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We analyze correlations between pairs of particle detectors quadratically coupled to a real scalar field.
We find that, while a single quadratically coupled detector presents no divergences, when one considers
pairs of detectors, there emerge unanticipated persistent divergences (not regularizable via smooth
switching or smearing) in the entanglement they acquire from the field. We have characterized such
divergences, discussed whether a suitable regularization can allow for fair comparison of the entanglement
harvesting ability of the quadratic and the linear couplings, and finally found a UV-safe quantifier of
harvested correlations. Our results are relevant to future studies of the entanglement structure of the
fermionic vacuum.
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I. INTRODUCTION

The vacuum state of a quantum field displays quantum
correlations between observables defined in spacelike
separated regions [1,2]. This vacuum entanglement has
been studied in quantum foundations, and has found a
variety of applications such as quantum energy teleporta-
tion [3,4], the black hole information loss problem [5] and
firewalls, along with black hole complementarity [6,7].
In a phenomenon called “entanglement harvesting” [8],

correlations in a quantum field (such as the electromagnetic
field) can be swapped to particle detectors (such as atoms or
qubits). This is possible even when the particle detectors
remain spacelike separated throughout the duration of
their interaction with the field. This was first shown by
Valentini [9] and later by Reznik et al. [10,11].
Since then, entanglement harvesting has been shown

to be sensitive to the background geometry of spacetime
[12–14], as well as the topology [15]. Additionally, it has
been shown that entanglement harvesting can be done
sustainably and distilled into Bell pairs in a process
called “entanglement farming” [16], a protocol that
can be adapted to create a quantum seismometer [17].
Entanglement harvesting has also been studied in detail in
timelike separation contexts [18,19] with implementation
proposals in different testbeds from quantum key distribu-
tion based on homodyne detection [20] to strongly coupled
superconducting qubits [21].
To model the entanglement-swapping interaction

between the detectors and field, the Unruh-DeWitt detector

model is used. This model utilizes a first-quantized system
(called a detector) linearly coupled to a scalar bosonic field.
While most of our knowledge of entanglement harvesting
has been gleaned from this setup [12–17,22], there has been
some exploration of more realistic models such as electro-
magnetic coupling of atoms [23]. All these studies, how-
ever, analyzed entanglement harvesting from bosonic
fields.
It is known from fundamental studies that there are

differences between the entanglement structure of the vac-
uum of fermionic and bosonic fields [24–41]. However, a
study of entanglement harvesting in fermionic setups has
never been performed. A study of detector-based entangle-
ment harvesting from a fermionic vacuum could resolve
ambiguities in defining entanglement measures between
disjoint regions of a fermionic field [32,32,35–41]. The
reasons why this has not been done can be traced back to
fundamental difficulties associated with particle detector
models for fermionic fields.
To analyze fermionic fields from the perspective of

localized particle detectors a detector model was introduced
that consisted of a cavity coupled to a fermionic field [42],
much like Unruh’s original detector was a cavity coupled to
a bosonic field [43]. Later, Takagi introduced an UDW-like
model for fermionic fields [44,45], wherein a two level
system coupled quadratically to a fermionic field,

HF ∝ μ̂ Ψ̄ Ψ: ð1Þ

However, this model contained persistent divergences that
could not be regularized by an appropriate choice of
switching and smearing functions, as it was found in
[46]. Thus, these investigations restricted themselves to
studying transition rates instead of transition probabilities.
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To track down the origin of these divergences in Takagi’s
fermionic detector, Hümer et al. studied three types of
quadratically coupled UDW-like detectors [46]. They
concluded that these divergences are mainly due to the
detector coupling quadratically to the field instead of
resulting from the analytic structure (spinor vs scalar) or
statistics (fermionic vs bosonic) of the fields involved.
Persistent divergences in the single-detector vacuum exci-
tation probabilities (VEP) of quadratic UDW detectors
were found to be renormalizable by the same techniques
used in QED [46], i.e., normal ordering the interaction
Hamiltonian.
The analysis in [46], however, was limited to a single

detector coupled to the field. It is therefore natural to extend
the studies of the quadratic coupling to fermions to settings
of many detectors to explore, for example, entanglement
harvesting from a fermionic vacuum. Nevertheless, before
moving to the fermionic coupling, it is important to
understand how entanglement harvesting works for detec-
tors quadratically coupled to a bosonic field, so as to
determine how much of any new phenomenology would be
due to the fermionic nature of the field and how much of it
is due to the quadratic nature of the coupling.
In this paper we extend the notion of entanglement

harvesting to a detector coupled quadratically to a bosonic
field. While this does not answer open questions about
entanglement ambiguities in fermionic fields as posed in
[32], it does shed light on differences between linearly and
quadratically coupled detectors, which is one prominent
difference between the bosonic and fermionic UDW
models. A fermionic UDW model could resolve ambigu-
ities in defining entanglement measures between disjoint
regions of a fermionic field [32], and to this end it is
important to understand how it is distinguished from its
bosonic counterpart.
We find that, despite the finite renormalized single

detector vacuum excitation probability, the two-detector
density matrix remarkably contains persistent divergences
at leading order in perturbation theory. These divergences
cannot be regularized by means of a smooth switching
function or spatial profile, nor are they renormalized by the
techniques used in [46]. Instead, one must introduce
additional means of regularization (e.g., a soft ultraviolet
(UV) cutoff). It is interesting to note that these divergences
appear only in the nonlocal contributions to the density
matrix. As a result the entanglement harvested by detectors
quadratically coupled to bosonic fields is sensitive to the
choice of UV cutoff and may require further regularization.
To tackle the problem of entanglement harvesting with a

pair of quadratically coupled detectors, we will follow two
different avenues: (a) we will analyze the nature and
strength of the divergences in 3þ 1D flat spacetime,
analyzing possible physically motivated regularization
scales in entanglement harvesting, and (b) we will propose
a measure of correlation between the detectors that are

divergence free and use it to further our knowledge of the
differences between the use of linear and quadratic cou-
plings of particle detectors to study the entanglement
structure of quantum fields.
This paper is organized as follows. In Sec. II, we introduce

the linear and quadratic UDW detector models and examine
in detail their time evolution. In Sec. III, we provide an
overviewof the singleUDWdetector, both quadratically and
linearly coupled to a scalar bosonic field. Section IV
analyzes the two-detector entanglement-harvesting setup;
we show in detail how persistent divergences emerge in the
nonlocal terms of the quadratically coupled two-detector
system. In Sec. V, we compare the entanglement harvesting
capabilities for the linear and quadratic models, first looking
at entanglement harvesting under suitableUV-regularization
and then studying a divergence-free quantifier of harvested
correlations from the field: the mutual information. We
present our conclusions in Sec. VI.

II. TIME EVOLUTION OF LINEAR
AND QUADRATIC DETECTOR MODELS

Let us introduce the two different detector models that
we will analyze and compare in this paper. First, let us
consider the well-known UDW detector model. This model
was first introduced as an operational way to study the
particle content of a bosonic quantum field [43,47]. It
consists of a two-level quantum emitter (detector) coupled
linearly to a scalar quantum field along its worldline.
For a single inertial detector (labeled A) in flat space-

time, the UDW interaction Hamiltonian in the interaction
picture is given by

Ĥϕ̂ðtÞ ¼ λAχAðt − tAÞμ̂AðtÞ
Z

dnxFAðx − xAÞϕ̂ðx; tÞ: ð2Þ

Here, the monopole moment μ̂AðtÞ ¼ σ̂þA eiΩAt þ σ̂−Ae−iΩAt

represents the two-level internal degree of freedom of the
detector, which couples linearly to a real massless scalar
field ϕ̂ðx; tÞ. 0 ≤ χAðtÞ ≤ 1 is the switching function that
controls the time-dependence of the coupling of strength
λA. The spatial profile FðxÞ carries information about the
shape and size of the detector. The case of the pointlike
detector, commonly considered in the literature, is a
particular case of (2) where the smearing function is a
delta distribution, FAðxÞ ¼ δðxÞ.
Modifications of this model where the detector is

coupled quadratically to the field [48] allow one to compare
on equal footing the response of bosonic and fermionic
detectors (the latter necessarily being quadratic [45]). These
models have been recently analyzed in detail in [46]. The
interaction Hamiltonian for a quadratically coupled UDW
detector is given by

Ĥϕ̂2ðtÞ¼λAχAðt−tAÞμ̂AðtÞ
Z
dnxFAðx−xAÞ∶ϕ̂2ðx;tÞ∶; ð3Þ
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where ϕ2ðx; tÞ has been normal-ordered as prescribed by
the analysis in [46].
It is convenient at this point to define two different types

of UV divergences that particle detector models may
present. A regularizable divergence is one that can be
removed by use of a smooth switching function and/or a
smooth spatial profile (see, e.g., [49–51]). A persistent
divergence is one that remains even with smooth switching
and smearing functions (such as the divergences renormal-
ized in [46]).
Analysis of the detector response function [49–51] and a

number of investigations of entanglement harvesting and
quantum communication with (linear) UDW detectors
[3,8–11,23,52–55] indicate that all leading order UV
divergences present in the time evolution of linearly
coupled UDW detectors are regularizable. While this
is not the case for quadratically coupled detectors
[42,44,45,48], it has been shown that all persistent diver-
gences can also be renormalized for an individual quad-
ratically coupled detector [46]. We will demonstrate
below that a straightforward application of the leading-
order prescription in [46] cannot renormalize persistent
leading-order divergences in more complex scenarios with
several detectors.

