumann con-
ditions for these scalar fields:

∂2Xî ¼ 0; ∂2A6 ¼ 0: ð3:25Þ
These conditions correspond to Neumann boundary
conditions (2.122) for the pure hypermultiplets:

∂2q ¼ 0; ∂2eq ¼ 0 ðNeumann-likeÞ: ð3:26Þ

(ii) D500-brane.—Since the D500-brane is extended in x6

and located at x7, x8, and x9, the scalar field A6 and
the three scalar fields describing the position of the
D3-branes all satisfy the Dirichlet condition at the
boundary:

∂mXî ¼ 0; ∂mA6 ¼ 0: ð3:27Þ

We see that the above conditions (3.27) are equiv-
alent to the conditions (2.123).
Hence, in terms of q and eq, the conditions read

∂mq ¼ 0; ∂meq ¼ 0 ðDirichlet-likeÞ: ð3:28Þ

D. D3-NS5-D5 branes

We consider A- and B-type boundary conditions for
SQCD in the context of brane configuration (3.2).

1. A-type boundary conditions

Similarly as before, we consider the extra NS50- or D50-
branes at x2 ¼ 0 in the following brane configurations:

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
NS5 ∘ ∘ ∘ ∘ ∘ ∘ − − − −
D5 ∘ ∘ ∘ − − − − ∘ ∘ ∘
NS50 ∘ ∘ − ∘ ∘ − ∘ − − ∘
D50 ∘ ∘ − − − ∘ ∘ ∘ ∘ −

ð3:29Þ

As usual, the 3d N ¼ 4 vector multiplet is realized in the
world volume of D3-branes. Also, the hypermultiplet is
realized as strings connecting D3-branes and D5-branes.
We expect that, when NS50-(D50-)brane is added, it provides
a Neumann- (Dirichlet-) like condition for fAm;ϕ5g and
fImðqÞ; ImðeqÞg, but a Dirichlet- (Neumann-) like condition
for fA2;ϕag and fReðqÞ;ReðeqÞg wherem ¼ 0, 1, a ¼ 3, 4.

Since the NS50-brane is located at x7 and x8, two of the FI
parameters of the 3d N ¼ 4 theory would arise in the
boundary conditions as the relative positions of NS5-branes
in the x7 and x8 directions. This brane picture is consistent
with the result that the deformed A-type boundary con-
ditions (2.147) for the coupled hypermultiplets involve the
two FI parameters r and Reϕr. In this brane configuration,
mass parameters of the 3d N ¼ 4 theory are given by the
relative distance between D3- and D5-branes in the x3, x4,
and x5 directions. The mass parameter ImϕM, which
generalizes the hypermultiplet Neumann boundary con-
ditions (2.111) to the Robin-type boundary conditions
(2.144), is given by the relative distance between D3-
branes and D5-branes along the x5 direction where the
position of D3-branes along the x5 direction is fixed by the
NS50-brane. Meanwhile, the mass parameter M, which is
related to the vacuum expectation value of ϕ3 of the
background vector multiplet, has a different nature from
ImϕM above. Given the position of the D5-brane at a fixed
location of the x3 and x4 directions, since the NS50-brane is
supported on the x3 and x4 directions, the D3-brane can still
move along those directions. This is compatible with the
BPS equations (2.146) that mass parameter M appears in
boundary coupling rather than boundary conditions.
For the D50-brane, since it is located at the x9 direction,

the boundary conditions would be deformed by one of the
FI parameters of the 3d N ¼ 4 theory as the relative
position of NS5-branes in the x9 direction. In a field theory
analysis, we see that a single FI parameter Imϕr appears in
the deformed A-type boundary conditions (2.143) for the
coupled hypermultiplets. As the D50-brane is located at the
x3 and x4 directions, in a similar manner discussed above,
two mass parameters would generalize the hypermultiplet
boundary conditions. Those corresponding two mass
parameters M and ImϕM appear in the deformed hyper-
multiplet boundary conditions (2.140) and (2.142).

