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We study (1þ 1)-dimensional P-wave holographic superconductors described by three- dimensional
Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3=CFT2

correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there
is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly
coupled (1þ 1)-dimensional boundary theory, this holographically corresponds to the formation of a
charged vector condensate which breaks spontaneously both the Uð1Þ and SOð1; 1Þ symmetries. We
numerically compute both the free energy and the ac conductivity for the superconducting phase of the
boundary field theory. Our numerical computations clearly establish that the superconducting phase of the
boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual
bulk theory effects the conductivity in the boundary field theory.
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I. INTRODUCTION

The gauge/gravity correspondence stands as one of
the most significant developments in theoretical physics
over the last decade. In the large-N limit, this duality
relates a weakly coupled theory of gravity in the AdS
spacetime to a strongly coupled conformal field theory
living on the boundary of the AdS spacetime [1–4]. In
subsequent studies, it is also shown that the strongly
coupled boundary conformal field theories at finite temper-
ature can be holographically related to the bulk geometries
described by the AdS black hole [5]. In this setup, the
Hawking temperature of the black hole is then considered
to be the temperature of the strongly coupled boundary
field theory. Moreover, the Hawking-Page phase transition
for the AdS black hole in the bulk holographically captures
the confinement-deconfinement phase transition in the
boundary field theory. Later, it was realized that the
strongly coupled boundary field theories at a finite temper-
ature as well as a finite charge density can also be con-
sidered to be the holographic dual to a gravitational theory
coupled to the gauge fields and other matter fields,
admitting a charged AdS black hole solution. This form
of holographic duality endows us with an extremely power-
ful tool for describing strongly coupled condensed matter
systems at finite temperature and chemical potential. In this
context, the study of superconductivity in strongly coupled
condensed matter systems was initiated with Gubser’s
seminal work [6], which showed that a charged scalar living

on a Reissner-Nordstrom-AdS black hole background
becomes unstable enough near the black hole horizon to
form a condensate which can mimic the behavior of electrons
forming the Cooper pair in a superconductor. Later, it was
shown by Hartnoll et al. [7,8] that this phase transition in the
bulk as a result of the instability of the matter field (a charged
scalar) corresponds to a superconducting phase transition in
the dual strongly coupled boundary field theory. The boun-
dary field theory mentioned above describes an S-wave
superconductor, signifying the zero orbital angular momen-
tum of the corresponding Cooper pair wave function, and it is
dual to an Abelian Higgs model with a bulk complex scalar
field charged under the Maxwell field [9–13].
Although the conventional superconductors can be very

well described by BCS theory, a complete understanding of
the high-Tc superconductors, especially the pairing mecha-
nism, remains to be achieved. It is commonly believed that
the theory of high-Tc superconductors cannot be tackled
with standard perturbative methods, but a tractable strongly
coupled theory might provide insight to this problem. In
particular, being the most promising candidate to explore
strongly coupled nonperturbative systems, gauge=gravity
duality provides us an alternative way to study the high-Tc
superconductors. Following the holographic prescription,
in all the pioneering works previously mentioned, an
Abelian Higgs model with a charged scalar field on a
black hole background is employed in the bulk side of the
correspondence. The notion of temperature is provided by
the black hole, and below a critical temperature, the
formation of a charged scalar hair is observed. This implies,
in the boundary field theory side of the correspondence,
that a charged scalar operator acquires a nonzero vacuum
expectation value below the critical temperature, breaking
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the global U(1) symmetry. The two main electronic proper-
ties of a superconductor, namely a divergent Drude peak at
zero frequency and the formation of a gap in the real part of
the electric conductivity, are also achieved. Diverging
conductivity is hardly surprising because in a normal
conductor the breaking of the translational invariance
ensures a finite value of the conductivity at any frequency,
whereas the boundary field theories with a superconducting
phases are fully translationally invariant. Moreover, the
transition between the normal and the superconducting
phase is studied both inside the probe limit, by neglecting
the backreaction of matter fields to the background geom-
etry [7], and by explicitly taking the backreaction into
account [8]. In the latter case, one observes a harder
condensation; i.e., the transition temperature is shifted to
lower values.
In a real superconductor, due to the attractive interaction