A. Time evolution of detector pairs

Previous studies of the quadratic UDW model focused
on the response of a single detector [42,44–46,48]. Since
one of our goals is to analyze the model dependence of
vacuum entanglement harvesting, we will also consider the
evolution of two particle detectors coupled to the field
vacuum.
Both the linear and quadratically coupled UDW

Hamiltonians can be rewritten for the two-detector case as

Ĥϕ̂¼
X

ν∈fA;Bg
λνχνðt−tνÞμ̂νðtÞ

Z
dnxFνðx−xνÞϕ̂ðx;tÞ; ð4Þ

Ĥϕ̂2 ¼
X

ν∈fA;Bg
λνχνðt− tνÞμ̂νðtÞ

Z
dnxFνðx− xνÞ∶ϕ̂2ðx; tÞ∶;

ð5Þ

where ν ∈ fA;Bg is the label identifying detectors A and
B. Note that the coupling strength in the quadratic case does
not have the same dimensions as in the linear case.
If we let the initial state of the field-detector system be

ρ̂0, its time evolved state is ρ̂T ¼ Ûρ̂0Û
†, where the label T

denotes the timescale where the switching function is
nonzero, and the time evolution operator Û is given by
the time-ordered exponential

Û ¼ T exp

�Z
∞

−∞
dtĤIðtÞ

�
: ð6Þ

Consequently, we can express the time evolution oper-
ator Û in terms of a Dyson expansion as

Û ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3μÞ; ð7Þ

where

Ûð1Þ ¼ −i
Z

∞

−∞
dtĤIðtÞ ð8Þ

Ûð2Þ ¼ −
Z

∞

−∞
dt
Z

t

−∞
dt0ĤIðtÞĤIðt0Þ: ð9Þ

We can express ρ̂T in a perturbative expansion as

ρ̂T ¼ ρ̂0 þ ρ̂ð1;0ÞT þ ρ̂ð0;1ÞT þ ρ̂ð1;1ÞT þ ρ̂ð2;0ÞT

þ ρ̂ð0;2ÞT þOðλ3μÞ; ð10Þ

where ρ̂ði;jÞT ¼ ÛðiÞρ̂0ÛðjÞ†.
For our purposes, we take as the initial state

ρ̂0 ¼ j0ih0j ⊗ ρ̂AB;0; ð11Þ

with the field starting out in its lowest-energy (vacuum)
state.
After time evolution, the time evolved partial state of the

detectors is obtained by tracing out the field degrees of
freedom:

ρ̂AB;T ¼ Trϕ̂ðρ̂TÞ ð12Þ

The first order term ρ̂ð1;0ÞT þ ρ̂ð0;1ÞT does not contribute at all
to the detectors’ dynamics for field states whose one-point
function is zero. This includes Fock states, free thermal
states and the vacuum state as a particular case of these two
categories. In fact, for the vacuum state it can be easily

proved that Trϕ̂ðρ̂ði;jÞT Þ ¼ 0 when iþ j is odd (see e.g.,
[52]). Thus, we can express the time-evolved density matrix
of the subsystem consisting of the two detectors as

ρ̂AB;T ¼ ρ̂AB;0þλ2Aρ̂A;Tþλ2Bρ̂B;TþλAλBρ̂cor;TþOðλ4μÞ; ð13Þ

where we have separated the local contributions to time
evolution (proportional to λ2A and λ2B at leading order) from
the nonlocal terms (responsible for the correlations the
detectors acquire through the field) proportional to λAλB.
Notice that, from (13), we can quickly recover the case of
the evolution of a single detector just by taking λB ¼ 0.
Let us now particularize for the case where both

detectors start out in the ground state:

ρ̂AB;0 ¼ jgAihgAj ⊗ jgBihgBj: ð14Þ
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It is convenient to pick the usual [52] 4 × 4 matrix
representation for ρ̂AB;T in the basis

jgAgBi ¼ ð1; 0; 0; 0Þ†; jeAgBi ¼ ð0; 1; 0; 0Þ†;
jgAeBi ¼ ð0; 0; 1; 0Þ†; jeAeBi ¼ ð0; 0; 0; 1Þ†: ð15Þ

In this basis, ρ̂AB;T takes the form

ρ̂AB;T ¼

0
BBB@

1−LAA −LBB 0 0 M�

0 LAA LAB 0

0 LBA LBB 0

M 0 0 0

1
CCCAþOðλ4μÞ;

ð16Þ

where M and Lμν depend on the nature of the coupling
(e.g., linear vs quadratic, different switching and smearing
functions, etc. See Secs. II A 1 and II A 2).

1. Linear coupling

The matrix elements of (16) for the linear coupling have
been studied at length in the literature (See, for instance,
[52], which sets the notation that we will follow here) and
are given by

Mϕ̂ ¼ −λAλB
Z

∞

−∞
dt
Z

t

−∞
dt0

Z
dnx

Z
dnx0

×Mðt; x; t0; x0ÞWϕ̂ðt; x; t0; x0Þ ð17Þ

Lϕ̂
νμ ¼ λνλμ

Z
∞

−∞
dt
Z

∞

−∞
dt0

Z
dnx

Z
dnx0

× L�
νðt; xÞLμðt0; x0ÞWϕ̂ðt; x; t0; x0Þ; ð18Þ

where, assuming χ and F are real, Lν and Mðt; x; t0; x0Þ are
given by

Lνðt; xÞ ¼ χνðt − tνÞFνðx − xνÞeiΩνt ð19Þ

Mðt;x; t0;x0Þ ¼LAðt;xÞLBðt0;x0ÞþLAðt0;x0ÞLBðt;xÞ; ð20Þ

and the Wightman function, Wϕ̂, is given by

Wϕ̂ðt; x; t0; x0Þ ¼ h0jϕ̂ðx; tÞϕ̂ðx0; t0Þj0i: ð21Þ

To find an explicit expression for the Wightman func-
tion, we will utilize a plane-wave mode expansion of the
field operator with soft UV cutoff ϵ,

ϕ̂ðx; tÞ ¼
Z

dnke−ϵjkj=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp

× ðâ†keiðjkjt−k·xÞ þ âke−iðjkjt−k·xÞÞ: ð22Þ

Here, â†k (and âk) are creation (and annihilation) operators
which satisfy the canonical commutation relations
½âk1 ; â†k2 � ¼ δðnÞðk1 − k2Þ.
Typically, the introduction of ϵ could be associated with

a regularization procedure that leads to the usual pole
prescription, in which the limit ϵ → 0 is well-defined and
eventually taken when evaluating observable quantities.
However ϵ can also be viewed as an ad hoc screening of the
detector’s sensitivity to high frequency modes of the field
(soft UV cutoff). This would effectively model, for exam-
ple, a frequency dependent coupling strength where a
detector does not couple to frequencies much larger than
ϵ−1. When giving this kind of interpretation to the
ϵ-regularization one should be careful with possible non-
localities introduced in the theory due to a finite value of ϵ
[56]. Although this point will not be relevant when the limit
ϵ → 0 is well defined, it must be taken into account when
managing possibly UV divergent terms, especially in the
case of the quadratic coupling (3), as we will see below.
The Wightman function (21) for the linear coupling case

can be written as

Wϕ̂ðt; x; t0; x0Þ ¼
Z

dnk
eiðjkjðt0−tÞ−k·ðx0−xÞÞ−jkjϵ

2ð2πÞnjkj ; ð23Þ

which is easy to check, for example, through the usual
plane-wave expansion in Eq. (22). Particularizing to 3þ 1
dimensions, the two-point function becomes

Wϕ̂ðt; x; t0; x0Þ ¼ 1

4π2ðx − x0Þ2 − ðt − t0 − iϵÞ2 : ð24Þ

Note here that we see ϵ takes the form of the usual pole
prescription for the Wightman function.

