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The half-BPS boundary conditions preserving A" = (2,2) and A = (0, 4) supersymmetry in 3d N = 4
supersymmetric gauge theories are examined. The BPS equations admit decomposition of the bulk
supermultiplets into specific boundary supermultiplets of preserved supersymmetry. Nahm-like equations
arise in the vector multiplet BPS boundary condition preserving N' = (0, 4) supersymmetry, and Robin-
type boundary conditions appear for the hypermultiplet coupled to the vector multiplet when N = (2, 2)
supersymmetry is preserved. The half-BPS boundary conditions are realized in the brane configurations of

type IIB string theory.
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I. INTRODUCTION

The boundary conditions for the supersymmetric field
theory preserving a part of supersymmetries of the
original bulk theory provide important new ingredients
and insights to the original system, for example, the
description of branes in string or M theory and in target
space of the field theories, dualities or holography in the
presence boundary conditions, mirror symmetry, and also
the geometric Langlands program. The supersymmetric
(SUSY) boundary conditions have been studied in a
number of contexts such as 2d A = (2,2) theories [1-3],
4d N =4 theories [4-7], 3d N = 2 theories [8,9], and
3d N = 4 theories [10] and Bagger-Lambert-Gustavsson
(BLG) and Aharony-Bergman-Jafferis-Maldacena (ABJM)
theories [11-13].

In this paper, we study the half-BPS boundary condi-
tions of 3d N =4 supersymmetric theories preserving
N=(2,2) and N = (0, 4) supersymmetry at the boundary,
which we call A type and B type, respectively. We
explicitly calculate the boundary BPS equations for the
3d N =4 pure vector multiplet, pure hypermultiplet,
hypermultiplet coupled to the vector multiplet such as
supersymmetric quantum chromodynamics (SQCD), and
also its supersymmetric deformations by Fayet-Iliopoulos
(FI) parameters and mass parameters. For each A- and
B-type boundary condition for the vector multiplet, we
have two sets of boundary conditions, which we call
“electriclike” and “magneticlike”. Interestingly, the half-
BPS boundary conditions preserving N = (0,4) for the
vector multiplet include a Nahm-like equation. For the
hypermultiplet coupled to a vector multiplet, we see that
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certain types of Robin boundary conditions arise. By
studying the BPS equations, we read off the boundary
degrees of freedom arising from the bulk 3d N = 4 vector
multiplet and hypermultiplet. These are discussed in
Sec. 1L

In Sec. III, we propose the brane configurations
corresponding to the boundary conditions of 3d N =4
theories preserving N = (2,2) and A = (0,4) super-
symmetry by introducing additional branes to the brane
configuration of Hanany and Witten in the type IIB string
theory [14] realizing 3d N =4 theories. We give a
remark on the map of the boundary degrees of freedom
from the bulk supermultiplet under S duality of the type
IIB string theory.

In Sec. IV, we summarize our results and discuss future
directions.

II. HALF-BPS BOUNDARY CONDITIONS
IN 3D N =4 THEORIES

In this section, we consider the (2,2)- or (0,4)-preserving
boundary conditions for a pure vector multiplet, pure
hypermultiplets, and hypermultiplets coupled to a vector
multiplet with FI and mass deformations. We also see the
decomposition of the bulk supermultiplet at the boundary
as supermultiplets of preserved supersymmetries.

A. Vector multiplet

In this subsection, we study the half-BPS boundary
conditions for the 3d N =4 vector multiplet. The 3d
N = 4 vector multiplet contains a three-dimensional gauge
field A,, u = 0, 1, 2, three real scalar fields ¢,i=23,4,5,
an auxiliary field F, and a fermionic field 4. They are in
the adjoint representation of the gauge group G and
transform as

© 2017 American Physical Society
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A, (3.1,1),
¢ (1,3,1),
F: (1,1,3),

A (2.2,2) (2.1)

under the SO(1,2) x SO(3)- x SO(3),. The 3d N =4
supersymmetric field theories have the R-symmetry group
SO(4)g = SU(2) x SU(2)y, where the SU(2) [respec-
tively, SU(2) ] is the double cover of the SO(3) [respec-
tively, SO(3) 1.

The 3d N = 4 vector multiplet can be expressed as 3d
N = 2 vector multiplet V(A”,a, A, D) and adjoint chiral
multiplet ®(¢,yy. ;). Our notations for the 3d NV =2
superspace and supermultiplet are summarized in the
Appendix. The action of the 3d N =4 vector multiplet
in terms of 3d A/ = 2 supermultiplets is given by

Syt =52 sy (2.2)

with

1

Y= = 7z / dBxd*0Tr(2), (2.3)
3d

1 —

SN2 = —— / P xd*0Tr(De 2V De?), (2.4)
934

where X is a linear multiplet. In components, they are

1 I 1
Sy = 7z dxTr [— 3 PP P =S D'oD,o
3d

+ %Dz — i26"D, A + iAo, /1]] , (2.5)
Sy = / &xTe[ =D, D¢ — o' Dy + FyF,

93q

+ ¢lp. D] — V2iw[h. 2] + V2iwg|p. ]

+ iy o] = plo. [o. ¢]]]. (2:6)

respectively. The actions are invariant under the supersym-
metry transformations

§A, = ifo, A+ io,A, (2.7)
b6 = EL— &N, (2.8)
1
SA = iéD — Ey””fFW — iy*éD,0. (2.9)
_ S _
O = —iéD — Ey"”fFW + if*éD,0, (2.10)
8D = —é6*D A+ Ec* DA+ [0, 2] + E0. 1], (2.11)
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for 3d N = 2 vector multiplet V with the Wess-Zumino
gauge, and

5 = V2&y,, (2.12)
Swy = V2i/"ED b + V2UF = V2iflo. 4], (2.13)
OF = V2i&c" D,y + 2iE[L, §] — V2illyy. 0],  (2.14)

for the 3d NV = 2 adjoint chiral multiplets ®.

Suppose we have a boundary in the x?> direction, say,
at x> = 0. Employing the Noether method, we find the
normal component J? of the supercurrent of the 3d N = 4
vector multiplet in terms of 3d A =2 language from
the action (2.2) and the supersymmetric transformations
(2.7)-(2.14):

JZZJ\Z/ec +J§dj

1 1 1 1
=3 iEF d 5 iF"6,,) — 5Dmaamz/l +5 D*o
1

1
+ D2 dwr D m2y—

1 — 1
+ =, plo*) — — o, Plo*w 2.15
3 0.010° =5 0. 4107 (215)
in the on shell, where m, n, ... = 0, 1 are space-time indices

of the two-dimensional boundary.1

In the presence of a boundary, the translation invariance
is broken, so the supersymmetry is broken, in general.
However, some of the supersymmetry can be preserved at
the boundary by imposing specific boundary conditions,
i.e., the supersymmetric or BPS boundary conditions. The
BPS boundary conditions can be found by demanding that
the normal component of the supercurrent at the boundary
vanishes:

'We can put the supercurrent of the 3d N =2 vector and
adjoint chiral multiplet in an SU(2),xSU(2), manifest expres-
sion, which leads to the 3d NV =4 manifest supercurrent for the 3d
N =4 vector multiplet. Denoting 3d N =4 fermions and
scalars by

. /‘L(l _lljll \/§¢
A = =" ). a=( 2 . (216
(y/z yE (ﬁB \/EE — ( )
respectively, the normal component of the supercurrent can be
written as
Jiee + Jog =2 = (J2)ed
1

.1 .1 .
P aAA 2 +A 1aBA SL2 (,,m\a )fAA

1 i1 i
B BS)A 2D,
(2.17)
Here, A and A are indices for SU(2) and SU(2);, respectively.
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0=CEJ2—¢EJ?
= — B, B) + 3 iF7(Eo,4) ~ 3 Do E"2) + 5 Do(E)
- % iEMF o (EX) + % iF"(é6,,A) + %Dma(gam% - %D%(gﬁ)
1 _ 1 _ 1 1 _
+ 7§D2¢(§W¢) - \/—Equﬁ(éa’"ng) + 2 (). $|(Ec%2) — 7 [0, p](Ec*wy)
1 _ 1 1
= 5 DBEwy) + D e ) =5 B.41(ET) ~ [0 FlEy). (2.18)

where we impose the boundary condition on fermions such
that the bulk equations of motion are still satisfied.

Although there are various solutions to the supersym-
metric boundary conditions (2.18), in this paper we will
focus on the half-BPS boundary conditions preserving
N =(2,2) and N = (0,4) supersymmetry at the boun-
dary, which we call A- and B-type boundary conditions,
respectively [1,8].

1. A-type boundary conditions

For the A-type boundary conditions, the supersymmetric
parameter & satisfies the projection condition®

ré=¢ (2.19)

To find the bosonic boundary conditions from (2.18), we
choose the fermionic boundary conditions

},21 — e2i61’ 7/21//(/) — eZiHW(/)’ (220)
where 6 € R is a constant parameter. Note that this form of
fermionic boundary condition is compatible with the bulk
equations of motion for fermions 4 and . From (2.19) and
(2.20), we obtain

EA = —e%0¢E),

Eo.m2/1 — 621'66011121

E(Tm/1 = eszamzv

Eo’A = —e?0¢6%);  (2.21)

quﬁ = _e_2i€§l//¢’
Eamzqu — e—2i0§6m2w¢’

EUquS = e—2i0§6mw¢’
%, — —e 20¢c2y,,.
(2.22)
With the above fermionic boundary conditions and the

above formulas (2.21) and (2.22), one can rewrite the
general supersymmetric boundary conditions (2.18) as

*Since the projection condition (2.19) is written in terms of 3d
N =2 SUSY parameters, it leads to N' = (1,1) SUSY param-
eters at the boundary. But with the supersymmetry enhancement
to 3d A = 4 in mind, as far as bosonic boundary BPS equations
are concerned, it is okay to work with (2.19) for convenience.

0 = JIEME,,,(¢30 = 1)(&) = 5 il (0 + 1)(6o,,7)

—

— 2 Dyo(e ~ 1)(£67%) ~ 3 Do(e + 1)(€D)

1

(e72°D*¢ + D*¢) (Syry)

-5

(e_szm¢ - Dma) (§6n12w4))

N~

(6. $)(e*? + 1) (26%2)

NSE
—

+

V2

Without further projection conditions, we can find
supersymmetric bosonic configurations as the nontrivial
solutions to (2.23) when 6 = 0 and 7. B

From now on, we often identify the scalars ¢ and ¢, ¢ of
the 3d V= 2 vector and adjoint chiral multiplet with the
scalars ¢, i = 3, 4, 5, of the 3d N = 4 vector multiplet as

([o. ¢le™ = [0, ¢])(Eo*wy). (2.23)

6 = ¢, Rep = ¢*, Im¢gp = ¢°. (2.24)

() y*2=Aandy*yy =W, (0 = 0).—From (2.23) with
60 = 0, we find the boundary conditions

Fs, =0, (2.25)
Dy =0, (2.26)
D,,¢° =0, (2.27)
(%, 4] =0, (2.28)

where a = 3,4. The two-dimensional gauge field
A,, and the two scalar fields ¢* satisfy Neumann-
like boundary conditions (2.25) and (2.26) and so
can fluctuate at the boundary. The condition (2.25)
can be thought as the Dirichlet-like condition for
the scalar field A,. The scalar field ¢ satisfies the
Dirichlet-like condition (2.27). In particular, (2.27)
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and (2.28) can be solved by setting ¢° = 0. We call
the above set of boundary conditions (2.25)—(2.28)
the electriclike A-type boundary conditions, where
the electriclike field E,, = F,,, generated by scalar
potential A, is required to be constant, while the
magneticlike field B = Fy; can fluctuate at the
boundary.