2. B-type boundary conditions

Also, we consider the extra NS500- or D500-branes at
x2 ¼ 0 to the following brane configurations:

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ − − − ∘ − − −
NS5 ∘ ∘ ∘ ∘ ∘ ∘ − − − −
D5 ∘ ∘ ∘ − − − − ∘ ∘ ∘
NS500 ∘ ∘ − − − − ∘ ∘ ∘ ∘
D500 ∘ ∘ − ∘ ∘ ∘ ∘ − − −

ð3:30Þ

Similarly as before, we expect that when a NS500- (D500-)
brane is added, it provides a Neumann- (Dirichlet-) like
condition for fAmg and fq;eqg, but a Dirichlet- (Neumann-)
like condition for fA6;ϕig.
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As the NS500-brane is supported on the x7, x8, and x9

directions, none of the FI parameters of the 3d N ¼ 4
theory would deform the boundary conditions. This brane
perspective is consistent with the result that the deformed
B-type boundary conditions (2.148) for the coupled hyper-
multiplets involve no FI parameters in the boundary
conditions. As the NS500-brane is located at the x3, x4,
and x5 directions, in a similar manner discussed above,
three mass parameters (M;ϕM) would appear in boundary
conditions. In a field theory analysis, we see that the
hypermultiplet Neumann boundary condition (2.122) is
generalized to the Robin-type boundary condition (2.148)
by all three mass parameters Mi.
In the case of the D500-brane, which is located at the x7,

x8, and x9 directions, all three FI parameters rî would
deform the boundary conditions. This can be seen from the
deformed B-type boundary conditions (2.150) for the
coupled hypermultiplets. Since the D500-brane is supported
in the x3, x4, and x5 directions, mass parameters would
not appear in boundary conditions. In fact, the deformed
B-type hypermultiplet boundary conditions (2.149) and
(2.150) are not affected by mass parameters.

E. S duality

From the analysis on the half-BPS boundary condition of
the 3d N ¼ 4 theory, we saw which 2d supermultiplet of
N ¼ ð2; 2Þ and N ¼ ð0; 4Þ from the bulk 3d N ¼ 4
multiplet arises at the boundary. We also found that such
a boundary condition can be consistently understood in
terms of brane configurations of the type IIB string theory.
Upon S duality of the type IIB string theory, the 3d

N ¼ 4 theory arising from a given brane configuration
enjoys mirror symmetry [14]. With additional branes that
provide the half-BPS boundary condition discussed in
previous sections, it is interesting to see the relation
between the boundary degrees of freedom arising from a
particular brane configuration and those arising from an S-
dual configuration of the original brane configuration. In
general, this could be a nontrivial task, but here we just take
the simplest cases, pure vector multiplet and pure hyper-
multiplet, discussed in the previous section, and would like
to see how the boundary degrees of freedom from the bulk
3d N ¼ 4 multiplet are mapped to each other.

1. A type

In this case, we have Uð1ÞC × Uð1ÞH R symmetry of the
2d N ¼ ð2; 2Þ theory, which is the axial and vector R
symmetry, from original SUð2ÞC × SUð2ÞH R symmetry of
3d N ¼ 4. As SUð2ÞC and SUð2ÞH are exchanged under a
RS map,9 so Uð1ÞC and Uð1ÞH are exchanged. Hence, it is

expected that 3dN ¼ 4 mirror symmetry is closely related
to 2d N ¼ ð2; 2Þ mirror symmetry through S duality in the
type IIB string theory. In fact, it has been argued that 3d
mirror symmetry descends to 2d mirror symmetry via
compactification [26] and also that the 2d N ¼ ð2; 2Þ
interface theory between 3d N ¼ 4 mirror pairs produces
a mirror map of 2d N ¼ ð2; 2Þ chiral and twisted chiral
operators [10]. We see for the following simplest example
that the 2d mirror map is realized as S duality in the type
IIB string theory.

(i) D3-NS5-NS50⟷S-dualD3-D5-D50.—The boundary de-
gree of freedom from the bulk 3d N ¼ 4 vector
multiplet arising in a D3-NS5-NS50 system is the 2d
N ¼ ð2; 2Þ vector multiplet or field strength multi-
plet, which is a twisted chiral multiplet. On the other
hand, the one from the bulk 3d N ¼ 4 hyper-
multiplet arising in a D3-D5-D50 system is the 2d
N ¼ ð2; 2Þ chiral multiplet in the adjoint represen-
tation. As two brane configurations are S dual,
which gives rise to a mirror pair between the pure
vector multiplet and the pure hypermultiplet in the
bulk, we see that the twisted chiral multiplet and
chiral multiplet at the boundary x2 ¼ 0 are ex-
changed under S duality of the type IIB string
theory or 3d N ¼ 4 mirror symmetry. This is
consistent with 2d N ¼ ð2; 2Þ mirror symmetry.

