
Brout-Englert-Higgs mechanism for accelerating observers

Antonio Dobado*

Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain
(Received 6 July 2017; published 30 October 2017)

In this work we consider the spontaneous symmetry breaking of the electroweak SUð2ÞL ×Uð1ÞY gauge
group into Uð1Þem taking place in the Standard Model of particle physics as seen from the point of view of
an accelerating observer. According to the Unruh effect, that observer detects the Minkowski vacuum as a
thermal bath at a temperature proportional to the proper acceleration a. Then we show that (in a certain
largeN limit) when the acceleration is bigger than the critical value ac ¼ 4πv (where v is the Higgs vacuum
expectation value), the electroweak SUð2ÞL ×Uð1ÞY gauge symmetry is restored and all elementary
particles become massless. In addition, even observers with a < ac can see this symmetry restoration in the
region close to the Rindler horizon.
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I. INTRODUCTION

In the present day, our positive knowledge about
fundamental interactions can be summarized in just two
theories. On the one hand we have the Standard Model
(SM) of particle physics and on the other hand we have
general relativity (GR). The SM is a quantum field theory
(QFT) invariant under the (chiral) gauge group SUð3ÞC ×
SUð2ÞL ×Uð1ÞY which describes strong and electroweak
interactions between elementary particles (leptons and
quarks). GR is a classical theory of gravity incorporating
the equivalence principle and the curvature of space-time as
essential ingredients.
In addition the SM provides a mechanism for the

generation of the masses of the elementary particles (not
for the composite ones as the proton). This is the celebrated
Brout-Englert-Higgs (BEH) mechanism [1,2] (or Higgs
mechanism for short) which seems to be strongly supported
by the discovery in 2012 at the CERN Large Hadron
Collider (LHC) of a particle with properties compatible
with those expected for the Higgs boson.
Therefore, in spite of the many well-known problems

still to be solved, such as the problem of dark matter, dark
energy, baryogenesis, strong CP, neutrino masses, and
many others, a great deal of observed phenomena can, in
principle, be accommodated in the SM formulated in a
curved space-time background. Also, it is generally
believed that a better understanding of QFT in curved
backgrounds could deliver the deepest insight on the fusion
of GR and quantum mechanics (QM) as the two pillars of
modern theoretical physics.
The formulation of QFT for arbitrary observers, or in the

presence of gravitational fields, is nontrivial mainly due to
the possible presence of horizons, the best known examples
of this being the Hawking radiation [3] and the Unruh effect
[4] (see [5] for a very complete review). In this article we

will concentrate in the second one and in its connection
with the Higgs mechanism. As it is well known, trying to
understand better the Hawking radiation, Unruh realized
that an observer moving through the Minkowski vacuum
with a constant acceleration a will detect a thermal bath at
temperature

T ¼ aℏ
2πckB

: ð1Þ

This result can be obtained and confirmed in different
ways, that is, operationally, by studying the response of a
so-called Unruh-DeWitt detector to the quantum fluctua-
tions of the fields. For the free field case one can also use
Bogolyubov transformations which was the approach used
by the pioneers of field quantization on Rindler space [6].
Also, it is possible to consider operator algebra (see [7]) in
the context of modular theory where the concept of Kubo-
Martin-Schwinger [8] states plays an essential role (see [9]).
Notice that the formula above relates QM, relativity, and

statistical physics since it contains the Planck constant ℏ,
the speed of light c, and the Boltzmann constant kB (in the
following we will use natural units with c ¼ ℏ ¼ kB ¼ 1).
That shows its fundamental nature in spite of the difficulties
for its experimental confirmation. For example, Bell and
Leinaas have suggested the possibility of observing the
Unruh effect by measuring the polarization of electrons in
storage rings [10] but that interesting possibility is still
under discussion [5].
Our results in this work will be based in the so-called

thermalization theorem. It was introduced by Lee [11] and it
consists in a path integral approach to QFT for arbitrary
observers and curved space time. It can be applied to any
kind of field appearing in the SM (scalars, fermions, or
gauge bosons) and most importantly, to interacting systems.
Moreover, the result does not rely on perturbation theory or
any other particular treatment of the interaction. This means
that the Unruh effect could give rise to nontrivial dynamical*dobado@fis.ucm.es
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effects such as phase transitions [12]. Indeed it has been
shown that accelerating observes do observe a restoration of
continuous global symmetries in some systems featuring
spontaneous symmetry breaking (SSB). For example in the
Nambu-Jona-Lasinio model [13], in the λΦ4 theory at the
one-loop level [14] and in the linear sigma model (LSM) in
the large N limit [15].
Therefore, it seems natural to wonder if this restoration