mediated by phonons, there is a formation of the Cooper
pair consisting of electrons with opposite spins and
momenta. The Cooper pair wave function plays the role
of order parameter in the phase transition and its orbital
angular momentum l can take values as l ¼ 0 (S-wave),
l ¼ 1 (P-wave) and l ¼ 2 (D-wave), etc. While an S-wave
holographic superconductor can be studied with the use of
a charged scalar field coupled to an Einstein-Maxwell
system as mentioned before, D-wave superconductors can
be realized holographically by the condensation of a
charged spin-two matter field in a similar fashion [14–16].
For P-wave superconductors, various models have been
proposed. The first model makes use of an SU(2) Yang-
Mills field in the bulk and one of the gauge degrees of
freedom is considered to be dual to spin-one order
parameter in the field theory side of the correspondence
[17]. In the two other models, superconductivity is
achieved by the condensation of various charged matter
fields in the bulk, namely a two-form field [18,19] and a
massive spin-one vector [20,21]. In the case of charged,
massive spin-one condensate, it is shown that the magnetic
moment of the spin-one field plays a crucial role when the
phase transition is induced by an external magnetic field
[20]. Other important studies along this line of research can
be found in [22–41].
The study of (1þ 1)-dimensional S-wave hologra-

phic superconductors was initiated in [42], followed by
further generalizations and extensions in [43–50]. (1þ 1)-
dimensional P-wave holographic superconductors are
investigated using the probe brane construction in [51].
Moreover, there is further improvements of holographic
realization for P-wave superconductor using a model
described as an Einstein-Maxwell system coupled to a
charged, massive spin-one matter field [20,21]. In this
present work, we focus on the same Einstein-Maxwell-
charged vector model of P-wave holographic supercon-
ductor in the context of AdS3=CFT2 correspondence.
Although this model has been already examined in the

four-dimensional bulk, it is by no means trivial to study
the same model in three dimensions. Apart from various
technical differences appearing in the formation of the
condensate and the computation of conductivity of the dual
field theory, we present a remarkable feature of this model
which exhibits itself only in the case of three-dimensional
gravitational bulk but not in the higher dimensions. It turns
out that in our present analysis, the ac conductivity of the
dual field theory depends on the magnetic moment of
the spin-one field in the absence of an external magnetic
field. On the contrary, in higher-dimensional cases, the
magnetic moment can play a role in the physics of this
model only when an external magnetic field acts on the
system. This peculiar feature of the ac conductivity in
(1þ 1)-dimensional system within the regime holographic
duality is the main motivation for the present work.
The organization of the paper is as follows. In Sec. II, we

introduce the bulk gravitational theory that we use and give
the field equations. Section III is devoted to the details of
normal and superconducting phases. We reserve Sec. IV in
order to compute the free energy of the system for both
normal and superconducting phases. In Sec. V, we give
details of the computation of conductivity for the dual field
theory and compare it with the higher-dimensional cases. In
Sec. VI, we conclude with a summary of our results,
discussions and some possible future investigations of
this model.

II. MODEL

In this work, we use a bulk model in (2þ 1) dimensions
dual to a (1þ 1)-dimensional boundary field theory with a
superconducting phase. The main feature of the model
captures a spontaneous breaking of local U(1) symmetry in
the bulk that holographically corresponds to a spontaneous
breaking of global U(1) symmetry at the boundary. It is
described by the Einstein-Maxwell action with a cosmo-
logical constant, coupled to a charged, massive spin-one
field as follows [20,21]