(ii) D3-NS5-D50⟷S-dualD3-D5-NS50.—Similarly, in this
case, the boundary degree of freedom from the bulk
vector multiplet arising in a D3-NS5-D50 system is
the 2d N ¼ ð2; 2Þ twisted chiral multiplet, and the
one from the bulk hypermultiplet arising in D3-D5-
NS50 is the 2d N ¼ ð2; 2Þ chiral multiplet. Under S
duality of the brane configuration, those two 2d
N ¼ ð2; 2Þ supermultiplets are mapped to each
other, which is consistent with 2dN ¼ ð2; 2Þmirror
symmetry.

2. B type

The 2d N ¼ ð0; 4Þ mirror symmetry has not been
studied much in the literature.10 We expect that the N ¼
ð0; 4Þ theory arising from (a more general or complicated
version of) our brane configuration and the theory arising
from the corresponding S-dual configuration give rise to the
N ¼ ð0; 4Þ mirror pair. In the 2d N ¼ ð0; 4Þ gauge theory
may receive the anomaly from massless charged chiral
fermions running in one loop [28], and we should take into
account the cancellation of the gauge anomaly to obtain
the effective theories. We hope to revisit this issue in the
context of the brane configuration. Here, we consider only
the map between the 2d N ¼ ð0; 4Þ supermultiplets at the
boundary arising from the 3d N ¼ 4 pure vector multiplet

9In the brane configuration of the type IIB string theory, R of the
RSmap denotes the map xi to xiþ4where i ¼ 3, 4, 5 and S denotes
S duality [14]. In the following, we mean S duality by RS duality.

10The 2d N ¼ ð0; 4Þ mirror symmetry could be understood as
the special case of 2d N ¼ ð0; 2Þ mirror symmetry [27].
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and the pure hypermultiplet discussed in the previous
section.

(i) D3-NS5-NS500⟷
S-dual

D3-D5-D500.—The boundary de-
gree of freedom from the 3dN ¼ 4 vector multiplet
arising in a D3-NS5-NS500 system is the 2d N ¼
ð0; 4Þ vector multiplet, and the one from the 3d
N ¼ 4 hypermultiplet arising in a D3-D5-D500
system is the 2d N ¼ ð0; 4Þ Fermi multiplet.
The 2d N ¼ ð0; 4Þ vector multiplet is made of an

N ¼ ð0; 2Þ vector multiplet and Fermi multiplet in
adjoint representation, where the N ¼ ð0; 2Þ vector
multiplet can be expressed as an N ¼ ð0; 2Þ field
strength multiplet, which is the N ¼ ð0; 2Þ Fermi
multiplet. The fermions in the N ¼ ð0; 4Þ vector
multiplet are charged under SOð1; 1Þ × SUð2ÞC ×
SUð2ÞH as ð2; 2Þ−. Meanwhile, the N ¼ ð0; 4Þ
Fermi multiplet is made of two N ¼ ð0; 2Þ Fermi
multiplets in a conjugate representation of gauge
group G, and it is charged under SUð2ÞC × SUð2ÞH
as ð1; 1Þ−. Since there are four real fermions in the
vector multiplet, under the S duality of the IIB
theory, the number of fermions is matched with the
number of them in the Fermi multiplet, though it is
not quite sure to explain the relation of their R
charges in the scope of this paper. It seems that better
understanding is needed for this case.

(ii) D3-NS5-D500⟷
S-dual

D3-D5-NS500.—The boundary de-
gree of freedom from the bulk 3d N ¼ 4 vector
multiplet arising in a D3-NS5-D500 system is the 2d
N ¼ ð0; 4Þ twisted hypermultiplet, and the one from
the 3d N ¼ 4 hypermultiplet arising in a D3-D5-
NS500 system is the 2d N ¼ ð0; 4Þ hypermultiplet.
Upon S duality, SUð2ÞC and SUð2ÞH are exchanged,
so twisted hypermultiplets are mapped hypermultip-
lets, and vice versa.