of symmetry due to the Unruh effect applies to gauge
symmetries too. For this reason we will consider in this
work the Higgs mechanism of the SM as seen by an
accelerating observer. In the SM the electroweak SUð2ÞL ×
Uð1ÞY gauge symmetry is spontaneously broken by the
Higgs sector to the electromagnetic gauge group Uð1Þem.
As a consequence of that the three Goldstone bosons
corresponding to the broken generators are eaten by a
combination of the gauge boson to give masses to the W�
and Z electroweak bosons leaving the A photon field
massless (the BEH or Higgs mechanism). The Higgs
system is just a complex doublet featuring a global
SUð2ÞL × SUð2ÞR global symmetry. A potential is intro-
duced ad hoc to produce a SSB of this symmetry down to
SUð2ÞLþR. When the Higgs sector is coupled with the
SUð2ÞL ×Uð1ÞY gauge fields, this global SSB triggers the
Higgs mechanism. The Higgs sector can alternatively be
described by a real four-multiplet with global symmetry
SOð4Þ spontaneously broken to SOð3Þ. Thus the first three
fields are the would-be Goldstone bosons and the fourth
corresponds to the Higgs boson.
In this work we will study the SSB of the SM gauge

symmetry for accelerating observers by using the thermal-
ization theorem and the large N limit. This approximation
is a nonperturbative way for computing nontrivial dynami-
cal effects, such as phase transitions, which is quite
convenient for our purposes here. In order to implement
it, we will generalize the SSB pattern of the Higgs system to
SOðN þ 1Þ down to SOðNÞ, then we will do the relevant
computations to the leading order in the 1=N expansion and
finally we will set N ¼ 3 again.
As mentioned above, the SUð2ÞL ×Uð1ÞY gauged Higgs

system features a SSB of the gauge symmetry down to
Uð1Þem. However, at higher temperatures, the system
experiments a thermal second order phase transition corre-
sponding to a SUð2ÞL × Uð1ÞY symmetry restoration at a
temperatureTc ¼ 2v in the largeN limit, withv≃ 245 GeV
being the Higgs vacuum expectation value (VEV). In this
work, wewill show that a similar phase transition is detected
by an accelerating observer with constant acceleration a at
the critical acceleration ac ¼ 4πv≃ 3 TeV as computed
in the large N approximation. As a consequence, the
electroweak W� and Z bosons become massless for such
an observer. Moreover, as we will see below, even if the
acceleration a is smaller than the critical one ac, the
accelerating observer will perceive a restoration of the gauge
symmetry in the region close to her (Rindler) horizon. This is

due to the fact that Rindler space is not homogeneous and
this produces the interesting effect of having a Higgs VEV
which is position dependent. Thus, the observer sees the
symmetry broken when looking in the direction of the
acceleration but she observes a restoration of the symmetry
somewhere in the opposite direction.
Now one may wonder if there is any possible physical

scenario where the effect described in this work could have
any relevance. In [16,17] the authors introduced a model for
hadron thermalization in heavy ion collisions based on the
Unruh effect which could be applied to the description of
Brookhaven National Laboratory Relativistic Heavy Ion
Collider results then available. The corresponding Unruh
temperature in this case is about 175 MeV corresponding to
the chiral or deconfinement phase transition at an acceleration
of the order of one GeV. Currently, the LHC is producing
proton-proton collisions at a center of mass energy of 13 TeV
which corresponds typically to parton-parton interactions at
several TeVs of center of mass energy. Therefore it is not
unthinkable to envision the possibility of electroweak sym-
metry restoration by acceleration playing a role at theLHC. In
any case, this requires a detailed analysis of this physical case
which is far beyond the scope of this work.
This paper is organized as follows: in Sec. II we define

the Rindler and comoving coordinates in Rindler space and
we enunciate the thermalization theorem to be used later. In
Sec. III we introduce the largeN limit of the Higgs sector of
the SM considered in this work and we compute in this
limit the partition function relevant for the thermalization
theorem. Section IV is dedicated to the electroweak
symmetry restoration obtained and the details of the
VEV profile for the accelerating observers. In Sec. V we
comment on different aspects of our results and Sec. VI is
dedicated to the conclusions. Finally, Appendices A and B
are devoted to the mathematical details of the computations
needed for this work.