S ¼ 1

2κ2

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 2

L2
−
1

4
FμνFμν

−
1

2
ρ†μνρμν −m2ρ†μρμ þ iqγρμρ

†
νFμν

�
; ð2:1Þ

where L is the AdS length and κ2 ¼ 8πG characterizes the
Newton’s constant in the bulk. Moreover, q and m are the
electric charge and the mass of the spin-one field, respec-
tively. We employ the usual Maxwell field strength as
Fμν ¼ 2∇½μAν� and ρμν ¼ 2D½μρν� with Dμ ¼ ∇μ − iqAμ.
The last term in the bulk action (2.1) represents a nonlinear
interaction between the complex vector field ρμ and the
gauge field Aμ with γ being the magnetic moment of the
vector field ρμ. In [20], it has been shown that this
interaction term has a significant effect in the case of a
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four-dimensional bulk theory when an external magnetic
field is applied to the system. A similar study can be
performed to investigate this effect in the three-dimensional
bulk where the magnetic field is a pseudo-scalar. However,
we will focus our attention to phase transition and con-
ductivity of boundary field theory in the absence of any
external magnetic effect. As a nice example of richness
of lower-dimensional physics, this nonlinear term will
have a nontrivial role in the conductivity properties of
the boundary field theory.
We consider this model in the probe limit by neglecting

the backreaction of the matter fields to the background
geometry. While this is in general enough to probe the
main characteristics of the phase transition and conduc-
tivity properties, it is very well known that further study
by including backreaction effects can be useful especially
for a better understanding of the phase transition [8]. In
order to work in the probe limit, it is customary to scale the
fields as ρμ → ρμ=q, Aμ → Aμ=q and take the limit q → ∞.
Then, the gravitational field equations become sourceless
Einstein’s equations with the cosmological constant and the
matter equations read as

∇νFνμ ¼ iðρνρ†νμ − ρν†ρνμÞ þ iqγ∇νðρνρ†μ − ρ†νρμÞ; ð2:2Þ

Dνρνμ ¼ m2ρμ − iqγρνFνμ: ð2:3Þ

The first one among the above set of equations is the
Maxwell’s equation sourced by the charged spin-one field
and the second one is the field equation for the spin-one
field itself. In the boundary theory, the vacuum expecta-
tion value of a charged vector operator plays the role of
order parameter in the theory. According to the standard
AdS=CFT dictionary, this charged vector operator is
sourced by the boundary value of the bulk field ρμ. In
the bulk side, as first demonstrated in the S-wave case [7,8],
the charged matter field becomes tachyonic enough when
the temperature is lower than a critical value Tc to develop a
nontrivial profile around the black hole. The formation of
this vector hair in the bulk side corresponds to a super-
conducting phase transition as the dual charged operator
acquires a nonzero vacuum expectation value below the
critical temperature, breaking the U(1) and SO(1,1) sym-
metries at the boundary. The main characteristic of P-wave
superconductors in the case of the four-dimensional bulk
theory is that the condensation breaks the SO(2) rotational
symmetry at the boundary, creating an anisotropy in spatial
coordinates. However, in our holographic set up this cannot
hold since only one spatial dimension is available at the
boundary.
With this brief description of three-dimensional holo-

graphic model realizing a superconducting phase transition
in the boundary theory, in the next section, we elaborate
more on how to attain the various phases as well as
transition among those phases.

III. PHASE TRANSITION: NORMAL AND
SUPERCONDUCTING PHASES

To understand the superconducting phase of the strongly
coupled (1þ 1) boundary theory, we explore further its
holographic dual described by a (2þ 1)-dimensional grav-
ity theory coupled to Maxwell field as well as a charged
spin-one field. As mentioned previously, the spin-one field
develops a nontrivial profile in the bulk below a certain
temperature, resulting in two distinct phases in the gravity
side of the correspondence. Accordingly, the holographic
correspondence suggests that the charged operator dual to
the spin-one bulk field acquires a nonzero vacuum expect-
ation value at the boundary field theory, and becomes the
order parameter distinguishing the normal and supercon-
ducting phases. It is important to note that above the critical
temperature Tc, the gravity theory admits a charged BTZ
black hole solution that holographically corresponds to the
normal phase of the boundary theory. Whereas, below Tc,
the gravity theory allows a nonvanishing profile of a
charged spin-one field around the charged BTZ black hole,
signifying the superconducting phase of the boundary
theory. In this present section, we give the details of the
holographic description of both phases of the boundary
theory and the corresponding phase transition among them.