(i) y*A=—4 and y*wy = -, (0 =%.—In this case,
the boundary conditions read

Fo =0, (2.29)

Dy’ =0, (2.30)

D, ¢* =0, (2.31)

[#°.¢"] =0, (2.32)

where a, b, ... = 3,4. We obtain the Dirichlet-like

boundary condition for the two-dimensional gauge
field A,, and the Neumann-like boundary condition
for the scalar field ¢°. The third equation (2.31) is
the Dirichlet-like condition on two scalar fields ¢“.
The last constraint (2.32) implies that the two scalar
fields satisfying the Dirichlet-like condition com-
mute with each other. So one possible solution is to
set them zero at the boundary. Meanwhile, as there is
no constraint on F,,,, the scalar field A, is uncon-
strained and so can fluctuate at the boundary. We
will call the set of boundary conditions (2.29)—(2.32)
magneticlike A-type boundary conditions.
Boundary degree of freedom for the A type from the bulk
vector multiplet
We see that two sets of the A-type boundary conditions,
(2.25)—(2.28) and (2.29)—(2.31), provide decomposition of
the 3d N =4 vector multiplet V_,; under N = (2,2)
supersymmetry at the boundary. The two-dimensional
gauge field A,, and the two real scalar fields ¢*,
a = 3,4, which form a complex scalar field, are naturally
packaged into a 2d N = (2,2) vector multiplet V(>?) or

field strength multiplet X(>?). Meanwhile, from two real

scalar fields A, and ¢°, one can form a 2d N = (2,2)
twisted chiral multiplet 22 which is charged under the
axial U(1). R-symmetry group. We let p be the dual
photons defined by %eﬂ,,pF “ = 0,p for each of the Abelian
factors of the gauge group where A,, which is a surviving
degree of freedom when considering the Dirichlet-like
boundary condition, appears in the left-hand side. Then p =
¢ +ip is charged under U(1). and becomes a scalar
component of the twisted chiral multiplet. Therefore, 3d
N = 4 vector multiplet V _, can be decomposed into 2d
N =(2,2) vector multiplet V2, or a field strength
multiplet, which is a twisted chiral multiplet £(>?), and

2d N = (2,2) twisted chiral multiplet *%;

PHYSICAL REVIEW D 96, 086005 (2017)

Vs = (V@2 522, (2.33)
The 3d N =4 supersymmetric parameters consist of
two copies of the 3d N = 2 supersymmetric parameters &;
and &,. The projection (2.19) admits two right-moving
supersymmetric parameters and two left-moving super-
symmetric parameters.3 Denoting the complex supersym-
metric parameters of 2d NV = (2,2) supersymmetry as

1 = ] -
= (E HE) T3 8,

1 - 1 _
& =5 = &) +5 (& - &), (2.35)

with " = (£+)* and & = (£7)* at the boundary, the axial
U(1), and the vector U(1), of them may take

| s0(L1) | U, | Uy

&t + - +
& - + + (2.36)
&t + + -
f_ — — —

For the electriclike A-type boundary conditions, which
allow both left-moving and right-moving fermions, we
similarly denote the two-dimensional fermionic fields by

1 - i _
l+==§(/1+/1)+§(l//¢+l//¢),
1 = 1 _
A= 5 (A=) + 5 (wy = Wy), (2.37)

with 27 = (A*)" and 2~ = (A7)" at the boundary. Their R
charges would be

| so(.1) | U), | ull)y

at + + +
A - - + (2.38)
at + - -
A - + -

We write a complex scalar field as ¢ == ¢' + ig”. Given the
notation above, the supersymmetric transformation laws of
the component fields (A,,, ¢, A*, 47,47, A7), which form an
N = (2,2) vector multiplet, would be [15,16]

*We denote the right-moving fermion by ¥* and the left-
moving fermion by ¥~:

PPt =9, Y =-¥". (2.34)

One raises and lowers the spinor indices by the antisymmetric

tensor ¥, = Gap"l’/’ withe,_ = 1sothat ¥~ =¥,, P" = -¥_.

086005-4



(2,2) AND (0,4) SUPERSYMMETRIC BOUNDARY ...

SAL = il Ay + i€y, (2.39)
Sp = —iE A —iE ., (2.40)
S =20, pé_ + (iD — vg)E,, (2.41)
SA_ =20_¢&, + (iD + vy )E_, (2.42)
oD =—E . D_A, —E D A_+E DA +E DA,
(2.43)

where D is an auxiliary field, which is expressed as some
function of ¢ where the detail form of it can be determined
once the detail of coupling to the boundary fields is given.

The magneticlike A-type boundary conditions y%4 = —14
and y2W¢ = -y, also yield both left-moving and right-
moving fermions. We similarly denote the two-dimensional
fermions by

1 - 1 _
)(+==2—i(/1—/1)+§(l//¢—¢¢),

] o
)(_==—(/1+/1)+%

5 (2.44)

(v +$¢>7

and their complex conjugate ¥* = (y")', ¥~ = (y°)".
They would carry the R charges as

xt + + -
X - - + (2.45)
)—(+ + — —
s - + -
(22)

The twisted chiral multiplet 322 has the component fields
(p.xt. x~x " 7). The supersymmetry transformation laws
would take the form [15,16]

p=Ex-—E7,, (2.46)

&y = 2i0,pé_ + GE.. (2.47)
Sy_ = =2i0_pé, + GE_, (2.48)
6G = —=2i¢,0_y, —2ié_0 y_, (2.49)

where G is some function of p.

2. B-type boundary conditions

Next we consider the B-type conditions where the
projection condition on the supersymmetric parameter ¢ is

(2.50)

PHYSICAL REVIEW D 96, 086005 (2017)

Here and in the following, we choose a convention that this
gives the right-moving supercharges, which leads to the
chiral ' = (0,4) supersymmetry at the two-dimensional
boundary.4
Applying the ansatz
72 = %), v, = ey, (2.51)
for the fermionic boundary conditions, which does not
change the equations of motion when 6 = 0 or 7, we can
find the bosonic boundary conditions. These two boundary
conditions for the fermionic fields determine their chir-
alities at the boundary. When 6 = 0 (respectively, 0 = 7),
the associated two-dimensional fermions are right moving
(respectively, left moving).
() yA= -1 and y21/1¢ = -y, (0=7%).—With this
choice of the fermionic boundary condition, it
follows that

8=0, é&%=0, &,=0, Ey,=0,

(2.52)

so the general boundary conditions (2.18) turn into

—_—

0= (iFmZ - Dmg) (Eo_n%)

N =

T2
+ = (iF™ + D,,0)(£6"2)
1 1

\/j Dm¢(50m2'7¢) +

Dma(fﬁmz‘l/qs)-
(2.53)

V2

Therefore, with identification (2.24), we find

(2.54)

D, ¢' = 0. (2.55)
The first condition (2.54) is the Neumann-like
boundary condition for the two-dimensional gauge
field A,,, while the second condition (2.55) is the
Dirichlet-like boundary condition for the three scalar
fields ¢". The condition (2.54) can be rephrased as
the Dirichlet-like boundary conditions for the scalar
field A,. We call this set of boundary conditions
(2.54) and (2.55) the electriclike B-type boundary
conditions.

(i) y?A =4 and y%//(/, =y, (0 = 0).—Choosing 6 =0
for the fermionic boundary conditions in (2.51),
we get

“In this convention, the projection condition for the super-
symmetric parameter y*¢ = & preserves N = (4,0) supersym-
metry at the boundary.
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E6,,A =0, o™ ) =0, EU”’ZW¢ =0.
(2.56)
The generic boundary conditions (2.18) then
reduce to
1, . —
0= 5(—1F01 + D% + [, ¢])(E2)
1, . —
+§(—1F01 — D% — [, $))(£2)
1 _
+—= (D% + [o,
ﬁ( P+ [o.4))(Ewy)
1 - _
—— (D% - [o, 5)- 2.57
ﬁ( ¢ —[0.9])(Swy) (2.57)
Thus, with identification (2.24), one finds
FOI - O, (258)
A
Dy¢p' — > e g/, g = 0, (2.59)
where €/* is the Levi-Civita symbol with €+ = 1.

The first condition (2.58) is the Dirichlet-like con-
dition for the two-dimensional gauge field A,,. The
scalar field A, is unconstrained and can fluctuate at
the boundary. Note that the boundary conditions for
three scalar fields ¢' is not Neumann-like, but rather
they satisfy Nahm-like equations. They originate
from the existence of fluctuating A, at the boundary
[4]. We will call this set of boundary conditions
(2.58) and (2.59) the magneticlike B-type boundary
conditions.
Boundary degree of freedom for the B type from the bulk
vector multiplet
We can also see the two sets of the B-type conditions
(2.54) and (2.55) and (2.58) and (2.59) provide the
decomposition of the 3d N =4 vector multiplet under
the preserved N = (0,4) supersymmetry at the boundary.
We observed that for the electriclike B-type boundary
conditions the two-dimensional gauge field A,, can fluc-
tuate and a pair of left-moving fermions transforming as
(2,2)_ survive at the boundary. They are part of the 2d
N = (0,4) vector multiplet V®*), which also contains an
auxiliary field transforming as (1, 3), that originates from
the auxiliary field F in the 3d N = 4 vector multiplet [see
(2.1)]. On the other hand, for the magneticlike B-type
boundary conditions, the scalar fields ¢’ and A, can
fluctuate at the boundary and can be combined into the
two complex scalar fields transforming as (2,1),. Also, a
pair of right-moving fermions (1,2), survive at the
boundary. Therefore, they form the N = (0,4) twisted
hypermultiplets H 04 Hence, for the B-type conditions,
the 3d V' = 4 vector multiplet V ,_, splits into two parts:

PHYSICAL REVIEW D 96, 086005 (2017)

Vg = (VO g0, (2.60)

The projection (2.50) reduces two copies &;, & of 3d
N = 2 supersymmetric parameters to four real left-moving

supersymmetric parameters. We write them as &44, where
the indices A, B, ... = 1,2 transform as a doublet under

SU(2) while the indices A, B, ... = 1,2 transform as a
doublet under SU(2),. We denote the four supersymmetric
parameters of 2d A/ = (0,4) supersymmetry by

£2= .
(2.61)

gll=g  ele=—g V=5

The electriclike B-type boundary conditions y?A4 = —4 and
j/zl//{/, = —y, lead to left-moving fermions. We take them as
the doublets under the both SU(2). and SU(2), so that

—1i,_ 9- 12 ._ - B - —23._ 7-
AT =0, A =Yy, A =y, A=

(2.62)

Denoting the component fields for the vector multiplet
V04 by (A,,. A4, the supersymmetry transformation’

would be

BA_ = 2iE A, (2.66)

SATAB = iDACETCB 4 F £74B, (2.67)
where D45 would be some function of scalar field X in
the twisted hypermultiplet for generic coupling to boundary
fields. We use the antisymmetric tensor €45 and €, ; with
€,_=¢€;-=1 to raise or lower indices A,B,... and
A, B, ..., respectively.