II. COMOVING COORDINATES AND THE
THERMALIZATION THEOREM

In order to describe how it is possible to obtain the above
results we start from the Minkowski-space metric written in
terms of Cartesian (inertial) coordinates Xμ ¼ ðT; X; Y; ZÞ:

ds2 ¼ dT2 − dX2 − dX2⊥ ð2Þ
where X⊥ ¼ ðY; ZÞ. Dealing with accelerating observers
(or detectors) in Minkowski space, it is very useful to
consider Rindler and comoving coordinates. Rindler coor-
dinates are defined as

T ¼ ρ sinh η

X ¼ ρ cosh η ð3Þ
where ρ ∈ ð0;∞Þ and η ∈ ð−∞;∞Þ. As it is well known,
these coordinates cover only the region X > jTj (the R
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wedge). Similar coordinates can be introduced covering the
left wedge L where −X > jTj. In the R region the metric
reads

ds2 ¼ ρ2dη2 − dρ2 − dX2⊥: ð4Þ

The two other regions are the origin past PðT < −jXjÞ and
the origin future F ðT > jXjÞ. A uniformly accelerating
observer in the X direction (and constant X⊥) with proper
acceleration a will follow a world line described in Rindler
coordinates by the simple equations: ρ ¼ 1=a and η ¼ aτ
with τ being the proper time. Therefore, Rindler coordi-
nates correspond to a network of observers with different
proper constant acceleration a ¼ 1=ρ and having a clock
measuring their proper times in units of 1=a. The important
thing for our work here is that those observers have a past
and a future horizon at X ¼ −T and X ¼ T, respectively,
which they find in the infinite remote past or future
(in proper time) or also in the limit ρ → 0 (infinite
acceleration).
It is also interesting to introduce on R the coordinates

xμ ¼ ðt; x; y; zÞ defined as

T ¼ 1

a
eax sinhðatÞ

X ¼ 1

a
eax coshðatÞ

Y ¼ y

Z ¼ z: ð5Þ

These are the comoving coordinates associated to some
particular nonrotating accelerating observer located at
x ¼ 0 with constant acceleration a in the X direction.
Note that t; x; y; z ∈ ð−∞;∞Þ and one has ρ ¼ eax=a and
η ¼ at. In these coordinates the metric reads

ds2 ¼ e2axðdt2 − dx2Þ − dx2⊥ ð6Þ

where t is the observer’s (located at x ¼ 0) proper time and
x⊥ ¼ ðy; zÞ. In the limit of vanishing a we recover the
Minkowski metric as it must be.
The thermalization theorem [11], giving rise to the

Unruh effect, stems from the following essential fact: an
accelerating observer can only feel directly the Minkowski
vacuum fluctuations inside R. However, those fluctuations
are entangled with the ones corresponding to the left
Rindler region L (X < −jTj). As a consequence of that
she will see the Minkowski vacuum (by that we mean the
true ground state of the system including interactions) as a
mixed state described by a density matrix ρR which,
according to the thermalization theorem [11], can be
written in terms of the Rindler Hamiltonian ĤR (the
generator of the t time translations) as

ρ̂R ¼ e−2πĤR=a

Trðe−2πĤR=aÞ : ð7Þ

In particular, the expectation value of an operator ÂR
defined on the Hilbert space HR corresponding to the
region R in the Minkowski vacuum jΩMi is given by

hΩMjÂRjΩMi ¼ Trðρ̂RÂRÞ: ð8Þ

This is just what one would find in a thermal ensemble at
temperature T ¼ a=2π (in natural units) and it can be
understood as a very precise formulation of the Unruh
effect.

III. THE LARGE N LIMIT OF THE SM HIGGS
SECTOR IN RINDLER SPACE

Now one can try to apply this result to the case of the
SM, in particular to its symmetry breaking sector. Thus, in
order to study the Higgs mechanism for accelerating
observers we consider the SUð2ÞL × Uð1ÞY gauged
SOðN þ 1Þ=SOðNÞ linear sigma model defined by the
Minkowski-space Lagrangian:

L ¼ L0 þ LYM ð9Þ

where

L0 ¼
1

2
ðDμΦÞTDμΦ − VðΦTΦÞ: ð10Þ

The multiplet ΦT ¼ ðπ̄; σÞ contains N þ 1 real scalar fields
(π̄ is a N component scalar multiplet). The potential is
given by

VðΦTΦÞ ¼ −μ2ΦTΦþ λðΦTΦÞ2 ð11Þ

where λ is positive in order to have a potential bounded
from below and μ2 is positive in order to produce the SSB
SOðN þ 1Þ → SOðNÞ. The covariant derivative is defined
by

DμΦ ¼ ð∂μ þ VμÞΦ ¼ ð∂μ − igTk
LW

k
μ − ig0TYBμÞΦ ð12Þ

where Wk
μ and Bμ are the SUð2ÞL and Uð1ÞY gauge fields,

respectively, and g and g0 are the corresponding gauge
couplings. These groups are contained in SOðN þ 1Þ
[but not in SOðNÞ] for N ≥ 3 and are generated here by
the ðN þ 1Þ × ðN þ 1Þ matrices Tk