2. Quadratic coupling

For the quadratic coupling case in (5), the elements of the
density matrix (16) take the following form

Mϕ̂2 ¼ −λAλB
Z

∞

−∞
dt
Z

t

−∞
dt0

Z
dnx

Z
dnx0

×Mðt; x; t0; x0ÞWϕ̂2ðt; x; t0; x0Þ ð25Þ

Lϕ̂2

νμ ¼ λνλμ

Z
∞

−∞
dt
Z

∞

−∞
dt0

Z
dnx

Z
dnx0

× L�
νðt; xÞLμðt0; x0ÞWϕ̂2ðt; x; t0; x0Þ; ð26Þ

which is structurally the same as in the linear coupling case.
Indeed,M and Lν are also defined as in Eqs. (20) and (19),
respectively. Thus, the difference between the usual UDW
detector and the quadratically coupled UDW detector
comes at the level of the functional Wϕ̂2

. For the quad-
ratically coupled model, Wϕ̂2

is the vacuum expectation of
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the normal ordering of the square of the field operator at
two different points, as given by

Wϕ̂2ðt; x; t0; x0Þ ¼ h0j∶ϕ̂2ðx; tÞ∶∶ϕ̂2ðx0; t0Þ∶j0i: ð27Þ

In Appendix A we show that the correlation functions
Wϕ̂ and Wϕ̂2

satisfy the following relation

Wϕ̂2ðt; x; t0; x0Þ ¼ 2Wϕ̂ðt; x; t0; x0Þ2; ð28Þ

which allows us to write Wϕ̂2

explicitly as

Wϕ̂2ðt; x; t0; x0Þ

¼
Z

dnk1

Z
dnk2

ð2πÞ−2n
jk1jjk2j

× eiððjk2jþjk1jÞðt0−tÞ−ðk2þk1Þ·ðx0−xÞÞ−ðjk1jþjk2jÞϵ: ð29Þ

If we particularize to 3þ 1 dimensions, the correlation
function Wϕ̂2

is

Wϕ̂2ðt; x; t0; x0Þ ¼ 2

½4π2ðx − x0Þ2 − ðt − t0 − iϵÞ2�2 : ð30Þ

Note here that the correlator for the quadratic UDW
detector has a higher power polynomial in x and t in its
denominator than does the usual correlator for the linear
UDW detector.

III. SINGLE DETECTOR VACUUM EXCITATION
PROBABILITY IN 3+ 1 DIMENSIONS, LAA

In this section, we will briefly review the vacuum
excitation probability (VEP) of a single detector for the
usual linear UDW detector model and the more recently
studied VEP for a quadratically coupled model [46]. The
vacuum excitation probability is the probability of excita-
tion of a single UDW detector initialized in its ground state
in the vacuum.
It is well known that in 3þ 1 dimensions, pointlike

linearly coupled UDW detectors with sharp switching
functions suffer regularizable UV divergences, which we
recall can be eliminated by introducing a smooth switching
or smearing function [49–51]. However, quadratic UDW
models (such as the quadratic scalar model introduced by
Hinton in [48], the cavity detector coupled to a fermionic
field [42], or the fermionic UDW-like detector model
introduced in [44,45]) have VEPs that present persistent
divergences (not removable with a smooth switching and/or
smearing). These persistent divergences can, however, be
renormalized with techniques analogous to those in QED
[46]. Once renormalized, the quadratically coupled single-
detector UDW model is regularizable both in its scalar and
fermionic variants.

To find the time evolved state of a single (quadratically
or linearly coupled) detector, we begin with the density
matrix (16), then set λB ¼ 0. It is then simple to trace out
detector B to find the single-detector reduced state,

ρ̂A;T ¼ TrBðρ̂AB;T Þ ¼
�
1 − LAA 0

0 LAA

�
þOðλ4AÞ; ð31Þ

in the basis jgAi ¼ ð1; 0Þ†, jeAi ¼ ð0; 1Þ†. The element of
(31), LAA, given in Eq. (18), is the vacuum excitation
probability of detector A.
The vacuum excitation probability expressed as Eq. (18)

is quite general and can be particularized to any spacetime
dimensionality, switching function and spatial profile. For
this analysis, we will use smooth switching and spatial
smearing functions which are only strongly supported in a
finite region (T and σ respectively). Smooth switching and
smearing will ensure the removal of all regularizable
divergences of the kind studied in [49]. In particular, we
choose Gaussian switching and Gaussian smearing,

Fνðx − xνÞ ¼
1

ð ffiffiffi
π

p
σÞn e

−ðx−xνÞ2=σ2 ; ð32Þ

χνðt − tνÞ ¼ e−ðt−tνÞ2=T2

: ð33Þ

As mentioned previously, in the literature UDW detec-
tors are often considered to be pointlike. Notice that the
Gaussian spatial profile can be particularized to the point-
like case by taking the limit σ → 0.

A. Linear coupling, Lϕ̂
AA

In this section, we will calculate the vacuum excitation
probability for a single linearly-coupled, 3þ 1 dimensional
UDW detector with Gaussian switching and smearing
functions. To do so, we first begin with Eq. (18), setting
μ ¼ ν ¼ A. Then we substitute into Eq. (18) the 3þ 1
dimensional Wightman function (24), the spatial profile
(32), and the switching function (33). Furthermore, to
further simplify the calculation, we apply the change of
coordinates

u ¼ t1 þ t2; v ¼ t1 − t2;

p ¼ x1 þ x2; q ¼ x1 − x2: ð34Þ

This results in

Lϕ̂
AA ¼ λ2

64π5σ6

Z
∞

−∞
due−

u2

2T2

Z
d3pe−

p2

2σ2

×
Z

∞

−∞
dv

Z
d3q

e−
q2

2σ2
− v2

2T2
−ivΩ

ðq2 − ðv − iϵÞ2Þ : ð35Þ
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The above integrals in u, p and the angular parts of q can be
easily evaluated in closed form. To find the integral over v,
we use the convolution theorem, as outlined in Appendix B.
At this point, it is convenient to follow [52] and rewrite
these intergals in terms of dimensionless parameters α, β, γ,
δ, η, and ξ as outlined in Table I. The outcome is

Lϕ̂
AA ¼ −

λ2i
8πδ3

Z
∞

0

dξξeαη − iαξ − ξ2

2δ2
þη2

2
− iηξ − ξ2

2

×

�
erfc

�
αþ η − iξffiffiffi

2
p

�
− e2iξðαþηÞerfc

�
αþ ηþ iξffiffiffi

2
p

��
;

ð36Þ

where erfc is the complementary error function, defined in
terms of the error function as follows:

erfðzÞ ¼ 2ffiffiffi
π

p
Z

z

0

dte−t
2 ð37Þ

erfcðzÞ ¼ 1 − erfðzÞ: ð38Þ

At this point, we can take the UV cutoff scale to infinity
(ϵ → 0, or in dimensionless quantities, η → 0, as per
Table I). The result is

lim
η→0

Lϕ̂
AA ¼ −iλ2

8πδ3

Z
∞

0

dξξe−
ξð2iαδ2þδ2ξþξÞ

2δ2

×

�
erfc

�
α − iξffiffiffi

2
p

�
− e2iαξerfc

�
αþ iξffiffiffi

2
p

��
; ð39Þ

which is not divergent. Figure 1(a) illustrates the behavior

of Lϕ̂
AA as η → 0 is reached.

We note that in previous literature closed expressions for
(39) have been found for Gaussian switching and smearing
functions in 3þ 1 dimensions [52]. The difference between
calculations here and in [52] is that we have worked in the
position representation. One can readily check numerically
that all elements Lμν and M in this paper are equivalent
(after the limit η → 0 is taken) to those in [52] for the linear
detector. The motivation behind complicating the calcu-
lation of the linear matrix elements by working in the
position representation lies in the difficulty of calculating
the matrix elements of the quadratic detector pairs, which is
reduced by the method described here. Moreover, there is
an additional advantage working in the position represen-
tation in the linear case: the method of computing leading
order density matrix elements in the position representation
used here yields results that have greater numerical stability
for small detector gap in those terms for which we do not
have closed expressions neither in position nor in momen-
tum representation in [52], as we will show when we
present numerical results in Sec. V.

TABLE I. Collection of all the dimensionless quantities that are
used throughout this paper.