A. Normal phase

Above the critical temperature Tc, the bulk description of
the normal phase is characterized by the vanishing of the
spin-one field ρμ ¼ 0 and the bulk model that we use here
reduces to the Einstein-Maxwell theory with cosmological
constant in three dimensions. In this phase, the allowed
solution is the charged BTZ black hole described by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dx2; ð3:1Þ

fðrÞ ¼ r2 − r2h þ
μ2

2r2
ln

�
rh
r

�
; ð3:2Þ

Aμdxμ ¼ μ ln

�
rh
r

�
; ð3:3Þ

where μ is the chemical potential, r ¼ rh ¼ 1 corresponds
to the horizon radius and the Hawking temperature of the

black hole is given by TBh ¼ jf0ðrhÞj
4π ¼ j4−μ2j

8π . In what follows
we show the formation of a vector hair below the critical
temperature Tc, giving rise to the superconducting phase in
the dual field theory.

B. Superconducting phase

In order to show the existence of the superconducting
phase, we work within the probe limit and use the BTZ
black hole as the background spacetime to solve equations
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for the gauge field and the spin-one field. By adopting the
following ansatz,

Aμdxμ ¼ ϕðrÞdt; ρμdxμ ¼ ρxðrÞdx; ð3:4Þ

we obtain the equations for the electric field ϕ and the x
component of the spin-one field ρx as

ϕ00 þ 1

r
ϕ0 −

2ρ2x
fr2

¼ 0 ð3:5Þ

ρ00x þ
�
f0

f
−
1

f

�
ρ0x þ

�
ϕ2

f2
−
m2

f

�
ρx ¼ 0: ð3:6Þ

Taking the boundary limit of these equations (r → ∞), one
can find the boundary behavior of the fields as

ϕ ¼ −μ logðrÞ þ ρþ � � � ; ρx ¼
ρx−
rΔ−

þ ρxþ
rΔþ

þ � � � ;
Δ� ¼ �m: ð3:7Þ

where we interpret μ, ρ, ρx−, ρxþ as the chemical potential,
the charge density, the source and the vacuum expectation
values of the operator coupling to ρx at the boundary
field theory, respectively.1 ρx− should be set to zero as a
boundary condition to ensure that the phase transition is
realized in the absence of an external source. We impose
ϕð1Þ ¼ 0 such that the norm of the gauge field Aμ remains
finite at the horizon and the x component of the spin-one
field satisfies

ρxð1Þ ¼
2

m2
ρ0xð1Þ: ð3:8Þ

We solve the equations for the electric field ϕ and the x
component of the spin-one field ρx (3.5)–(3.6) numerically

subjected to the boundary conditions both at the horizon
and the boundary for a particular choice of mass, m2 ¼ 1

4
,

satisfying the BF-bound [52] for the system we consider
here. As shown in the Fig. 1, the condensation occurs below
the critical temperature Tc and the curve is qualitatively
similar to what one expects from BCS theory. However, it is
important to note that in our case the condensate starts
decreasing slightly starting from T=Tc ¼ 0.6. This might
be due to the fact that we work within the probe limit
approximation. Nevertheless, to show the condensation of
the operator this approximation turns out to be legitimate.
In the next section, we will study the free energy difference
of the normal and superconducting phases and determine
which phase is thermodynamically favorable below the
critical temperature Tc.