The magneticlike B-type boundary conditions %A = A
and }/zl//4, =y lead to right-moving fermions. We can take
them as a doublet under the SU(2), and also a doublet
under the additional global symmetry SU(2)%. We write

them as P

From 3d N =4 supersymmetry transformation with projec-
tion and boundary conditions, we can see

8(Ag — Ay) = 2i&,, A7, (2.63)
8(Ag+A;) =0, (2.64)
SA~AB — iDAg=CB y F £-AB, (2.65)

at the boundary. Here, Dy = 1[X* X 5,/] with XY= (56— iAy—
V2PV 2¢0 + iA,), which is a scalar component of a twisted
hypermultiplet, where indices ¥’ = 1/, 2’ denote the doublet under
SU(2) global symmetry.
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gAY _ AT
A\t " ’

where the indices Y’ = 1,2’ represent the doublet under
the SU(2)).. The supersymmetry transformations of the

component fields ()?AY/, ‘?HW), which form a twisted
hypermultiplet, can also be obtained from 3d N =4
supersymmetry transformation with projection and boun-
dary conditions:

(2.68)

SXN' = _g-Abe, GHCY (2.69)

SPTAY = _igBley (9, + )XY, (2.70)
which is the supersymmetry transformation of the N =
(0, 4) twisted hypermultiplet where Dirichlet-like condition
Ay = A; = 0 is incorporated. See also [17,18].

3. Reduction from the extended Bogomol’nyi equation

The BPS equations of the topologically twisted 4d
N = 4 supersymmetric Yang-Mills (SYM) theories on a
4-manifold M, have been studied in Ref. [19], which read

(F=¢ A+ tdyp)* =0, (2.71)
(F=¢ Ap—1dp)" =0, (2.72)
d,xp =0, (2.73)

where A is a four-dimensional anti-Hermitian gauge field
that is a connection on a G bundle £ — M, and ¢ is a
bosonic one-form field valued in an anti-Hermitian matrix
given the adjoint representation of the Lie algebra of G.
dy =d+[A,"] is the covariant exterior derivative, F =
dA+ A A A is the field strength, » is the Hodge star
operator, and ¢ is a real constant parametrizing a family of
topological twisted theories. Especially when ¢ = 1, the set
of equations (2.71)—(2.73) can be written as

F—¢pA¢+xdyp=0, (2.74)

dyx¢p = 0. (2.75)

Equation (2.74) is called the extended Bogomol’nyi
equation in Ref. [19]. It has been argued that the BPS
equations (2.74) together with (2.75) provide a various
family of the BPS equations in lower dimensions by
performing the reduction on a given M,, e.g., on
My, =CxZ, where C and X are Riemann surfaces
[19,20], and on M, = M5 x R, where M3 is a 3-manifold
and R, is a half line [21,22]. Here, we would like to see
our BPS boundary conditions for the 3d N =4 vector
multiplet in the reduction of the extended Bogomol’'nyi
equation.
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We consider the equations on a 4-manifold M, = R x
M. We express the gauge field as A = Aydx” + A, and the
one-form as ¢ = ¢odx’ + ¢, where x° is the coordinate on

the half line R, . Taking the x° independent parts from
(2.74) and (2.75), one obtains the BPS equations on Mj:

F—¢pnd= *(d3¢0 — [Ao, ¢)). (2.76)
dXAo + [¢o. 9] = *dX$7 (2.77)
d}% + [Ags o] = 0, (2.78)

where the exterior derivative dX’ the Hodge operator «, and

ds = *dX* are defined on the 3-manifold M5. We further
A

take My = R, x C and write A = A,dx?+ A,dz + A-dz,
b= prdx*+p.dz+ p-dz, where R, is the half line x> > 0
and z and 7 are the local complex coordinates on the
Riemann surface C. By squaring (2.76)—(2.78) and inte-
grating by parts, one finds that Ay, = ¢, = 0. Let us denote
the metric on 3-manifold M5 by ds? = (dx?)? + 2|dz|* and
choose a gauge in which A, = 0. Then (2.76)—(2.78) are
now simplified to [19]

F: = [¢.. p:] = iDrgho. (2.79)
0rAz = —iD=hy, (2.80)
i[o. p.] = 029.. (2.81)

D.¢: = 0. (2.82)

As a 4-manifold is now a product space My = R, X
R, x C, the topological twisting is not performed on the
4-manifold but on the two-dimensional surface C. When
C = R?, which we will consider, the above configuration
on a 3-manifold M5 = R, x C with a boundary at x> = 0
may admit maximally four supercharges. Regarding boun-
dary conditions, given a field, it is reasonable to expect that
there is either a normal derivative or tangential derivative of
it but not both in the (BPS) boundary conditions or
equations that the boundary fields should satisfy. So by
picking sets of equations among (2.79)—(2.82)—more
precisely, one in (2.79) or (2.80) and one in (2.81) or
(2.82)—and by taking terms in equations to be separately
zero, we may be able to find four consistent sets of BPS
boundary conditions we are interested in. Meanwhile, we
note that (2.79) and (2.80) have terms relevant to the
Dirichlet-like and Neumann-like boundary conditions for
the two-dimensional gauge fields A, and As, respectively,
whereas (2.81) and (2.82) contain the Neumann-like and
Dirichlet-like boundary conditions for the one-form fields
¢, and ¢, respectively.
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In order to see our boundary conditions in the reduced
extended Bogomol’'nyi equations (2.79)—(2.82), we take
C = R? where the one-form fields ¢, and ¢ reduce to the
scalar fields, and we set

1 1
0, = ﬁ(aa —i04), 0: = 72(8() +i0y), (2.83)
1 1
A, :E(AO—iAT), A :ﬁ(A()—l-iAi), (2.84)
=¢° _ L ist _:L 3 it
¢0*¢’ ¢z*\/§(¢ l¢)’ ¢z \/i((ﬁ +l¢)7

(2.85)

where m,n=0,1 are space-time indices on R? while
i,j,...=3,4,5and a, b, ... = 3, 4 label the scalar fields.
(Ai) From (2.80) and (2.81).—By taking both of the lhs
and the rhs of all the equations to be separately zero, we
have

Fy, = Ova¢5 =0,

Dyp* =0, [ ¢ =0,

(2.86)

and one can identify them with the electriclike A-type
conditions (2.25)—(2.28).
(Aii) From (2.79) and (2.82).—We can obtain

[#°.4"=0.  D,¢"=0

(2.87)

by setting every term in (2.79) to be zero. These are the
magneticlike A-type conditions (2.29)—(2.32).
(Bi) From (2.80) and (2.82).—Similarly, by taking both the
lhs and the rhs in (2.80) to be separately zero, we get
Fs, =0, D,,¢' = 0. (2.88)

This set of equations are the electriclike B-type conditions
(2.54) and (2.55).
(Bii) From (2.79) and (2.81).—We can obtain

Fp =0, D2¢i + €ijk[¢j’ ¢k} =0 (289)
by taking terms in (2.79) to be zero after arrangement,
where we have restored the gauge fixed value A, = 0.
Taking into account that ¢”s are anti-Hermitian here,
we see that both equations are the magneticlike B-type
conditions (2.58) and (2.59).°

6Equation (2.59) can be recovered from (2.89) via A, — —iA,
and ¢/ - —Lig.
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B. Hypermultiplets

The 3d N = 4 hypermultiplets contain complex scalar
fields ¢ and fermionic fields y transforming as

(2.90)

under the SO(1,2) x SU(2)- x SU(2).

Also, the 3d N =4 hypermultiplets in representation
R of the gauge group can be expressed as a combination
of the two 3d N =2 chiral multiplets Q(q.y.F,) and

Q(ﬁ,l?/,F;) transforming in conjugate representations R

and R of the gauge group. The action of the 3d N =4
hypermultiplets coupled to 3d N = 4 vector multiplet is
given by

S =S¥+ 5572 (2.91)

where

SN2 = — / d*xd*0(Qe™?VQ + 56_2‘/@) (2.92)

is the kinetic terms and
SN2 = —V2i / Pxd9(Q®Q) +c.c.  (2.93)

is the superpotential terms and c.c. stands for the complex
conjugate.

In terms of the component fields, the action (2.92) can be
expressed as

~\V2i 7. q — V2ighy — GDq - go’q
_ D/’ZI'D”E - l'l/NIGMD”? + F’(;F[; + oy
+V2iG Ay +V2iAg + gDG — Goq),  (2.94)

where 6 = T4, D = DT}, and 2 = KT, 7 = 7T}, and
the action (2.93) as

Sy=2 = / X[~V 2i(Fopg + Fgq + GOF,)

+ V20w yq + qugy + Wdw)] + e (2.95)
where the covariant derivatives are defined by
D,q=0,q—1A,q, D,q = 0,q +iqA,,

D,q = 0,q + iqA,, D,q = 0,q —iA,q. (2.96)
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The action (2.91) is invariant under the supersymmetry
transformations

8q =28y, (2.97)

59 = V2¢&p, (2.98)

Sy = V2ip€D,q + V2EF - V2ikoq, (2.99)

8y = V2ip"eD,q + V2EF; + V2ikoq, (2.100)
8F , = V2i&c"D,w + 2i(ED)q + V2i(Ew)o,  (2.101)
OF; = V2iéo"D, iy = 2i(EA)q — V2i(Ep)o  (2.102)

0 = —V2D,q(éw) — V2(&9)Drg — G(&r2)q + 4(Er*)q

PHYSICAL REVIEW D 96, 086005 (2017)

for the 3d N =2 chiral multiplets Q and é as well
as the supersymmetry transformations (2.7)—(2.11) and
(2.12)—(2.14), respectively, for the vector multiplet V
and the adjoint chiral multiplet ®. From the action
(2.92) and the supersymmetric transformation laws, we
obtain a supercurrent of the 3d N = 4 hypermultiplets:

J* = —V/2D"qy ~ Gr'%q + V2D, gr"y — v 2qory
— V2yD¥G + Gy a g +V2r" DG + V2rtieq
-2/q Py +qwsq + ¥ H Q). (2.103)

Using the 3d A/ = 2 notation, we get the supersymmetric
boundary conditions for the 3d N' = 4 hypermultiplets:

+ V2D, q(&r*w) + V2(&r*5)D,G — V2qo(Ery) + V2(Er%)oq
+ 2 P(Erw) + 2q(6rW ) + 2(Er W) G +V2(EW)Dyg + V2DyG(EW) + (%) q — G(ErA)q
—V2(&*W)D,q - V2D,q(E*g) + V2(&rW)oq — V240(&r) - 2(ErW)dq — 20(Eriw,)q — 2a¢(Erw).