L ¼ iMk
L=2 and TY ¼

iMY=2 where
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M1
L ¼

0
BBBBBB@

0 0 0 … −
0 0 − … 0

0 þ 0 … 0

…

þ 0 0 … 0

1
CCCCCCA
; ð13Þ

M2
L ¼

0
BBBBBB@

0 0 þ … 0

0 0 0 … −
− 0 0 … 0

…

0 þ 0 … 0

1
CCCCCCA
; ð14Þ

M3
L ¼

0
BBBBBB@

0 − 0 … 0

þ 0 0 … 0

0 0 0 … −
…

0 0 þ … 0

1
CCCCCCA

ð15Þ

and

MY ¼

0
BBBBBB@

0 − 0 … 0

þ 0 0 … 0

0 0 0 … þ
…

0 0 − … 0

1
CCCCCCA
: ð16Þ

For example, for N ¼ 4 we have

M1
L ¼

0
BBBBBB@

0 0 0 0 −
0 0 − 0 0

0 þ 0 0 0

0 0 0 0 0

þ 0 0 0 0

1
CCCCCCA
; ð17Þ

M2
L ¼

0
BBBBBB@

0 0 þ 0 0

0 0 0 0 −
− 0 0 0 0

0 0 0 0 0

0 þ 0 0 0

1
CCCCCCA
; ð18Þ

M3
L ¼

0
BBBBBB@

0 − 0 0 0

þ 0 0 0 0

0 0 0 0 −
0 0 0 0 0

0 0 þ 0 0

1
CCCCCCA

ð19Þ

and

MY ¼

0
BBBBBB@

0 − 0 0 0

þ 0 0 0 0

0 0 0 0 þ
0 0 0 0 0

0 0 − 0 0

1
CCCCCCA
: ð20Þ

Then it is easy to check ½Ti
L; T

j
L� ¼ iϵijkTk

L, trT
i
LT

j
L ¼

δij, and ½Tk
L; TY � ¼ 0. The Yang-Mills Lagrangian is

defined as usual as

LYM ¼ −
1

4
Wi

μνWiμν −
1

4
BμνBμν ð21Þ

with

Wi
μν ¼ ∂μWi

ν − ∂νWi
μ þ gϵijkW

j
μWk

ν ð22Þ

and

Bμν ¼ ∂μBν − ∂νBμ: ð23Þ

The SSB pattern induced by the potential is SOðN þ 1Þ →
SOðNÞ and it gives rise, in principle, to N Goldstone
bosons living in the coset space SN ¼ SOðN þ 1Þ=SOðNÞ.
However, in this case the first three Goldstones are eaten by
a particular combination of the gauge bosons which
become massive (the Higgs mechanism). In particular,
the case N ¼ 3 corresponds exactly with the Yang-Mills
plus Higgs sector of the SM and no Goldstone boson
appear in the spectrum since all of then (three) are eaten to
produce the masses for theW�

μ and Zμ electroweak bosons.
At the tree level the low-energy dynamics is controlled by
the broken phase where

hΩMjσ̂jΩMi ¼ v ð24Þ

and v2 ¼ μ2=2λ ¼ NF2. Here we have introduced the
constant F to stress the fact that, as we will see below,
v2 is order N in the large N limit considered here.
According to the thermalization theorem an accelerating

observer will see the system described by the above
Lagrangian as a canonical ensemble given by the partition
function

ZRðaÞ ¼ Trðe−2π
a ĤRÞ

¼
Z

½dW�½dB�½dΦ� exp ð−SRE½Φ;W; B�Þ; ð25Þ

where SRE is the Euclidean action in Rindler space and the
functional integrals are defined using thermal-like periodic
boundary conditions. For example,
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Φðx̄; 0Þ ¼ Φðx̄; 2π=aÞ ð26Þ

and also

Φðjx̄j ¼ ∞; tEÞTΦðjx̄j ¼ ∞; tEÞ ¼ σ2ðjx̄j ¼ ∞; tEÞ ¼ v2;

ð27Þ

where tE is the Euclidean comoving time and x̄ ¼ ðx; y; zÞ.
In comoving coordinates the Euclidean action SRE½Φ�
defined on R is

SRE½π̄; σ;W; B�

¼
Z

d4x
ffiffiffi
g

p �
1

2
ΦTð−□E − 4λv2ÞΦ

þ λðΦTΦÞ2 þ 1

2
ΦTVT

μ∂μΦþ 1

2
∂μΦTVμΦ

þ 1

2
ΦTVT

μVμΦþ 1

4
ðWi

μνÞ2 þ
1

4
ðBμνÞ2

�

with

ffiffiffi
g

p
d4x ¼ e2axdtEdxdydz ð28Þ

and the integrals are performed on the regions tE ∈ ½0; 2π=a�
and x; y; z ∈ ð−∞;∞Þ.
As commented above we are interested in making the

computations of the partition function in the large N limit.
This limit makes sense if we take also the limit λ; g2 and g02

going to zero with Nλ; Ng2, and Ng02 constant. To imple-
ment these limits a standard technique consists (see for
example [18]) of introducing an auxiliary scalar field χ so
that