Dimensionless
variable Expression Physical meaning

α ΩT Energy gap
η ϵT UV cutoff
β jxA − xBj=T Detectors’ separation
γν tνT Switch-on times
δ σ=T Detectors’ size
ξ q=T � � �

FIG. 1. All plots illustrate the behavior of relevant quantities as η decreases on a log scale. Plots on the top row are for the usual
(linearly coupled) UDW detector. Plots on the bottom row are for the quadratically coupled UDW detector. All plots use parameters
α ¼ 1, δ ¼ 1, γB − γA ¼ 0, and β ¼ 4, where relevant. Note how all plots (a)–(e) indicate convergence, except (f), which [in contrast to
(c)] shows linear growth of Mϕ̂2

on a logarithmic scale for η, and thus a logarithmic divergence as η → 0.
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B. Quadratic coupling, Lϕ̂2

AA

Similar to the linear model, in this section we calculate
the vacuum excitation probability for the quadratic model,

Lϕ̂
AA. We begin with Eq. (18), setting μ ¼ ν ¼ A. Then we

substitute into (18) the quadratic two-point correlator in
3þ 1 dimensions (30), the spatial profile (32), and the
switching function (33). Applying the same change of
coordinates as in the linear case, (34), yields

Lϕ̂2

AA ¼ λ2

128π7σ6

Z
∞

−∞
due−

u2

2T2

Z
d3pe−

p2

2σ2

Z
∞

−∞
dv

Z
d3q

e−
q2

2σ2
− v2

2T2
− ivΩ

ðq2 − ðv − iϵÞ2Þ2 : ð40Þ

The integrals over u, p, the angular part of q, and v can be evaluated in closed form (again, the last performed through a
convolution product as shown in Appendix B). Once again, it is convenient to utilize the convention in [52] and recast these
integrals in terms of the dimensionless parameters α, β, γ, δ, η, and ξ (outlined in Table I). The result is

Lϕ̂2

AA ¼ λ2eαηþ
η2

2

32π4δ3T3

Z
∞

0

dq
e− iαξ − ξ2

2δ2
− iηξ − ξ2

2

ξ

�
−2

ffiffiffiffiffiffi
2π

p
ξe−

1
2
ðαþη−iξÞ2

þ π

�
αξþ ηξ − iðξ2 þ 1Þ þ e2iξðαþηÞðαξþ ηξþ iðξ2 þ 1ÞÞerfc

�
αþ ηþ iξffiffiffi

2
p

��

þ πðiαξþ iηξþ ξ2 þ 1Þerfi
�
iαþ iηþ ξffiffiffi

2
p

��
; ð41Þ

where erfi is the imaginary error function defined as

erfiðzÞ ¼ −ierfðizÞ: ð42Þ
For this integrand, the limit of no cutoff, i.e., ϵ

T ¼ η → 0, at constant T, is well-defined:

lim
ϵ→0

Lϕ̂2

AA ¼ λ2

32π4δ3T2

Z
∞

0

dξ
ξ
e − α2

2
− iαξ − 1

2
ð 1

δ2
þ1Þξ2

�
−iπeα2

2 ξ2 þ πe
α2

2 αξ − iπe
α2

2 þ iπξ2e
1
2
αðαþ4iξÞ þ παξe

1
2
αðαþ4iξÞ

− 2
ffiffiffiffiffiffi
2π

p
ξe

1
2
ξðξþ2iαÞ þ iπe

1
2
αðαþ4iξÞ − πe

α2

2 ðαξ − iðξ2 þ 1ÞÞerf
�
α − iξffiffiffi

2
p

�

− πe
1
2
αðαþ4iξÞðαξþ iðξ2 þ 1ÞÞerf

�
αþ iξffiffiffi

2
p

��
: ð43Þ

This integral is convergent. How the convergent η → 0
limit is reached is shown numerically in Fig. 1(d).

IV. THE TWO-DETECTOR MODEL

The vacuum excitation probability does not provide full
information about the time evolution of a pair of particle
detectors coupled to the field. Indeed, to characterize more
complicated effects, such as entanglement harvesting
[9,10,52], or quantum communication [53,54,56–60], the
full time-evolved density matrix of two detectors coupled to
the field is necessary. The detectors’ time-evolved density
matrix (16) has extra terms in addition to the VEPs. Two
different kinds of nonlocal terms, LAB and M, now appear
along with their complex conjugates. To fully characterize
the two detector system,we need to find explicit expressions
for these terms and study the regularity of their behavior.
As we will discuss in detail below (and as mentioned in

[52]), LAB is the term responsible for the leading order

contribution to classical correlations (or, possibly, discord)
between the detectors, whereas M can be thought of as
responsible for the harvested entanglement from the field to
the detectors, as wewill discuss in Sec. VA.Wewill analyze
these two terms independently in the next two subsections.

A. LAB nonlocal term in 3 + 1 dimensions

In the following, we will find LAB for the linear and
quadratic models in 3þ 1 dimensions.

1. Linear coupling, Lϕ̂
AB

For the linear UDW detector, the term Lϕ̂
AB is given by

Eq. (18) when ν ¼ A and μ ¼ B. We also explicitly write
the Wightman function in 3þ 1 dimensions (24), the
spatial profile (32), and the switching function (33) in
equation (18). The same change of coordinates as in the
calculation of LAA, shown in Eq. (34), again simplifies the
calculation. This transformation yields
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Lϕ̂
AB ¼ λ2e−

t2
A

T2
−

t2
B

T2
−

x2
A

σ2
−

x2
B

σ2

64π5σ6

Z
∞

−∞
dueþ

tAu

T2
þ tBu

T2
− u2

2T2

Z
d3pe−

p2

2σ2
þ pxA

σ2
þ pxB

σ2

Z
∞

−∞
dv

Z
d3q

e−
q2

2σ2
þ qxA

σ2
− qxB

σ2
þ tAv

T2
− tBv

T2
− v2

2T2
− ivΩ

q2 − ðv − iϵÞ2 : ð44Þ

The integrals over u, p, the angular part of q, and v can be evaluated in closed form (with the same technology shown in
Appendix B). As before, we follow [52] and rewrite these integrals in terms of the dimensionless parameters as outlined in
Table I. The result is

Lϕ̂
AB ¼

λ2e−
β2

2δ2
− 1

2
ðγA−γBÞ2eαηþiγAη−iγBηþ η2

2

8πδβ

Z
∞

0

dξ sinh

�
ξβ

δ2

�"
iðe2ξðiαþγBþiηÞ − e2γAξÞ þ e2ξðiαþγBþiηÞerfi

�
−iαþ γA − γB − iηþ ξffiffiffi

2
p

�

þ e2γAξerfi

�
iα− γA þ γB þ iηþ ξffiffiffi

2
p

�#
e−iαξ−γAξ−γBξ −

ξ2

2δ2
− iηξ − ξ2

2 ; ð45Þ

which has a well-defined limit as η → 0,

lim
η→0

Lϕ̂
AB ¼ iλ2e−

β2

2δ2
−1
2
ðγA−γBÞ2

8πδjβj
Z

∞

0

dξ sinh

�
ξjβj
δ2

�
e−iαξ−γAξ−γBξ −

ξ2

2δ2
− ξ2

2

�
e2ξðγBþiαÞerfc

�
αþ iðγA − γB þ ξÞffiffiffi

2
p

�

− e2γAξerfc

�
αþ iðγA − γB − ξÞffiffiffi

2
p

��
: ð46Þ

Not only is the integrand well-defined, but the integral is convergent as well. We show numerically how the convergent limit

η → 0 of jLϕ̂
ABj is reached in Fig. 1(b).