One can generalize the boundary conditions and their
solutions by introducing additional boundary degrees of
freedom. Also, it would be intriguing to explore the space
of the solutions for the given information. We defer these to
later work. In this paper, we focus on the investigation of
basic half-BPS boundary conditions for the hypermultip-
lets. As in the previous discussion on the vector multiplet,
we examine the half-BPS boundary conditions of the A and
B types for the pure hypermultiplets in this subsection and
discuss the coupled hypermultiplets in next subsection.

1. A-type boundary condition

We are interested in A-type boundary conditions for bosonic
fields given by y%¢ = & and fermionic boundary conditions
|

(2.104)

ZiHZ 2i07-

’ 7/2(//45 =e Wtﬁ?
(2.105)

vw =y, ph=e

where ¢, 0 € R are constant phase parameters. Here and in the

following, we consider the case > = —e? ie.,

9—(p:g—|—ﬂZ,

(2.106)
but for the A-type condition the case e*¢ = ¢*? provides
equivalent results to the ones obtained from (2.106).

From (2.21) and (2.22), the generic boundary conditions
(2.104) for the hypermultiplets become’

0= e™[—V2(eD, -G + 7D, - q) (&) — V2(e'*Dy - G + €7D, - §) (&)
+V2(eD,, - G — e7D,, - q)(&*"w) + V2(e*D,, - G — €7D, - §)(&r*"y)
~V2(es -G+ e - q)(Erw) + V2(e'o - G + e 0 - §) (&)
+2(e7 -G+ e q) (&) +2(p - g + 7 - ) (Ew))

+ e [—(qqe™" + qge™) (&) + (G g e+ G q ) (E1) + 2(7 4 ¢ + qqe™) (&),

(2.107)

"To see the general form of the supersymmetric boundary conditions of the coupled hypermultiplets, we obtained the condition
(2.107) by using the componentwise projection condition (2.105) given fixed all the gauge and global symmetry indices. Given the data
of preserved gauge and global symmetries at the boundary, a large family of the boundary conditions can be constructed from the results

below by restoring the form of representation.
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where the dot - indicates the gauge and global symmetry
action on the hypermultiplets. Also, the generators for
gauge group are implicit between the products of two
scalars, e.g., gT%q.

We would like to find the solutions to the half-BPS
boundary conditions of the pure hypermultiplet for ¢ = 0
and p =2

(i) 72w = W (when ¢ = 0).—In the case with ¢ = 0, we

find from (2.107) the following bosonic boundary
conditions for the hypermultiplets:

52(Req) = 0, 82 (Re?j) = 0, (2108)
0,,(Imgq) = 0, 0,,(Img) = 0. (2.109)
(i) yaw = —w (when ¢ =% —For the other A-type

boundary conditions with the fermionic boundary
conditions ¢ = 7, the bosonic boundary conditions
for the hypermultiplets read

9n(Req) =0,

On(Req) =0,  (2.110)

0,(Img) = 0, 0,(Img) = 0. (2.111)

Boundary degree of freedom for the A type from the pure
bulk hypermultiplet

The A-type conditions provide decomposition of the
3d N =4 hypermultiplets into the boundary super-
multiplets in such a way that (Req, Req) fluctuate at
the boundary and (Img, Img) satisfy Dirichlet boundary
conditions, or the other way around. Each of them forms

the 2d N = (2,2) chiral multiplets ®** and @
whose lowest components are the complex scalar fields,
which consists of (Regq,Re(g)) and (Img,Im(g)),
respectively;

(2.2)

2.2
Hy—y = (@) 0

,®7). (2.112)

The A-type boundary conditions y2y = i give both left-
moving and right-moving fermions. We may denote the
two-dimensional fermions by

W= ) A D)
v =) 5 = 7). 2.113)

and their complex conjugate 7+ = ()" and ¥~ = (y 7).
They would carry the R charges as

¥The half-BPS boundary conditions preserving N = (2, 2) for

hypermultiplet were also obtained in Ref. [23].
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| so(1,1) | U, | U,
+ + -

- - -
- + -

+

(2.114)

| § € §
+

We also denote a two-dimensional complex scalar field by
¢ = Req + iReq. The supersymmetry transformations of
component fields (¢,y ™, w~, W', ¥"), which form the

(2,2)

chiral multiplet ®;7”, would be given by

Sp=E&w_ —&Ey,, (2.115)

Sy, =2i0, pé_ + FE., (2.116)
Sy_ = —2i0_g&, + FE_, (2.117)
OF = =2ié, 0_y, —2ié_0,w_, (2.118)

where F' is an auxiliary field and (2.35) is used. One can
similarly realize the supersymmetric transformation laws of

the other chiral superfield @5?'2).

2. B-type boundary conditions

The B-type conditions are characterized by the chiral
projection (2.50) on the supersymmetric parameter. We can
find the bosonic boundary conditions by considering the
fermionic boundary conditions

vy = ey, r’A = e, vy = ey,

(2.119)
with (¢,0) = (0,%) and (5,0). When (¢.0) = (0,%), i.e.,
rw =w, y’A= -4, and yy, = -y, by using the for-

mulas (2.52) for 2 and w4 and (2.56) for y and y, we obtain

V2(D,-q-0-q)(&W)
(2.120)

0=—V2(D, g +0-7)(&w) -
+2¢-9(&9) + 27 (&)

Similarly, when (¢.60) = (%,0), ie., Yy = -y, y’A =14,

and )/Zl//¢ = 4, the boundary condition becomes

0 =v2D,,-q(&"y) + V2D,, - 4(&"y)
— (lq1> = 1aP)(€2) + 2q 4(&p,).

The chiralities of the fermionic fields at the boundary from
the bulk 3d ' = 4 hypermultiplet are determined by the
phase factor ¢ € R. For ¢ = 0 (respectively, ¢ = %), the
right-moving (respectively, left-moving) fermions survive
at the two-dimensional boundary.

(2.121)
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(i) y’w = w (when ¢ = 0).—This boundary condition
admits the right-moving fermions with ¢ = 0 in the
hypermultiplets. For pure hypermultiplet, we turn
off fields from the vector multiplet, so the condition
(2.120) leads to the Neumann boundary conditions
for the hypermultiplet scalars ¢ and g:

0,q =0, 0,4 =0. (2.122)

(i) 7w = —y (When @ = 7).—In this case, the fermions
in the hypermultiplet at the boundary are left
moving. For the hypermultiplets without gauge
coupling, (2.121) can be solved by requiring the
Dirichlet boundary conditions for the hypermultiplet
scalars ¢ and ¢:

Onq =0, 0,9 = 0. (2.123)

Therefore, the bosonic degrees of freedom in the 3d

N = 4 hypermultiplets cannot survive at the boun-

dary, while the left-moving fermions are free to
fluctuate at the boundary.

Boundary degree of freedom for the B type from the pure

bulk hypermultiplet

We saw that there are two types of B-type conditions for

the 3d N = 4 hypermultiplets. For boundary condition

(1) with ¢ = 0, the full set of four bosonic fields as well as

the right-moving fermions (2,1), can fluctuate at the

boundary. They are packaged into the 2d N = (0,4)

hypermultiplets H(*4). On the other hand, for the second

condition (ii) with ¢ = %, the left-moving fermions (1,1)_

can fluctuate, but all the bosonic degrees of freedom satisfy

the Dirichlet condition at the boundary. The fluctuating

degrees of freedom can be packaged into the A" = (0,4)

Fermi multiplets A(®*). Therefore, we have the decom-

position

Hy_y — (HOH, AO4), (2.124)

The B-type boundary conditions y%y = y lead to right-
moving fermions. We write them as WY, where the
indices Y = 1, 2 represent the doublet under the additional

SU(2) global symmetry:

P, ﬁ, P12, v, P21, v, P22, —f/;.
(2.125)

Also, we denote the scalar component by

Xil =g, X12 = _’qv’ X21 = 3, X22 = a’
(2.126)

which transforms as a doublet under the SU(2)y,
and a doublet under the SU(2)z. The supersymmetry

PHYSICAL REVIEW D 96, 086005 (2017)

transformation of component fields (X4, ¥*+4Y), which
forms a hypermultiplet H®%), can be obtained from 3d
N = 4 supersymmetry transformation with projection and
boundary conditions:

SXAY = —\/2E-BAgp PHCY, (2.127)

SYHAY = g 4Be, L (9y + 01) XY, (2.128)
which is a supersymmetry transformation of the A =
(0,4) hypermultiplet.

Another B-type boundary condition y%y = —y leads to
four real left-moving fermions, which are singlet under the
R symmetry. These fermionic fields form a Fermi multiplet
A% We can take them as two complex fermions, which
we denote as

=y, &=, (2.129)
where Hermitian conjugates are {7 =% and {5 =,
respectively. Then, the supersymmetry transformation of
these fields can be obtained, and they are

8L7 = —V2iEMepe;  XPIXE, (2.130)
8¢5 = —V2iE e, pe;  XPIXB, (2.131)

These can be organized into
507 = —\/2ig"Me, pe 1 XEVXBY, (2.132)

where @Y = (gigi) which is a supersymmetry trans-
2°1

formation of the Fermi multiplet. When considering a

generic interaction with boundary fields, the supersym-

metry transformation would take a form

87 = —V2ig,, O, (2.133)
where {;,a =1, 2, 3, 4, denotes (7, {5, 51‘, and Zl‘ and CZ‘A
are some function of X4¥ and X" See also [17,18].

C. Gauge coupling and SUSY deformations

We now discuss the half-BPS boundary conditions
for the vector multiplets and the hypermultiplets in the
3d N = 4 supersymmetric gauge theories with the super-
symmetric deformation by FI parameters and mass
parameters.

1. FI and mass deformations

The 3d N =4 gauge theories can be deformed by
FI terms and mass terms while keeping supersymmetry.
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We consider the effects of the supersymmetric deforma-
tions on the half-BPS boundary conditions.