ZRðaÞ ¼
Z

½dW�½dB�½dχ�½dσ�½dπ̄�

× exp ð− ~SRE½π̄; σ; χ;W; B�Þ

with

~SRE½π̄; σ; χ;W; B� ¼
Z

d4x
ffiffiffi
g

p �
1

2
πað−□E þ χÞπa

þ 1

2
σð−□EÞσ þ 1

2
ðσ2 − v2Þχ

−
χ2

16λ
− λv4 þ � � �

�
ð29Þ

where we have omitted the terms involving gauge fields
which are not χ dependent. By integrating this field, which
is not dynamical, one can immediately recover the previous
partition function. In fact the (algebraic) Euler-Lagrange
equation for χ reads

χ ¼ 4λðπ̄2 þ σ2 − v2Þ: ð30Þ

Now we can perform a standard Gaussian integration of
the πa fields and we get

e−ΔΓ½χ� ¼
Z

½dπ̄�e−1
2

R
d4x

ffiffi
g

p
πa½−□Eþχ�πa ð31Þ

with

ΔΓ½χ� ¼ N
2
Tr log

−□E þ χ

−□E
: ð32Þ

Thus we have

ZRðaÞ ¼
Z

½dW�½dB�½dχ�½dσ�e−ΓR½σ;χ;W;B� ð33Þ

where the effective action in the exponent is

ΓR½σ; χ;W; B� ¼
Z

d4x
ffiffiffi
g

p �
1

2
σð−□EÞσ þ 1

2
ðσ2 − v2Þχ

−
χ2

16λ
− λv4 þ N

2
log

−□E þ χ

−□E

þ σ2
�
g2

8
W2 þ g02

8
B2 þ 1

4
gg0W3

μBμ

�

þ 1

4
ð ~Wi

μνÞ2 þ
1

4
ðBμνÞ2

�
þOð1=NÞ ð34Þ

where

~Wi
μν ¼ ∂μWi

ν − ∂νWi
μ: ð35Þ

Notice that the explicit terms in the first two lines are order
N and the ones in the third and fourth lines are order one in
the large N limit considered here. The quadratic terms in
the gauge fields can be diagonalized as usual by introduc-
ing the fields

W�
μ ¼ 1ffiffiffi

2
p ðW1

μ ∓ iW2
μÞ ð36Þ

and

Zμ ¼ cos θWW3
μ − sin θWBμ ð37Þ

where θW is the Weinberg angle with tan θW ¼ g0=g.
The orthogonal combination is the photon field

Aμ ¼ sin θWW3
μ þ cos θWBμ; ð38Þ

but this field does not appear in the quadratic terms.
Obviously these terms will produce masses for the W
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and Z electroweak bosons whenever the field σ (in fact σ2)
develops a VEV.
The functional integral above can be computed in the

large N limit by expanding the fields around some point in
the functional space σ̄, χ̄, W̄, and B̄ where the first
derivative of ΓR½σ; χ;W; B� vanishes. Then, by using the
steepest descent method one has

ZRðaÞ ¼ e−ΓR½σ̄;χ̄;W̄;B̄� þOð1= ffiffiffiffi
N

p Þ;

where we have taken into account that ΓR½σ; χ� is order N.
Then, in the large N limit we have

σ̄2ðxÞ ¼ ðhΩMjσ̂ðxÞjΩMiÞ2 ¼ hΩMjðσ̂ðxÞÞ2jΩMi

and therefore the W� and Z masses will be given by

M2
W ¼ 1

4
g2σ̄2ðxÞ ð39Þ

and

M2
Z ¼ 1

4
ðg2 þ g02Þσ̄2ðxÞ: ð40Þ

Notice that, in general, the masses are position dependent
because they are produced by the Higgs mechanism in a
Rindler space which is not homogeneous.
Now we can choose W̄ ¼ B̄ ¼ 0 and σ̄ and χ̄ as the

solutions of

δΓR

δσðxÞ ¼ −□Eσ þ χσ ¼ 0 ð41Þ

δΓR

δχðxÞ ¼
1

2
ðσ2 − v2Þ − χ

8λ
þ N

2
Gðx; x; χÞ ð42Þ

where

ð−□E þ χÞxGðx; x0; χÞ ¼
1ffiffiffi
g

p δð4Þðx − x0Þ ð43Þ

with the boundary conditions σ̄ ¼ v and χ̄ ¼ 0 in the limit x
going to infinity.