2. Quadratic coupling, Lϕ̂2

AB

In order to find Lϕ̂2

AB, given by Eq. (18), we set ν ¼ A and μ ¼ B. We then substitute into Eq. (18) the quadratic
two-point correlator in 3þ 1 dimensions (30), the spatial profile (32), and the switching function (33). As is now tradition,
we will do the same change of coordinates as in the calculation of the VEPs, shown in Eq. (34). This transformation
results in

Lϕ̂2

AB ¼ λ2e−
t2
A
þt2

B

T2
−

x2
A
þx2

B

σ2

128π7σ6

Z
∞

−∞
due

ðtAþtBÞu
T2

− u2

2T2

Z
d3pe

pðxAþxBÞ
σ2

− p2

2σ2

Z
∞

−∞
dv

Z
d3q

e
qðxA−xBÞ

σ2
þ vðtA−tBÞ

T2
− q2

2σ2
− v2

2T2
− ivΩ

ðq2 − ðv − iϵÞ2Þ2 : ð47Þ

The integrals over u, p, the angular part of q, and v can be evaluated in closed form (details in Appendix B). Once again, we
follow [52] and rewrite these integrals in terms of the dimensionless quantities outlined in Table I. The result is

Lϕ̂2

AB ¼
λ2eαη −

ðβÞ2
2δ2

− 1
2
ðγA−γBÞ2 þ iγAη − iγBηþ η2

2

32π4δT2ðβÞ
Z

∞

0

dξ
e−iαξþ γAξ − γBξ −

ξ2

2δ2
− iηξ − ξ2

2

ξ2
sinh

�
ξðβÞ
δ2

��
−2

ffiffiffiffiffiffi
2π

p
ξe−

1
2
ðαþiγA−iðγBþiηþξÞÞ2

þ πðiαξ − γAξþ γBξþ iηξþ ξ2 þ 1Þerfi
�
iα − γA þ γB þ iηþ ξffiffiffi

2
p

�
þ π

�
αξþ iγAξ − iγBξþ ηξ − iξ2

− iþ e2ξðiα−γAþγBþiηÞðξðγA − γB − iα − iηþ ξÞ þ 1Þierfc
�
i
−iαþ γA − γB − iηþ ξffiffiffi

2
p

���
: ð48Þ

Taking the limit as η → 0 of Lϕ̂2

AB yields

lim
η→0

Lϕ̂2

AB ¼ λ2e−
β2

2δ2
− 1

2
ðγA−γBÞ2

32π3δT2ðβÞ
Z

∞

0

dξ
ξ2

sinh
�
ξðβÞ
δ2

�
e−iαξþ γAξ − γBξ−

ξ2

2δ2
− ξ2

2

�
ðαξþ iξðγA − γB − ξÞ − iÞerfc

�
αþ iðγA − γB − ξÞffiffiffi

2
p

�

−
ffiffiffi
8

π

r
ξe−

1
2
ðαþiðγA−γB−ξÞÞ2 þ e2ξðiα−γAþγBÞðαξþ iξðγA − γB þ ξÞ þ iÞerfc

�
αþ iðγA − γB þ ξÞffiffiffi

2
p

��
: ð49Þ

Figure 1(e) illustrates the behavior as η decreases of the result of numerical integration over ξ.
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B. M nonlocal term in 3 + 1 dimensions

In the following, we will derive Mϕ̂ and Mϕ̂2

, then
discuss the relevant differences between the two. We will
see thatMϕ̂ has only regularizable divergences, whileMϕ̂2

exhibits persistent UV divergences.

1. Linear coupling, Mϕ̂

For the usual linear detector,M is given by Eq. (17). We
substitute into Eq. (17) the Wightman function in 3þ 1
dimensions (24), the spatial profile (32), and the switching
function (33). The integrals take a particularly simple form
under the same change of coordinates (34) as in all previous
calculations. In the case of Mϕ̂, this change of coordinates
also helps to de-nest the nested time integrals. This yields

Mϕ̂ ¼ −e−
t2
A

T2
−

t2
B

T2
−

x2
A

σ2
−

x2
B

σ2

Z
∞

−∞
du

Z
∞

−∞
dv

×
Z

d3p
Z

d3q

�
λ2e−

qxA
σ2

þ qxB
σ2

− tAv

T2
þ tBv

T2

64π5σ6ðq2 − ðv − iϵÞ2Þ

þ λ2e−ð−
qxA
σ2

þ qxB
σ2

− tAv

T2
þ tBv

T2
Þ

64π5σ6ðq2 − ðv − iϵÞ2Þ
�

× e−
p2

2σ2
− q2

2σ2
− qxA

σ2
þ qxB

σ2
þ tAu

T2
þ tBu

T2
− u2

2T2
− v2

2T2
þ iuΩ: ð50Þ

The integrals in u, p, and the angular parts of q can be
evaluated in closed form. This results in

Mϕ̂ ¼ e−
t2
A

2T2
þ tAtB

T2
−

t2
B

2T2
− T2Ω2

2
þ itAΩþ itBΩ −

x2
A

2σ2
þ xAxB

σ2
−

x2
B

2σ2
λ2T

2π2σðxA − xBÞ
Z

∞

−∞
dv

Z
∞

0

dq
e−

q2

2σ2
− v2

2T2q
ð−q2 þ ðv − iϵÞ2Þ

× sinh

�
qðxA − xBÞ

σ2

�
cosh

�
vðtA − tBÞ

T2

�
: ð51Þ

To obtain a closed form for the integral over v, we simplify Mϕ̂ by choosing to switch on the detectors simultaneously
within their comoving frame; i.e., we make the simplifying additional assumption tA − tB ¼ 0. Under this assumption,Mϕ̂

(in dimensionless parameters as shown in I) takes the form

Mϕ̂
tA¼tB ¼ −

λ2

16π2δβ

Z
∞

0

dq sinh

�
ξβ

δ2

���
2πerfi

�
ξT − iηTffiffiffi

2
p

T

�
− 2Ei

�ðTξ − iTηÞ2
2T2

�

þ log
�ðξT − iηTÞ2

T2

�
− log

�
T2

ðξT − iηTÞ2
�
− 4 logðξT − iηTÞ þ 4 logðTÞ

�
e−

ðξT−iηTÞ2
2T2

þ e−
ðξTþiηTÞ2

2T2

�
2πerfi

�
ξT þ iηTffiffiffi

2
p

T

�
þ 2Ei

�ðiTηþ TξÞ2
2T2

�
þ log

�
1

ðξT þ iηTÞ2
�

þ 4 logð−ξT − iηTÞ − 2 logðξT þ iηTÞ
��

e−
α2δ2T2−4iαγAδ2T2þβ2T2þξ2T2

2δ2T2 ; ð52Þ

where EiðzÞ is the principal value of the exponential integral function defined as

EiðzÞ ≔ −P:V:
Z

∞

−z

e−t

t
dt: ð53Þ

Mϕ̂ is well behaved in the UV limit. If we remove the cutoff taking the limit ϵ → 0 (i.e., η → 0), we obtain

lim
η→0

Mϕ̂
tA¼tB ¼ −

λ2e−
α2

2
þ 2iαγA−

β2

2δ2

4πδβ

Z
∞

0

dξe−
ξ2

2δ2
− ξ2

2 ierfc

�
iξffiffiffi
2

p
�
sinh

�
ξðβÞ
δ2

�
: ð54Þ

The integral is convergent, and how the limit is reached as η → 0 is shown in Fig. 1(c).
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2. Quadratic coupling, Mϕ̂2

For the quadratic detector,Mϕ̂2

is given by Eq. (17). We
substitute into Eq. (17) the quadratic two-point correlator in
3þ 1 dimensions (30), the spatial profile (32), and the
switching function (33). The traditional change of coor-
dinates shown in Eq. (34) simplifies Mϕ̂2

. The result of
these substitutions is

Mϕ̂2 ¼ −e−
t2
A

T2
−

t2
B

T2
−

x2
A

σ2
−

x2
B

σ2

Z
∞

−∞
du

Z
∞

−∞
dv

×
Z

d3p
Z

d3q

�
λ2e−

qxA
σ2

þ qxB
σ2

− tAv

T2
þ tBv

T2

128π5σ6ðq2 − ðv − iϵÞ2Þ2

þ λ2e−ð−
qxA
σ2

þ qxB
σ2

− tAv

T2
þ tBv

T2
Þ

128π5σ6ðq2 − ðv − iϵÞ2Þ2
�

× e−
p2

2σ2
− q2

2σ2
− qxA

σ2
þ qxB

σ2
þ tAu

T2
þ tBu

T2
− u2

2T2
− v2

2T2
þ iuΩ: ð55Þ

The integrals over u, p, and the angular part of q can be
evaluated in closed form. We can furthermore employ the
simplifying assumption that the two detectors are switched
on simultaneously, which results in

Mϕ̂2

tA¼tB ¼ −
λ2Te−

T2Ω2
2

þ 2itAΩ − ðxA−xBÞ2
2σ2

4π4σðxA − xBÞ
Z

∞

0

dq
Z

∞

−∞
dv

×
q sinhðqðxA−xBÞ

σ2
Þ

ðq2 − ðv − iϵÞ2Þ2 e
− q2

2σ2
− v2

2T2 : ð56Þ

To obtain a closed from for the integral over v, we operate
as in the linear case and simplify by choosing to switch
on the detectors simultaneously within their comoving
frame, setting tA − tB ¼ 0. The resulting semiclosed form
we write as

Mϕ̂2

tA¼tB ¼ −
λ2e−

α2

2
þ 2iαγA −

β2

2δ2

64π4δT3β

Z
∞

0

dξGðξÞ ð57Þ

after carrying out the integral over v. The details of GðξÞ
can be found in Appendix C, concretely Eq. (C2).