IV. FREE ENERGY

In this section, we calculate the free energy of the system
for both normal and superconducting phases by working in
the canonical ensemble where the charge density is fixed.
The free energy is holographically identified with temper-
ature times the on-shell Euclidean action. Since we work in
the probe limit, neglecting the gravitational part, we write
the Euclidean action as

−2κ2SE ¼
Z

d3x
ffiffiffiffiffiffi
−g

p 1

2
Aν∇μFμν

−
Z

d2x
ffiffiffiffiffiffi
−h

p
nμ

�
1

2
AνFμν þ ρ†μρμν

�

þ SðρÞct þ SðAÞct ; ð4:1Þ

by employing field equations (2.2)–(2.3). hμν is the induced
metric at the boundary (r → ∞) and h denotes its deter-
minant. Two counter terms we introduce here to make the
action finite are given by

SðρÞct ¼ −Δ−

Z
d2x

ffiffiffiffiffiffi
−h

p
hμνρ†μρν;

SðAÞct ¼ 1

2 lnΛ

Z
d2x

ffiffiffiffiffiffi
−h

p
hμνAμAν: ð4:2Þ

The first term is required to remove the infinities arising
from the boundary expansion of massive spin-one field ρμ.
The second term is needed to regularize the logarithmic
divergence which appears in the boundary expansion of the
gauge field Aμ. It is not needed in higher dimensions and
requires special care. The boundary integrals containing the
gauge field Aμ should be evaluated at r ¼ Λ and then one
takes the limit Λ → ∞ at the end (see [53] for details).
Substituting the boundary behavior of fields (3.7) into the
Euclidean action (4.1) gives the free energy as

FIG. 1. Condensation of the vector operator for m2 ¼ 1=4.

1From this computation, it can also be seen that the BF-bound
[52] for a spin-one particle in three dimensions is m2 > 0.
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Ω ¼ 2κ2F
V

¼ 1

2
μρ − 2Δþρx−ρxþ −

Z
∞

rh

dr
ffiffiffiffiffiffi
−g

p 1

2
Aν∇μFμν;

ð4:3Þ

where V ¼ R
dx. Using this expression, the free energy

difference between the superconducting and the normal
phase denoted by (Ω − Ωnormal) can be computed as a
function of temperature. As can be seen from Fig. 2, the
superconducting phase is thermodynamically favored
below the critical temperature Tc. The phase transition is
second order, which can be checked from the derivative of
free energy with respect to temperature. We now move to

the next section in order to compute the conductivity in
the superconducting phase using the holographic dual
bulk model.

V. CONDUCTIVITY

In this section, we compute the conductivity of the
boundary field theory by introducing appropriate electro-
magnetic perturbation on the black hole background. This
electromagnetic perturbation in the bulk results in a current
at the boundary which is sourced by the boundary value of
the gauge field. For a (1þ 1)-dimensional field theory, the
conductivity is defined as

Jx ¼ σxxEx; ð5:1Þ

not allowing Hall conductivity since there is only one
spatial dimension.
Incidentally, to introduce the electromagnetic perturba-

tion in a consistent way one needs to turn on also matter
perturbations as follows2

Aμdxμ ¼ e−iωtAxdx

ρμdxμ ¼ e−iωtρtðrÞdtþ e−iωtρrðrÞdr;
ρ†μdxμ ¼ e−iωtρ†t ðrÞdtþ e−iωtρ†rðrÞdr; ð5:2Þ

where the perturbations ρμ and ρ†μ are treated independ-
ently. Inserting the above form of perturbations into the
matter equations (2.2)–(2.3) results in the following lin-
earized equations

0 ¼ A00
x þ

�
f0

f
−
1

r

�
A0
x þ

ω2

f2
Ax þ

iρx
rf2

ð−irðρtðγω − ϕÞ − ρ�t ðγωþ ϕÞ

þ rγfð−ρr þ ρ�rÞf0 þ γf2ðρr − ρ�r − rρ0r þ rρ0�r ÞÞ − ið1þ γÞðρr − ρ�rÞρ0xÞ ð5:3Þ