IV. THE ACCELERATION DRIVEN PHASE
TRANSITION

In principle the above equations are very difficult to
solve for x depending fields. However we can proceed in a
similar way as in [15] where the above equations were
considered in the context of the (not gauged) SOðN þ 1Þ=
SOðNÞ LSM. The result goes as follows (see Appendix A).
At x ¼ 0, i.e., the origin of the comoving frame with
acceleration a, there are two possible solutions depending
on the a value. If a is not bigger than the critical
acceleration ac given by

ac ¼ 4πv

ffiffiffiffi
3

N

r
¼ 4

ffiffiffi
3

p
πF ð44Þ

ð0 < a < acÞ then

σ̄ð0Þ ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

a2c

s
ð45Þ

and χ̄ ¼ 0. However, for a > ac we have

σ̄ð0Þ ¼ 0 ð46Þ

and χ̄ different from zero. Notice that the critical accel-
eration ac is N independent. These two cases are associated
with two different phases of the system. The first one is the
broken phase where we have SSB of the SUð2ÞL ×Uð1ÞY
gauge symmetry and the electroweak gauge bosons have
masses given by

M2
W ¼ 1

4
g2v2

�
1 −

a2

a2c

�
ð47Þ

and

M2
Z ¼ 1

4
ðg2 þ g02Þv2

�
1 −

a2

a2c

�
: ð48Þ

In the second phase (a > ac) we have a restoration of the
SUð2ÞL ×Uð1ÞY gauge symmetry and consequently

M2
W ¼ M2

Z ¼ 0: ð49Þ

This is a typical second order Ginzburg-Landau phase
transition but with the acceleration playing the role of the
temperature. Therefore the accelerating observer experi-
ments a phase transition (restoration of the electroweak
gauge symmetry of the SM) at the critical acceleration:

ac ¼ 4πv≃ 3 TeV ð50Þ

for N ¼ 3. Notice however that, as commented above, ac is
formally N independent since v is of the order of

ffiffiffiffi
N

p
.

Next it is interesting to consider what happens at points
in Rindler space with x different from zero. Equivalently we
can consider a different accelerating observer at Rindler
coordinate ρ0 ¼ 1=a0. This observer will find a similar
result just exchanging a by a0. From the point of view of the
first observer, the second observer is located at some point
x given by

ρ0 ¼ 1

a0
¼ 1

a
eax ¼ 1

aðxÞ ; ð51Þ

i.e., the acceleration of the second observer is a0 ¼ aðxÞ ¼
ae−ax. Now it is immediate to find the position dependent
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squared VEV of the σ field which, in comoving coordi-
nates, is given by

σ̄2ðxÞ ¼ hΩMjðσ̂ðxÞÞ2jΩMi

¼ v2
�
1 −

a2

a2c
e−2ax

�
ð52Þ

which implies x dependent electroweak bosons masses:

M2
W ¼ 1

4
g2v2

�
1 −

a2

a2c
e−2ax

�
ð53Þ

and

M2
Z ¼ 1

4
ðg2 þ g02Þv2

�
1 −

a2

a2c
e−2ax

�
: ð54Þ

For a comoving frame, with acceleration a belonging to the
interval 0 < a < ac, the electroweak gauge boson masses
are a function on the coordinate x ranging from the standard
value in Minkowski space (a ¼ 0) for x ¼ ∞ to zero at the
critical value xc given by

xc ¼
1

a
log

a
ac

< 0: ð55Þ

At this point (in fact a surface because of the transverse
coordinates y and z), the phase transition takes place and
the SUð2ÞL ×Uð1ÞY gauge symmetry is restored. Of
course the symmetry is also restored on the region close
to the horizon x < xc. In Rindler coordinates one has
symmetry restoration in the region defined by ρ < 1=ac.
Thus, the accelerating trajectory with acceleration ac
defines the boundary between the regions corresponding
to the two different phases. The position of this boundary
depends only on v but not on the acceleration a. Therefore,
the landscape of the VEV in Rindler space depends only on

the parameters of the SM but not on any other acceleration
but the critical one. In terms of the Minkowski coordinates
X and T the VEV in the broken phase is given by

σ̄2 ¼ v2
�
1 −

1

a2cρ2

�
¼ v2

�
1 −

1

a2cðX2 − T2Þ
�
; ð56Þ

which is plotted in Fig. 1.