C. Divergences in the quadratic model

Unlike the linear model, the nonlocal term Mϕ̂2

is not
free of UV divergences, despite the fact that the detector
has a smooth switching and a Gaussian spatial smearing,
and despite the renormalization process that removed the
single-detector divergences. Concretely, the integral in (57)
is logarithmically divergent with the UV cutoff scale, as
illustrated in Fig. 1(f).
To gain insight into the logarithmic divergence in

Mϕ̂2

we examine the integrand GðξÞ, defined in
Appendix Eq. (C2).
We begin by noticing that GðξÞ has the limit

lim
η→0

GðξÞ ¼ 4

ξ2
e−

ðδ2þ1Þξ2
2δ2 sinh

�
ξβ

δ2

�

×

�
−

ffiffiffiffiffiffi
2π

p
e
ξ2

2 ξþ iπðξ2 þ 1Þerfc
�

iξffiffiffi
2

p
��

: ð58Þ

Expanding in a Laurent series and keeping the leading
order Oðξ−1Þ results in the UV divergent term

lim
η→0

G
Mϕ̂2

tA¼tB

∼
4iπβ
δ2ξ

: ð59Þ

This divergence is peculiar due to the fact that it shows
up only in the two-detector model, in spite of the fact that
the vacuum excitation probability for a quadratic detector is
finite [46] as discussed in Sec. III B. Thus, while a single

(a) (b) (c) (d)

FIG. 2. Entanglement harvesting is possible (darker regions colored red or blue) for any detector separation d given a sufficiently large
detector gap Ω. These plots show various detector cutoffs, ϵ ¼ η=T, ranging from η ¼ 10−2 to η ¼ 10−12. Note the cutoff does not make
a significant difference for the linear model (no visible red regions), while there is a marked increase in the harvesting region for smaller
gaps and the quadratic detector model [see inset (b) and (c)]. Both plots use parameters δ ¼ 1 and γB − γA ¼ 0. The vertical white line
shows the light cone. The dark lines in the insets are an extrapolation indicating the location where harvesting is no longer possible for a
cutoff η ¼ 10−29 (corresponding to setting the cutoff scale to the Planck frequency, as described at the end of Sec. VA).
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quadratically coupled detector does not require additional
UV regularization, a cutoff is required for certain quantities
describing detector pairs, of which theM term in (57) is an
example.
We would like to emphasize that these are persistent UV

divergences, that is, they are present regardless of the use of
smooth switching functions and spatial profiles (for exam-
ple, in this case we have used Gaussian functions for both).
Moreover, these divergences appear after renormalization
of the zero-point energy and at the same order in pertur-
bation theory at which the single detector dynamics is
regular.

V. HARVESTING CORRELATIONS

The analysis of the correlation terms LAB and M in
both the linear and quadratic models is necessary to explore
the entanglement structure of the field through particle
detectors.
In this section, we will study two types of correlations

that the two detector models can harvest from the field
vacuum: (a) those measured by the mutual information,
which quantifies both classical and quantum correlations
[61] and (b) the negativity, which is a faithful entanglement
measure for bipartite two-level systems [62]. These two
types of correlation harvesting were studied for the linear
model in [52]. Here we will compare these results with the
predictions for the quadratic model.

A. Entanglement harvesting

We consider first the harvesting of entanglement from
the vacuum and we quantify it with the negativity acquired
between the two (initially uncorrelated) detectors through
their interactions with the field while remaining spacelike
separated.

Negativity of a bipartite state ρ is an entanglement
monotone defined as the sum of the negative eigenvalues
of the partial transpose of ρ [62]:

N ðρÞ ¼
X

λi∈σ½ρΓA �

jλij − λi
2

; ð60Þ

where ρΓA denotes the partial transpose of ρ with respect to
subsystem A.
As seen, for instance, in [52], the negativity can be

expressed in terms of the vacuum excitation probability,
Lμμ, of each detector and the nonlocal term M in (57).
Concretely, it is given by

N ¼ max ½N ð2Þ; 0� þOðλ2Þ; ð61Þ

where

N ð2Þ ¼−
1

2

�
LAAþLBB−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA−LBBÞ2þ4jMj2

q �
: ð62Þ

When both detectors are identical (i.e., they have the same
spatial profile, switching function, coupling strength, and
detector gap), Eq. (62) becomes

N ð2Þ ¼ jMj − Lμμ ð63Þ

from which we can justify the usual argument that
entanglement emerges as a competition between the non-
local contribution M and the noise associated to the
vacuum excitation probability for each detector [11,52].
Figure 2 shows the usual plots of the boundary between

where entanglement harvesting is possible and not possible
for different spatial separation and energy gaps of the
detectors.

FIG. 3. The magnitude of harvested entanglement is dependent on the cutoff chosen. For the same cutoff, either the linear or quadratic
models may harvest more entanglement, although the linear model quickly converges to a fixed value, while the quadratic model grows
logarithmically with decreasing cutoff. Thus, a cutoff can always be chosen sufficiently high such that the quadratic model harvests more
entanglement for a given set of parameters. Here, the plots show the leading order contribution to the negativity with increasing spatial
distance. (a) shows these results for the linear model while (b) shows these results for the quadratic model. The inset in (a) shows the
convergent behavior of the negativity, while the inset in (b) shows how the distance at which the negativity goes zero increases as the UV
cutoff is lifted. All plots use parameters δ ¼ 1 and γB − γA ¼ 0 and Ω ¼ 1.
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Recall that the term M is UV divergent in the quadratic
model. Therefore to compute a physically meaningful value
for the negativity further regularization and eventual
renormalization will be required. However for a fixed
UV-cutoff scale, it is possible to get an estimate of the
quadratic model performance to harvest entanglement
relative to the linear model by computing entanglement
harvesting for both models applying the same UV-cutoff
scale. What is more, studying how negativity changes as we
start increasing the cutoff scale will help us see how the UV
divergence of M impacts entanglement harvesting.
As seen in Fig. 3, the magnitude of entanglement

harvesting increases linearly with the logarithm of the
cutoff, which is not surprising since the two-detector
quadratic model suffers a logarithmic UV divergence.
This implies that there would always exist a value for
the cutoff scale so that harvesting is possible at any
distance, regardless of the detector gap. It would also
imply that for large enough cutoff frequencies we could
always ‘harvest’ more entanglement with the quadratic
model than for the linear model.
One can therefore ask the following question: is there

any finite value of the cutoff scale that we could take in
order to give some physical meaning to the finite cutoff
results?
Unlike the linear model—which has been shown to

capture the fundamental features of the atom-light inter-
action [8,16]—the quadratic model does not have a direct
comparison with something as simple as the atom-light
interaction mechanism (maybe one could think of nonlinear
optical media [63], but that is perhaps a stretch). Recall,
however, that we do not use the quadratic Unruh-DeWitt
model to necessarily reproduce the physics of a particular
experimentally motivated setup. Our motivation to explore
this model is double: a) probe the field with a different
model to show model independence/dependence of har-
vesting phenomena and b) advance towards the fermionic
model (which is a quadratic model that does indeed have
physical motivation) where the study of field entanglement
remains still full of open questions.
The fact that this model cannot be connected with

something as simple as an atom interacting with light,
makes it difficult to motivate a choice of cutoff. However, if
we were to take the result for a finite value of the cutoff
scale seriously, and thus if we were to choose some
physically motivated cutoff, we could compare the two
models when such a cutoff is taken to be the Planck
Frequency. In this scenario, the dimensionless cutoff
parameter η can be written as η ¼ 1

kPT
, where kP is the

Planck frequency. If we consider scales for the detector gap
Ω to be commensurate with the energy of the first transition
of Hydrogen ΩH ≈ 1015 s−1, then kP ¼ 1029Ω. If we set
T ≈ Ω−1

H (which means that α ≈ 1 represents the case of a
Hydrogen atom) the cutoff associated with the Planck time
is then η ¼ 10−29. We can extrapolate the results in Fig. 2 to

the Planck scale. We show these results also in Fig 2, as the
thin black lines. These plots illustrate the slow logarithmic
nature of the divergences, which makes the study of
negativity still meaningful for low energies with a quadratic
detector and does not get significantly qualitatively modi-
fied even if the cutoff is transplanckian.