0 ¼ ρ00t þ
1

r
ρ0t −

m2

f
ρt þ

iρx
rf2

ðrfðrðωþ ϕÞρ0r þ ρrðωþ ϕþ rð1þ γÞϕ0Þ

þ rγfð−ρr þ ρ�rÞf0 þ γf2ðρr − ρ�r − rρ0r þ rρ0�r ÞÞiAxρxðγω − ϕÞÞ ð5:4Þ
0 ¼ −r2ρrð−m2f þ ðωþ ϕÞ2Þ þ ir2ðωþ ϕÞρ0t − iðfð−γρxA0

x þ Axρ
0
xÞ

þ r2γρtϕ0Þ: ð5:5Þ

Moreover, the equations for ρ†t and ρ
†
r can be obtained by

the set of replacements ρt → ρ†t , ρr → ρ†r and ω → −ω.
Since the equations for ρr and ρ†r are algebraic, it is
straightforward to solve the corresponding equations for

these radial components of the matter perturbation and
utilize the result to obtain a set of second order coupled
differential equations for Ax, ρt and ρ†t . Furthermore it is
evident from the form of these set of coupled differential
equations that the necessity of introducing matter pertur-
bations plays the role of consistency conditions in the bulk
theory. For example, without any matter perturbation, field
equations for the spin-one field forces to Ax ¼ 0. As shown

FIG. 2. Plot showing the free energy difference of the super-
conducting and the normal phase (Ω − Ωnormal) verses temper-
ature for m2 ¼ 1=4.

2This also occurs in some models of D-wave [15] and dþ id
[54] holographic superconductors.
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in [20], in higher-dimensional cases, one can introduce the
electromagnetic perturbation in another spatial direction
such as Ay and the equation for this perturbation decouples
from the rest of the perturbations. Therefore, one can
compute conductivity from the equation for the perturba-
tion Ay alone and there is no dependence in the magnetic
moment. In the case of three-dimensional bulk, however,
the consistency of Ax perturbations forces us to introduce
matter perturbations and as a result of that conductivity
becomes dependent on the magnetic moment.
In order to solve the perturbation equations, one should

impose the near horizon behavior of the fields as

Ax ¼ c1ð1 − r−1Þ�iω=2; ρt ¼ c2ð1 − r−1Þ�iω=2;

ρ†t ¼ c3ð1 − r−1Þ�iω=2; ρr ¼ c4ð1 − r−1Þ�iω=2−1;

ρ†r ¼ c5ð1 − r−1Þ�iω=2−1; ð5:6Þ

where ci’s are arbitrary constants. The last two equations
in (5.6) are the consequences of the fact that the spin-one
field ρμ has a finite norm at the horizon. We choose minus
sign to impose the ingoing wave boundary condition which
is required to ensure causality. Once the parameters
ðc1; c2; c3Þ are fixed, equations for Ax, ρt, and ρ†t can be
integrated out to the boundary.
At the boundary, perturbations have the following

behavior

Ax ¼ −A logðrÞ þ Bþ � � � ; ρt ¼
ρt−
rΔ−

þ ρtþ
rΔþ

þ � � � ;

ρt ¼
ρt−
rΔ−

þ ρtþ
rΔþ

þ � � � ; Δ� ¼ �m: ð5:7Þ

Here, the leading term in the expansion of the perturba-
tion Ax is −A logðrÞ, which leads us to treat A as the source
and B as the response. Therefore, the Green’s function is
defined as [42,55]

G ¼ −
B
A
¼ lim

r→∞

Ax þ A0
xr logðrÞ
rA0

x
; ð5:8Þ

and with this form of perturbations, the conductivity
becomes

σxx ¼ −
i
ω
G ¼ lim

r→∞

i
ω

Ax þ A0
xr logðrÞ
rA0

x
: ð5:9Þ

Nonrenormalizable terms in the near boundary expan-
sions of ρt and ρ†t should be set to zero as a boundary
condition and it can be achieved in principle by shooting
method. However, as discussed in [54] for a similar setup,
the fact that the perturbation equations are linear in Ax, ρt
and ρ†t make this task considerably simpler. One can simply
choose any set of (c1, c2, c3) to generate a set of solutions
for Ax, ρt and ρ