V. DISCUSSION

The possibility of having symmetry restoration by
acceleration, as the one considered in this paper, has been
sometimes considered at least controversial because of the
following argument (see for example [19]). Let σMðXÞ be
the corresponding classical σ field in Minkowski (inertial)
coordinates collectively denoted by X. Then, as σ is a
scalar, one should have the following on the right wedgeR:

σðxÞ ¼ σMðXÞ: ð57Þ

On the other hand, the VEVof the Minkowski quantum
field σ̂MðXÞ is given by

hΩMjσ̂MðXÞjΩMi ¼ v ð58Þ

since the symmetry is spontaneously broken for inertial
observers. Is this not in contradiction with the result

hΩMjσ̂ðxÞjΩMi ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a2

a2c
e−2ax

s
ð59Þ

found in this work? The answer is clearly no, since Eq. (57)
does not imply that hΩMjσ̂MðXÞjΩMi has to equal
hΩMjσ̂ðxÞjΩMi. The reason is the following: the
Minkowski Hilbert space can be split as HM ¼
HL ⊗ HR, where HL and HR are the Hilbert spaces
corresponding to the regions L and R, respectively.
σ̂MðXÞ is an operator defined on the whole Minkowski
Hilbert space HM. However, σ̂RðxÞ ¼ σ̂ðxÞ is an operator
defined only on HR, and it must be understood as 1 ⊗
σ̂RðxÞ when acting on jΩM >∈ HM. Events belonging to
the region P can affect events both in L and R. Therefore,
the field quantum fluctuations in both wedges are entangled
and this means that σ̂M is not the tensorial product of σ̂L
and σ̂R, i.e.,

σ̂MðXÞ ≠ θð−XÞσ̂LðxÞ ⊗ θðXÞσ̂RðxÞ: ð60Þ

As a consequence, Eqs. (58) and (59) are not incompatible
at all.
Another important point concerning our results is the

following. Introducing the Unruh-like critical temperature

FIG. 1. Profile of the Higgs VEV for different points of the
space-time as seen by the accelerating observer.
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Tc ¼
ac
2π

¼ 2v ð61Þ

and

TðxÞ ¼ a
2π

e−ax ¼ 1

2πρ
ð62Þ

the VEV in the comoving frame is given by

hΩMjσ̂ðxÞjΩMi ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

TðxÞ2
T2
c

s
: ð63Þ

In other words, it is like if the Higgs field were feeling a
thermal bath with a space-dependent temperature TðxÞ [20]
which diverges at the horizon and goes to zero at the
infinite. Notice that this is compatible with the Tolman and
Ehrenfest [21] rule for thermal equilibrium in static space-
times since

TðxÞ ffiffiffiffiffiffi
g00

p ¼ Tð0Þe−axeax ¼ a
2π

ð64Þ

is an x independent constant.
The critical acceleration we have found for the restora-

tion of electroweak symmetry is very large, ac ≃ 3 TeV,
which is 1.35 × 1036 m=s2, i.e., 35 orders of magnitude
larger than the acceleration of gravity on Earth. On the
other hand, according to our previous discussion, that
means that the phase transition occurs at a distance
ρ ∼ 1=ac of the horizon which is approximately
0.66 × 10−4 fm. This is indeed a very small distance and
it is difficult to figure out a physical scenario where the
phenomenon of electroweak symmetry restoration could
take place. However, as commented in the Introduction, it is
interesting to mention that the LHC is currently studying
proton-proton collisions at a center of mass energy of
13 TeV, which corresponds typically to parton-parton
collisions at several TeVs. Thus, it is not unthinkable that
the electroweak symmetry restoration by acceleration
considered here could play a role in this kind of process.
Of course, a much more detailed analysis is needed but in
any case we understand that this physical effect is still
interesting from the fundamental point of view.

VI. CONCLUSIONS

To conclude it is possible to say that the thermalization
theorem (the Unruh effect) applies to any interacting (not
only free) QFT with any kind of field (scalar, fermionic,
gauge, etc.) [11]. The Unruh temperature T ¼ a=2π is not
just a formal artifact but it is a real temperature which can
give rise to collective nontrivial phenomena such as phase
transitions and symmetry restorations. In particular in this
work, we have shown how the Unruh effect can produce a
restoration of the electroweak SUð2ÞL ×Uð1ÞY gauge

symmetry of the SM (inverse Higgs effect). This means
that for an accelerating observer the symmetry is restored
for accelerations bigger than a critical value ac ¼
4πv≃ 3 TeV. For a > ac the electroweak gauge bosons
become massless as the photon. Also we have seen that for
such an accelerated observer with a < ac, the symmetry is
also restored beyond a surface defined by x < xc ¼
logða=acÞ=a (in the horizon direction), where the electro-
weak gauge bosons are massless. In fact this happens also
to any other elementary particle (quarks, leptons and the
Higgs boson itself) since in the SM all of them have masses
controlled by the Higgs VEV. As a consequence, all
(elementary) particles become massless for enough accel-
erated observers. We think this is a very interesting result at
the fundamental level, coming from the formulation of the
SM as a QFT on Rindler space-time. In addition there are
some possibilities that it could play a role at the LHC or
other higher energy colliders in the future.
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APPENDIX A

Here we will find approximate solutions for Eqs. (41)
and (42) to obtain σ̄ and χ̄. In particular we consider the
region ax ≪ 1. In this regime the accelerating observer
goes into the Minkowski inertial frame for fixed x (a goes
to zero) or x goes to zero for fixed a. Thus, we look for
solutions with vanishing χ̄. In Appendix B it is shown how
in this case our equations become