If the 3d N =4 supersymmetric gauge theories
involve the U(1) factors of the gauge group, they can be
deformed in a supersymmetric way by introducing the
baptized Fermi (BF) coupling of the topological currents
for the U(1) factors to a background Abelian N =4
twisted vector multiplet (V,, ®,) [24,25]:

Sp = / dxd9Tr'(ZV,)

+é / BxdTH(®D,) + c.c., (2.134)

where V, = ir6f and @, = ¢, with r € R, ¢, € C. The
trace Tr’ takes only the U(1) factors of the gauge group.

Here ri = (r,Re(¢,), Im(¢h,)), 1 =7, 8, 9, forms a triplet
under the SU(2) . In terms of the component fields, we can
express the action (2.134) as

1 . P
SFI:/d3x|:—2rD+;¢rF¢_;¢rF¢) ) (2135)

where r is a real FI parameter and ¢, a complex FI
parameter. The conserved supercurrent is

1 — 2
ot = o) + 25,0

r=3 (2.136)

One can also deform the 3d N =4 supersymmetric
gauge theories in a supersymmetric way by introducing
mass terms for the hypermultiplets. It can be achieved by

coupling Q and Q to a background Abelian N/ = 4 vector
multiplet (V,,, ®y):

Sy =-— / dxd0(Qe™?VnQ + 562‘/1‘4@)

+V2i / dxd*0(QDy, Q) + c.c., (2.137)

where V), = iM0O, ®,; = ¢, M € R is real mass, and
¢y € C is complex mass parameters. Here (M, Re(¢y,),
Im(¢y,)) forms a triplet under the SU(2).. In the compo-
nent fields, the action (2.137) can be expressed as

Sy = / Pr=Mg2+ 13P) - iM Gy - 57)
— (2F Fy = 2F~F=) + V2idhy (F5q + Fyq)
—ipyypy + \@@M(ﬁqﬁ + F,q) + iy ).
(2.138)

The conserved supercurrent is
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Ty = —V2May'y + V2May'y
+ 20 qr' + 20uqry.

The supercurrents (2.136) and (2.139) provide addi-
tional contributions to the supercurrents we obtained in
previous sections and modify the supersymmetric boundary
conditions.

(2.139)

2. Coupled hypermultiplets

We consider the half-BPS boundary conditions for the
coupled hypermultiplet with FI and mass parameters turned
on. Because of the coupling, the half-BPS boundary
conditions for the hypermultiplets depends on the choice
of the half-BPS boundary conditions for the vector multi-
plet discussed in Sec. II A with condition (2.106). This
provides a large class of the half-BPS boundary conditions
specified by the preserved gauge and flavor symmetries at
the boundary. Here we want to find the general structure of
deformed boundary conditions for the hypermultiplets due
to gauge coupling, FI parameters, and mass parameters.

A-type boundary conditions.—
() yw =W,y = -2, and Y2y, = =, (when ¢ = 0,
0 =%).—For the A-type conditions with
(¢.0) = (0.5), we find from (2.107) the generic
half of the supersymmetric boundary conditions for
the hypermultiplets:

D, - (Req) = V2Re[(¢p + ) - Gl

D, - (Req) = V2Re[(¢p + hy) - 4. (2.140)

D, (Img) =0, D, -(Ing)=0, (2.141)

(6+M)-(Reg) =0, (6+M)-(Reg) =0,

(2.142)

Im(gq) = Im(¢),).

The conditions (2.140) say that the real parts of the
complex scalar fields ¢ and g can fluctuate while
satisfying the Robin-type boundary conditions,
which specify a linear combination of the fields
and the normal components of their derivatives at
the boundary. The conditions (2.141) imply that the
imaginary parts of ¢ and ¢ are subject to the
Dirichlet-like boundary conditions.

The other set (2.142) and (2.143) are algebraic
constraints which are responsible for the gauge
coupling. The precise forms of the boundary con-
ditions and the possible solutions depend on the
detail of the 3d N = 4 vector multiplet and hyper-
multiplets, but these equations can be regarded as the
basic building blocks of boundary conditions.

(2.143)
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(i)

The real parts of g and ¢, which are fluctuating
degrees of freedom at the boundary, satisfy con-
ditions (2.142). As a coupled vector multiplet
satisfies the magneticlike A-type boundary condi-
tions when 0 = /2, the two vector multiplet scalars
Re¢ and o obey the Dirichlet boundary conditions
(2.31). Thus, the constraints (2.142) can be solved
by setting o to specific fixed values at the boundary.

The last condition (2.143) does not involve any
bosonic fields in the vector multiplet, but it appears
due to the gauge coupling and FI deformations as it
is induced from the fermionic bilinear form involv-
ing wy. It is an imaginary part of the complex
moment map pc with fields restricted at the
boundary.

v ==, v’ =2, and yy,; =W, (When ¢ =2
0 = 0).—The A-type conditions with (¢,0) =
(5.0) are

D; - (Img) = v2Im((¢ + ¢u) - G,

D, - (Img) = V2Im[(¢) + yy) - g (2.144)

D,, - (Req) =0, D, - (Req) =0, (2.145)

(6+ M) - (Img) =0, (6+M)-(Img) =0,

(2.146)

Re(qq) =Re(g,).  |qP—[qP=r. (2.147)
In this case, the real parts of ¢ and ¢ satisfy
Dirichlet-like boundary conditions (2.145), and
the imaginary parts of ¢ and ¢ can fluctuate while
satisfying the Robin-type boundary conditions
(2.144). Again, the remaining algebraic constraints
(2.146) and (2.147) arise from the coupling of the 3d
N = 4 hypermultiplets to the vector multiplet.

For 8 = 0, the vector multiplet is subject to the
electric A-type boundary conditions, where only the
vector multiplet scalar Img¢ satisfies the Dirichlet-
like boundary condition (2.72) and other scalars
satisfy the Neumann-like boundary condition (2.26).
As o can fluctuate at the boundary, the constraint
(2.146) are the conditions for the coupling of the
hypermultiplet scalar fields ¢ and ¢ and the vector
multiplet scalar ¢ in a supersymmetric way when
considering a boundary superpotential.

Two conditions in (2.147) are the constraints
on the bulk hypermultiplets due to the gauge
coupling and FI deformations, which are a real part
of the complex moment map y¢ and the real moment
map pr, respectively, with fields restricted at the
boundary.
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B-type boundary conditions.—

() ryw =, y’A= -2 and y’y, = —y,; (When ¢ =0
and 0 = %).—As the full R symmetry SU(2). x
SU(2)y is maintained for the B-type conditions, a
pair of fermionic fields w and y may form the
supermultiplet. For (¢.8) = (0.%), we obtain, from

(2.120), (2.136), and (2.139),

Dy q+(¢'+M) q=0,
Dy-q—(¢p'+M)-g=0, (2.148)
where we have defined the triplet ¢ =

(6,Reg, Im¢g) and M = (M,Re¢y, Imghy,) of the
SU(2)¢. The bosonic degrees of freedom ¢ and g
can fluctuate at the boundary while satisfying
Robin-type boundary conditions (2.148). In this
case, the vector multiplet obeys the electric B-type
conditions that admit the Dirichlet-like boundary
condition (2.54) for all the vector multiplet scalars.
Also, the detail forms of boundary conditions
depend on the specific data of the theories; however,
(2.148) can be viewed as the basic building blocks
for the boundary conditions.

rw =y, y’A=14, and yy,; =y, (when ¢ =2
and € = 0).—From (2.121), (2.136), and (2.139),
the general B-type conditions with (¢,8) = (5.0)
read

(i)

D,-q=0, D, -g=0, (2.149)

laP=1qP=r.  qq=¢. (2.150)
Similarly as before, the algebraic conditions (2.150)
come from the gauge coupling and FI deformation.

3. BPS boundary conditions and 3d N =4 vacua

The classical moduli space of the 3d N =4 super-
symmetric gauge theory on R'? is determined by the set of
equations

[#'.¢'| =0, (2.151)
(¢'+M)-(q.9) =0, (2.152)
W+ ri=0, (2.153)

where the dot - implies the action of the gauge and flavor
symmetry group on the hypermultiplet scalars (¢, ¢). Here

' are the three hyper-Kihler moment maps for the action of
the gauge symmetry group on the hypermultiplets. They
split into the real and complex moment maps ur and yc
[10]. They are, respectively, associated to the Kéhler form
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o= (dg' Adg'+dq' Adg')  (2.154)
1
and the holomorphic symplectic form
Q=> (dg' A dg") (2.155)
1
and given by
pr = lq*= g (2.156)
He = qd. (2.157)

We remark that the half-BPS boundary conditions detect
the set of the defining equations (2.151)—(2.153) of the
vacua. We have encountered Eq. (2.151) in the vector
multiplet boundary conditions (2.32) and (2.59) where
fields are restricted at the boundary, which can be expected
as it characterizes the Coulomb branch. The second set of
equations (2.152) specifies the coupling between the vector
multiplet scalars and the hypermultiplet scalars. We have
met these equations with fields restricted on the boundary
in the boundary conditions constraining the fluctuation of
hypermultiplet scalars. As (2.152) suggests, these condi-
tions can be shifted by turning on the mass parameters
c—->0+M,p— ¢+ ¢y. We also saw that the moment
maps (2.153) with FI parameters appear as algebraic
constraints for the scalar component of hypermultiplets
at the boundary.

III. BRANE CONSTRUCTION

In this section, we propose the brane configurations in
the type IIB string theory corresponding to the half-BPS
boundary conditions of the 3d N =4 supersymmetric
theories discussed in Sec. II. We also study the map
between boundary supermultiplets arising from 3d bulk
supermultiplets for simplest examples by considering S
duality of the type IIB theory.

A. Type IIB configuration

We consider the brane realization of 3d N = 4 theories
in the type IIB string theory on R' [14]. Let Q;
(respectively, Qr) be the supercharge generated by the
left- (respectively, right-) moving world-sheet degrees of
freedom which satisfies the chirality condition of the type
[IB string theory:

(3.1)

We consider D3-branes supported on (x° x!, x% x% and

bounded along the x° direction by two NS5-branes sup-

ported on (x°, x!, x% x3, x* x°) or by two D5-branes sup-

ported on (x° x!, x2, x7, x%, x%):

l—‘0123456789QL = QLv 1—‘0123456789QR = QR-

PHYSICAL REVIEW D 96, 086005 (2017)
o1 2 3 4 5 6 7 8 9

D3 o o o — — — o — — —

(3.2)
NSS o o o} e} o o — —_ — —_
D5 o o 0o — — — — o o o

where o denotes the directions in which branes are
supported whereas — stands for the directions at which
branes are located. The brane configuration (3.2) preserves
linear combination of supercharges ¢; Q; + €z Qg with

Loinaser = €r, [o12345€r = —€g (3-3)

and
Co12780€r = €1, (3-4)
Coie€r = €1 (3-5)

Here, the first condition (3.3) is the projection condition on
spinors €; and e imposed by the NS5-branes, while (3.4)
and (3.5) are the conditions by the D5-branes and the D3-
branes, respectively. From (3.3)-(3.5), we can find two
nontrivial conditions on the spinors. So there remain eight
supercharges.