†
t , which do not have the correct behavior at

the boundary. Generating three different sets of solutions

(AðiÞ
x , ρðiÞt , ρ†ðiÞt ) (i ¼ 1, 2, 3) and taking a linear combina-

tion of them in the following way

Ax ¼ Að1Þ
x þ αAð2Þ

x þ βAð3Þ
x ; ρt ¼ ρ†ð1Þt þ αρð2Þt þ βρð3Þt ;

ρ†t ¼ ρ†ð1Þt þ αρ†ð2Þt þ βρ†ð3Þt ; ð5:10Þ

with α and β being constants, produce another set of
solutions since it is a linear system of equations.
Furthermore, the constants (α, β) can be chosen in such
a way that the nonrenormalizable modes of ρt and ρ

†
t vanish

and thus we can fix the physically consistent solution for
Ax. Having the solution for Ax, the conductivity can be read
off using the expression in Eq. (5.9).
In Figs. 3, 4, and 5, we present the numerical results for

the ac conductivity of the (1þ 1)-dimensional boundary
field theory, and we show that the boundary theory exhibits
the properties of a P-wave holographic superconductor. In
each of these figures, we demonstrate the comparative plots
for the real part of the ac conductivity for different values of
temperatures T=Tc ≈ 0.4, T=Tc ≈ 0.6 and T=Tc ≈ 0.8 at
fixed values of the parameter γ. From these plots we
observe that the real part of the ac conductivity diverges
near ω=T ¼ 0. The presence of a delta function can be
verified from the divergent behavior of the imaginary part

FIG. 3. For m2 ¼ 1=4, real and imaginary parts of the ac conductivity for superconducting phase are plotted with respect to ω=T for
fixed value of γ ¼ 0.01. The blue, red and green curves correspond to the temperatures T=Tc ≈ 0.4, T=Tc ≈ 0.6 and T=Tc ≈ 0.8,
respectively.

ALKAC, CHAKRABORTTY, and CHATURVEDI PHYSICAL REVIEW D 96, 086001 (2017)

086001-6



(Im½σ� ∼ 1
ω) through the Kramers-Kronig relation. However,

in some of the case that we consider, we do not observe
such a behavior due to numerical limitations. There is also a
characteristic peak which tends to be located at lower
values ofω=T as the temperature increases. Moreover, from

these figures, it may be observed that there is a gap
formation indicated by the significant decrease of the real
part of ac conductivity at a certain frequency for lower
value of the temperature T=Tc ≈ 0.4 and higher value of the
parameter γ ¼ 0.3. This shows that the superconducting

FIG. 6. For m2 ¼ 1=4, real part of the ac conductivity for
superconducting phase are plotted with respect to ω=T for fixed
value of T=Tc ≈ 0.4. The blue, red and green curves correspond
to the different values of the magnetic moment as γ ¼ 0.01,
γ ¼ 0.1 and γ ¼ 0.3, respectively.

FIG. 7. For m2 ¼ 1=4, real part of the ac conductivity for
superconducting phase are plotted with respect to ω=T for fixed
value of T=Tc ≈ 0.6. The blue, red and green curves correspond
to the different values of the magnetic moment as γ ¼ 0.01,
γ ¼ 0.1 and γ ¼ 0.3, respectively.

FIG. 5. For m2 ¼ 1=4, real and imaginary parts of the ac conductivity for superconducting phase are plotted with respect to ω=T for
fixed value of γ ¼ 0.3. The blue, red and green curves correspond to the temperatures T=Tc ≈ 0.4, T=Tc ≈ 0.6 and T=Tc ≈ 0.8,
respectively.