0 ¼ □Eσ ðA1Þ

0 ¼ σ2 − v2 þ N
2π3

Z
∞

0

dΩ
Ωπ

2ρ2 tanhðΩπÞ : ðA2Þ

Introducing ω as ω ¼ aΩ and using ρa ¼ 1þ axþ � � �
we find, up to order ax:

σ2 ¼ v2 −
N
4π2

ð1 − 2axÞ
Z

∞

0

dωω

�
1þ 2

e
2π
aω − 1

�
þ � � � :

Obviously the first integral requires some regularization
and renormalization. This can be done by using an x
dependent ultraviolet cutoff Λe−ax and performing the
renormalization of the v parameter:
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v2 → v2 − N
Λ2

2ð2πÞ2 ð1 − 2axþ � � �Þ: ðA3Þ

This renormalization naturally matches the a ¼ 0 limit and
is consistent with the red/blue shift detected by the
accelerating observer when receiving a signal emitted at
the point x. Then we have

σ2 ¼ v2 −
N
2π2

ð1 − 2axÞ
Z

∞

0

dωω
1

e
2π
aω − 1

þOððaxÞ2Þ:

By performing the ω integration, the Minkowski VEV
of the σ̂2ðxÞ comoving operator is given in the ax ≪ 1
regime by

σ̄2ðxÞ ¼ hΩMjðσ̂ðxÞÞ2jΩMi

¼ v2
�
1 −

a2N
12ð2πÞ2v2 ð1 − 2axÞ

�
: ðA4Þ

By introducing the critical acceleration:

a2c ¼ 3ð4πÞ2 v
2

N
ðA5Þ

we have

σ̄2ðxÞ ¼ v2
�
1 −

a2

a2c
þ 2

a3

a2c
xþ � � �

�
: ðA6Þ

Notice that at this order, this is also a solution of Eq. (41).
Therefore, at the origin of the accelerating frame (x ¼ 0 or
ρ ¼ 1=a), the squared VEV of the σ̂ field is given by

σ̄2ð0Þ ¼ hΩMjðσ̂ð0ÞÞ2jΩMi ¼ v2
�
1 −

a2

a2c

�
ðA7Þ

for 0 ≤ a ≤ ac and clearly

hΩMjðσ̂ð0ÞÞ2jΩMi ¼ 0 ðA8Þ

for a > ac. This is exactly the thermal behavior of the LSM
in the large N limit with a=ac playing the role of T=Tc (as
seen by a inertial observer). It corresponds to a second
order phase transition at the critical acceleration ac where
the original spontaneously broken symmetry is restored for
the accelerating observer.

APPENDIX B

Here we will give some of the details on the computation
of the Euclidean Green function Gðx; x0; sÞ defined by

ð−□EÞxGðx; x0; sÞ ¼
1ffiffiffi
g

p δð4Þðx − x0Þ ðB1Þ

for constant s and the appropriate boundary conditions
which are periodic in the time coordinate with periodicity
β ¼ 1=T ¼ 2π=a. We can use Rindler coordinates where

□E ¼ ∂2
ρ þ

1

ρ
∂ρ þ

1

ρ2
∂2
η þ ∂2⊥: ðB2Þ

Now we introduce the partial Fourier transform:

ð2πÞ2Gðρ; ρ0; x⊥ − x0⊥; η − η0; sÞ

¼
X∞
n¼−∞

Z
dk2⊥ei½nðη−η

0Þþk⊥ðx⊥−x0⊥Þ� ~Gðρ; ρ0; k⊥; n; sÞ

which satisfies

½ρ2∂2
ρ þ ρ∂ρ − ðα2ρ2 þ n2Þ� ~G ¼ −ρδðρ − ρ0Þ ðB3Þ

where α2 ¼ k2⊥ þ s. The solution can be written as

~Gðρ; ρ0; k⊥; n; sÞ ¼
Z

∞

0

dΩ
ΨΩðρÞΨΩðρ0Þ

Ω2 þ n2
ðB4Þ

where ΨΩðρÞ can be obtained from the solution of the
modified Bessel functions with imaginary parameter:

ΨΩðρÞ ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω sinhðΩπÞ

p
KiΩðαρÞ: ðB5Þ

By using well-known properties of these functions and

X∞
n¼−∞

1

Ω2 þ n2
¼ π

Ω
1

tanhðΩπÞ ðB6Þ

it is possible to find

Gðx; x; sÞ ¼ 1

2π3

Z
∞

0

dΩ coshðΩπÞ
Z

∞

0

dkkK2
iΩðαρÞ:

Now, taking s ¼ 0 it is straightforward to get Eq. (A2).
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