As D3-branes are bounded in the x° direction, the
low-energy effective theory of world volume of D3-branes
is described by 3d AN =4 supersymmetric theories
after decoupling the gravity. The above brane configura-
tion breaks the Lorentz symmetry group SO(1,9) into
SO(1,2)p12 X SO(3)345 X SO(3)7g9, where SO(1,2) is
Lorentz symmetry and the double covers of SO(3)s,s X
SO(3)759 give SU(2)- x SU(2), = SO(4)x R symmetry
of 3d NV = 4 theories.

B. D3-NS5 branes

Let us first consider the case where the N coincident
D3-branes are stretched between the two parallel NS5-
branes. The low-energy effective theory is the 3d N = 4

U(N) pure SYM theory [14]. The three-dimensional

6
coupling constant g3, is classically given by g%:%,
3d 4d

where Ax%(NS5) is the interval of the stretched D3-branes
along x% and g2, is the gauge coupling of 4d ' = 4 SYM
theory. The bosonic massless modes of the world-volume
theory of D3-branes are the fluctuations of the D3-branes in
transverse directions x°, x*, and x° and three-dimensional
gauge fields. The U(N) gauge symmetry has a nontrivial
center U(1), which parametrizes the motion of the
center of mass of the N D3-branes. The FI parameters
{r,Re(¢,),Im(¢,)} are described by the relative positions
of two NS5-branes along x7, x8 and x°.
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1. A-type boundary conditions

The half-BPS boundary conditions for the pure 3d
N =4 vector multiplet discussed in Sec. Il A can be
realized in the D3-NS5 brane system by introducing
additional branes. We call such additional branes the
NS5-brane and D5-brane where they are supported on
(x% x!, %%, x% x6, x%) and (x°, x!, %%, x5, x7, x®), respectively.
They are located at x> = 0 and D3-branes are extended in
the half space x* > 0:

01 2 3 4 5 6 7 8 9

D3 0o o o — — — o — — -—

NS5 o o o o o o — — — — (3.6)
NS o o — o o — o — — o

DY o o — — — o o o o -—

Therefore, the additional 5-branes provide the two-
dimensional boundary at x*>=0 in the effective 3d
N =4 SYM theories (see Fig. 1). Also, the original
SO(1,2) x SO(3)345 X SO(3),49 symmetry is broken to
SO(1,1) x §O(2)34 x SO(2)45.

The NS5-brane and D5-brane provide additional
projection conditions, respectively,
(3.7)

[Coizae0€r = €1, To13460€r = —€k,

Loise7s€r = €L (3.8)
From the conditions (3.3), (3.5), (3.8), and (3.7), there are
three nontrivial projection conditions, so four supercharges
are preserved in the brane configuration (3.6). In order to
see the chirality of the two-dimensional supersymmetry, we
note the conditions

e, = —T'so€p, e = —T'soer (3-9)

from the above brane configurations. Since the four-
dimensional world volume of the D3-branes is finite along
x® and the effective field theory is three-dimensional,

CC2

I NS5 NS5 “”21 NS5 NS5
.’176

_TS

NS5’ D5’ =e=pomememmccceacfa-.

(a)NS5'-brane (b)D5'-brane

FIG. 1. D3-NS5 system with a NS5'-brane or D5'-brane. The
NS5’- (D5'-) brane provides the electriclike (magneticlike) A-
type boundary conditions for the vector multiplet where the 2d
N = (2,2) vector multiplet (twisted chiral multiplet) can fluc-
tuate at the boundary.
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we may treat ['¢ essentially proportional to the identity
matrix. Here ', plays the role of the two-dimensional
chirality matrix for the two-dimensional boundary of the
three-dimensional field theory, while I'5 (respectively, I'g)
is the chirality matrix for the SO(2)s;, [respectively,
SO(2)45]. Let (£, £, £) be the representation under the
SO(1,1) x SO(2)34 x SO(2),4, where £ denote the two-
dimensional chiralities. Suppose that chiral supersymmetry
is preserved at the two-dimensional boundary, say, the
right-moving (+,-,-) supersymmetry. As the SO(2),
charge and the SO(2),4 charge are constrained via (3.9),
we would have only two supercharges with (+, 4+, —) and
(+.—.+) if we choose a positive multiplicative constant
for I, which we treated as the identity matrix. However,
since we have four supercharges in the brane setup (3.6),
this implies that there should also be left-moving super-
symmetry. Therefore, the additional NS5~ and D5"-branes
preserve the nonchiral A" = (2,2) supersymmetry where
S0(2)34 X S0(2)78 = U(l)axial X U(l)vector are axial and
vector R symmetry of the 2d N = (2,2) supersymmetry.
(i) NS5-brane—The D3-branes ending on the
NS5-brane can fluctuate along x3, x* and the
two-dimensional gauge field A,, can fluctuate at
the boundary. On the other hand, the NS5-brane
gives a Dirichlet boundary condition for A, and also
for ¢ as it is localized at x°. These boundary
conditions are consistent with the electriclike
A-type boundary conditions (2.25)—(2.28):

Fy, =0 (Neumann-like),
D=0 (Neumann-like),
D,¢°=0  (Dirichlet-like). (3.10)

(ii) DS5"-brane.—As the x and x* position of the D3-
branes are fixed by the D5"-brane but the motion of
the D3-brane along x° is unconstrained, ¢ and ¢*
satisfy the Dirichlet-like condition but ¢ would
satisfy the Neumann-like condition. The boundary
condition for the two-dimensional gauge field A,
imposed by the D5-brane is the Dirichlet-like
boundary condition. Therefore, inserting D5-brane

would give
Foi=0  (Dirichletlike),
D> =0 (Neumann-like),
D,¢"=0  (Dirichlet-like). (3.11)

In addition, the attached D5-brane can leave A,
unconstrained. This is consistent with the field
theoretic analysis in Sec. IT A.

2. B-type boundary conditions

There are other additional 5-branes which can pre-
serve N = (0,4) supersymmetry at the two-dimensional
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2
I NS5 NS5 I NS5 NS5
D3 D3

€

6

NS5” D5” -----------------

(a)NS5”-brane (b)D5"-brane

FIG. 2. D3-NS5 system with a NS5”-brane or D5”-brane. The
NS5”- (D5"-)brane provides the electriclike (magneticlike)
B-type boundary conditions for the vector multiplet where the
2d N =(0,4) vector multiplet (twisted hypermultiplet) can
fluctuate at the boundary.

boundary of the 3d effective theories. We consider the

NS5”-brane with world volume (x, x!, x6, x7, x%, x°) or the

D5"-brane with world volume (x°, x, x3, x* x°, x6) located
at x2 = 0, where D3-branes are extended on the half-space

x% > 0 (see Fig. 2);

01 2 3 4 5 6 7 8 9

D3 o o o — — — o — — -
NS5 o o o o o o — — — =— (3.12)
NS5 o o — — — — o o o o
D5 o o — o o o o — — =—

These additional NS5” and D5” give constraints,
respectively,
(3.13)

Loie730€ = €1, [Coi6780€r = —€k

Loi3as6€r = €L (3.14)
From the conditions (3.13), (3.14), (3.3), and (3.5), we have
three nontrivial projection conditions, so there are four
supercharges in the brane system (3.12). Also, the set of
conditions leads to

Lorer = €r, Loier = €k, (3.15)
which implies that we have chiral N' = (0,4) supersym-
metry at the two-dimensional boundary.

The inclusion of these additional 5-branes does not break
the symmetry SO(3)s45 X SO(3)7590 2 SU(2) - x SU(2), =
SO(4)g, which is the R symmetry of 2d A = (0,4)
supersymmetry. Under the SO(1,1) x SU(2)- x SU(2)y.
the preserved right-moving supercharges transform
as (2,2),.

(1) NS5"-brane.—The NS5"-brane fixes the motion of
the D3-branes in x>, x%, and x°, so three scalar fields
¢' obey the Dirichlet-like boundary conditions. On
the other hand, the two-dimensional gauge field A,,

PHYSICAL REVIEW D 96, 086005 (2017)

can fluctuate at the boundary, and A, satisfy the
Dirichlet-like condition. Therefore, the NS5”-brane
imposes the boundary conditions
F 2m — 0
D,¢'=0

(Neumann-like),

(Dirichlet-like). (3.16)
which are consistent with NS5”-like B-type boun-
dary conditions (2.54) and (2.55).

(ii) D5"-brane.—Since the D5"-brane is extended along
x3, x* and x°, the three scalar fields ¢’ are free to

move at the boundary. They transform as (3,1) under
SO(3)345 X SO(3)79. Meanwhile, the two-dimen-
sional gauge field A,, satisfies the Dirichlet con-
dition, because it is tangent to the D5"-brane, but the
scalar field A, can fluctuate at the boundary. Thus,
for a single D3-brane, the D5”-brane would give the
boundary conditions

FOI :O
D2¢i:O

(Dirichlet-like),

(Neumann-like). (3.17)

However, considering the field theory result dis-
cussed in Sec. I A, we expect that the above
boundary condition is generalized to

Fpp =0

Do~ 5 i, ] = 0

(Dirichlet-like),

(Nahm-like). (3.18)

That is, we expect that D3-NS5-D5” realize the
magneticlike B-type boundary conditions, which are
described by (3.18) including the Nahm-like equa-
tion. This is reminiscent of the appearance of the
Nahm equation in half-BPS boundary conditions of
4d N = 4 theories discussed in Ref. [4], where the
nontrivial boundary conditions for a multiple stack
of D3-branes provided by a D5-brane are described
by the Nahm equation due to the existence of the
fluctuating scalar fields A,.

C. D3-D5 branes

Next, we consider the N D3-branes suspended between
the two parallel D5-branes. In the low-energy limit, the
world-volume theory of the D3-branes is a theory of N
massless 3d A =4 hypermultiplets [14]. The bosonic
massless modes in the theories are the fluctuations of
the D3-branes in transverse positions x’, x%, and x°, which
we will denote by X’ X% and X°, respectively, and the
scalar field Ag. They combine into two complex scalar
fields transforming as (1,2) under SU(2). x SU(2),. The
mass parameters {M, ¢, } are given by the relative position
of the D5-branes along {x3, x* x°}.
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1. A-type boundary conditions

As discussed in Sec. III B, we can realize the two-
dimensional nonchiral N' = (2,2) supersymmetry by the
introduction of the NS5~ or D5-branes

01 2 3 4 5 6 7 8 9

D3 o o o — — — o — — -—
D5 o o o — — — — o o o (319
NS5 o o — o o — o — — o
DY o o — — — o o o o -

as in the configuration (3.6) (see Fig. 3).