FIG. 4. For m2 ¼ 1=4, real and imaginary parts of the ac conductivity for superconducting phase are plotted with respect to ω=T for
fixed value of γ ¼ 0.1. The blue, red and green curves correspond to the temperatures T=Tc ≈ 0.4, T=Tc ≈ 0.6 and T=Tc ≈ 0.8,
respectively.
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phase is preferred for small values of temperature and
higher values of the magnetic moment parameter γ.
In Figs. 6, 7, 8, we have also shown the comparative

plots for the real part of the ac conductivity for different
values of the parameter γ ¼ 0.01, 0.1 and 0.3 keeping the
temperature fixed. From Fig. 8, one sees that there is no
significant effect of γ at high temperatures. For the temper-
atures T=Tc ≈ 0.4 and T=Tc ≈ 0.6, increasing the value of
the parameter γ shifts the location of the peak to the higher
values of ω=T. On the other hand, there is a characteristic
dip which is shifted to the lower values of ω=T as γ
increases. We also see that it gets vanishingly deeper with
increasing γ which indicates a soft gap formation at higher
value of the parameter γ.

VI. CONCLUSION

In summary, here we have studied a model of (1þ 1)-
dimensional P-wave holographic superconductors using
Einstein-Maxwell theory coupled to a massive, charged
vector field in three dimensions. The formation of vector
hair was shown in the probe limit, which causes the
condensation of the complex vector operator in the boun-
dary field theory, breaking the U(1) and SO(1,1) sym-
metries spontaneously. This differs from the proposed
gravitational duals of the (2þ 1)-dimensional P-wave
holographic superconductor models studied earlier in
[17–21] as in these models the vector condensate breaks
the both the U(1) and the rotational symmetry in the
(2þ 1)-dimensional boundary. Computing the free energy
of the boundary field theory corresponding to the (1þ 1)-
dimensional P-wave holographic superconductor, we show
that the superconducting phase is thermodynamically
favorable than the normal phase which is also a common

feature of earlier studied models of P-wave holographic
superconductors.
We have also computed the conductivity of the boundary

field theory in the superconducting phase and exhibit a
feature of this model which is required by the consistency
of perturbations introduced in the three-dimensional bulk.
The conductivity is affected by the magnetic moment term
even in the absence of an external magnetic field. To
understand the behavior of conductivity in a better way, we
have plotted the Re½σ�with respect to the ac frequency ω=T
for different choices of the magnetic moment γ and the
temperature T=Tc keeping one of them fixed at a time. For
temperatures T=Tc ≈ 0.4 and T=Tc ≈ 0.6, before attaining
an asymptotic for large values of ω=T, Re½σ� develops a dip
as well as a peak at certain nonzero values of ω=T.
Increasing the magnetic moment γ results in a sharper
decrease to the dip and shifts it to the lower values of ω=T.
On the contrary, when γ takes higher values the peak is
shifted to the higher values of ω=T. As we see from our
analysis, the ac conductivity of the (1þ 1)-dimensional
holographic P-wave superconductor is largely dependent
on the values of the magnetic moment γ and a soft gap
formation occurs only for large values of γ and low values
of the temperature. This behavior is radically different from
the higher-dimensional case where the same model is
employed to study (2þ 1)-dimensional P-wave holo-
graphic superconductors [20,21]. In this case, there is no
dependence of conductivity on the magnetic moment term
in the absence of an external magnetic field. Additionally,
one observes a hard gap formation which is characterized
by the vanishing of the real part of ac conductivity up to a
certain value of the frequency ω. It would be very
interesting to understand the interpretation of γ and its
influence on the ac conductivity from the boundary field
theory perspective.
There are number of directions one can pursue for further

investigation of this model. The phase transition can be
studied by taking the back-reaction into account to under-
stand the nature of the condensate near T ¼ 0, where the
probe limit approximation might fail to capture the details.
One can also consider the duality on a more general
background geometry such as Lifshitz black hole. One
interesting possibility existing in three dimensional bulk is
to consider a complex spin-one field with topological mass
as condensate and investigate the effect of parity breaking
term on the conductivity. Analytical methods can be used to
shed light on different aspects of this model in each of
above mentioned scenarios. The last but not the least, it
might be interesting to study the phase transition driven by
an external magnetic field, which is a pseudoscalar in three
dimensions.
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