IV. CONCLUSION AND DISCUSSION

In this paper, we studied the half-BPS boundary con-
ditions in 3d N ¼ 4 gauge theories preserving N ¼ ð2; 2Þ
and (0,4) supersymmetries at the boundary, which we call
A type and B type, respectively. We calculated the BPS
boundary equations for a vector multiplet and hypermul-
tiplet involving gauge coupling, FI, and mass deformations.
We also saw that 3d bulk supermultiplets are decomposed
to the boundary supermultiplet of preserved supersym-
metry. We found that the boundary BPS equations for the
vector multiplet, in particular, give rise to a Nahm-like
equation in the magneticlike B-type boundary conditions.
For the hypermultiplet, we saw that the Neumann-like
boundary conditions for scalar components of the hyper-
multiplet are generalized to a Robin-type boundary con-
dition upon turning on gauge coupling and mass
deformation. We proposed brane configurations in the type
IIB string theory realizing such N ¼ ð2; 2Þ and (0,4) BPS

boundary conditions in 3dN ¼ 4 theories and checked that
they are consistent with the analysis in the field theory. We
also saw how the boundary supermultiplets from the bulk
supermultiplets are mapped under S duality of the type IIB
theory.
In order to study the supersymmetric vacua of 3dN ¼ 4

gauge theory on a half-space, it is necessary to study the
BPS boundary conditions in detail. A notable consequence
is that we get a Nahm-like equation in vector multiplet
boundary conditions of B type. It is interesting to analyze
these BPS equations in a similar way as discussed in
Ref. [4] for 4d N ¼ 4 SYM theories.
Brane realization of 2d gauge theories with (2,2) and

(0,4) supersymmetries is one of the interesting subjects.11

In particular, there is an anomaly issue in 2d N ¼ ð0; 4Þ
theories, and it would be interesting to know how such an
anomaly condition can arise in the type IIB string theory.
Also, as we briefly discussed for the boundary degrees of
freedom from the bulk supermultiplets, the realization of 2d
N ¼ ð0; 4Þ theories in the brane configuration will tell us,
via S duality of the type IIB theory, a mirror dual theory of
a given 2dN ¼ ð0; 4Þ theory from the corresponding brane
configurations. With the anomaly issue taken into account,
the study of mirror symmetry of the 2d N ¼ ð0; 4Þ theory
via type IIB S duality would be one intriguing direction.
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APPENDIX: 3d N = 2 SUPERSPACE
AND SUPERFIELDS

1. Spinors and superspace

We use the metric ημν ¼ ημν ¼ diagð−1; 1; 1Þ and 2 × 2
γμ matrices to satisfy

fγμ; γνg ¼ 2ημν: ðA1Þ

γ0 is taken as anti-Hermitian and γ1 and γ2 as Hermitian. We
introduce a three-dimensional charge conjugation matrix ϵ,
which has the following properties:

11Other brane realizations for 2d N ¼ ð2; 2Þ and (0,4) have
been discussed in Refs. [29,30], respectively.
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ϵ† ¼ ϵ−1; ϵT ¼ −ϵ; ðϵγμÞT ¼ ϵγμ: ðA2Þ

Two-component spinors ψα with upper or lower indices
transform as

ψα ≔ ϵαβψ
β; ψα ¼ ðϵ−1Þαβψβ: ðA3Þ

We use the following summation convention:

ðχψÞ ≔ χαψα ¼ χαϵαβψ
β; ðγμψÞα ¼ γμαβψ

β;

ðϵγμψÞα ¼ ðϵγμÞαβψβ: ðA4Þ

We define σ matrices as

σμ ≔ ϵγμ ðA5Þ

and use the summation expression ξσμψ ≔ ξαðϵγμÞαβψβ. We
define the conjugation by

ψα ≔ −ψ†
βðγ0Þβα: ðA6Þ

Here are useful spinor formulas:

ξψ ¼ ψξ; ξσμψ ¼ −ψσμξ;