Under the space-time symmetry SO(1,1) x SO(2)4,%
SO(2)75 2 SO(1,1) x U(1)o x U(1)y, the three scalar
fields X;, 1=7, 8,9, are divided into the two scalar

fields X% a = 7, 8, and the scalar field X°. As SU(2)y is
broken to U(1), these scalar fields are charged under the
vector R symmetry of 2d N = (2,2) theories.

(i) NS5-brane.—As the D3-branes can move along x’
in the presence of NS5, the scalar field Xé, which
describes the position of the D3-branes along x°, can
fluctuate at the boundary. In addition, the massless
modes of the scalar field A can also fluctuate as the
NS5-brane is extended along x5 Thus, the addi-
tional NS5-brane keeps the half of the bosonic
degrees of freedom of the 3d A/ = 4 hypermultiplet
at the boundary:

9,X8=0
62A6 = 0

9, X" =0,
82X§ - 0,

(Dirichlet-like),
(Neumann-like).

(3.20)

Let g = X7 + iAg and § = X3 4 iX° be two complex
scalar fields. Then we have

On(Req) =0, 0,(Req) =0 (Dirichlet-like),
0,(Img) =0, 0,(Img) =0 (Neumann-like).
(3.21)
i D5 D5 7 D5 D5
L i 1 j—g i i
28 | ] x | ]
[} ] [} ]
[} (] [} ]
| D3 i i D3 i
i i i i
[} (] [} ]
[} (] [} ]
NS5 — ; D5’ ==-f--=-ccoooo- r--
] ] ] ]
] ] ] ]
(a)NS5'-brane (b)D5'-brane
FIG. 3. D3-D5 system with a NS5'-brane or D5'-brane. The

NS5’ and D5'-brane provide the A-type boundary conditions for
the pure hypermultiplet where 2d A/ = (2,2) chiral multiplets
can fluctuate at the boundary.
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(ii) D5"-brane.—As D3-branes can move along x’ and x®

directions, scalar fields X7 and X3 corresponding to
directions x” and x® can fluctuate at the boundary. On
the other hand, the scalar field X0 corresponding to
x° cannot fluctuate at the boundary. Also, the
massless modes associated to Ag cannot fluctuate
at the boundary, since D5’ is extended along x°.
Similarly to the case with the NS5"-brane, the half of
the bosonic degrees of freedom of the 3d N =4
hypermultiplet can survive at the boundary. There-
fore, we have

(92}(g - 0
amA6 - O

32X? - 0,
9,X0=0,

(Neumann-like),
(Dirichlet-like).
(3.22)

Again, in terms of g and ¢ we have

91(Req) =0,
8m(Imq) =0,

91(Req) =0
Iw(Img) =0

(Neumann-like),
(Dirichlet-like).
(3.23)

2. B-type boundary conditions
Following the arguments for the D3-NS5 brane system,
N = (0,4) supersymmetry can be preserved at the boun-
dary by adding the NS5”- or D5"-branes at x*> = 0 to the
D3-D5 brane configuration where D3-branes are extended
along x> > 0 (see Fig. 4) as

01 2 3 4 5 6 7 8 9

D3 o o o — — — o — — —
D5 o o o — — — — o o o (3.24)

NS5 o o — — — — o o o o

D o o — o o o o — — -—

a
lw}
a
O
a

fmmqem—c e c e ———

D3 D3

NS5” D5" ===

[P PR w |
e ________________Sw]

R L e

(a)NS5”-brane (b)D5"-brane

FIG. 4. D3-D5 system with a NS5”-brane or D5”-brane. The
NS5”- (D5”-)brane provides the B-type boundary conditions for
the pure hypermultiplet where the 2d N = (0,4) hypermultiplet
[NV = (0,4) Fermi multiplet] can fluctuate at the boundary.
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The brane configuration (3.24) preserves R symmetry
SO(4)g =SUQ2) x SU(2)y; = SO(3)345 X SO(3)759 Of
3d N = 4 theories, and the three scalar fields X I transform
as a triplet under SO(3)4o.

(i) NS5"-brane.—Since the NS5"-brane is supported on

the x° x7, x, and x° directions, scalar field A4 and

three scalar fields X' can fluctuate at the boundary.
The NS5”-brane would lead to the Neumann con-
ditions for these scalar fields:

82X ; - O,

These conditions correspond to Neumann boundary
conditions (2.122) for the pure hypermultiplets:
0,g=0, 0,q=0 (Neumann-like). (3.26)
(i) D5"-brane.—Since the D5"-brane is extended in x°
and located at x/, x8, and x°, the scalar field A; and
the three scalar fields describing the position of the
D3-branes all satisfy the Dirichlet condition at the
boundary:
0,X'=0,  9,As=0. (3.27)
We see that the above conditions (3.27) are equiv-
alent to the conditions (2.123).
Hence, in terms of ¢ and ¢, the conditions read
Ong =0, 9,q=0

(Dirichlet-like).  (3.28)

D. D3-NS5-D5 branes

We consider A- and B-type boundary conditions for
SQCD in the context of brane configuration (3.2).

1. A-type boundary conditions

Similarly as before, we consider the extra NS5~ or D5
branes at x> = 0 in the following brane configurations:

01 2 3 4 5 6 7 8 9

D3 o o o0 — — — 0o = - -

NS5 o o o o o o — — — -—
(3.29)

D5 o o 0 — — — — o o o

NSY o o — o o — o — — o

DY o o — — — o o o o -—

As usual, the 3d N = 4 vector multiplet is realized in the
world volume of D3-branes. Also, the hypermultiplet is
realized as strings connecting D3-branes and D5-branes.
We expect that, when NS5-(D5-)brane is added, it provides
a Neumann- (Dirichlet-) like condition for {A,,, ¢} and
{Im(q),Im(q)}, but a Dirichlet- (Neumann-) like condition
for {A,, ¢} and {Re(q),Re(q)} wherem =0, 1,a = 3, 4.
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Since the NS5"-brane is located at x” and x8, two of the FI
parameters of the 3d N =4 theory would arise in the
boundary conditions as the relative positions of NS5-branes
in the x’ and x® directions. This brane picture is consistent
with the result that the deformed A-type boundary con-
ditions (2.147) for the coupled hypermultiplets involve the
two FI parameters r and Reg,. In this brane configuration,
mass parameters of the 3d N = 4 theory are given by the
relative distance between D3- and D5-branes in the x?, x*,
and x° directions. The mass parameter Img,, which
generalizes the hypermultiplet Neumann boundary con-
ditions (2.111) to the Robin-type boundary conditions
(2.144), is given by the relative distance between D3-
branes and D5-branes along the x> direction where the
position of D3-branes along the x> direction is fixed by the
NS5”-brane. Meanwhile, the mass parameter M, which is
related to the vacuum expectation value of ¢° of the
background vector multiplet, has a different nature from
Img,, above. Given the position of the D5-brane at a fixed
location of the x> and x* directions, since the NS5-brane is
supported on the x> and x* directions, the D3-brane can still
move along those directions. This is compatible with the
BPS equations (2.146) that mass parameter M appears in
boundary coupling rather than boundary conditions.

For the D5-brane, since it is located at the x° direction,
the boundary conditions would be deformed by one of the
FI parameters of the 3d A =4 theory as the relative
position of NS5-branes in the x° direction. In a field theory
analysis, we see that a single FI parameter Im¢, appears in
the deformed A-type boundary conditions (2.143) for the
coupled hypermultiplets. As the D5-brane is located at the
x> and x* directions, in a similar manner discussed above,
two mass parameters would generalize the hypermultiplet
boundary conditions. Those corresponding two mass
parameters M and Img¢,, appear in the deformed hyper-
multiplet boundary conditions (2.140) and (2.142).

2. B-type boundary conditions

Also, we consider the extra NS5”- or D5"-branes at
x> = 0 to the following brane configurations:

01 2 3 4 5 6 7 8 9

D3 o [©] [¢] —_ _ — o —_ — —_

NS5 o o o o o o — — — =—
DS (3.30)

o o o - - = = o0 o o

NSSN o o - - — - o o) o o

D5 o o — o o o o — — -—

Similarly as before, we expect that when a NS5”- (D5"-)
brane is added, it provides a Neumann- (Dirichlet-) like
condition for {A,, } and {g, ¢}, but a Dirichlet- (Neumann-)
like condition for {Ag, ¢'}.
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As the NS5"-brane is supported on the x’, x®, and x°
directions, none of the FI parameters of the 3d N =4
theory would deform the boundary conditions. This brane
perspective is consistent with the result that the deformed
B-type boundary conditions (2.148) for the coupled hyper-
multiplets involve no FI parameters in the boundary
conditions. As the NS5”-brane is located at the x3, x*
and x° directions, in a similar manner discussed above,
three mass parameters (M, ¢b,,;) would appear in boundary
conditions. In a field theory analysis, we see that the
hypermultiplet Neumann boundary condition (2.122) is
generalized to the Robin-type boundary condition (2.148)
by all three mass parameters M'.

In the case of the D5"-brane, which is located at the x7,

x% and x° directions, all three FI parameters r' would
deform the boundary conditions. This can be seen from the
deformed B-type boundary conditions (2.150) for the
coupled hypermultiplets. Since the D5"-brane is supported
in the x°, x* and x° directions, mass parameters would
not appear in boundary conditions. In fact, the deformed
B-type hypermultiplet boundary conditions (2.149) and
(2.150) are not affected by mass parameters.

E. S duality

From the analysis on the half-BPS boundary condition of
the 3d ' = 4 theory, we saw which 2d supermultiplet of
N =(2,2) and N =(0,4) from the bulk 3d N =4
multiplet arises at the boundary. We also found that such
a boundary condition can be consistently understood in
terms of brane configurations of the type IIB string theory.

Upon § duality of the type IIB string theory, the 3d
N =4 theory arising from a given brane configuration
enjoys mirror symmetry [14]. With additional branes that
provide the half-BPS boundary condition discussed in
previous sections, it is interesting to see the relation
between the boundary degrees of freedom arising from a
particular brane configuration and those arising from an S-
dual configuration of the original brane configuration. In
general, this could be a nontrivial task, but here we just take
the simplest cases, pure vector multiplet and pure hyper-
multiplet, discussed in the previous section, and would like
to see how the boundary degrees of freedom from the bulk
3d N = 4 multiplet are mapped to each other.