B. Harvesting mutual information

A way around the problems associated with the UV-
divergent nature of M is to look for UV-safe quantities.
Namely it is possible to find quantifiers of correlations that
are, by construction, UV-safe for the quadratic model. One
such figure of merit is the mutual information.
The mutual information IðρABÞ between two detectors

quantifies the amount of uncertainty about one detector that
is eliminated if some information about the state of the
other is revealed [61]. Thus it constitutes a faithful measure
of correlations (regardless if they are classical or quantum).
In general, for a composite quantum system consisting of

two subsystems A and B, the mutual information given by

IðρABÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ; ð64Þ

where ρν ¼ TrμðρνμÞ is the partial trace of ρνμ with respect
to subsystem μ ∈ fA;Bg and S is the von Neumann
entropy given by SðρÞ ¼ −Trðρ log ρÞ.
For a density matrix of the form (16), the mutual

information is given by [52]

IðρABÞ ¼ Lþ logðLþÞ þ L− logðL−Þ − LAA logðLAAÞ
− LBB logðLBBÞ þOðλ4νÞ ð65Þ

where

L� ¼ 1

2

�
LAAþLBB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA−LBBÞ2þ4jLABj2

q �
: ð66Þ

Note how IðρABÞ is not dependent on the divergentM term
at leading order in perturbation theory. Hence, the mutual
information is finite without any further regularization.
Because of this, it provides a UV-cutoff independent sense
of the harvesting of correlations from the vacuum, and can
also be compared with previous results for linear detectors
in [52], making it a relevant figure of merit for the
comparison in this article.
Figure 4 shows the behavior of the mutual information

with spatial and temporal separation of the detectors for
both the linear and quadratic case where the other param-
eters are the same as those used in Fig 2. First, we observe
something that was already present in previous literature on
linear detectors [52]: Unlike entanglement, the mutual
information harvesting can be performed at any distance
and detector gap, albeit less efficiently as the distance (or
the detector gap) increases, a feature that comes from the
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fact that the detectors are harvesting classical correlations
as well as quantum correlations.
From Fig. 4, we observe that the linear detector can

harvest more entanglement and for further distances than
the quadratic detectors. This can in turn be used to assess
the scale at which the soft cutoff model introduced in the
study of negativity fails to capture the behavior of UV-safe
measures of correlations: as illustrated in Fig 3, for cutoff
scales that are of the order of η≳ 10−6, the linear model can
harvest more entanglement than the quadratic model in the
parameter region studied. This might suggest that com-
parison of negativity between the two models can be trusted
only for cutoffs above η ¼ 10−6.

VI. CONCLUSION

We have studied further the behavior of particle detectors
quadratically coupled to scalar fields introduced in [44,45]
and renormalized in [46]. In particular we have focused on
the case of a pair of particle detectors harvesting entangle-
ment from a scalar field, a case previously studied only for
linear detectors [10,11,52]. Understanding the harvesting
of correlations from quadratic couplings is a necessary step
in order to compare the entanglement that can be harvested
from fermionic and bosonic fields, since the former only
couple to particle detectors quadratically [44–46,64]. Our
motivation to explore this model is twofold: a) probe the
field with a different particle detector model to show model
independence/dependence of harvesting phenomena and b)
provide a model that can be compared on equal footing for
bosonic and fermionic fields (for which the coupling
necessarily has to be quadratic).
Perhaps the most remarkable finding of our investigation

of harvesting with a quadratic detector is the appearance of
a new logarithmic UV divergence at leading order in the
two-detector setup. Notably, this divergence remains even
when the Hamiltonian is normal-ordered, and even when
the switching functions and spatial profile are smooth
functions. This is in stark contrast with the linear case

where smooth smearing [50] or switching [49,51] were
enough to guarantee the UV regularity of the model.
We emphasize that a single detector, at the same order in

perturbation theory, does not present this kind of diver-
gence. Curiously, the UV divergence is only present in a
particular kind of term, namely that responsible for the
entanglement of the two detectors. This divergence is easily
parametrized via a UV cutoff.
Once this was established, analysis and comparison with

the linear model can be carried out. We proceeded in two
different ways. First, using negativity to study entangle-
ment harvesting, we discussed whether a finite value of the
UV cutoff scale allows for fair comparison of the entan-
glement harvesting ability of the quadratic and the linear
couplings. Following this, we found measures of harvested
correlations that are UV-safe. In particular we showed that
the harvested mutual information from the field vacuum is
UV safe. It therefore constitutes a better figure of merit to
compare the harvesting of correlations from the vacuum
without need for further regularization.
Understanding the particulars of entanglement harvest-

ing with bosonic quadratic coupling is important in order to
properly answer questions about fermionic fields where the
study of field entanglement remains full of open questions
[24–41]. A comparison of bosonic and fermionic entangle-
ment harvesting on equal footing requires knowledge of the
model-dependence entanglement harvesting, specifically
the difference between linear and quadratic coupling, as
the latter is necessarily present in the fermionic case. The
entanglement structure of the fermionic vacuum remains an
interesting open question, one we are now prepared to
address using the results we have obtained.
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APPENDIX A: CALCULATION OF THE
QUADRATIC TWO-POINT FUNCTION

Here we demonstrate that

Wϕ̂2ðt; x; t0; x0Þ ¼ 2ðWϕ̂ðt; x; t0; x0ÞÞ2; ðA1Þ

as asserted in Secs. II A 1 and II A 2, whereWϕ̂2

andWϕ̂ are
defined in Eqs. (27) and (21), respectively.
The relationship between an operator Â and its normal

ordered version is given by

∶Â ≔ Â − h0jÂj0i: ðA2Þ

Using this identity, Wϕ̂2

can be rewritten as

FIG. 4. Linear mutual information harvesting (left) is greater in
magnitude than quadratic mutual entanglement harvesting (right).
Legend indicates Log base ten of the mutual information, I. Both
plots use parameters δ ¼ 1 and γB − γA ¼ 0. The thick white line
shows the light cone.
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Wϕ̂2ðt; x; t0; x0Þ ¼ h0j∶ϕ̂2ðt; xÞ∶∶ϕ̂2ðt0; x0Þ∶j0i
¼ h0jϕ̂2ðt; xÞϕ̂2ðt0; x0Þj0i
− h0jϕ̂2ðt; xÞj0ih0jϕ̂2ðt0; x0Þj0i: ðA3Þ

The first term ofWϕ̂2ðt; x; t0; x0Þ can be simplified. To do so,
we will write the field operator as ϕ̂ ¼ ϕ̂þ þ ϕ̂−, where ϕ̂þ

and ϕ̂− are defined as

ϕ̂þðx; tÞ ¼
Z

dnke−ϵjkj=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp â†ke

iðjkjt−k·xÞ

ϕ̂−ðx; tÞ ¼
Z

dnke−ϵjkj=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp âke−iðjkjt−k·xÞ ðA4Þ

which satisfy the commutation relation

½ϕ̂−ðxμ; tμÞ; ϕ̂þðxν; tνÞ� ¼ Cμν1 ðA5Þ

where Cμν ∈ C is given by

Cμν ¼
Z

dnke−ϵjkj=2

2ð2πÞnjkj e
iðjkjðtν−tμÞ−k·ðxν−xμÞÞ ðA6Þ

Using the notation ϕ̂μ ≡ ϕ̂ðxμ; tμÞ, a scalar field vacuum
four-point function h0jϕ̂1ϕ̂2ϕ̂3ϕ̂4j0i can be rewritten as

h0jϕ̂1ϕ̂2ϕ̂3ϕ̂4j0i ¼ h0jϕ̂−
1 ϕ̂

−
2 ϕ̂

þ
3 ϕ̂

þ
4 j0i

þ h0jϕ̂−
1 ϕ̂

þ
2 ϕ̂

−
3 ϕ̂

þ
4 j0i; ðA7Þ

where, to remove all vanishing summands, we have used
that

ϕ̂−
μ j0i ¼ h0jϕ̂þ

ν ¼ 0; ðA8Þ

together with the fact that only summands with as many ϕ̂þ

as ϕ̂− give a nonvanishing vacuum expectation.
Using (A5), we can write the first summand in Eq. (A7)

as

h0jϕ̂−
1 ϕ̂

−
2 ϕ̂

þ
3 ϕ̂

þ
4 j0i ¼ C23C14 þ C13C24 ðA9Þ

and the second as

h0jϕ̂−
1 ϕ̂

þ
2 ϕ̂

−
3 ϕ̂

þ
4 j0i ¼ C12C34: ðA10Þ

Thus (A7) can be written as

h0jϕ̂1ϕ̂2ϕ̂3ϕ̂4j0i ¼ C23C14 þ C13C24 þ C12C34: ðA11Þ

From (A5), we see that we can rewrite the Cμν
coefficients as

Cμν ¼h0j½ϕ̂−
μ ; ϕ̂

þ
ν �j0i¼ h0jϕ̂−

μ ϕ̂
þ
ν j0i¼ h0jϕ̂μϕ̂νj0i: ðA12Þ

This allows us to rewrite Eq. (A11) as

h0jϕ̂1ϕ̂2ϕ̂3ϕ̂4j0i ¼ h0jϕ̂1ϕ̂2j0ih0jϕ̂3ϕ̂4j0i
þ h0jϕ̂2ϕ̂3j0ih0jϕ̂1ϕ̂4j0i
þ h0jϕ̂1ϕ̂3j0ih0jϕ̂2ϕ̂4j0i: ðA13Þ