ψσμψ ¼ 0; ψϵγμνχ ¼ −χϵγμνψ ; ðA7Þ

ðξψÞ† ¼ −ψ ξ; ðξσμψÞ† ¼ ψσμξ ¼ −ξσμψ ; ðA8Þ

θαθβ ¼
1

2
ϵαβθθ; θαθβ ¼ −

1

2
ðϵ−1Þαβθθ; ðA9Þ

ðθψÞðθχÞ ¼ −
1

2
ðθθÞðψχÞ; ðA10Þ

ðθσμχÞðθψÞ ¼ −
1

2
θθψσμχ; ðA11Þ

θσμθ̄θσνθ̄ ¼ 1

2
θθθ̄ θ̄ ημν; ðA12Þ

−
1

2
ðχλÞðψξÞ − 1

2
ðχσμλÞðψσμξÞ ¼ ðχξÞðψλÞ; ðA13Þ

where ψ , ξ, θ, and λ are two-component spinors.
We consider the 3d N ¼ 2 superspace coordinates

ðxμ; θα; θ̄αÞ which transform as xμ → xμ− iϵσμθ̄ − iϵ̄σμθ,
θ → θ þ ϵ, and θ̄ → θ̄ þ ϵ̄ under the supersymmetry trans-
formations. Let us define the following supersymmetric
derivatives:

Qα ≔
∂
∂θα− iðσμθ̄Þα∂μ; Qm ≔ −

∂
∂θ̄αþ iðσμθÞα∂μ;

ðA14Þ

Dα ≔
∂
∂θαþ iðσμθ̄Þα∂μ; D̄α ≔ −

∂
∂θ̄α− iðσμθÞα∂μ:

ðA15Þ

They have the anticommutation relations

fQα; Qβg ¼ 2iσμαβ∂μ; fDα; D̄βg ¼ −2iσμαβ∂μ;

ðA16Þ

with all the other anticommutators vanishing. The super-
symmetry transformation of a superfield Φðx; θ; θ̄Þ is
expressed as

δΦðx; θ; θ̄Þ ¼ ðξQ − ξ Q̄ÞΦ: ðA17Þ

2. Supermultiplet

a. Chiral multiplet

Chiral superfield Φðx; θ; θ̄Þ is defined by the constraint

D̄αΦ ¼ 0: ðA18Þ

Using yμ ≔ xμþ iθσμθ̄, one can obtain the component field
representations:

Φ ¼ Φðy; θÞ
¼ ϕðyÞ þ

ffiffiffi
2

p
θψðyÞ þ θθFðyÞ

¼ ϕðxÞ þ iθσμθ̄∂μϕðxÞ −
1

4
θθθ̄ θ̄ ∂2ϕðxÞ

þ
ffiffiffi
2

p
θψðxÞ þ iffiffiffi

2
p ðθθÞðθ̄σμ∂μψðxÞÞ þ θθFðxÞ:

ðA19Þ

Similarly, the antichiral superfield Φ̄ðx; θ; θ̄Þ obeying the
constraint DmΦ̄ ¼ 0 can be obtained from (A19) by
conjugation:

Φ ¼ ϕðxÞ − iθσμθ̄∂μϕðxÞ −
1

4
θθθ̄ θ̄ ∂2ϕðxÞ

−
ffiffiffi
2

p
θ̄ ψðxÞ − iffiffiffi

2
p ðθ̄ θ̄Þðθσμ∂μψðxÞÞ − θ̄ θ̄FðxÞ:

ðA20Þ
b. Vector multiplet

The vector superfield satisfies the relation

V ¼ V̄: ðA21Þ

Choosing the Wess-Zumino gauge, we obtain
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V ¼ −θσμθ̄Aμ þ iθθ̄σ − iθθθ̄ λþiθ̄ θ̄ θλ −
1

2
θθθ̄ θ̄DðxÞ:

ðA22Þ

One can express a field strength as a linear multiplet:

Σ ≔ −
i
2
D̄DV: ðA23Þ

In components, it is expressed as

Σ ¼ σ þ θλ − λθ̄ − iðθ̄θÞDþ 1

2
ðθ̄ϵγμνθÞFμν

−
i
2
θθðθ̄σμ∂μλÞ þ

i
2
θ̄ θ̄ðθσμ∂μλÞ þ

1

4
θθθ̄ θ̄ ∂μ∂μσ:

ðA24Þ
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