1. A type

In this case, we have U(1), x U(1), R symmetry of the
2d N = (2,2) theory, which is the axial and vector R
symmetry, from original SU(2). x SU(2)y R symmetry of
3d N =4. As SU(2). and SU(2),, are exchanged under a
RS map,” so U(1) and U(1), are exchanged. Hence, it is

°In the brane configuration of the type IIB string theory, R of the
RS map denotes the map x to x'* where i = 3, 4, 5 and S denotes
S duality [14]. In the following, we mean S duality by RS duality.
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expected that 3d N = 4 mirror symmetry is closely related
to 2d N = (2, 2) mirror symmetry through S duality in the
type IIB string theory. In fact, it has been argued that 3d
mirror symmetry descends to 2d mirror symmetry via
compactification [26] and also that the 2d N = (2,2)
interface theory between 3d N = 4 mirror pairs produces
a mirror map of 2d N = (2,2) chiral and twisted chiral
operators [10]. We see for the following simplest example
that the 2d mirror map is realized as S duality in the type
IIB string theory. Sodual
(i) D3-NS5-NS5/«— D3-D5-D5—The boundary de-
gree of freedom from the bulk 3d N =4 vector
multiplet arising in a D3-NS5-NS5’ system is the 2d
N = (2,2) vector multiplet or field strength multi-
plet, which is a twisted chiral multiplet. On the other
hand, the one from the bulk 3d N =4 hyper-
multiplet arising in a D3-D5-D5’ system is the 2d
N = (2,2) chiral multiplet in the adjoint represen-
tation. As two brane configurations are S dual,
which gives rise to a mirror pair between the pure
vector multiplet and the pure hypermultiplet in the
bulk, we see that the twisted chiral multiplet and
chiral multiplet at the boundary x?>=0 are ex-
changed under S duality of the type IIB string
theory or 3d N =4 mirror symmetry. This is
consistent with 2d A = (2, 2) mirror symmetry.
(ii) D3-NSS—D5/§_d—u§ﬂD3-DS—NSS’.—Similarly, in this
case, the boundary degree of freedom from the bulk
vector multiplet arising in a D3-NS5-D5’ system is
the 2d N = (2,2) twisted chiral multiplet, and the
one from the bulk hypermultiplet arising in D3-D5-
NS5'is the 2d N = (2, 2) chiral multiplet. Under S
duality of the brane configuration, those two 2d
N =(2,2) supermultiplets are mapped to each
other, which is consistent with 2d N = (2, 2) mirror
symmetry.

2. B type

The 2d N = (0,4) mirror symmetry has not been
studied much in the literature.' We expect that the N' =
(0,4) theory arising from (a more general or complicated
version of) our brane configuration and the theory arising
from the corresponding S-dual configuration give rise to the
N = (0,4) mirror pair. In the 2d A = (0,4) gauge theory
may receive the anomaly from massless charged chiral
fermions running in one loop [28], and we should take into
account the cancellation of the gauge anomaly to obtain
the effective theories. We hope to revisit this issue in the
context of the brane configuration. Here, we consider only
the map between the 2d A = (0,4) supermultiplets at the
boundary arising from the 3d N = 4 pure vector multiplet

""The 2d A = (0,4) mirror symmetry could be understood as
the special case of 2d N = (0,2) mirror symmetry [27].
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and the pure hypermultiplet discussed in the previous
section.

@) D3-NS5-NS5"<2D3-D5-D5".—The boundary de-
gree of freedom from the 3d N = 4 vector multiplet
arising in a D3-NS5-NS5” system is the 2d N =
(0,4) vector multiplet, and the one from the 3d
N =4 hypermultiplet arising in a D3-D5-D5”
system is the 2d N = (0,4) Fermi multiplet.

The 2d N = (0, 4) vector multiplet is made of an
N = (0,2) vector multiplet and Fermi multiplet in
adjoint representation, where the A = (0, 2) vector
multiplet can be expressed as an A = (0,2) field
strength multiplet, which is the N' = (0,2) Fermi
multiplet. The fermions in the A" = (0,4) vector
multiplet are charged under SO(1,1) x SU(2). x
SU(2)y as (2,2)_. Meanwhile, the N = (0,4)
Fermi multiplet is made of two N = (0,2) Fermi
multiplets in a conjugate representation of gauge
group G, and it is charged under SU(2). x SU(2)y
as (1,1)_. Since there are four real fermions in the
vector multiplet, under the S duality of the IIB
theory, the number of fermions is matched with the
number of them in the Fermi multiplet, though it is
not quite sure to explain the relation of their R
charges in the scope of this paper. It seems that better
understanding is needed for this case.

(i1) D3-NS5-D5"<25D3-D5-NS5”".—The boundary de-
gree of freedom from the bulk 3d N =4 vector
multiplet arising in a D3-NS5-D5” system is the 2d
N = (0, 4) twisted hypermultiplet, and the one from
the 3d N = 4 hypermultiplet arising in a D3-D5-
NS5” system is the 2d A = (0,4) hypermultiplet.
Upon S duality, SU(2) and SU(2) are exchanged,
so twisted hypermultiplets are mapped hypermultip-
lets, and vice versa.

IV. CONCLUSION AND DISCUSSION

In this paper, we studied the half-BPS boundary con-
ditions in 3d N = 4 gauge theories preserving N = (2,2)
and (0,4) supersymmetries at the boundary, which we call
A type and B type, respectively. We calculated the BPS
boundary equations for a vector multiplet and hypermul-
tiplet involving gauge coupling, FI, and mass deformations.
We also saw that 3d bulk supermultiplets are decomposed
to the boundary supermultiplet of preserved supersym-
metry. We found that the boundary BPS equations for the
vector multiplet, in particular, give rise to a Nahm-like
equation in the magneticlike B-type boundary conditions.
For the hypermultiplet, we saw that the Neumann-like
boundary conditions for scalar components of the hyper-
multiplet are generalized to a Robin-type boundary con-
dition upon turning on gauge coupling and mass
deformation. We proposed brane configurations in the type
IIB string theory realizing such N' = (2,2) and (0,4) BPS
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boundary conditions in 3d N = 4 theories and checked that
they are consistent with the analysis in the field theory. We
also saw how the boundary supermultiplets from the bulk
supermultiplets are mapped under S duality of the type IIB
theory.

In order to study the supersymmetric vacua of 3d N = 4
gauge theory on a half-space, it is necessary to study the
BPS boundary conditions in detail. A notable consequence
is that we get a Nahm-like equation in vector multiplet
boundary conditions of B type. It is interesting to analyze
these BPS equations in a similar way as discussed in
Ref. [4] for 4d N =4 SYM theories.

Brane realization of 2d gauge theories with (2,2) and
(0,4) supersymmetries is one of the interesting subjects.''
In particular, there is an anomaly issue in 2d N = (0,4)
theories, and it would be interesting to know how such an
anomaly condition can arise in the type IIB string theory.
Also, as we briefly discussed for the boundary degrees of
freedom from the bulk supermultiplets, the realization of 2d
N = (0,4) theories in the brane configuration will tell us,
via S duality of the type IIB theory, a mirror dual theory of
a given 2d N = (0, 4) theory from the corresponding brane
configurations. With the anomaly issue taken into account,
the study of mirror symmetry of the 2d N' = (0, 4) theory
via type IIB § duality would be one intriguing direction.
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APPENDIX: 3d N =2 SUPERSPACE
AND SUPERFIELDS

1. Spinors and superspace
We use the metric 77, = 7 = diag(—1,1,1) and 2 x 2
y# matrices to satisfy
{r.r} =2 (A1)
yVis taken as anti-Hermitian and y' and y? as Hermitian. We

introduce a three-dimensional charge conjugation matrix e,
which has the following properties:

"0Other brane realizations for 2d N = (2,2) and (0,4) have
been discussed in Refs. [29,30], respectively.
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e =€, el = —e, (er"\ T =ept.  (A2)
Two-component spinors y* with upper or lower indices

transform as

Ya = 6(1[)’1///}’ l//a = (6_1)(lﬂy//}' (A3)
We use the following summation convention:
= a = ap¥ = pY
Ow) =xwa =X, (r'w)* ="y’
(€yMW)(1 = (€yﬂ)(zﬁwﬁ' (A4)
We define o matrices as
ot = eyt (AS)

and use the summation expression oy := .f“(ey")aﬂwﬁ. We
define the conjugation by

Vo= =V, (A6)
Here are useful spinor formulas:
Sy =i, So'y = —yo'e,
wory =0,  yey'y = —yery, (A7)
) =-we  (o'w) =Wo'e = ~Co'y,  (AS)
0,05 = %eaﬂae, 0°0F = —% (e )00, (A9)
1
(Oy)(0x) = =5 (60) (wx), (A10)
(0% (O) = ~ 5 00y, (Al1)
00000 — %9999;7#”, (A12)
1 1
—5 D WE) =5 o) (wo,é) = () wa).  (Al3)

where vy, £, 6, and A are two-component spinors.

We consider the 3d N =2 superspace coordinates
(x*,6% 6% which transform as x* — x* — iec"d — iec"0,
0 — 6 + ¢, and @ — 0 + & under the supersymmetry trans-
formations. Let us define the following supersymmetric
derivatives:

Qm = _i + i("”g)aaﬂ’

0 _
=——i(6"0),0,,
Qa l(G )a M 89(1

~ 90"
(A14)
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o . - _ o .
Da ::%X—i—l(dﬂg)aaﬂ, Da = —%—l(aﬂe)aaﬂ.
(A15)
They have the anticommutation relations
{Qa: Oy} = 2i0l;0,, {Dq, Dy} = =2ic},0,,
(A16)

with all the other anticommutators vanishing. The super-
symmetry transformation of a superfield ®(x,8,0) is
expressed as

50(x.0.0) = (60 —E0)®. (A17)

2. Supermultiplet
a. Chiral multiplet
Chiral superfield ®(x, 6, 0) is defined by the constraint

D,® = 0. (A18)

Using y* := x* + iflc#0, one can obtain the component field
representations:

© = D(y,0)
= $(y) + V20y(y) + 00F(y)

= ¢(x) + 0500, (x) — %6’6’@@ 0% (x)
+ V20 (x) + \k (66) (060, (x)) + OOF (x).
(A19)
Similarly, the antichiral superfield ®(x,,6) obeying the

constraint D,,® =0 can be obtained from (A19) by
conjugation:

® = F(x) — 10600, B(x) - im 09°p(x)

— V20w (x) - Lz (89) (000, 7(x)) — DO ().

(A20)
b. Vector multiplet
The vector superfield satisfies the relation
V=V. (A21)

Choosing the Wess-Zumino gauge, we obtain
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_ _ __ _ 1 __
V = —006"0A, + i00c — i000 1 +i60 0 04 — 566’99D(x).
(A22)

One can express a field strength as a linear multiplet:

S:=—LDDV.

5 (A23)

PHYSICAL REVIEW D 96, 086005 (2017)
In components, it is expressed as
L 1 -
X=0+61—-210—i(00)D + 3 (Oey*O)F ,,

i - - i-- 1 __
-5 00(0c+0,4) + 5 00(05"0,4) + 1 0060 0°0,0.
(A24)
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