To apply this identity to (A3), we set ϕ̂1 ¼ ϕ̂2 ¼ ϕ̂ðt; xÞ
and ϕ̂3 ¼ ϕ̂4 ¼ ϕ̂ðt0; x0Þ. Then, the first summand in (A3)
becomes

h0jϕ̂2ðt; xÞϕ̂2ðt0; x0Þj0i ¼ h0jϕ̂2ðt; xÞj0ih0jϕ̂2ðt0; x0Þj0i
þ 2ðh0jϕ̂ðt; xÞϕ̂ðt0; x0Þj0iÞ2:

ðA14Þ

This allows (A3) to be written as

Wϕ̂2ðt; x; t0; x0Þ ¼ 2ðh0jϕ̂ðt; xÞϕ̂ðt0; x0Þj0iÞ2; ðA15Þ

which is (A1).

APPENDIX B: CONVOLUTION

In this Appendix, we will find a closed form for the
following integral,

fm ≔
Z

∞

−∞
dv

ev
ðtA−tBÞ

T2
− v2

2T2
−ivΩ

ðq2 − ðv − iϵÞ2Þm ; ðB1Þ

where T is a positive constant, Ω, ϵ and v are non-negative
constants, tA and tB are real constants, and m ∈ f1; 2g.
Introducing some basic notation that we will use in this

Appendix, F denotes the Fourier transform

F ½aðxÞ�ðωÞ ≔
Z

∞

−∞
dxaðxÞeiωx: ðB2Þ

We also introduce � to denote the convolution product,
defined as

½aðxÞ � bðxÞ�½x� ≔ 1

2π

Z
∞

−∞
dτaðτÞbðx − τÞ: ðB3Þ

The convolution theorem allows us to write fm in (B1) as

fm ¼ F ½gðvÞ�ðΩÞ � F ½hmðvÞ�ðΩÞ; ðB4Þ

where g and hm are functions defined as
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gðvÞ ≔ ev
ðtA−tBÞ

T2
− v2

2T2 ; hmðvÞ ≔
1

ðq2 − ðv − iϵÞ2Þm : ðB5Þ

The Fourier transform of gðvÞ and hmðvÞ are

F ½gðvÞ�ðΩÞ ¼
ffiffiffiffiffiffi
2π

p
Te

ðiT2Ω−tAþtBÞ2
2T2 ðB6Þ

F ½h1ðvÞ�ðΩÞ ¼ −
iπeΩðϵ−iqÞ

2q
½sgnðΩÞð−e2iqΩsgnðjϵ − ImðqÞjÞ þ sgnðjϵþ ImðqÞjÞ þ e2iqΩ − 1Þ

− 2e2iqΩsgnðϵ − ImðqÞÞθð−Ωsgnðϵ − ImðqÞÞÞ þ 2sgnðImðqÞ þ ϵÞθð−Ωsgnðϵþ ImðqÞÞÞ� ðB7Þ

F ½h2ðvÞ�ðΩÞ ¼
πeΩðϵ−iqÞ

4q3
ðsgnðΩÞ½e2iqΩðqΩþ iÞsgnðjϵ − ImðqÞjÞ þ ðqΩ − iÞsgnðjϵþ ImðqÞjÞ

þ ðie2iqΩ þ qΩþ qΩe2iqΩ − iÞ� þ 2½e2iqΩðqΩþ iÞsgnðϵ − ImðqÞÞθð−Ωsgnðϵ − ImðqÞÞÞ
þ ðqΩ − iÞsgnðImðqÞ þ ϵÞθð−Ωsgnðϵþ ImðqÞÞÞ�Þ: ðB8Þ

Thus, using (B4) we find that fm takes the closed forms that we use to obtain equations (45) (48), i.e.,

f1 ¼
��

erfi

�
q − iðT2Ω − itB þ ϵÞ þ tAffiffiffi

2
p

T

�
þ i

�
e−

2qtA
T2

þ 2qtB
T2

þ 2iqϵ

T2
þ2iqΩ þ erfi

�
qþ iðT2Ωþ ϵÞ − tA þ tBffiffiffi

2
p

T

�
− i

�

×

�
π

2q
e−

q2

2T2
þ qtA

T2
− qtB

T2
− iqϵ

T2
− iqΩþ itAϵ

T2
− itBϵ

T2
þ ϵ2

2T2
þΩϵ

�
ðB9Þ

f2 ¼
1

4q3T2
e−

ðqþiϵÞðqþið2T2ΩþϵÞ−2tAþ2tBÞ
2T2

�
π

�
−iq2 þ qT2Ωþ iqtA − iqtB þ qϵ

− iT2e
2qðiðT2ΩþϵÞ−tAþtBÞ

T2 ðT2 þ qðq − iðT2Ω − itB þ ϵÞ þ tAÞÞ
�
erfi

�
q − iðT2Ω − itB þ ϵÞ þ tAffiffiffi

2
p

T

�
þ i

��

þ πðT2 þ qðqþ iðT2Ωþ ϵÞ − tA þ tBÞÞerfi
�
qþ iðT2Ωþ ϵÞ − tA þ tBffiffiffi

2
p

T

�
− 2

ffiffiffiffiffiffi
2π

p
qTe

ðqþiðT2ΩþϵÞ−tAþtBÞ2
2T2

�
: ðB10Þ

APPENDIX C: QUADRATIC NONLOCAL TERM M

In this Appendix, we give the full-length closed expression of the integral over the variable v in Eq. (56), i.e.,

Mϕ̂2

tA¼tB ¼ −
λ2e−

α2

2
þ 2iαγA −

β2

2δ2

64π4δT3β

Z
∞

0

dξGðξÞ; ðC1Þ

The full expression of the integrand GðξÞ is

GðξÞ ≔ 1

ξ2ðη2 þ ξ2Þ sinh
�
ξβ

δ2

�
e− ξ2

2δ2

�
−4ξð

ffiffiffiffiffiffi
2π

p
η2 − 2iηþ

ffiffiffiffiffiffi
2π

p
ξ2Þ þ e−

ξ2

2 ðη2 þ ξ2Þ
�
2ie

1
2
ηðηþ2iξÞðηξþ iðξ2 þ 1ÞÞ

×

�
Chi

�
1

2
ðηþ iξÞ2

�
þ iπerf

�
ηþ iξffiffiffi

2
p

�
þ 2 logðξ − iηÞ − logððηþ iξÞ2Þ − Shi

�
1

2
ðηþ iξÞ2

��

þ e
1
2
ηðη−2iξÞ

�
2ðiηξþ ξ2 þ 1ÞChi

�
1

2
ðη − iξÞ2

�
þ 2πð−ηξþ iðξ2 þ 1ÞÞerf

�
η − iξffiffiffi

2
p

�
þ 4ðiηξþ ξ2 þ 1Þ logð−ξ − iηÞ − 2½logðξþ iηÞ þ logððη − iξÞ2Þ� þ logð−ðη − iξÞ2Þ

− 2iξðη − iξÞ logððη − iξÞ2Þ þ 2ð−iηξ − ξ2 − 1ÞShi
�
1

2
ðη − iξÞ2

����
; ðC2Þ
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where Chi and Shi are the cosine and sine hyperbolic
integral functions defined as

ShiðzÞ ≔
Z

z

0

t sinh
t

dt ðC3Þ

ChiðzÞ ≔ ~γ þ
Z

z

0

t cosh−1
t

dtþ z log; ðC4Þ

and ~γ here is the Euler-Mascheroni constant, and everything
is expressed in terms of dimensionless variables as detailed
in Table I.
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